
SUBMITTED TO IEEE SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

An Evaluation Framework for Comparative
Analysis of Generalized Stochastic Petri Net

Simulation Techniques
Ricardo J. Rodrı́guez∗, Member, IEEE, Simona Bernardi, and Armin Zimmermann, Member, IEEE

Abstract—Availability of a common, shared benchmark to
provide repeatable, quantifiable, and comparable results is an
added value for any scientific community. International consortia
provide benchmarks in a wide range of domains, being normally
used by industry, vendors, and researchers for evaluating their
software products. In this regard, a benchmark of untimed Petri
net models was developed to be used in a yearly software com-
petition driven by the Petri net community. However, to the best
of our knowledge there is not a similar benchmark to evaluate
solution techniques for Petri nets with timing extensions. In this
paper, we propose an evaluation framework for the comparative
analysis of Generalized Stochastic Petri Nets (GSPN) simulation
techniques. Although we focus on simulation techniques, our
framework provides a baseline for a comparative analysis of
different GSPN solvers (e.g., simulators, numerical solvers, or
other techniques). The evaluation framework encompasses a
set of fifty GSPN models including test cases and case studies
from the literature, and a set of evaluation guidelines for the
comparative analysis. In order to show the applicability of the
proposed framework, we carry out a comparative analysis of
steady-state simulators implemented in three academic software
tools, namely, GreatSPN, PeabraiN, and TimeNET. The results
allow us to validate the trustfulness of these academic software
tools, as well as to point out potential problems and algorithmic
optimization opportunities.

Index Terms—Generalized Stochastic Petri Nets, simulation
software, performance, benchmarking

I. INTRODUCTION

BENCHMARKS have been recognized as an effective tool
for conducting experiments in computer science since

they provide repeatable, quantifiable and, thus, comparable
results [1]. Nowadays, there is a strong need for common
benchmarks in different scientific communities supporting
a common, shared way to provide reproducible and com-
parable data. For instance, they play an important role in
the measurement-based testing within Performance Software
Engineering (SPE) [2].

International consortia provide benchmarks in a wide range
of domains, e.g., high-performance computing [3], transaction
processing and databases [4], image-processing and cyber
security [5]. Such standardized benchmarks are used by in-
dustry and vendors for assessing the performance of their

Ricardo J. Rodrı́guez (∗corresponding author) is with the Centro Univer-
sitario de la Defensa, Academia General Militar, Zaragoza, Spain. E-mail:
rjrodriguez@unizar.es

Simona Bernardi is with the Dpto. de Informática e Ingenierı́a de Sistemas,
Universidad de Zaragoza, Marı́a de Luna 1, 50018 Zaragoza, Spain. E-mail:
simonab@unizar.es.

Armin Zimmermann is with the Technische Universität Ilmenau, Imenau,
Germany. E-mail: Armin.Zimmermann@TU-Ilmenau.De.

hardware/software products, as well as by researchers to
compare their software techniques and tools.

The development of a new benchmark (proto-benchmark)
can be initiated by a small group of researchers as an offer
to a larger scientific community to initialize a consensus pro-
cess [6]. In the model checking research field, for instance, a
benchmark including a repository of untimed Petri net models
was developed and used in a yearly software competition by
the Petri net community [7] to compare the efficiency of new
solution techniques. Such benchmark was aimed at checking
the qualitative properties of the Petri Net models, such as the
reachability of deadlocks or liveness, to name a few.

Petri nets [8] are a graphical and mathematical formalism
that easily represent common characteristics of computer
systems such as concurrency, synchronization, conditional
branches, looping, and sequencing. In particular, Petri nets
are a suitable model for the design and verification of real-life
processes [9], being a common formalism used in automated
manufacturing systems [10], [11]. Roughly speaking, a Petri
net is a bipartite graph of places and transitions connected
with arcs, describing the system behavior with concurrency
and synchronous capabilities. Tokens are assigned to places,
and a distribution of tokens in the places represents a state
of the system, whereas transitions model events or activities.
Stochastic Petri nets (SPN) are a timed extension of Petri
nets, where each transition has associated an exponentially
distributed firing time delay (e.g., modeling the duration of an
activity).

To the best of our knowledge, there is not a similar
benchmark to evaluate solution techniques for SPN models. In
this paper, we aim at providing a proto-benchmark to fill this
gap. This proto-benchmark considers a class of SPN, namely
Generalized Stochastic Petri nets [12] (GSPN), that are used
for systems performance and reliability analysis. In addition
to timed transitions, GSPN include immediate transitions that
are used to model logical actions occurring in zero time.

In particular, we propose an evaluation framework that
consists of a repository of GSPN models and a guideline
for the solvers evaluation. The models of the repository are
available in different formats, two of them compliant to the
ISO standard PNML [13]. Furthermore, we also provide a
tool to interchange the models between different tools and the
shell scripts used to launch experimentation as a way to make
easier the reproducibility of the experiments carried out in this
paper. As an example analysis, the paper furthermore applies
the proposed evaluation framework to three selected event-

rjrodriguez@unizar.es
simonab@unizar.es
Armin.Zimmermann@TU-Ilmenau.De


SUBMITTED TO IEEE SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 2

driven simulators, namely GreatSPN [14], PeabraiN [15],
and TimeNET [16]. A comparative analysis among these
three tools is carried out and results are reported from the
user perspective. This mainly includes run times and achieved
result accuracy which may greatly differ as the selected tools
implement various variants of Monte Carlo simulations. A
comparison of the algorithms themselves is outside the scope
of this paper.

