
PeabraiN: A PIPE Extension for Performance
Estimation and Resource Optimisation

– Tool paper –
Ricardo J. Rodrı́guez, Jorge Júlvez, José Merseguer

Dpto. de Informática e Ingenierı́a de Sistemas
Universidad de Zaragoza, Marı́a de Luna 1, 50018 - Zaragoza, Spain

Email: {rjrodriguez, julvez, jmerse}@unizar.es

Abstract—Many discrete systems with shared resources from
different artificial domains (such as manufacturing, logistics or
web services) can be modelled in terms of timed Petri nets.
Two studies that may result of interest when dealing with
such a systems are the performance evaluation (or completed
jobs per unit of time) and the resource optimisation. Exact
performance evaluation, however, may become unachievable due
to the necessity of an exhaustive exploration of the state-space.
In this context, a solution can be to estimate the performance
by computing bounds. Resource optimisation leverages a budget
and distributes resources in order to maximise the system
performance. In this paper, we present PeabraiN, a collection
of PIPE tool-compliant modules for performance estimation
and resource optimisation based on bounds computation for
Stochastic Petri Nets. The algorithms supporting the modules
make an intensive use of linear programming techniques and
therefore their computational complexity is low. Besides, other
PN properties, such as structural enabling bound at a transition,
structural marking bound at a place or visit ratios computation,
are added to PIPE tool as well.

Index Terms—Performance evaluation, Petri nets, Software
performance, Discrete Event Systems

I. INTRODUCTION

Many discrete systems can be modelled in terms of Stochas-
tic Petri Nets (SPNs) [1]. Such systems may need the use
of shared resources. Two studies that are often of interest
are: (i) the performance evaluation (or throughput, defined
as completed jobs per unit of time), and (ii) the resource
optimisation, i.e., to have optimally sized the number of shared
resources in the system.

Exact performance evaluation may become unachievable, in
terms of computation time, due to the need of an exhaustive
exploration of the state-space. Normally, the larger the system,
the bigger its state-space. An alternative is to estimate the
performance by computing performance bounds [2]–[4].

Resource optimisation is another master key when designing
these systems. When resources are not well-dimensioned [5],
it may happen that either the throughput is constrained by
lack of available resources (then performance is lower than it
could be), or there are idle resources (then money has been
squandered).

In this paper, we present PeabraiN, a collection of
PIPE [6] tool-compliant modules for performance estimation
and resource optimisation based on bounds computation for

SPNs. The algorithms supporting such modules, which have
been previously published [2], [4], [7], [8], intensively use lin-
ear programming (LP) techniques, then assuring low compu-
tational complexity. Besides, other modules have been added
for computing other properties based in LP techniques, such
as the computation of structural enabling(marking) bound at a
transition(place). Visit ratios computation and SPN simulation
analysis modules have been integrated to PIPE as well.

We studied different choices for implementation: implemen-
tation of a stand-alone MATLAB application; extension of the
GreatSPN [9] tool; extension of the HISim tool; and to develop
modules to be integrated in PIPE tool.

The only tool for performance bound computation, as far
as our knowledge, is GreatSPN, which computes lower and
upper throughput bounds of transitions. The extension of
GreatSPN was finally rejected because of the programming
language paradigm used, and its platform dependency. All
bound computation algorithms presented in this paper were
initially developed for MATLAB. Nevertheless, a final deploy-
ment of this solution was ruled out by the dependency of a
proprietary software library (namely, MATLAB Component
Runtime library). A solution deployed over HISim was re-
jected when we figured out the easiness of extension through
modules directly over PIPE tool. For resource optimisation, as
far as our knowledge, there does not exist any tool.

PIPE was chosen because (i) we need only SPNs and not
other PN extensions, (ii) it uses the standard PN file format,
Petri Net Markup Language (PNML) [10], so it allows an
interchange of files between different PNML-compliant tools,
(iii) PIPE facilitates a user-friendly GUI editor, (iv) it is multi-
platform, and (v) it is open source.

