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On Throughput Approximation of Resource
Allocation Systems by Bottleneck Regrowing

Ricardo J. Rodrı́guez, Member, IEEE, and Javier Campos

Abstract—Complex systems such as manufacturing, logistics,
or web services, are commonly modeled as Discrete Event Sys-
tems dealing with the resource-allocation problem. In particular,
Petri nets are a widely used formalism to model these systems.
Although their functional properties have been extensively stud-
ied in the literature, their non-functional properties (such as
throughput) have usually been ignored. In this paper, we focus
on a Petri net subclass useful for modeling concurrent sequential
processes with shared resources, termed as S4PR nets. For these
nets, we present an iterative strategy that makes intensive use
of mathematical programming problems to approximate system
throughput. Initially, our strategy selects the slowest part (a
subsystem) of the net. Then, the next slowest parts are considered.
In each step, the throughput is computed solving analytically the
underlying CTMC when feasible (or by simulation, otherwise).
Since only certain subsystems are considered, the state-explosion
problem inherent to the increasing net size is mitigated. We
evaluate our strategy in a set of randomly generated S4PR
nets. Our findings show that the throughput improves the upper
throughput bound computation by almost 20% and that small
portions of the net are enough to approximate system throughput.

Index Terms—Discrete event systems, Petri nets, resource
allocation systems, linear programming, performance evaluation

I. INTRODUCTION

MANUFACTURING, logistics, or web services, to name
a few, are usually complex systems using shared re-

sources. The use of shared resources introduces synchroniza-
tion issues among parties. Once a party allocates a resource,
others must wait until the former ends its activity and releases
the resource when no free resource instances are available to
complete their activities.

Many of these artificial systems can be naturally modeled
as Discrete Event Systems (DES) dealing with the resource-
allocation problem, also called Resource Allocation Systems
(RAS)1. A RAS is a DES in which a set of concurrent
processes coexist, which must compete in order to allocate
some shared resources [1]. Petri nets (PNs) have been widely
used to model RAS. In this regard, a modular methodology
based on three steps is usually followed [2]: (i) to characterize
production plans as a Petri net, being processes modelled
as tokens within the net; (ii) to add resources into each
production plan, represented as a place with an initial number
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acronym.

Figure 1. A particular example of a S4PR net.

of tokens (available copies of the resource); and (iii) to build
the global model by the composition of production plans
through resources, fusing resource places representing the
same resource type in different production plans. Following
the above methodology, we concentrate on the subclass of
RAS that can be modeled by means of S4PR, a PN subclass
allowing the modeling of concurrent sequential processes
with routing decisions and a general conservative use of
resources [2].

In these nets, workpieces undergo successive transforma-
tions, which may also have independent processing steps, until
reaching their final state. A production plan is represented
by means of a strongly connected state machine (with no
internal cycles), in which availability of different routings in
the system may be restricted to the use of non-consumable,
reusable resources.

Figure 1 depicts a particular example of S4PR. It represents
three sequential processes without any routing decisions and
three resources: the initial marking of p8 and p9 is the number
of idle resources of each type shared by the left-hand side and
the central process, while p19 represents the resource shared
by the central and the right-hand side process.
S4PR nets have been widely studied in the literature

regarding their functional properties (e.g., liveness, bounded-
ness, siphon computation, deadlock prevention and avoidance
techniques) [3]–[5]. Evaluating liveness in S4PR nets may
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help, for instance, to detect errors in the manufacturing system
design rather than in the operational stage, thus saving costs.

However, to the best of our knowledge no techniques
have been proposed regarding their non-functional properties
– more specifically, regarding their throughput. Achieving a
good throughput (defined as jobs completed per unit of time)
is usually one of the most important requirements of these
systems: the better the throughput is, the greater the number
of cars assembled (or the greater the number of packages
delivered, or the greater the number of users attended to;
recalling the aforementioned domains). Furthermore, knowing
how a system performs (i.e., what its throughput is) is a
mandatory step for predicting deliveries, item storage, or
even optimizing associated industrial processes [6]. Evaluating
system throughput also helps to evaluate how system efficiency
varies with respect to manufacturing flexibility dimensions and
to choose the most suitable, effective design among several
alternatives [6]–[9].

In practice, the increasing size of systems makes the exact
computation of their performance (i.e., throughput) a highly
complex computational task. The main reason for this com-
plexity is the well-known state explosion problem. Hence,
a task that requires an exhaustive state-space exploration
becomes unachievable in a reasonable time for large systems.
To avoid the necessity of calculating the whole state space,
approaches that provide performance bounds can be used.

In this paper, we propose an iterative strategy to approxi-
mate the throughput of a RAS, modeled by S4PR nets. The
strategy makes use of mathematical programming problems for
which polynomial complexity algorithms exist – thus offering
a good trade-off between accuracy and computational com-
plexity – and of the exact solution of underlying Continuous
Time Markov Chain (CTMC) models of subsystems much
smaller than the whole original model.