Let us remark that although the evaluation framework is
applicable for any GSPN solution method, in this paper we
focus on GSPN simulation solvers to illustrate its usage.

Along the paper, we will use the notions for the description
of benchmarking proposed in [17] to present and discuss the
different aspects of our evaluation framework. A benchmark
consists of the following data:

• I , an input set of data to be processed;
• E, an examination to be passed by a program;
• P , the program to be benchmarked;
• 〈I, E, P 〉, a run corresponding to the execution of a P

for an E with a given I .
This paper is organized as follows. Section II describes the

evaluation framework, in particular by providing a general
guideline for defining I and E. Section III briefly covers
GSPN simulation and the selected tools (P ) that are used in
the comparative analysis. Section IV describes the application
of the guideline for the comparative analysis of the GSPN
simulator and details the experiments (〈I, E, P 〉). Related
work is covered in Section V. Finally, Section VI sets out
the conclusions of the paper.

II. EVALUATION FRAMEWORK

In this section, we present the evaluation framework that
enables us to specify the input set of data I to be processed
by a Generalized Stochastic Petri Net (GSPN) solver P and
the examination E to be passed by a solver. We first describe
the repository of GSPN models and, then, we introduce the
guideline for the evaluation of solvers. The reader interested
in examining in depth the GSPN formalism can refer to [12].

A. Generalized Stochastic Petri Net repository

The repository consists of a collection of 50 GSPN models,
listed in Table I. For each model, we indicate its identifier, its
Petri net subclass, its size (in terms of places and transitions),
its qualitative properties, and if it is a parametric model.
Furthermore, we indicate the modeled system: most of the
models come from case studies and test cases from the
literature (see Reference columns in the table).

Each model of the repository is characterized by an iden-
tifier (Net id) and labeled (PN subclass) according to the
structural Petri Net sub-class it belongs. In particular, most the
models belong to the well-known PN-subclasses of monoT-
semiflows [37], free-choice nets (FC) [38], freely-related T-
semiflows [39] and deterministic systems of sequential pro-
cesses (DSSP) [40]. The main reason is that the repository
has been built on a collection of models that was used in [31]
to assess bounding techniques on Interval-based Time Petri
Net models, which are known to produce tight bounds for

these PN-subclasses. Nevertheless, we consider the repository
as an open proposal, subject to future extensions to encompass
also other PN-subclasses. Finally, we classified as general nets
the rest of the GSPN models that do not belong to a specific
PN-subclass.

The repository is freely available at [41]. A wiki web page
was created to provide further detailed information for each
model, such as the number of places/transitions (Model size
column, in Table I), the satisfied logical properties (Logical
properties column) – structural boundedness (B), deadlock-
freeness (DF), liveness (L), and reversibility (R) [42]–, and the
parameters, in case of parametric model (Parametric column).
In particular, for parametric models, three different variants
of initial marking setting are provided which correspond to
a coarse classification of the model workload, namely low,
medium, and high. The low category includes the models
where the initial marking parameters have been set to the
reference values, that is the values in the original models1.
The medium and high categories include the models where
the initial marking parameters have been set to, respectively,
one and two orders of magnitude greater than the reference
values.

The repository includes the nets in the file formats required
for the three tools used in the paper, i.e., GreatSPN [14],
PeabraiN [15], and TimeNET [16]. The file format of
GreatSPN does not follow any particular standard, while
the file formats supported by PeabraiN and TimeNET
are compliant to the adopted ISO standard for description
of Place/Transition nets with XML (PNML) [13] or have a
corresponding import/export converter. It is worth mentioning
that the last published version of GreatSPN incorporates a
translator module from PNML-compliant file format to its own
file format [43]. Since there does not exist at the moment of
this writing any adopted ISO standard for timing specification
in PNML, as the one proposed in [44], the file formats of both
tools differ in this part. A tool for converting the file formats
between some of these tools was developed as a side product
of the proposed framework to overcome this issue. This tool
is also available at the GSPN website repository and its source
code has been released under the GNU/GPLv3 license.

B. Guideline for Evaluation of Simulation Solvers

The guideline for the solvers evaluation is aimed at provid-
ing a support for the definition of the examination E, to be
passed by the GSPN solvers under analysis, and the selection
of the input set of GSPN models I from the repository. It can
be summarized as a list of steps, that are discussed in detail
in this sub-section:

1) Define the examination E:
a) Decide the type of comparative analysis.
b) Define the set of indexes for the assessment.
c) Establish the conditions for passing the examina-

tion.
2) Select the input set I:

a) Check the prerequisites for GSPN solvers.

1The non-parametric models have been also included in this category.