The remainder of this paper is organised as follows. Sec-
tion II introduces the theory concepts behind the tool. Sec-
tion III presents the PeabraiN framework design and the
features added to PIPE tool. An illustrative example showing
the benefits of using PeabraiN is introduced in Section IV.
Section V presents the installation requirements and the tool
availability. Lastly, Section VI outlines some conclusion and
future work in PeabraiN.

mailto:rjrodriguez@unizar.es

II. THEORY OVERVIEW BEHIND PeabraiN

This section introduces concepts and references for the
algorithms implemented in PeabraiN.

A. Preliminary Concepts

A Petri net [11] is a 4–tuple N = 〈P, T,Pre,Post〉, where
P and T are disjoint non-empty sets of places and transitions,
and Pre (Post) are the pre–(post–)incidence non-negative
integer matrices of size |P | × |T |. The pre- and post-set of
a node v ∈ P ∪ T are respectively defined as •v = {u ∈
P ∪ T |(u, v) ∈ F} and v• = {u ∈ P ∪ T |(v, u) ∈ F}, where
F ⊆ (P×T)∪(T×P) is the set of directed arcs. A Petri net is
said to be self-loop free if ∀p ∈ P, t ∈ T t ∈ •p implies t 6∈ p•.
Ordinary nets are Petri nets whose arcs have weight 1. The
incidence matrix of a Petri net is defined as C = Post−Pre.

A vector m ∈ Z|P |≥0 which assigns a non-negative integer to
each place is called marking vector or marking. A Petri net
system, or marked Petri net S = 〈N ,m0〉, is a Petri net N
with an initial marking m0.

A transition t ∈ T is enabled at marking m if m ≥
Pre(·, t), where Pre(·, t) is the column of Pre corresponding
to transition t. A transition t enabled at m can fire yielding
a new marking m′ = m + C(·, t) (reached marking). This is
denoted by m t−→m′. A sequence of transitions σ = {ti}ni=1

is a firing sequence in S if there exists a sequence of markings
such that m0

t1−→m1
t2−→m2 . . .

tn−→mn. In this case, marking
mn is said to be reachable from m0 by firing σ, and this is
denoted by m0

σ−→mn. The firing count vector σ ∈ Z|T |≥0 of
the firable sequence σ is a vector such that σ(t) represents the
number of occurrences of t ∈ T in σ. If m0

σ−→m, then we
can write in vector form m = m0 + C · σ, which is referred
to as the linear (or fundamental) state equation of the net.

Two transitions t, t′ are said to be in structural conflict
if they share, at least, one input place, i.e., •t ∩ •t′ 6= ∅.
Two transitions t, t′ are said to be in effective conflict for a
marking m if they are in structural conflict and they are both
enabled at m. Two transitions t, t′ are in equal conflict if
Pre(·, t) = Pre(·, t′) 6= 0.

A Petri net is said to be strongly connected if there is a
directed path joining any pair of nodes of the graph. A state
machine is a particular type of ordinary Petri net where each
transition has exactly one input arc and exactly one output arc,
that is, |t•| = |•t| = 1,∀t ∈ T .

A p-semiflow is a non-negative integer vector y ≥ 0
such that it is a left anuller of the net’s incidence matrix,
yᵀ · C = 01. A p-semiflow v is minimal when its support,
‖v‖ = {i|v(i) 6= 0}, is not a proper superset of the support of
any other p-semiflow, and the greatest common divisor of its
elements is one.

A process Petri net (PPN) [12] is a strongly connected
self–loop free Petri net N = 〈P, T,Pre,Post〉 where (i)
P = P0 ∪ PS ∪ PR is a partition such that P0 = {p0}
is the process-idle place, PS 6= ∅, PS ∩ P0 = ∅, PS ∩

1In the sequel, we omit the transpose symbol in the matrix products for
clarity.