Based on previous works regarding the computation of up-
per throughput bounds [10], [11] and similar to ideas already
introduced to calculate upper throughput bounds in certain
subtypes of Petri nets such as Marked Graphs (MGs) [12] and
process Petri nets (PPNs) [9], our strategy works as follows.
For a given S4PR net and tolerance, our iterative strategy
computes as a first step the slowest P -semiflow of the system
(i.e., the bottleneck), by computing the upper throughput
bound of a subset of transitions. Then, in each iteration step
the next P -semiflow most likely to be constraining the current
bottleneck is computed. This P -semiflow is taken as the new
bottleneck of the system, and the exact throughput of the
subnet generated by the new and the previous bottleneck is
calculated by solving the underlying CTMC. When tolerance
is not achieved, another iteration step will be performed. Note
that in each iteration step, the bottleneck of the system is
regrown. Note also that the throughput of the transition in the
subnet is lower or higher than its real throughput, considering
the full system. Hence, the values of throughput computed in
each iteration step approximate to the real throughput.

This paper is organized as follows. Section II describes the
related work. Section III recalls basic concepts and definitions
regarding Petri nets. Section IV introduces the iterative heuris-
tic to approximate throughput values in S4PR nets. Section V

evaluates the effectiveness of our heuristic by applying it to a
set of randomly-generated S4PR nets. Finally, Section VI sets
out the conclusions of the paper and proposes future work.

II. RELATED WORK

A substantial number of works are found in the litera-
ture on S4PR, a subclass of PNs suitable for modeling
resource allocation systems [1]. Nevertheless, research into
this class of nets is mainly focused on functional properties
such as liveness, boundedness, and siphon computation [3],
[4], or (more widely) deadlock prevention and avoidance
techniques [5]. The reader is referred to [2] for a recent survey
on the topic. To the best of our knowledge, no specific results
on performance evaluation have been proposed for this PN
subclass in particular.

Concerning performance estimation of general stochastic
PN classes (with negative exponentially distributed service
times of transitions), the first results were obtained by means
of numerical solutions of the isomorphic CTMC [7]. Later,
other exact techniques were achieved, such as those based
on product-form solutions, but these are valid only for very
restricted net subclasses [13], [14]. An alternative approach
for the exact analysis was based on compact matrix represen-
tations of the infinitesimal generator matrix of the CTMC [15].

In any way, in most cases the exact computation of per-
formance indexes suffers from the well-known state explosion
problem that makes the evaluation of large systems intractable;
thus, alternative and more efficient bounding or approximation
techniques have been proposed. There are techniques strongly
inspired by exact solutions, such as approximate mean value
analysis based on product-form solution [13], [16], or iterative
approximation techniques based on compact matrix represen-
tations of the CTMC [17]–[19].

Other approximation techniques were inspired by classic
queuing networks (QNs) approaches, such as flow equiva-
lent aggregation [20] or iterative Marie’s methods [21]–[23].
More recently, continuous PNs provided new techniques to
approximate the performance of discrete models based on
fluidification [24], [25].

Techniques for computing system performance were also
proposed for automated manufacturing systems. In [26],
resource-based nets are analyzed assuming known production
ratios, structurally enforcing visit ratios. In [27], the minimum
cycle time of a S4PR is computed assuming that deterministic
delays are associated to places and that every event is equally
likely. In contrast, our work is more general since it deals
with stochastic timing associated to transitions and does not
assume any equally likely events nor enforces any particular
production ratios.

Another approach to performance estimation is that based
on bottleneck computation expressed in terms of mathematical
programming problems. Putting together structure theory of
Petri nets (basically the P -semiflows and the state equation)
and queuing systems basics (Little’s Law and other operational
analysis relationships), an efficient technique for the compu-
tation of upper and lower bounds for general timed/stochastic
PNs was introduced in [28] using only first order moments
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of random variables, later improved using also second order
moments [29], and extended to interval time PNs [11], [30].
Second order moments are also used in [8] to compute
performance bounds for a particular problem domain modeled
with shared resources nets.

The strong point of this structural approach is its very low
computational time (theoretically polynomial on the net size,
since it is based on the solution of proper linear programming
problems (LPPs) for which polynomial complexity algorithms
exist). On the other hand, there is a price to be paid for
estimating throughput by these LPPs: the obtained throughput
is not so tight (i.e., the upper throughput bound is really distant
from real throughput). Therefore, these bounds cannot be used
in many cases as a good throughput approximation.

The loose estimation provided by bounds was also detected
in the seventies in the area of queuing systems with regard to
classic bottleneck bounding techniques. Thus, several schemes
for the construction of hierarchies of bounds for QNs were
developed that guaranteed any level of accuracy (including
the exact solution), by investing the necessary computational
effort: performance bound hierarchies [31], successively im-
proving bounds [32], and generalized quick bounds [33]. All
these techniques were derived from the mean value theorem,
thus being valid only for product-form QNs and unsuitable for
general PNs.

A similar idea (but using different techniques) was proposed
in the setting of stochastic PNs for the improvement of LPP-
based upper throughput bounds for the particular subclasses
of marked graphs [12] and process PNs [9]. The basic idea
behind this improvement, referred to as bottleneck regrowing,
was an iterative procedure that initially considered the most
constraining subnet (generated by the slowest P -semiflow) of
the system and then adding other subnets to it in each iteration.

The same idea is developed in this paper, but considering
a more general net subclass. Thus, we try to extend the
bottleneck regrowing technique, initially presented for marked
graphs or process PNs, to general resource allocation systems
modeled with S4PR.

