
Execution and Verification of UML State

Machines with Erlang⋆ (Tool Paper)

Ricardo J. Rodŕıguez, Lars-Åke Fredlund, Ángel Herranz and Julio Mariño

Universidad Politécnica de Madrid, Spain
{rjrodriguez, lfredlund, aherranz, jmarino}@fi.upm.es

Abstract. Validation of a system design enables to discover specifica-
tion errors before it is implemented (or tested), thus hopefully reducing
the development cost and time. The Unified Modelling Language (UML)
is becoming widely accepted for the early specification and analysis of
requirements for safety-critical systems, although a better balance be-
tween UML’s undisputed flexibility, and a precise unambiguous seman-
tics, is needed. In this paper we introduce UMerL, a tool that is capable
of executing and formally verifying UML diagrams (namely, UML state
machine, class and object diagrams) by means of a translation of its be-
havioural information into Erlang. The use of the tool is illustrated with
an example in embedded software design.

1 Introduction

A better integration with the development process is crucial for the success
of UML as a language for the specification and design of safety-critical soft-
ware. This requires tools capable of validating complex requirements, and link-
ing them to operational code through an unambiguous semantics. With these
goals in mind we have developed UMerL, a tool that executes and verifies UML
designs consisting of UML2 state-machine, class and object diagrams, using
the concurrent language Erlang [1]. UMerL is available (with source code) at
https://bitbucket.org/fredlund1/umerl.

UMerL differs from other analysis tools [2–4] in that an executable proto-
type is first produced, and then the validation of the UML model is done by
performing various analyses on that prototype. Using Erlang has been crucial
for implementing this approach. First, Erlang’s concurrency features simplified
the task of coding the state machine interpreter, which has to run several state
machines with little runtime overhead. Also, the availability of advanced analysis
tools for Erlang like Quviq QuickCheck [5] or the McErlang model checker [6]
facilitates model validation without having to introduce a new set of tools.

Outline. Sec. 2 describes UMerL. Sec. 3 relates the application of UMerL to
a real industrial case in embedded software design. We focus on the execution of

⋆ The research has received funding from the ARTEMIS JU: grant agreement 295373
(nSafeCer), from the Spanish MINECO: STRONGSOFT (TIN2012-39391-C04-02),
and from the Comunidad Autónoma de Madrid: PROMETIDOS (P2009/TIC-1465).

https://bitbucket.org/fredlund1/umerl

2 R. J. Rodŕıguez et al.

state-machine diagrams in Erlang and the verification of behavioural properties
by program analysis on the Erlang code. Finally, Sec. 4 concludes the paper.

2 The UMerL tool

UMerL is an interpreter of UML state machines implemented in Erlang that ex-
ecutes a system modelled as a collection of UML state machines with acceptable
performance. Its design also allows us to verify using model checking techniques
whether a UML system meets some correctness properties. UMerL executes the
UML state machines inside an object following a UML-friendly semantics: the
meaning assigned to the constructs is consistent with respect to the UML (in-
formal) semantics. An excerpt of the supported semantics and its interpretation
by UMerL is described in Sec. 2.1.

System Description. In UMerL, a system description consists of a UML class
diagram, a set of UML state-machine diagrams each one associated to a class
and a UML object diagram. Each object has a private data store defined by the
properties indicated in the class diagram. Several UML state-machine instances
are running in each object, one for each UML state-machine associated to its
class. To describe the system a domain specific language embedded in Erlang
is used. The environment of the system can communicate with an object (and
its associated state machines) by simply sending normal Erlang messages to the
Erlang process associated with the object.

Verification Workflow. Figure 1 depicts the verification workflow of UMerL. A
verification scenario consists of a system description and an environment model.
The environment model sends messages and signals to the objects. We use Quviq
QuickCheck [5] to randomly generate sequences of sensible messages. UMerL
provides two functionalities: the system can be executed (with user interaction),
providing early feedback regarding behaviour; or the verification scenario can
be (model) checked against a set of correctness properties specified in Linear
Temporal Logic (LTL) [7]. Properties are defined by the user using the McErlang
tool [6], which provides a counterexample (in terms of message traces) when an
LTL property is not satisfied by the system.

Fig. 1. Verification workflow of UMerL.

Execution and Verification of UML-SMs with Erlang 3

Architecture. UMerL maps each object to a single Erlang process: a generic
interpreter that executes transitions of the UML state machines in that object,
i.e., an individual UML state machine is not mapped to an Erlang process. Every
step of the generic interpreter consists in choosing, non-deterministically, one of
the enabled transitions and executing it (see Section 2.1).

A message sent to an object is received by its associated process, and is
broadcast to every UML state machine running in the object. Conceptually,
each state machine has its own mailbox for storing incoming messages until they
are processed. Mailboxes are ordered in our implementation, i.e., if a message
m1 arrives before a message m2, then m1 will precede m2 in the mailbox.