PR = ∅, PS is the set of process-activity places and PR =
{r1, . . . , rn}, n > 0, PR ∩ P0 = ∅ is the set of resources
places; (ii) the subnet N ′ = 〈P \ PR, T,Pre,Post〉 is
a strongly connected state machine, such that every cycle
contains p0; (iii) for each r ∈ PR, there exist a unique
minimal p-semiflow associated to r, yr ∈ N|P |, fulfilling:
‖yr‖ ∩ PR = {r}, ‖yr‖ ∩ PS 6= ∅, ‖yr‖ ∩ P0 = ∅ and
yr(r) = 1; and (iv) PS =

⋃
r∈PR

(‖yr‖ \ {r}).
A Stochastic Petri Net system (SPN) is a pair 〈S, δ〉

where S = 〈P, T,Pre,Post,m0〉 is a Petri net system and
δ : T → R+ is a positive real function such that δ(t) is
the mean of the exponential firing time distribution associated
to each transition t ∈ T . If δ(t) > 0, then transition t is
a timed transition. Otherwise, i.e., δ(t) = 0, transition t is
an immediate one. It will be assumed that all transitions in
conflict are immediate.

The vector of visit ratios expresses the relative throughput
of transitions in the steady state. The visit ratio v(t) of
each transition t ∈ T normalised for transition ti , vti(t),

is expressed as vti(t) =
χ(t)

χ(ti)
= Γ(ti) · χ(t), ∀t ∈ T ,

where Γ(ti) =
1

χ(ti)
represents the average inter-firing time

of transition ti and χ(t) is the steady-state throughput of
transition t.

The vector of visit ratios v exclusively depends on the
structure of the net and on the routing rates when the t-
semiflows of a PN system are assumed to be freely related [2].
Thus, the vector of visit ratios v normalised for transition ti,
vti , can be calculated by solving the following linear system
of equations [2]: (

C
R

)
· vti = 0

vti(ti) = 1

(1)

where R is a matrix containing the rates r(t) associated to
transitions in equal conflict.

B. Description of Algorithms

PeabraiN provides two main features which implement
(i) an iterative algorithm for performance estimation based on
linear bound computation [4], [8] and (ii) a heuristic method
to distribute shared resources in order to enhance the system
performance as much as possible [8].

The algorithm in Fig. 1 [4], [8] shows the main steps for
computing an estimation of the performance, more precisely,
an upper throughput bound in a more accurate way (i.e.,
more closer to the system performance) than other algo-
rithms [2]. It needs, as input, the SPN system to analyse and
the degree of precision (ε > 0) to be achieved, and returns
the improved upper throughput bound. Such an algorithm is
based on the computation of p-semiflows. Initially, it considers
the p-semiflow with lowest throughput, and its associated
subnet is called initial bottleneck. Then, in each iteration the
subnet associated to the p-semiflow that is potentially more
constraining than the others is added to the bottleneck, and

Input: 〈S, δ〉, ε
Output: Θ

1: Compute the slowest p-semiflow y (initial bottleneck) and
its throughput Θ;

2: Θ′ = 2 ·Θ; {Initial Θ′ value to force first iteration}
3: while

Θ′ −Θ

Θ′
≥ ε and there are p-semiflows to be added

do
4: Given a p-semiflow y, compute the next slowest p-

semiflow y′ connected to y
5: Θ′ = Θ
6: Θ = Compute throughput of subnet associated to the

p-semiflow y′

7: end while

Figure 1. Iterative algorithm for computing upper throughput bounds.

Input: 〈S, δ〉, R, p0, budget, c
Output: n

1: Compute the slowest p-semiflow y (initial bottleneck) and
its throughput Θ;

2: while there is money to be spent and we have not reached
the process-idle place do

3: Compute the next resource increment by solving a LP
problem

4: Given resource costs and a maximum budget, compute
the cost of adding more resources in the way indicated
by the solution of the previous LP problem, and store
such a distribution in n

5: end while
6: if not all resources have been incremented and there is

remaining money to be spent then
7: Report there is still money to be spent
8: end if

Figure 2. Resource optimisation heuristic algorithm.

after that, the throughput is calculated. Note that such addition
in each iteration is restricting the behaviour of the system,
what implies a lower throughput. The iteration stops when no
significant improvement of the bound is achieved.