SUBMITTED TO IEEE SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 3

TABLE I
THE GSPN REPOSITORY

Net id PN subclass Model size Logical properties Parametric Modeled system Reference
(nP,nT) B-DF-L-R

1 general (49,41) DF-L robot system I [18]
2 general (42,35) DF-L robot system II [18]
3 FRT (37,34) B-DF-L-R X flexible manufacturing system [18]
4 FRT (12,11) B-DF-L-R X communication protocol [19]
5 monoT-semiflow (22,13) B-DF-L-R X job shop [20]
6 monoT-semiflow (16,12) B-DF-L-R X alternating bit protocol [20]
7 FC (25,22) B-DF-L-R X flexible manufacturing system [21]
8 FRT (167,109) B-DF-L-R X complex system scenario ∗
9 monoT-semiflow (72,53) B-DF-L-R computer assisted braking system [22]

10 monoT-semiflow (36,26) B-DF-L-R X simple system scenario [22]
11 FRT (18,19) DF-L X example [23]
12 FC (6,6) B-DF-L-R X example [20]
13 FC (9,9) B-DF-L-R X example [20]
14 general (29,26) B-DF X flexible manufacturing system [24]
15 FRT (89,88) B-DF-L-R X e-health system [25]
16 general (72,65) B-DF gas-pump system [26]
17 general (67,75) DF-R backbone distributed FT algorithm [27]
18 FRT (21,24) DF X message redundancy system [28]
19 FC (11,10) B-DF-L-R X example [20]
20 FC (26,28) B-DF-L-R X dataflow graph [20]
21 FC (13,12) B-DF-L-R X example [20]
22 FC (36,29) B-DF-L-R X example [20]
23 FC (53,33) B-DF-L-R X example [20]
24 DSSP (9,7) DF-L X example [20]
25 DSSP (28,28) B-DF-L-R X example [20]
26 DSSP (39,29) B-DF-L-R X example [20]
27 DSSP (16,15) B-DF-L-R X example [20]
28 FC (EQ) (21,14) B-DF-L-R X example [20]
29 monoT-semiflow (13,19) B-DF-L-R X Ada tasking system [20]
30 monoT-semiflow (11,8) B-DF-L-R X producer-consumer model [20]
31 monoT-semiflow (16,13) B-DF-L-R X example [20]
32 FRT (13,12) B-DF-L-R X example [20]
33 FRT (14,14) B-DF-L-R X example [20]
34 FRT (48,40) B-DF-L-R X software retrieval system (e-commerce) [29]
35 monoT-semiflow (12,9) B-DF-L-R X example [20]
36 FRT (30,30) B-DF-L-R X example [20]
37 FRT (13,13) B-DF-L-R X example [20]
38 FC (10,10) B-DF-L-R X example [20]
39 FRT (14,16) B-DF-L-R X example [20]
40 monoT-semiflow (37,20) B-DF-L-R X assembly line push strategy [30]
41 monoT-semiflow (35,19) B-DF-L-R X assembly line on-demand strategy [30]
42 monoT-semiflow (31,20) B-DF-L-R X assembly line Kanban strategy [30]
43 FRT (86,74) B-DF-L-R X flexible manufacturing cell [30]
44 FRT (140,110) B-DF-L-R X oil pipeline network [31]
45 FRT (150,117) B-DF-L-R oil pipeline network under attack [31]
46 monoT-semiflow (21,16) B-DF-L-R X Universal Control Hub [32]
47 monoT-semiflow (82,63) B-DF-L-R X web-service [33]
48 FRT (63,55) B-DF-L-R X mobile agent application [34]
49 FC (27,33) B-DF-L-R X Biomart Emboss workflow [35]
50 FRT (46,48) B-DF-L-R X clinical guideline [36]

∗Constructed following the approach given in [22]

Feature Description
PN subclass Structural PN characterization (i.e., monoT, FC, FRT,

DSSP, general)
Model size Number of places and transitions
Workload size Parametrization of the initial marking

TABLE II
FEATURES OF THE GSPN REPOSITORY.

b) Define a selection criterion considering the features
of the GSPN repository (Table II).

Define the examination: The examination E should be
defined first, since it determines the goals of the analysis. It
implies the selection of the set of indexes for the assessment
and the specification of the conditions to be passed by the
GSPN solvers. In particular, we can distinguish two types of
analysis: correctness and efficiency.

The first type of analysis is aimed at assessing the correct-

ness of the GSPN solvers and/or accuracy of the performance
results computed by the GSPN solvers. Therefore, at least an
index needs to be defined for the assessment that is based
on performance properties. The basic performance properties
of a GSPN model are the transitions throughput (i.e., number
of firings per unit of time) and the mean number of tokens
in places. We have considered only the throughput of a
transition as the reference property for the GSPN models of the
repository. Let us remark that this decision is mainly motivated
because, for those GSPN models that represent case studies,
the reference property has a precise meaning in the context
of the modeled system (e.g., finished products per time unit
for those models representing flexible manufacturing systems,
such as the nets 3, 7, 14, and 40–43). Based on such a
reference property, an example of index to be used for the
tool assessment is the relative error of the value estimated by
a GSPN solver under analysis with respect to a (known) value.