III. PRELIMINARY CONCEPTS AND DEFINITIONS

This section first introduces untimed Petri nets and S4PR
nets. Then the notion of time in Petri nets is presented.

A. Untimed Petri nets

Definition 1: A Petri net [34] is a 4–tuple N =
〈P, T,Pre,Post〉, where:
• P and T are disjoint non-empty sets of places and

transitions (|P | = n, |T | = m) and
• Pre (Post) are the pre–(post–)incidence non-negative

integer matrices of size |P | × |T |.
The pre- and post-set of a node v ∈ P ∪ T are respectively

defined as •v = {u ∈ P ∪ T |(u, v) ∈ F} and v• = {u ∈
P ∪ T |(v, u) ∈ F}, where F ⊆ (P × T ) ∪ (T × P ) is the
set of directed arcs. Ordinary nets are Petri nets whose arcs
have weight 1. The incidence matrix of a Petri net is defined
as C = Post−Pre.

A vector m ∈ Z|P |≥0 which assigns a non-negative integer to
each place is called marking vector or marking.

Definition 2: A Petri net system, or marked Petri net S =
〈N ,m0〉, is a Petri net N with an initial marking m0.

A transition t ∈ T is enabled at marking m if m ≥
Pre(·, t), where Pre(·, t) is the column of Pre corresponding
to transition t. A transition t enabled at m can fire yielding
a new marking m′ = m + C(·, t) (reached marking). This is
denoted by m t−→m′. A sequence of transitions σ = {ti}ni=1

is a firing sequence in S if there exists a sequence of markings
such that m0

t1−→m1
t2−→m2 . . .

tn−→mn. In this case, marking
mn is said to be reachable from m0 by firing σ, and this is
denoted by m0

σ−→mn. The firing count vector σ ∈ Z|T |≥0 of
the firable sequence σ is a vector such that σ(t) represents the
number of occurrences of t ∈ T in σ. If m0

σ−→m, then we
can write in vector form m = m0 +C ·σ, which is referred to
as the linear (or fundamental) state equation of the net. The
number of times that a transition t enabled at marking m can
fire before becoming disabled is called its enabling degree and
computed as max{k ∈ Z+|m ≥ k ·Pre(·, t)}. A transition t
is persistent if once it becomes enabled, it will eventually be
fired.

The set of markings reachable from m0 in N is denoted
as RS(N ,m0) and is called the reachability set. A Petri
net system 〈N ,m0〉 is reversible if for each marking m ∈
RS(N ,m0), m0 is reachable from m.

Two transitions t, t′ are said to be in structural conflict if
they share, at least, one input place, i.e., •t ∩ •t′ 6= ∅. Two
transitions t, t′ are in free conflict if Pre(·, t) = Pre(·, t′) 6=
0, where 0 is a vector with all entries equal to zero. Two
transitions t, t′ are said to be in (effective) conflict for a
marking m if the firing of t decreases the enabling degree of
t′ in m (i.e., each token must decide which way to go) [35].

A transition t is live if it can be fired from every reachable
marking. A system is live when every transition is live. A net
is structurally live if there exists an initial marking making
it live. A system is bounded if and only if its reachability
set is finite. A net is structurally bounded if and only if it is
bounded, regardless of the initial marking.

A P -semiflow (T -semiflow) is a non-negative integer vector
y ≥ 0 (x ≥ 0) such that it is a left (right) anuller of the net’s
incidence matrix, y> · C = 0 (C · x = 0). A P -semiflow
implies a token conservation law independent of any firing
of transitions. A P - (or T -)semiflow v is minimal when its
support, ‖v‖ = {i|v(i) 6= 0}, is not a proper superset of the
support of any other P - (or T -)semiflow, and the greatest
common divisor of its elements is one.

A state machine is a particular type of ordinary Petri net
where each transition has exactly one input arc and exactly
one output arc, that is, |t•| = |•t| = 1,∀t ∈ T .

B. S4PR for the Modeling of RAS
S4PR nets are a subclass of PN used to model RAS.

Production plans are modeled by means of strongly connected
state machines with no internal cycles which share a set of
non-consumable, reusable resources. An example of S4PR
was described in Section I. A gentle introduction and survey
of results for S4PR in the context of RAS is given in [2].
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Definition 3: [2] Let IN be a finite set of indices. An
S4PR net is a connected generalized pure P/T net N =
〈P, T,Pre,Post〉 where:

1) P = P0 ∪ PS ∪ PR is a partition such that P0 =⋃
i∈IN {p0i} is the set of process-idle places, PS =⋃
i∈IN Pi, where ∀i ∈ IN : Pi 6= ∅, and ∀i, j ∈ IN , j 6=

i, Pi ∩ Pj = ∅, is the set of process-activity places, and
PR, |PR| > 0, is the set of resources places;

2) T =
⋃
i∈IN Ti, where ∀i ∈ IN : Ti 6= ∅, and ∀i, j ∈

IN , j 6= i, Ti ∩ Tj = ∅;
3) For each r ∈ PR, there exists a unique minimal P -

semiflow yr ∈ N|P | such that ‖yr‖∩PR = {r}, ‖yr‖∩
PS 6= ∅, ‖yr‖∩P0 = ∅, and yr(r) = 1. This establishes
how each resource is reused, that is, they cannot be
created nor destroyed.