The algorithm in Fig. 2 is a heuristic procedure for resource
optimisation, it gauges the number of resources a system
should allocate. More precisely, given a cost for each resource
and a fixed budget, the algorithm computes how many in-
stances of each resource are needed ensuring two premises:
the budget is not exceeded, and the throughput is maximised.
As input, it requires a PPN representing the system, the vector
of resources R, the process-idle place p0 (see Section II-A),
the total budget and a vector of costs c, which associates a
cost to each resource in the PPN. As output, the algorithm
provides which resources and in which quantity they have to
be incremented.

C. Other Implemented Features

Lastly, PeabraiN adds other features to PIPE as side effect
from the algorithms above mentioned:

• Lower (upper) throughput bound. The algorithms
given in [7] for computing the lower (and upper) through-
put bound for a SPN, in terms of LP problems, have been
implemented. The PN structure needs to fulfil a set of
conditions so that the computation of performance bound
has some meaning, namely (i) the PN must be structurally
live, (ii) structurally bounded, (iii) have a home state
and (iv) its vector of visit ratios must have a unique
solution. As some of these properties are already fulfilled
depending on the PN subclasses, and moreover some of
them are NP-decidability problems, we just automatically
check the latter property.

• Slowest p-semiflow. The LP problem presented in [7]
allows to compute the slowest p-semiflow of a PN, and
its throughput which is an upper performance bound for
the real system performance. The PN must fulfil the same
conditions than in the previous algorithm.

• Structural marking and structural enabling. The struc-
tural marking of a place p, and the structural enabling of
a transition t, can be computed by using LP problems [7].
Such algorithms work for any kind of PN.

• Visit ratios. The vector of visit ratios v of a PN,
normalised for a transition t ∈ T can be computed as
described in Section II-A.

• SPN Simulation. A simulator for SPNs using the Gille-
spie’s stochastic simulation algorithm [13] has been
implemented. It performs a set of replications of the
simulation, and estimates the average throughput with a
given confidence interval level and error accuracy.

III. PeabraiN FRAMEWORK DESIGN AND FEATURES

PeabraiN is made of a set of modules compliant with
PIPE-tool modules. As PIPE, PeabraiN has been imple-
mented in Java, and it uses the same libraries as PIPE,
and additionally, the Java Interface for LP solvers (Java ILP)2

library, the Stochastic Simulation in Java (SSJ)3 library, the
Java Matrix (JAMA)4 library for performing computational
operations in matrices and LP solver-specific interface for
Java. Hence, such a collection of modules perfectly fits in
PIPE tool.
PeabraiN has been designed as a closed architecture by

layers, i.e., each layer only calls methods of the immediate
lower layer modules (see Fig. 3). Each of these three layers
matches with each component of the Model-View-Controller
(MVC) architectural pattern. It has been developed on the
top of the Java Runtime Environment (JRE) and some other
external libraries as indicated above.

The data layer contains classes representing the informa-
tion needed for the algorithms to execute. For instance, the
PetriNetModel class represents a PN in its matrix form,
and implements several methods related to PN (such as getting
the initial marking at a place or getting the rate of some
transition). The rest of the classes in this layer represent

2http://javailp.sourceforge.net/
3http://www.iro.umontreal.ca/∼simardr/ssj/indexe.html
4http://math.nist.gov/javanumerics/jama/

http://javailp.sourceforge.net/
http://www.iro.umontreal.ca/~simardr/ssj/indexe.html
http://math.nist.gov/javanumerics/jama/

Java Runtime Environment
version 1.6 or higher

Java layer

SlowestPSemiflow

NextSlowest

PSemiflow

HValue

Structural

Marking

Structural

EnablingData layer

Intermediate

 layer
(algorithms)

External libraries
PIPE dependencies, JavaILP, SSJ, ...