SUBMITTED TO IEEE SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 4

The second type of analysis is aimed at assessing the
efficiency of the GSPN solvers and, similarly to the correctness
analysis, performance indexes need to be defined for the as-
sessment. Several performance indexes of interest are proposed
in [45] for benchmarking, being the most common ones the
CPU time and wall time (i.e., the elapsed time between start
and end of a task) for measuring time efficiency, and the peak
memory consumption for measuring space efficiency.

Once the indexes for the assessment are defined, the last task
is to establish the conditions for passing the examination. A
naı̈ve condition is to define, for example, a maximum threshold
for the relative error used as index for the correctness analysis.
More complex conditions may consider the sensitivity of the
GSPN solvers to one or more features of the repository.

Select the input set: A different input set of GSPN models
can be selected from the repository, according to the GSPN
solvers constraints (such as the fulfillment of logical proper-
ties) and the features of the repository that are of interest for
the assessment.

Therefore, a first task is the selection of those GSPN models
that fulfill the Logical properties which are a prerequisite
for the use of the GSPN solver under analysis. As shown
in Table I, the considered logical properties are satisfied by
the majority of the models; however, there are also some nets
that only satisfy a subset of properties. Consider for instance
a state-based GSPN solver. Hence, in this case only bounded
models shall be selected for analysis.

The second selection task is carried out with the help of
the features of the repository summarized in Table II. Since
the features can be also used for the sensitivity analysis of the
GSPN solvers, the choice of using a feature as selection or
sensitivity criterion depends on the goals of the assessment.

III. GSPN SIMULATION

This section informally introduces simulation techniques
for GSPN models, and the selected tools to be benchmarked
with the evaluation framework. Three GSPN tools are consid-
ered in this paper: GreatSPN (batch simulator), PeabraiN
(replication simulator with discrete stochastic simulation algo-
rithm), and TimeNET (batch simulator with spectral variance
analysis), mainly because of their accessibility to the authors
as well as their distribution in the research community. The
tools implement different variants of steady-state simulation
algorithms, for which the individual optimization details are
outside the scope of this paper. Moreover, the tools usually
contain several variants such as rare-event simulation and
transient as well as stationary simulations, out of which we
only consider the (standard) steady-state simulation here.

Monte Carlo simulation [46] can be used as a solution
technique for (G)SPN models and is often the alternative
choice to state-based techniques when the state space of the
model is too large to be analyzed as a whole. Simulation
enables to estimate performance and reliability measures by
generating and analyzing randomly chosen paths through the
state space. For each measure of interest, the simulation
provides the estimated value and the precision error at a
confidence interval, i.e., the real (unknown) value falls into

this interval with a certain probability (i.e., confidence level)
and with a precision error [46]. The width of the confidence
interval is a measure of the accuracy of the estimated value.

Different simulation approaches exist. A common approach
is replication, where N statistically independent simulation
runs are executed and the measure is estimated considering the
N independent measurements collected during different runs.
A parallel variant simulates N models concurrently, and sam-
ples from the resulting independent paths. Other approaches
can be used when the aim of the analysis is the estimation
of steady state measures. Indeed, in such cases just a single
simulation run can be executed, where the simulation time is
“long enough” to bring the modeled system in steady state and
measurements are taken across time (rather than measurements
taken across replications). For example, the batch method [47]
partitions the simulation interval into successive epochs and
for each epoch a measurement is collected to avoid common
pitfalls of correlated subsequent samples. The computational
cost of the simulation depends on various factors, namely: 1)
the length of transient period, i.e., the simulation time until
the steady state is reached, 2) the length of the simulation
time needed to collect a representative sample, and 3) the
length of the epochs needed to ensure statistical independence
of successive measurements. It is worth to observe that such
factors depend on the model under analysis, so the choice
of simulation input parameters is a critical point since both
the statistical quality of the simulation results and computer
time that is required to simulate a desired amount of system
time rely on them. Concerning the choice of the length of
the epochs, a possible approach is the regenerative points
method [48], where a regeneration point is a time instant at
which the system enters a given state (e.g., in an SPN model,
the initial marking).

Statistical issues and very long simulation times may arise
in case of rare events, for example when the measure to
be estimated is a very small probability such as the system
failure probability. So-called variance reduction techniques
have been developed to overcome these issues [49], as well
as specific methods such as RESTART [50] that allows for
estimating probabilities as low as 10−100 within a reasonable
time. Other possible approaches propose an approximate accel-
erated stochastic simulation approaches to reduce computation
time [51].

IV. COMPARATIVE ANALYSIS

In this section, we use the proposed GSPN benchmark for
a comparative analysis of the three GSPN simulator tools
considered in this paper (namely, GreatSPN, PeabraiN,
and TimeNET). The details of each simulation algorithm have
been described in Section III.

We compare the tools under correctness and efficiency
criteria. Regarding the correctness criterion, we are interested
in how good the results provided by the simulation tools
are. Hence, we compute the analytic results for each net in
the benchmark (when feasible) and use these values as a
reference for comparison. Regarding the efficiency criterion,
we measure the execution time and the maximum memory
consumption of the simulation tools for the benchmark models.