2.1 Semantics

Transition execution. A transition of a UML state machine can be executed when
it is enabled: the mailbox contains a message that matches the trigger and the
guard (a condition expressed over the contents of the message and the object
data store) evaluates to true. The execution of a transition consists of three
steps: (1) processing the first eligible message in the mailbox, (2) executing the
activity that updates the private data store and sends messages to other objects,
and (3) entering the target state. The execution of a transition appears to occur
instantaneously since the execution of transitions follows a linearizable (atomic)
semantics (atomicity does not necessarily mean mutually exclusive).

Do activities. A do activity is managed by an independent Erlang process,
which is terminated when the execution of a transition leads outside the state.

Entry and exit activities. The semantics of an entry is implemented by
adding it to the activity of every transition entering the state; an exit is imple-
mented by adding it to the activity of every transition leaving the state.

Processing of messages. The most interesting aspect in our implementation is
the processing of messages during the execution of a transition, and the deferral
of messages. A message in the mailbox is eligible when it matches the trigger of
a transition, and the corresponding guard evaluates to true. Our implementation
chooses the oldest eligible message providing the additional guarantee (compared
to the standard semantics for UML state machines) that messages from the same
object are treated sequentially.

Deferral of messages. According to the UML semantics, when a message
arrives in a state, there is no transition with a matching trigger or guard, and the
deferral condition does not mention the trigger, the message should be discarded.
This semantics still leaves room for interpretation in the implementation. As
UMerL provides an ordering guarantee for messages (see above), it is possible
to talk about the arrival order of messages. It is for instance clear that all non-
deferrable messages that arrived before a message which causes a transition to
be taken, are to be discarded. The doubt is which deferral annotation (the one
at the source state, or the one at the target state) should affect the messages
that arrived later than the message which caused the transition.

An eager semantics would discard all the messages not deferred by the source
state while a lazy semantics would discard all the messages not deferred by the

4 R. J. Rodŕıguez et al.

target state. The implications are crucial. For instance, in a two step commu-
nication protocol where one machine sends two messages m1 and m2 in two
consecutive transitions, and the other machine receives both messages, message
m2 could be discarded if the second machine does not defer it in the initial state
(m1 and m2 could both be received when the machine is in that state).

In our experience a designer of a distributed asynchronous system regularly
makes mistakes causing messages to be silently discarded. We have decided to
implement several semantic options to permit a designer to experiment with
different interpretations of the discarding rule: (i) enable as the default that all
messages are deferrable in states which has no explicit deferral condition. The use
of such an option is, we argue, preferable when modelling distributed systems
using state machines as it leads to fewer errors committed and less syntactic
clutter (avoiding the need to repeat defer annotations in all states); and (ii) the
choice of an eager or lazy deferral semantics, the default being lazy.

3 Safety Assessment of an Embedded Software Design

As case study, we consider a system for managing door operations in a train,
provided by an industrial partner in a collaborative project. The system is com-
posed of three major parts represented by UML classes: a Train Control Man-
agement System (TCMS), a traction system, and several doors. The traction
system moves the train, or stops it. The doors allow passengers to enter or exit
the coaches. Finally, the TCMS is an embedded device in charge of supervising
both the traction system and the doors, to ensure safe operation.

Figure 2(a) and (b) show the UML-State Machine diagrams (UML-SMs) of
the Door and TCMS classes, respectively. A Door object starts closed and disabled,
and can be opened once it has been enabled (which is performed by the TCMS
after receiving a enableDoors message), if a passenger presses the door button
(triggering the sending of buttonPressed message to a door). Once a door is
again disabled, it can be closed when no obstacle is detected. The TCMS starts
in state Idle, which represents a state where the train is stopped. A message
enableDoors will be eventually sent (by the train driver) and received by the
TCMS. Then, the TCMS sends to each Door an enable message, and waits
for an acknowledgement message (notify). The TCMS reports that all doors
have been enabled by switching an informative LED off, and waits until the
message disableDoors is received. After receiving it, the TCMS sends a disable

message to each Door, and it waits a safety time interval of 5 seconds, before
enabling the Traction, and moving to the MovingTrain state. This safety time
is designed to permit to verify that all doors have been correctly closed. The
transition from MovingTrain to StoppingTrain is triggered by the stopTrain

message, and the TCMS acts by sending the disablemessage to Traction. The
signal trainStopped is received once the train has been completely stopped, and
so TCMS moves to the Idle state again.

Safety Assessment. A correctness property that must be assured in the system is
that No door should be open when the train is moving. This is a safety property,

Execution and Verification of UML-SMs with Erlang 5

entry / t.notify(self, CLOSED) entry / t.notify(self, ENABLED)

entry / t.notify(self, OPENED)

entry / t.notify(self, CLOSING)

entry / t.notify(self, OPENING)

do / openDoor()

exit / changeStatus(OPENED)

do / closeDoor()

exit / changeStatus(CLOSED)

Enabled

Opened

Closing

ClosedAndDisabled

Opening

Wait4Opening

Wait4Closing

disable / changeStatus(CLOSING)

buttonPressed / changeStatus(OPENING)

enable / changeStatus(ENABLED)

obsDetected / obsSensor.ack();
 obsSensor.disable()

limitReached / closeSensor.ack();

/ closeSensor.activate();

limitReached / openSensor.ack();