LinearBound

GUI

Performance

EstimationGUI

Resource

OptimisationGUI

VisitRatios

GUI

Structural

BoundGUI

PetriNet

Model

compute

results

PeabraiN

GUI

Strategy

WellFormed

LPP

solve

results

GUI

 layer

VisitRatios

Strategy

Performance

EstimationStrategy

Structural

Iterator

NextConstraint

Resource

Resource

OptimisationStrategy

LowerBound

UpperBound

LinearBound

Strategy

VisitRatios

SPNSimul

GUI

SPN

Simulator

Figure 3. PeabraiN software architecture.

constraints, they are needed either for the LP problems of
the algorithms in Figs. 1 and 2 or for the features presented
in Section II-C. The WellFormedLPP class is a super-class
of the rest of classes in this layer.

The intermediate layer encloses the classes that implement
the algorithms and features explained in Section II. Solid
arrows mean that a class invokes methods of another class,
while dashed arrows represent the method return messages.
For instance, PerformanceEstimationStrategy im-
plements algorithm in Fig. 1, and invokes the LP problem
for computing the slowest p-semiflow and the LP problem
for computing the next slowest p-semiflow. Strategy is
a super-class that allows all its child-classes to manage the
PetriNetModel in matrix form. The classes in this layer
call the solve method of the classes in the data layer through
the WellFormedLPP class. The dotted arrows connect a
class in this layer with the classes in the data layer that it
actually uses.

Finally, the GUI layer has classes which create the graphic
interfaces for collecting, from the user, information for execu-
tion of the algorithms and also to show the results. They invoke
the classes in the intermediate layer. For example, Fig. 6(b)
is an instance of the ResourceOptimisationGUI class,
it allows to introduce the necessary parameters and after
computation shows the results and the execution time.

Fig. 4 shows the integration of PeabraiN in PIPE. PIPE
is extended through modules, and each module must imple-
ment the IModule interface. Besides, the open architec-
ture depicted in Fig. 4 shows how the PIPE-data layer and
PeabraiN-data layer are related. Each PeabraiN module
creates a matrix representation of the current PN model,
which is in PNML (PIPE format). We do not use PNML in
our data layer because the algorithms work with the matrix
representation.

Each PeabraiN module in the GUI layer in Fig. 4
will create an instance of the class with its same name in

Fig. 3. For example, PerformanceEstimationModule
creates PerformanceEstimationGUI to allow the user
to introduce ε (input parameter in algorithm in Fig. 1).
Fig. 5 illustrates the interactions between the user, PIPE, and
PeabraiN when executing.

In brief, the new modules added to PIPE are:
• Performance Estimation. It needs as input the degree

of precision, ε, to be achieved. Note that the lower the
value of ε, the longer it takes to finish. The module reports
about the components of the p-semiflow in each iteration
step and its throughput, computed by simulation.

• Resource Optimisation. This feature enacts an optimal
distribution of resources in a shared-resource PN for a
given budget and resource costs, trying to optimise the
system performance. It needs the process-idle place, that
is, the place which represents the workload in the system
(i.e., incoming customers or requests), the maximum of
budget to be spent and the cost of each resource. Once
the input data are validated, it computes and reports about
the needed increment of resources, the rest of budget
to be assigned and informs if there is more choice of
improvement.

• Linear Bound. This feature allows to compute the upper
and lower performance bound for a given transition and
the slowest p-semiflow of the PN.

• Structural Enabling. This feature allows the computa-
tion of the structural enabling bound for a given transition
or for all the transitions.

• Structural Marking. This feature allows the computa-
tion of the structural marking bound for a given place or
for all the places.

• Visit Ratios Computation. It needs a transition, used as
the normalised transition, for the visit ratios computation.
As well as the result, information about the uniqueness
of its solution is also given.

• SPN Simulation Analysis. Input data are either the

IModule Performance

EstimationModule

ResourceOptimisation

Module

SPNSimul

Module

Intermediate

 layer

GUI

 layer

Data layer PetriNetModel PNML

PIPE

modules

PeabraiN

modules and class

Figure 4. Integration of PeabraiN in the PIPE tool.