SUBMITTED TO IEEE SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 5

Net name GreatSPN results TimeNET results Relative error
net01 Unbounded net
net02 Unbounded net
net03 0.155084 0.155085 0.00%
net04 0.201510 0.201510 0.00%
net05 0.096975 0.096976 0.00%
net06 3.861004 3.861004 0.00%
net07 0.176757 0.176757 0.00%
net08 Place invariants explosion
net09 0.241935 0.241935 0.00%
net10 0.036225 0.036225 0.00%
net11 Unbounded net
net12 0.221345 0.221345 0.00%
net13 0.086957 0.086956 0.00%
net14 0.074986 0.075072 0.11%
net15 0.000955 0.000955 0.04%
net16 0.006174 0.006168 -0.10%
net17 0.033642 – (n/a)
net18 Unbounded net
net19 0.864793 0.864801 0.00%
net20 0.052561 0.052560 0.00%
net21 0.500105 0.500105 0.00%
net22 0.157043 0.157042 0.00%
net23 0.149841 0.149837 0.00%
net24 Unbounded net
net25 0.581108 0.581107 0.00%
net26 0.157423 – (n/a)
net27 0.215171 0.215171 0.00%
net28 0.479455 0.479451 0.00%
net29 0.250000 0.250000 0.00%
net30 0.122384 0.122384 0.00%
net31 0.227315 0.225658 -0.73%
net32 0.301352 0.301349 0.00%
net33 0.251126 0.251132 0.00%
net34 0.001204 0.001204 -0.01%
net35 0.065193 0.065193 0.00%
net36 0.083770 0.083770 0.00%
net37 0.205128 0.205128 0.00%
net38 0.200000 0.200000 0.00%
net39 0.242236 0.242236 0.00%
net40 0.273337 0.272827 -0.19%
net41 0.308482 0.308120 -0.12%
net42 0.266471 0.266362 -0.04%
net43 Huge state-space
net44 Huge state-space
net45 Huge state-space
net46 0.030303 0.030303 0.00%
net47 0.062500 0.062500 0.00%
net48 0.187958 – (n/a)
net49 0.000317 0.000317 0.03%
net50 3.241418 3.241418 0.00%

TABLE III
COMPARISON OF ANALYTIC RESULTS.

A. Correctness and Accuracy of Simulation Results

To evaluate the accuracy of the simulation results, we first
need to compute analytic results of the nets and validate
them. For this purpose we analytically solve the underlying
CTMC of the nets (when feasible) using the analytic solvers
of GreatSPN and TimeNET.

Table III summarizes the comparison of analytic results
computed by GreatSPN and TimeNET solvers, considering
the benchmark nets with low marking. As indicated, for some
models the analytic results could not be obtained because
these nets are unbounded or the state-space explosion prob-
lem applies (i.e., huge state space, P-semiflows explosion).
These results are highlighted (in light blue) in Table III. For
instance, net43, net44, and net45 have a huge state-space such
that the analytic solvers exhaust the available memory when

solving the underlying CTMC. For two particular models, the
TimeNET solver was unable to compute analytical results:
net26 has a huge state space that TimeNET is unable to handle
properly and the performance measurement in net17 and net48
is defined over an immediate transition. However, TimeNET
does not compute throughput values of immediate transitions
directly. The last column in Table III shows the relative error
between both solvers. As it is shown, both tools achieve a very
similar value for the reference transition throughput considered
in each model. Hence, we conclude that these analytic results
are valid for comparison.

Figure 1 shows the comparison of simulation results with
regard to analytic ones. We simulated 100 times each net con-
sidering a low marking (see Section II-A) with two different
precision errors and confidence levels. In particular, we set
a precision of 5% at the 95% confidence level and of 1%
at the 99%. Both results are plotted in Figure 1(a) and (b),
respectively. The mark in each error bar represents the average
of the simulation results, while the lower and upper vertical
error bars represent the quantile of 95% (99%) and 5% (1%) of
the collected results, respectively. Furthermore, we also plotted
an horizontal line indicating the predefined precision error of
5% and 1% in each graph.

The plots show interesting results. Regarding the precision
of 5% at the 95% confidence level (Figure 1, a), for all
simulation tools the average of relative errors are close to
0%. Namely, only for the net10 and net17 models the relative
errors reach almost 3% and 5%, respectively. The results of
the PeabraiN simulation tool show, however, some models
for which the average of error results are above/below the
precision boundaries (see, for instance, net10, net14, or net16).
In any event, the average error results are always in the 10%
boundaries. Considering the quantiles, the PeabraiN simu-
lation tool is the one showing more models whose quantiles
exceed the precision boundaries.

Furthermore, the average results of PeabraiN simulation
tool for the net49 model are outside the precision boundaries
(reaching almost 20% of precision error, which was left
outside the axes boundaries for the sake of visibility in both
Figures 1a, b). This indicates that the simulation is not correct.
In summary, the results show that in general the stopping
criteria of all simulation tools are accurate, but the PeabraiN
simulation tool needs further analysis.