4) PS =
⋃
r∈PR

(‖yr‖ \ {r}).
Note that there should be an initial marking in which

there are enough free resource instances such that every
production plan in the net is realizable. More formally, a vector
m0 ∈ Z|P |≥0 is an acceptable initial marking of a S4PR net iff
‖m0‖ = P0 ∪PR and ∀p ∈ PS , r ∈ PR : m0(r) ≥ yr(p) [2].

Let us also note that every S4PR net is structurally live
and structurally bounded, and if a S4PR net is live for an
acceptable initial marking, then the system is reversible [2].

C. Stochastic Petri nets

Since our goal is to compute performance in S4PR, we
need to introduce the notion of time. PNs have been extended
in the literature with suitable time interpretations for the
modeling and timing prediction of real-time systems or for
performance evaluation. In this regard, Time PNs reduce non-
determinism in the duration of activities by associating a time
interval with each transition, being also extended with time
intervals to reduce the non-determinism inherent in conflict
resolution for sets of transitions in equal-conflict relation [11].
In Timed PNs [36], the duration of activities is considered as
constant, thus they are in some way interpreted as a particular
case of (interval) Time PNs in which the lower and upper
limits become a single value. Similarly, Stochastic PNs [7]
model durations with (usually negative exponential) random
variables and firing probabilities of simultaneously enabled
transitions are solved either using race policy (between timed
transitions) or firing probabilities defined by weights or ratios
(between immediate transitions).

In this paper, we consider that an exponentially distributed
delay is associated with each transition in the net, as in
Generalized Stochastic PNs [7], since for these models an
underlying CTMC exists that provides powerful numerical
analysis techniques. More formally, every transition t ∈ T
fires following an exponential distribution with mean service
time δ(t) ∈ R≥0. If δ(t) > 0, then transition t is a timed
transition. Otherwise, transition t is an immediate transition
(i.e., it fires in zero time).

To decouple activity duration times from resource acqui-
sition/release, we assume that all transitions connected to
resources, as well as free-conflicts in process-related nets, are
immediate and conflict resolution is based on ratios, as in

Generalized Stochastic Petri nets [7]. An immediate transition

t in conflict will fire with probability
r(t)∑

t′∈A r(t′)
, where A

is the set of enabled immediate transitions in conflict and r(t)
is the ratio of transition t.

From a modeling point of view, the above assumption
restricts us to modeling the preemption of a given pro-
cess activity due to the resource consumption by another
process. Nonetheless, such a constraint also allows us to
use linear programming-based techniques for the computa-
tion of throughput bounds that assume persistent (i.e., non-
preemptive) transitions.

Regarding firing semantics, we assume infinite server se-
mantics since this is the firing semantics assumed by the
linear programming-based techniques used for throughput
bound computation. Furthermore, single-server semantics can
be modeled by adding a self-loop place with a single token.

In this paper, we assume that the S4PR under study is
live and thus, as previously mentioned, it is also reversible.
Hence, as stated in [7], the underlying CTMC is ergodic.
Therefore, the steady-state distribution serves as a basis for
the quantitative evaluation of a S4PR in terms of performance
indices, particularly the expected value of the number of
tokens in a given place (average marking) and the mean
number of firings of a transition per unit time (throughput). We
denote the average marking vector as m and the steady-state
throughput vector as χ.

The vector of visit ratios expresses the relative throughput of
transitions in the steady state. The visit ratio v(t) of each tran-
sition t ∈ T normalized for transition ti , vti(t), is expressed
as follows: vti(t) = χ(t)/χ(ti) = Γ(ti) · χ(t), ∀t ∈ T where
Γ(ti) = 1/χ(ti) represents the average inter-firing time of
transition ti.

By token flow balance, it is straightforward to see that the
vector vti must be a T -semiflow, i.e., C · vti = 0. Besides,
vti must also satisfy the routing constraints at free conflicts.
Let t, t′ be two immediate transitions in free conflict. Then,
r(t) · vti(t′) = r(t′) · vti(t). All these routing constraints
can be expressed in matrix form as R · vti = 0, where R,
termed routing matrix, has one row per each pair of t, t′ in
free conflict.

IV. ITERATIVE PERFORMANCE APPROXIMATION
TECHNIQUE FOR S4PR NETS

There are several approaches to computing performance in
Petri nets. The trade-off between computational complexity
and accuracy is reflected in the computation of throughput
bounds (fast, but not so accurate) or in the analytical perfor-
mance computation (very accurate, but probably infeasible for
large systems due to the state-space explosion problem).

Our approach falls between both limits. In particular, it
consists of an iterative method for approximating throughput
for S4PR nets based on upper throughput bounds and using
first order moments as in [28], [30], [36] (it might be extended
to use second order moments, as in [8], [29]).