PeabraiN classes in the

Data Layer

PeabraiN classes and modules

in the GUI Layer
PeabraiN classes in the

Intermediate Layer

user

Performance

Performance
Estimation
Strategy

matrix : PetriNetModel

PerformanceEstimation

Module

6: results 5: results

4: compute(epsilon)
3: compute(epsilon)

2: get(epsilon)

1:

1.3: create()

1.2: create(matrix)

1.1: create(currentPNML)

Estimation
GUI

performance estimationsd

algorithm in Fig. 1sd

click-in-module

HValue

SlowestPSemiflow

4.9: results

4.6: results

4.3: results

4.5: solve()

4.4: create(matrix)

4.2: solve()

4.1: create(matrix)

loop

NextSlowest
PSemiflow

4.8: solve()

4.7: create(matrix)

algorithm in Fig. 1sd

Performance
Estimation
Strategy

Figure 5. UML Sequence Diagram for executing performance estimation module.

maximum simulation time, or the confidence level and
error accuracy to be achieved. When the simulation fin-
ishes, the module informs about the estimated throughput
(computed for transition t0 by default) of the PN, the
confidence level, the error accuracy achieved and the
execution time.

IV. EXAMPLE ON USING PeabraiN

Let us illustrate the use of PeabraiN by an example. Let
us consider a pop-corn cinema store where once customers
are attended and they have their pop-corn bucket, they are
asked for some beverage. Fig. 6(a) depicts a PN modelling
such a store. The PN marking represents the number nC
of customers (initial marking of the process-idle place, p0),
the number nW of workers attending the customers (initial
marking of p2) and the number nD of beverage dispensers.
The exponential transitions are represented by a white box,
whilst immediate transitions are black boxes. The think time
of the customers is represented by transition T0, which follows

an exponential distribution of mean δT0 minutes. The amount
of time for attending a customer is represented by transition
T2, which follows an exponential distribution of mean δT2

= 2
minutes. The customer’s decision is represented by the place
p5 and its outgoing arcs: either transition t4 is fired (then
the customer does not want any beverage), or transition t5
is fired. In the latter case, once some beverage dispenser is
available, it is used. Such a use is represented by T7 and takes,
on average, δT7

= 1 minute to complete. Finally, T9 represents
the customer’s payment, which takes, in terms of time, about
2 minutes, i.e., δT9

= 2.
Let us suppose an expected number of customers nC = 10,

an initial budget of $80, 000, the cost of a new hiring is
$6, 000 and a beverage dispenser has a cost of $250. With
this configuration, the resource optimisation procedure gives
as result that 3 new hirings should be done in order to attend
such an incoming number of customers and hence to maximise
the performance. Fig. 6(b) depicts a snapshot of the results
as reported by PeabraiN. It reports about the remaining

(a) (b)
Figure 6. (a) Example of a pop-corn cinema store and (b) a snapshot of execution results (resource optimisation).

money to be spent, the number of instances of resources to be
incremented and the elapsed time in computation. Besides, for
this configuration it reports that no more further improvement
can be done with the remaining budget. This means that
even if we keep incrementing resources, the bottleneck of the
system is the number of customers. Therefore, if resources are
incremented they will be idle.

V. TOOL AVAILABILITY AND INSTALLATION
REQUIREMENTS

PeabraiN has been developed with the Eclipse IDE under
Linux environment, and successfully tested on Linux and
Windows environments. PeabraiN needs to have installed
in the host machine the following software to execute:
• a JRE version 1.6 (or higher); and
• an LP solver, namely the GNU Linear Programming Kit

(GLPK) and its associated library for binding with Java.
Currently, we are working on an automatic detection of in-

stalled LP solvers in the host machine, and then automatically
configure PeabraiN to work with them. Even PeabraiN is
designed for working with several LP solvers, such as CPLEX
or lpsolve among others, our initial thought was GLPK as
it is free software under GNU General Public License (GNU
GPL).