Regarding the precision of 1% at the 99% confidence level
(Figure 1, b), the results show that the GreatSPN simulation
tool has the most accurate intervals, since for almost all the
models the lower and upper error bars are in the the precision
bound of ±1%. As before, the average error results are close
to 0% for all models, but for net10 and net17 models. The
PeabraiN simulation tool presents similar errors as in the
previous settings, showing in all the cases quantile intervals
outside the precision boundaries. Thus, this confirms that the
simulation method and stopping criterion of the PeabraiN
simulation tool needs further development. Surprisingly, the
quantile intervals of the TimeNET simulation tool exceed
the precision error bounds for all the models. In summary,
the GreatSPN tool shows the better behavior, while the
stopping criterion of both TimeNET and PeabraiN shall be



SUBMITTED TO IEEE SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 6

ne
t03

ne
t04

ne
t05

ne
t06

ne
t07

ne
t09

ne
t10

ne
t12

ne
t13

ne
t14

ne
t15

ne
t16

ne
t17

ne
t19

ne
t20

ne
t21

ne
t22

ne
t23

ne
t25

ne
t26

ne
t27

ne
t28

ne
t29

ne
t30

ne
t31

ne
t32

ne
t33

ne
t34

ne
t35

ne
t36

ne
t37

ne
t38

ne
t39

ne
t40

ne
t41

ne
t42

ne
t46

ne
t47

ne
t48

ne
t49

ne
t50

Net name

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

R
el

at
iv

e 
er

ro
r 

in
 %

 (
w

rt
. a

na
ly

tic
al

)

GreatSPN simulator
TimeNET simulator
PeabraiN simulator
Precision of 5%

(a) Precision of 0.05 at the 0.95 confidence level

ne
t03

ne
t04

ne
t05

ne
t06

ne
t07

ne
t09

ne
t10

ne
t12

ne
t13

ne
t14

ne
t15

ne
t16

ne
t17

ne
t19

ne
t20

ne
t21

ne
t22

ne
t23

ne
t25

ne
t26

ne
t27

ne
t28

ne
t29

ne
t30

ne
t31

ne
t32

ne
t33

ne
t34

ne
t35

ne
t36

ne
t37

ne
t38

ne
t39

ne
t40

ne
t41

ne
t42

ne
t46

ne
t47

ne
t48

ne
t49

ne
t50

Net name

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

R
el

at
iv

e 
er

ro
r 

in
 %

 (
w

rt
. a

na
ly

tic
al

)

GreatSPN simulator
TimeNET simulator
PeabraiN simulator
Precision of 1%

(b) Precision of 0.01 at the 0.99 confidence level
Fig. 1. Comparative simulation results for GreatSPN, TimeNET, and PeabraiN with regard to analytic results.



SUBMITTED TO IEEE SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 7

revised. In the beta version of TimeNET, enhanced stopping
criteria [52] are being evaluated.

B. Execution Time and Memory Peak Consumption

Regarding the efficiency criterion, we are interested in
measuring both the execution time and the memory peak con-
sumption of the simulation tools. Since the GSPN benchmark
is composed of 50 nets and we do not want to overwhelm
the reader with tens of graphs, only a subset of models
is considered for performance evaluation. In particular, we
selected one net of each Petri net subclass available in the
GSPN benchmark. These subclasses are mono T-semiflow,
free choice, freely related T-semiflow, DSSP, and general nets.
The subset of the GSPN benchmark used for the efficiency
comparison is thus composed of five nets. The selection
criterion of the each net was as follows: first, to have analytic
results; and then, a net with larger number of places and
transitions. Considering those criteria, the selected nets are:
net47 (monoT), net22 (FC), net15 (FRT), net25 (DSSP), and
net14 (general).

For the experiment configuration, we varied the initial
marking from 1 to 100 in all nets to verify whether the
simulators are in some way affected by the number of tokens.
Any other aspect of the net was left as in the original models.
Experiments were performed in a Debian GNU/Linux x86-
64 with an Intel Core i7-4790 CPU @ 3.60GHz and 4GB
of RAM memory, running as a virtual machine on top of
a Proxmox Virtual Environment version 4.1-5/f910ef5c. The
versions of the tools evaluated were, namely, GreatSPN
version 2016, TimeNET version 4.3, and PeabraiN version
1.2 (plus OpenJDK Runtime Environment IcedTea 2.6.11). A
shell script was prepared to execute batch simulations with
a precision of 0.05 at the 0.95 confidence level and collect
simulation results. In particular, we performed 20 iterations
and then compute the average of the obtained results. Execu-
tion times and memory peak consumption data were collected
through GNU’s time command.

Figure 2 plots the execution time (in seconds) for each net
considered in experimentation. Results show that for the FRT
and the mono T-semiflow nets, the number of tokens does
not affect the simulation time of any of the simulation tools
under study. It is worth noting that for both types of nets
GreatSPN clearly outperforms the others. Both GreatSPN
and TimeNET have times lower than one second for those
nets, unlike PeabraiN, which has an execution time near
to nine times the one of TimeNET. For the DSSP and
FC nets, our results illustrate that the convergence of the
PeabraiN simulation method is linearly and exponentially
affected, respectively by the number of tokens. Surprisingly,
the convergence of the TimeNET simulation tool is (exponen-
tially) affected by the number of tokens for general nets. In this
case, the execution time of PeabraiN simulation tool is near
to two orders of magnitude with regard to the GreatSPN tool,
with values ranging from 1.96 to 2.34 seconds. This overhead
might be caused by the execution of Java Virtual Machine.
On the contrary, the results of GreatSPN range from 0.02 to
138 seconds (indeed, the latter execution time occurs with 24

tokens). The difference between GreatSPN and TimeNET
is small in absolute values but systematic, which may be
based on a different implementation architecture - TimeNET
compiles some model details into C code to be used in an
efficient simulation for longer run times. As our models did
not cover this case explicitly, there is no conclusion on relative
run times for ”‘harder”’ simulation problems.