Performance bounds as proposed in [11], [28], [30] are
valid for arbitrary (structurally defined) PN subclasses (such
as Marked Graphs, Free Choice nets, or S4PR, to name a
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few), as well as for arbitrary time interpretations (Timed,
Time, or Stochastic PNs). These bounds are based on structural
information (incidence matrix and initial marking) and also
on the timing specification of the model, namely the average
duration of activities (Timed or Stochastic PNs) or the time
interval limits (Time PNs), and the weights or rates specifying
the resolution of free-conflicts (i.e., transitions in equal conflict
relation). Using this structural information implies that the
obtained bounds are tight (i.e., closer to real throughput) for
net subclasses without non-free conflicts (such as MGs or Free
Choice nets) or for other net subclasses with the presence of
non-free conflicts (such as freely related T-semiflow nets [10]
or PPNs [9]), in which the structural interaction between free-
conflicts and T -semiflows (fixed by the net incidence matrix)
ensures the existence of a unique vector of visit ratios (or
relative throughput of transitions, as defined in Section III-C).

Beyond these particular net subclasses, the quality of the
structurally computed throughput bounds can be significantly
reduced, especially when used as a throughput approximation.
The main novelty of this paper is to compute a better through-
put approximation for the S4PR net subclass, where the vector
of visit ratios cannot be efficiently computed from the net
structure due to non-free conflicts involving resource places.
Thus, we combine the structural technique for the computation
of bounds presented in [11] with the numerical solution of the
underlying CTMC of some appropriate subnets, using similar
ideas to those presented in [9] for PPNs, that can be non-
trivially extended to the more general S4PR net subclass.

Specifically, we apply the optimization problem introduced
in [11] for general nets to S4PR nets, which is as follows:

P1 : Γ(ti) ≥ Γlb(ti) = min
vti
∈domv

max
y∈domy

y ·Pre ·Dti

subject to domy : {y> ·C = 0,y ·m0 = 1,y ≥ 0}
domv : {R · vti = 0,C · vti = 0,

vti ≥ 0,vti(ti) = 1}

where Dti = δ�vti (component-wise product) is the vector of
average service demands of transitions, and R is the routing
matrix.

Recall that the lower bound Γlb(ti) computed as a solution
of P1 is the inverse of the upper throughput bound of ti, i.e.,

χub(ti) =
1

Γlb(ti)
. Besides, P1 has two (free) variables: the

P -semiflow y and the vector of visit ratios v. Hence, the
slowest P -semiflow of the net y∗ and its associated vector of
visit ratio v∗ti are also obtained by solving P1.

The domain of y, domy, defines the constraints regarding
y∗. In particular, these constraints impose that y∗ is in
fact a P -semiflow of the system. The interpretation of these
constraints is that the problem is computing the minimum
cycle time of all subnets generated by each P -semiflow, if
they are considered in isolation. Similarly, domv defines the
constraints regarding v∗. These constraints impose that the
vector of visit ratios v∗ is a solution to both the linear system
of equations C · vti = 0 (token-flow balance) and R · vti = 0
(free-conflict routing).

The objective function of P1 represents the cycle time of a
subsystem generated by a P -semiflow, considered in isolation
(that is, the cycle time is the weighted sum of the mean service
times of transitions that belong to such a subsystem).

Let us compute the upper throughput bound for every tran-
sition in the running example using P1: χub(t2) = χub(t5) =
0.3125, χub(t8) = χub(t11) = χub(t14) = 0.5, χub(t17) =
1. However, if we analytically compute the throughput of the
net (i.e., by solving the CTMC): χ(t2) = 0.275275, χ(t5) =
0.275248, χ(t8) = 0.288146, χ(t11) = 0.288056, χ(t14) =
0.287948, and χ(t17) = 0.675903. Note that the upper
throughput bound ranges from an error of 12% to 42% with
regard to the real throughput. Hence, the relative error of the
upper throughput bound may be considerable.

As stated before, this (bad) result may be consistent with
the fact that structural bounds, as proposed in [11], are unable
to incorporate the relative throughput between transitions not
related by a T -semiflow and involved in non-free conflict, as
occurs with transitions acquiring resources in S4PR nets (e.g.,
transitions t2 and t8 in the running example).

In this paper, we investigate the idea of net regrowing
to obtain a better approximation of throughput values in
S4PR nets. Considering initially y∗ (obtained as the result
of P1), which is the slowest P -semiflow of the net (i.e., the
bottleneck), we will compute the next P -semiflow most likely
to be constraining the system. The subnet generated by such
a P -semiflow plus the bottleneck is taken as the basis for
throughput approximation.

Let y∗ be a solution of P1. To compute the next P -
semiflow most likely to be constraining the system we use
a similar approach as in [9]. Hence, we add two constraints
to domy: y(p) > 0,∀p ∈ Q,Q = ‖y∗‖ and

∑
p∈V y(p) > 0,

where V = {v|v ∈ •(Q•) \ Q}. These new constraints in
domy impose that the solution of the optimization problem
will be some (non-minimal) P -semiflow composed of the
previous y∗ plus another P -semiflow which is connected to
y∗ through some transition (we refer to this technique as
bottleneck regrowing).