There exists a web page:
http://webdiis.unizar.es/GISED/?q=tool/peabrain

where further information about tool requirements and installa-
tion steps, tool binaries and sources can be found. PeabraiN
is released under GNU GPL version 3 license.

VI. CONCLUSION AND FUTURE WORK

We have developed PeabraiN, a collection of PIPE tool-
compliant modules for performance estimation and resource
optimisation based on bounds computation for Stochastic Petri
Nets. Moreover, other features have been added to PIPE, such
as structural enabling bound at a transition, structural marking
bound at a place, visit ratios computation or SPN simulation
analysis.

As future work, we plan to add the choice of LP solver
by the user, the automatic detection of installed LP solver for

automatic configuration of the tool, and to allow to change the
simulation parameters, such as the transient observations to be
discarded. Besides, we intend to perform more experiments
with larger benchmarks to show its applicability, and to
compare the performance of our tool with other broadly used
tools, such as GreatSPN or TimeNET.

ACKNOWLEDGEMENTS

This work was partially supported by Fundación Aragón
I+D, DGA (CONAID), and Spanish project DPI2010-20413.

REFERENCES

[1] M. Molloy, “Performance Analysis Using Stochastic Petri Nets,” IEEE
T. Comput., vol. C-31, no. 9, pp. 913–917, sept. 1982.

[2] J. Campos and M. Silva, “Structural Techniques and Performance
Bounds of Stochastic Petri Net Models,” Lecture Notes in Computer
Science, vol. 609, pp. 352–391, 1992.

[3] Z. Liu, “Performance Bounds for Stochastic Timed Petri Nets,” in
Proceedings of the 16th ICATPN. Springer-Verlag, 1995, pp. 316–334.

[4] R. J. Rodrı́guez and J. Júlvez, “Accurate Performance Estimation for
Stochastic Marked Graphs by Bottleneck Regrowing,” in Proceedings
of the 7th EPEW, ser. LNCS, vol. 6342. Springer, 2010, pp. 175–190.

[5] E. M. Goldratt and J. Cox, The Goal: A Process of Ongoing Improve-
ment. North River Press, 1986.

[6] P. Bonet, C. Llado, R. Puijaner, and W. Knottenbelt, “PIPE v2.5: A Petri
Net Tool for Performance Modelling,” in Proceedings of the 23rd Latin
American Conference on Informatics (CLEI), Costa Rica, 2007.

[7] J. Campos and M. Silva, “Embedded Product-Form Queueing Networks
and the Improvement of Performance Bounds for Petri Net Systems,”
Performance Evaluation, vol. 18, no. 1, pp. 3–19, July 1993.

[8] R. J. Rodrı́guez, J. Júlvez, and J. Merseguer, “On the Performance
Estimation and Resource Optimisation in Process Petri Nets,” IEEE T.
Syst. Man. Cy. A., submitted for publication.

[9] S. Baarir, M. Beccuti, D. Cerotti, M. D. Pierro, S. Donatelli, and
G. Franceschinis, “The GreatSPN tool: recent enhancements,” SIGMET-
RICS Perform. Eval. Rev., vol. 36, no. 4, pp. 4–9, 2009.

[10] L. M. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Tréves, “A
primer on the Petri Net Markup Language and ISO/IEC 15909-2,” Petri
Net Newsletter, vol. 76, pp. 9–28, 2009.

[11] T. Murata, “Petri Nets: Properties, Analysis and Applications,” in
Proceedings of the IEEE, vol. 77, no. 4, April 1989, pp. 541–580.

[12] Z. Banaszak and B. Krogh, “Deadlock Avoidance in Flexible Manufac-
turing Systems with Concurrently Competing Process Flows,” IEEE T.
Robotic. Autom., vol. 6, no. 6, pp. 724–734, dec 1990.

[13] D. T. Gillespie, “A General Method for Numerically Simulating the
Stochastic Time Evolution of Coupled Chemical Reactions,” Journal of
Computational Physics, vol. 22, no. 4, pp. 403–434, 1976.

http://webdiis.unizar.es/GISED/?q=tool/peabrain