/ openSensor.enable()

disable

 closeSensor.disable(); obsSensor.disable()

 obsSensor.activate()

openSensor.disable()

(a) UML-SM of Door class

do / setTimeout(5000)

entry / doors[i].enable(); i++

entry / doors[i].disable(); i++

Idle

DoorsEnabled

EnableDoor

DoorsDisabled DisableDoorDisablingDoors

EnablingDoors

StoppingTrain

MovingTrain

trainStopped

TOUT_expired / tr.enable()

[i == doors.length]

disableDoors / i := 0

enableDoors / i := 0

[i < doors.length]

[i == doors.length] / db.switchOff()

[i < doors.length]

notify(d, ds) / processNotification(d, ds)

notify(d, ds) / processNotification(d, ds)

notify(d, ds) / i := 0

stopTrain / tr.disable()

(b) UML-SM of TCMS class

Fig. 2. UML-State Machine diagrams of (a) Door and (b) TCMS classes.

i.e., stating that something bad never happens. Note that the state predicate “a
door is open” is true when the value of attribute status in a Door object is
equal to OPENED. The predicate “the train is moving” is true when the value of
attribute speed (in the Traction class, not shown here) is greater than zero. As
a verification example, given an environment model in which an enableDoors

message is first received by TCMS, and then a buttonPressed message is sent
to a door, the McErlang model checker can verify that the two predicates above
are never true in the same system state.

The above property can also be reformulated as all doors must be closed when

the train is moving, i.e., the status attribute of a door must be CLOSED. Given that
the status attribute of a door can be either OPEN, CLOSED, ENABLED, OPENING
or CLOSING, this is a more restrictive (and safe) formulation. If we use the same
environment model, except that we assume that a disableDoors message also
arrives at the TCMS, the McErlang tool quickly finds a counterexample to the

6 R. J. Rodŕıguez et al.

second property. The counterexample indicates that the failure is that a door
may not have had sufficient time to process earlier messages sent to it.

In brief, we have verified the above safety property for a coach with two doors
in 0.35 seconds using McErlang (running under an Intel i7-2640MCPU with 8GB
memory), with a resulting state space of 1,133 states, under the assumption that
all messages are deferrable. The model of a coach with three (and four doors)
has 7,323 (53,743 states), and its checking time is 1.74 seconds (14.88).

4 Conclusion

The experimental results obtained with our tool are quite promising. Although
the tool works with only three kinds of UML diagrams and a quite restrictive
syntax for state-machine diagrams (which has been crucial for defining the under-
lying semantics), the language is expressive enough to model embedded systems
of a moderate complexity, e.g., the train doors example used here.

Several other tools exist which perform model checking on UML state ma-
chines. USMMC [2] is remarkable for being self-contained, it does not rely on a
foreign formalism and checker, thus avoiding some inconveniences of translation-
based tools like HUGO [4] or UMerL. However, UMerL does have a number
of advantages too. First, an executable prototype, constructed from the UML
model, provides early validation that can reveal mistakes even before attempting
a detailed verification. Moreover, UMerL users can take advantage of existing
analysis and testing tools for Erlang such as McErlang and QuickCheck.

To improve the usability of the tool a translation from the XMI notation is
being implemented, and verification counterexamples will be presented as UML
Sequence Diagrams. We also aim at specifying LTL properties at the UML level
using a UML-friendly syntax, such as Object Constraint Language (OCL). More-
over, we aim at supporting hierarchical structures and pseudo-states among other
UML features missing from the current prototype.

References

1. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in Erlang. Prentice-Hall (1996)

2. Liu, S., Liu, Y., Sun, J., Zheng, M., Wadhwa, B., Dong, J.S.: USMMC: A Self-
contained Model Checker for UML State Machines. In: Proc. of the 2013 Meeting
on Foundations of Software Engineering, New York, NY, USA, ACM (2013) 623–626

3. Lilius, J., Paltor, I.P.: Formalising UML State Machines for Model Checking. In:
The Unified Modeling Language. Volume 1723 of LNCS. Springer (1999) 430–444

4. Balser, M., Bäumler, S., Knapp, A., Reif, W., Thums, A.: Interactive verification of
UML state machines. In: Formal Methods and Software Engineering. Volume 3308
of LNCS. Springer (2004) 434–448

5. Arts, T., Hughes, J., Johansson, J., Wiger, U.: Testing Telecoms Software with
Quviq QuickCheck. In: ACM SIGPLAN Int. Erlang Workshop, ACM (2006)

6. Fredlund, L.Å., Svensson, H.: McErlang: a model checker for a distributed functional
programming language. In: 12th ACM SIGPLAN ICFP, ACM (2007)

7. Pnueli, A.: The Temporal Logic of Programs. In: FOCS. (1977) 46–57

	 Execution and Verification of UML State Machines with Erlang (Tool Paper)
	Ricardo J. Rodríguez, Lars-Åke Fredlund, Ángel Herranz and Julio Mariño
	Introduction
	The UMerL tool
	Semantics

	Safety Assessment of an Embedded Software Design
	Conclusion