The strict inequality
∑
p∈V y(p) > 0 may lead, however, to

numerical problems (the lower the value of
∑
p∈V y(p), the

higher the optimization function value). Hence, this inequality
is transformed into

∑
p∈V y(p) ≥ h∗, where h∗ is a strictly

positive value that ensures the feasibility of the following
optimization problem. A valid value for h∗ is computed by
the LPP introduced in [9] as follows: h∗ = max{h | y ·C =
0,y · m0 = 1,y ≥ h · 1, h > 0}. Putting all together, the
optimization problem P2 is defined as:

P2 : Γ(ti) ≥ Γlb(ti) = min
vti
∈domv

max
y∈domy

y ·Pre ·Dti

subject to domy : {y> ·C = 0,y ·m0 = 1,

y(p) ≥ 0,∀p ∈ Q,∑
p∈V

y(p) ≥ h∗, h∗ > 0,y ≥ 0}

domv : {R · vti = 0,C · vti = 0,

vti ≥ 0,vti(ti) = 1}
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Hence, given a transition ti and a bottleneck y∗ computed
by means of P1, the solution of P2 provides a new bottleneck
y∗′ of the net, which will be a linear combination of the previ-
ous y∗ and the next P -semiflow most likely to be constraining
the system connected to y∗ through some transition.

The above process can be iteratively repeated, considering
a transition ti, to regrow the initial bottleneck until obtaining
the full net. Note that χ∗′(ti) ≤ χub(ti), but the throughput
of the subnet generated by y∗′ in each step, χ∗′, will be an
approximation of the real throughput of ti, χ(ti).

Algorithm 1: Performance approximation in S4PR nets.
Input: S = 〈N ,m0〉, ε
Output: Θ,y

1 Compute the set T ′ = {t|t ∈ p• = p•r , p ∈ PS , pr ∈ PR}
2 Compute 〈Γlb

t (t),y∗t 〉 = P1(t),∀t ∈ T ′
3 Select tmin ∈ T ′ such that Γlb

tmin
(tmin) = max

∀t∈T ′
Γlb

t (t)

4 χ(t) = 1
Γlb

tmin
(t)
,∀t ∈ T ; y∗ = y∗tmin

;

Θ = χ(tmin); Θ′ = 0
5 Compute

h∗ = max{h | y ·C = 0,y ·m0 = 1,y ≥ h · 1, h > 0}

6 while
Θ−Θ′

Θ
≥ ε and (‖y∗‖ 6= P ) do

7 Compute 〈y,Γlb(tmin)〉 using P2(h∗, tmin,y
∗)

8 Compute χ of the net generated by the P -semiflow y
9 Θ′ = Θ; Θ = χ(tmin); y∗ = y

10 end

Algorithm 1 implements an iterative strategy for approxi-
mating throughput in live, bounded S4PR nets. As input, it
needs the S4PR to be analyzed, i.e., S = 〈N ,m0〉, and the
tolerance (ε > 0) to be achieved. As output, it provides the
approximate throughput Θ and its associated P -semiflow.

Step 1 computes the set of transitions T ′ such that their
firing acquires some resource r ∈ R, i.e., t ∈ p• = p•r , p ∈
PS , pr ∈ PR. Step 2 computes, for each transition t ∈ T , the
lower bound Γlb

t (t) and its associated P -semiflow y∗t using
P1. Then, the transition t which has the maximum lower bound
Γlb

t (t) is selected as tmin. The regrowing method will consider
tmin as the reference transition. Note that tmin may also be
previously selected by the user if there is some interest in
approximating throughput for a certain transition. Step 4 refers
to the setup of local variables. Step 5 computes the value h∗

that ensures feasibility of P2, as in [9].
Steps 6–10 represent the iterative strategy for approximating

throughput values. A new iteration is performed when the
relative error of throughputs between consecutive iterations
is greater than or equal to the tolerance to be achieved and
when there are places not covered by the current P -semiflow
y∗. Step 7 uses P2 to compute the next P -semiflow y, which
will be a linear combination of the current y∗ plus the next
P -semiflow most likely to be constraining the system and
connected to y∗. Step 8 computes the throughput of the net
generated by y solving the underlying CTMC analytically,
when feasible; or by simulation, otherwise. The last step
updates the iteration variables accordingly.

Table I
RESULTS OF ALGORITHM 1 APPLIED IN THE RUNNING EXAMPLE

(CONSIDERING tmin = t2, ε = 0). THROUGHPUT VALUES ARE PER 10−2

|P | |T | P -semiflow χ(t2) %real

7 7 y0 31.2500 −13.77%
10 10 y0

⋃
{p9, p10, p11} 24.3500 11.35%

17 16 y0
⋃

y1
⋃
{p9} 26.9239 1.98%

20 19 y0
⋃

y1
⋃
{p9, p19, p20, p21} 27.7512 −1.04%

22 20 y0
⋃

y1
⋃

y2
⋃
{p9, p19} 27.5534 −0.32%

23 20 y0
⋃

y1
⋃

y2
⋃
{p8, p9, p19} 27.4665 –

Let us illustrate how Algorithm 1 works by
means of the running example. Recall that the net
is composed of three processes, whose supports
are, respectively: ‖y0‖ = {p1, p2, p3, p4, p5, p6, p7},
‖y1‖ = {p10, p11, p12, p13, p14, p15, p16, p17, p18}, and
‖y2‖ = {p20, p21, p22, p23}; while the set of resource places
is R = {p8, p9, p19}. The set of transitions T ′ is equal to
T ′ = {t2, t5, t8, t11, t14, t17} whose lower cycle time bounds
are, respectively, Γlb

t = {3.2, 3.2, 2, 2, 2, 1}. In this case, the
transition having the maximum lower cycle time bound is
tmin = t2, since Γlb(t2) = 3.2. Hence, Θ = 0.3125 and
y∗ = y0. Step 5 computes the value of h∗ = 0.05555.