However, a reason for the higher values of execution time
of TimeNET is that some of the results of GreatSPN and
PeabraiN are invalid and the simulation stops too early. A
careful inspection of the results showed that most of the exe-
cution times of both simulators converge rapidly and provide a
throughput value of zero. We empirically analyzed net14 and
found out that it becomes saturated very early with regard to
the variation of number of tokens. Furthermore, the transition
rates in net14 differ in several order of magnitude, i.e., the
transition rates setting is similar to a rare-event system. We
have also verified that the stopping criteria of GreatSPN and
PeabraiN simulation algorithms do not consider a minimum
firing time of the transitions of interest. Based on these
findings, we conclude that the stopping criterion used in both
GreatSPN and PeabraiN simulation algorithms does not
work properly in rare-event (or similar) setting and deserves
further improvements, while TimeNET handles these cases
correctly. This is a starting point to improving the stopping
criterion of both algorithms, considering the current state-of-
the-art.

Based on our experimentation results, we conclude that
PeabraiN is the simulator tool that needs more time to
converge at the precision and confidence level given. Further-
more, its simulation method is the the one most affected by
the number of tokens, especially for DSSP and FC nets.

Figure 3 plots the results of the maximum memory resident
size (in Kilobytes) for each net considered in the experimen-
tation. Results clearly show that for all type of nets but FC
nets the maximum peak of memory used remains constant, re-
gardless the number of tokens. Regarding FC net, the behavior
of PeabraiN simulator is close to an exponential line. In all
cases, GreatSPN outperforms the other two simulation tools.
Although the difference between GreatSPN and TimeNET
is very narrow, it is totally the opposite for PeabraiN: the
results clearly show a huge consumption of memory. We
believe that, again, this might be mainly motivated because
of the execution of the Java Virtual Machine.

As conclusions, based on our results GreatSPN would
be our first choice as simulation tool for short simulation
problems, immediately followed by TimeNET. These results
also indicate that the batch simulator method outperforms
the replication method . Finally, we would like to remark
that although the PeabraiN simulation tool is not as good
as expected regarding GSPN simulation features, PeabraiN
provides other interesting features that enriches the analysis of
GSPN model, particularly the structural analysis. Furthermore,
PeabraiN was designed to provide an easily extendable
framework for fast prototyping of techniques of the realm of
linear programming problems applied to Petri net analysis.



SUBMITTED TO IEEE SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 8

0 10 20 30 40 50 60 70 80 90 100
Number of tokens

0

500

1000

1500

2000

2500

E
xe

cu
ti

on
ti

m
e

GreatSPN
TimeNET
PeabraiN

0 10 20 30 40 50 60 70 80 90 100
Number of tokens

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
xe

cu
ti

on
ti

m
e

(s
)

GreatSPN
TimeNET
PeabraiN

0 10 20 30 40 50 60 70 80 90 100
Number of tokens

0

1

2

3

4

5

6

E
xe
cu
ti
on
ti
m
e
(s
)

GreatSPN
TimeNET
PeabraiN

(a) net14 (general net) (b) net15 (FRT net) (c) net22 (FC net)

0 10 20 30 40 50 60 70 80 90 100
Number of tokens

0

5

10

15

20

25

30

35

40

E
xe
cu
ti
on
ti
m
e
(s
)

GreatSPN
TimeNET
PeabraiN

0 10 20 30 40 50 60 70 80 90 100
Number of tokens

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
xe
cu
ti
on
ti
m
e
(s
)

GreatSPN
TimeNET
PeabraiN

(d) net25 (DSSP net) (e) net47 (mono T-semiflow net)
Fig. 2. Results of experiments: execution time.

0 10 20 30 40 50 60 70 80 90 100
Number of tokens

0

0.5

1

1.5

2

2.5

3

M
ax

im
um

m
em

or
y

re
si

de
nt

se
ts

iz
e

(i
n

K
il

ob
yt

es
)

#105

GreatSPN
TimeNET
PeabraiN

0 10 20 30 40 50 60 70 80 90 100
Number of tokens

0

0.5

1

1.5

2

2.5

3

3.5

M
ax

im
um

m
em

or
y

re
si

de
nt

se
ts

iz
e

(i
n

K
il

ob
yt

es
)

#105

GreatSPN
TimeNET
PeabraiN

0 10 20 30 40 50 60 70 80 90 100
Number of tokens

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
ax

im
um

m
em

or
y

re
si

de
nt

se
ts

iz
e

(i
n

K
il

ob
yt

es
)

#105

GreatSPN
TimeNET
PeabraiN

(a) net14 (general net) (b) net15 (FRT net) (c) net22 (FC net)

0 10 20 30 40 50 60 70 80 90 100
Number of tokens

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
ax
im
um
m
em
or
y
re
si
de
nt
se
ts
iz
e
(i
n
K
il
ob
yt
es
)

#105

GreatSPN
TimeNET
PeabraiN

0 10 20 30 40 50 60 70 80 90 100
Number of tokens

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
ax

im
um

m
em

or
y

re
si

de
nt

se
ts

iz
e

(i
n

K
il

ob
yt

es
)

#105

GreatSPN
TimeNET
PeabraiN

(d) net25 (DSSP net) (e) net47 (mono T-semiflow net)
Fig. 3. Results of experiments: maximum peak of memory consumption.