Consider ε = 10%. Since the iteration condition is fulfilled,
a regrowing step is performed. Using P2(h∗, tmin,y

∗), the
next constraining P -semiflow y = y0

⋃
{p9, p10, p11} and

Γlb(t2) = 3.0667 are obtained as a solution. The throughput
of t2 is computed in the next step solving the underlying
CTMC giving as a solution χ(t2) = 0.243501. Then, the
variables are properly updated. Since the relative throughput
error is 28.34% and the regrowing can continue (i.e., the
current P -semiflow does not contain all the places), another
iteration step is carried out. The second step provides as
solutions of P2 the P -semiflow y = y0

⋃
y1

⋃
{p9} and

Γlb(t2) = 3.4045. The throughput of t2 in the subnet gen-
erated by y is χ(t2) = 0.2692396, i.e., the relative throughput
error is 9.56%.

Hence, the algorithm stops after a few steps and provides the
approximated throughput Θ = 0.2692396 and its associated
P -semiflow y = y0

⋃
y1

⋃
{p9}. The size of the subnet

generated by y is |P | = 17 places and |T | = 16 transitions.
Note that the real throughput of t2 is χ(t2) = 0.274665, i.e.,
the approximated throughput is 1.98% lower than χ(t2).

Table I shows the results considering t2 and ε = 0.
Each row represents an iteration step, indicating the subnet
size (number of places and transitions), the associated P -
semiflow, its computed throughput and the relative error with
regard to the real throughput value. The last (highlighted) row
corresponds to the last step, in which the full net is considered.

Regarding convergence, the algorithm stops since in each
iteration step the P -semiflow regrows until all the places
are covered. Regarding accuracy, if we keep regrowing until
all the places are covered, then, the accuracy error is zero
(since we consider all the net). However, we cannot reach any
conclusions about the accuracy error in general terms. In this
regard, in the next section we randomly create S4PR nets to
evaluate how Algorithm 1 performs.
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Table II
EXPERIMENTAL SETTINGS.

Parameter description Values
No. of processes (nPPNs) 5, 10
Places per process (|P |) {8, . . . , 12}, {20, . . . , 25}
Transitions per process (|T |) |T | = |P | · 7

6
Timed transition rates [1.0, 2.0]
Initial tokens of process-idle places {2, . . . , 5}
No. of resources {nPPNs, nPPNs+

1

2
}

Initial tokens of resource places {2, . . . , 3}
Processes in which a resource r is used {2, . . . , 3}
Confidence level and simulation accuracy 95%,±5%

Table III
EXPERIMENTAL RESULTS: APPROXIMATE THROUGHPUT VALUES (PER

10−2) OF SMALL S4PR NETS, GROUPED BY SIZE OF PPNS.

|P | |T | χ(tmin) χub(tmin) Steps |P ′| |T ′| Θ %
102 127 2.4567 3.7037 6 83 108 2.3850 −55.29%
112 150 5.0247 4.2667 5 70 95 5.0129 14.89%
87 108 6.1678 6.6667 5 54 70 6.2938 −5.92%
92 112 6.8400 9.4787 3 42 53 6.9596 −36.20%
99 138 4.5687 5.4795 2 42 63 4.2352 −29.38%

101 136 2.0001 2.4242 3 40 57 2.0058 −20.86%
(a) Small S4PR nets with small processes

|P | |T | χ(tmin) χub(tmin) Steps |P ′| |T ′| Θ %
159 244 0.2901 0.5224 3 65 101 0.2799 −86.63%
155 250 4.2619 3.7068 3 63 100 4.3552 14.89%
146 223 4.0878 3.3631 4 62 93 3.8592 12.85%
156 237 1.5909 1.8957 3 64 99 1.5620 −21.37%
158 259 3.9912 3.9683 1 35 54 3.9189 −1.26%
156 236 2.0210 2.4742 6 99 152 1.9586 −26.33%

(b) Small S4PR nets with big processes

V. EXPERIMENTATION AND DISCUSSION

To evaluate the effectiveness of Algorithm 1, we developed
a tool2 to randomly create S4PR nets taking into account
various parameters such as the production plan size, transition
rates, number of transitions, resources and available resource
copies, and resource-sharing between production plans.

We created 24 different S4PR nets, classified into small
(5 processes) and big (10 processes) S4PR nets. Each set
was also divided into small (between 8 and 12 places each)
and big processes (between 20 and 25 places). The number
of transitions of each production plan was one-sixth more
than its number of places. The firing time of timed transitions
followed an exponential distribution of a randomly selected
rate ranging from 1.0 to 2.0. The initial marking of processes
was randomly selected between 2 and 5. Resources were
also randomly added, ranging from the number of processes
to one-half more. Similarly, the number of available copies
of resources was randomly selected between 2 and 3, and
the number of production plans sharing each resource was
also randomly selected in the same range. For the sake of
readability, Table II summarizes the experimental settings.

Experiments were performed in a GNU/Linux environment
running an Intel Pentium 4 3.60 GHz with DDR2 RAM
3.0 GiB. Algorithm 1 was implemented as a plug-in of
PeabraiN [37] (using GLPK v4.55 as an LP solver), whereas
throughput computation was carried out using GreatSPN [38].
When feasible, the underlying CTMC was solved; otherwise,
the net was simulated with a precision of 5% at the 95%
confidence level. The tolerance was set at ε = 0.02.

2Released under GPLv3 license and freely available at http://webdiis.unizar.
es/∼ricardo/?page id=527.

Table IV
EXPERIMENTAL RESULTS: APPROXIMATE THROUGHPUT VALUES (PER

10−2) OF BIG S4PR NETS, GROUPED BY SIZE OF PPNS.

|P | |T | χ(tmin) χub(tmin) Steps |P ′| |T ′| Θ %
181 219 8.0788 8.2759 2 36 46 7.2507 −14.14%
155 202 4.1858 5.3333 3 39 51 4.1076 −29.84%
180 239 3.3381 6.7797 2 22 31 2.9298 −131.40%
170 207 2.3503 3.9216 3 39 47 2.2325 −75.66%
175 219 12.5064 9.1954 3 41 52 10.6163 13.38%
176 216 5.5516 5.4054 2 38 48 5.3302 −1.41%

(a) Big S4PR nets with small processes

|P | |T | χ(tmin) χub(tmin) Steps |P ′| |T ′| Θ %
301 463 0.7884 0.7113 2 64 98 0.6897 −3.13%
305 456 1.9988 1.4475 5 92 140 1.9301 25.00%
283 441 1.5148 2.2792 3 58 91 1.4933 −52.63%
283 453 1.3327 1.5662 3 64 99 1.3537 −15.70%
298 457 2.4061 2.3392 1 31 49 2.3648 1.08%
285 430 2.3138 3.6980 2 59 91 2.2626 −63.44%

(b) Big S4PR nets with big processes

Tables III and IV show experimental results for the small
and big S4PR nets grouped by the size of the production
plan, respectively. For each net, we show its size (places
and transitions), the χ(tmin) throughput of transition tmin
(computed by simulation), the upper throughput bound value
(solution of P1(tmin)), the iteration steps performed, the size
of the subnet comprising the slowest P -semiflow given as a
solution by Algorithm 1, its throughput, and the relative error
with regard to its upper throughput bound.

The results show, on average, an improvement in the upper
throughput bound of nearly 20% in almost all cases (in the case
of big S4PR nets having small processes, the improvement
is almost 40%). It should be remarked that the initial upper
throughput bound is very tight for some of these nets, whereas
it is very distant from the real throughput for others. Note
that the value computed by P1 is in fact an upper through-
put bound, while the value returned by the Algorithm 1 is
approximated, i.e., this value is higher or lower than the real
throughput. As future work, we aim to characterize it better
with regard to the real throughput.

Note also that in a few cases the iterative heuristic returns
throughput values which are in fact greater than the initial
upper throughput bound. Besides, the real throughput value
is also greater than the upper bound in these cases. These
situations are caused by simulation errors.

The difference in size between the subnet returned by the
P -semiflow obtained by Algorithm 1 and the original net is
nearly 20% in both experiments for big S4PR nets, while it
reaches a values of almost 40% and 60% for small S4PR nets
having big and small processes, respectively. Hence, a small
portion of the original net is representative enough of the real
throughput of the transition. Note also that the Algorithm 1
rapidly converges, using a low number of iterations.

Let us finally remark that Algorithm 1 chooses as a refer-
ence transition the one with the lowest initial upper throughput
bound. However, this transition can be carefully chosen in
advance by an engineer considering the system under study.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an iterative strategy to
approximate throughput values in S4PR nets. The strategy
is based on first computing the slowest P -semiflow which

http://webdiis.unizar.es/~ricardo/?page_id=527
http://webdiis.unizar.es/~ricardo/?page_id=527
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is then iteratively regrown considering the next P -semiflow
most likely to be constraining the system. Although we have
shown that our iterative approximation technique converges,
we cannot characterize its convergence speed nor its accuracy.
Thus, we have evaluated our strategy in a set of randomly
generated S4PR nets to give an insight into its usefulness.

From the extensive experiments performed, we concluded
that: (i) the throughput obtained with our approach approx-
imates better to the real throughput than (classical) upper
throughput bounds, reaching an improvement on average close
to 20%; and (ii) small portions of the net are representative
enough to approximate to the real throughput of a transition
in big S4PR nets. In particular, the experiments showed that
roughly 20% of the original net size is enough. Roughly speak-
ing, our results indicate that the bigger the S4PR net is, the
smaller the net proportion which is sufficiently representative.

As future work, we aim at extending the approach to nets
with a more general structure (i.e., general nets) or to interval
time PNs. Similarly, we aim at studying other properties of
RAS, such as resource optimization, as well as alternative
techniques based on response time approximations and matrix
compact representations of the infinitesimal generator matrix.
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