SUBMITTED TO IEEE SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 9

V. RELATED WORK

This section revises the related works in the literature. We
divided this section into two parts: we first review the SPN
tools — with focus on the status of the standard interchange
file format PNML — and, then, the availability of model
benchmarks.

A. On SPN Tools

There is a large variety of modeling and evaluation tools
for SPN. A comprehensive list of these tools is found in the
PN database maintained by the University of Hamburg [53].
A recent survey in [54] drew up a ranking of SPN tools
according to a set of criteria including: multi-platform sup-
port, open source, embedded graphical animation, structural
analysis, and stochastic and coloured Petri Net support. In this
paper, we consider three Petri net tools (namely, GreatSPN,
PeabraiN, and TimeNET) that provide support to perfor-
mance evaluation of GSPN [12] through different solution
techniques, including simulation.

Concerning PNML import/export features, all the aforemen-
tioned tools support them. However, since the PN timing and
stochastic PNML extensions is not standardized so far, each
tool provides its own solution. The compliance of the PNML
specification is thus limited to the untimed PN (i.e., the net
structure and initial marking).

B. On Model Benchmarks

Model benchmarks can be found mainly in the model
checking community for testing algorithm implementations
that support verification of qualitative properties [17], [55]–
[57]. The BEEM benchmark [55] contains a predefined set of
parametric models expressed in a low-level modeling language
based on communicating extended finite state machines, and
supported by the tool DiVinE. The VLTS benchmark suite [56]
collects labelled transition systems modeling communication
protocols and concurrent systems. The MIST toolset [57] in-
cludes a repository of models, some of them Place/Transitions
(P/T) net models that can be used for verifying coverability
and reachability properties. The BenchKit [17] is the reference
benchmark tool for the Model-Checking Context yearly events,
organized within the Petri Net conference, and provides a
repository of Coloured Petri Nets and P/T nets. In particular,
the repository is yearly updated with new parameterized PN
models [58]; most of them refer to well-known problems or
their variants (e.g., Kanban model, Lamport mutex algorithm),
instead of real scenarios as our GSPN benchmark does.
For each PN model, a description is provided together with
the set of satisfied properties (e.g., reversibility, deadlock
freeness). Other benchmark commonly used is the ISCAS
benchmark [59], which contains a set of combinational and
sequential circuits. Although this benchmark was initially
designed for circuit testing, there are works in the literature
of Petri net community using it to validate performance
estimation approaches.

Automatic generation of PN benchmarks have been also
proposed [60]–[62]. The approach in [60] enables to generate

random Workflow Nets (i.e., a structural class of PNs used to
model workflow processes), according to a set of properties
given as input such as the length of the shortest path from
the source to the sink place, number of nodes, soundness, etc.
The generation algorithm has been implemented as a plugin of
the process-mining tool ProM. In [61], the PN benchmark is
automatically generated for evaluating the efficiency of pattern
matching in graph transformation algorithms. In [62], a tool is
developed to automatically generate S4PR, a particular sub-
class of Petri nets useful for modeling concurrent sequential
processes with shared resources.

None of the aforementioned benchmarks, but the one
generated with the tool introduced in [62], consider Petri
nets with timing and stochastic specifications. Hence, these
benchmarks based on untimed Petri net classes are unsuitable
for comparing performance solvers. The automatic benchmark
generated with the tool introduced in [62] could be useful for
this purpose, although the generated models are limited to a
single class of Petri net and they do not represent any real
scenario, unlike the GSPN benchmark introduced in this paper.

VI. CONCLUSION

This paper has introduced a framework for the comparison
of software tools supporting the performance evaluation of
Generalized Stochastic Petri Nets. Apart from the technical
design of the framework itself, a repository of 50 models
from the literature has been collected and made available
to the public. This benchmark suite covers a wide area of
applications and thus serves as a comprehensive validation
base line for algorithms and tools now and in the future.

Three tools have been selected and evaluated, with spe-
cial emphasis on their simulation components: GreatSPN,
PeabraiN, and TimeNET. The numerical results of the
presented comprehensive experiments show that the results are
in most cases in the expected range of accuracy, thus validating
the trustfulness of academic software tools. As a side result,
characteristic run time and memory consumption profiles have
been derived.

The experimental results allow us to analyze how the tools
perform, pointing out possible problems and algorithmic opti-
mization opportunities. Future algorithm development and tool
implementation can benefit from this approach by checking if
the results are correct, and by allowing a comparative run time
and memory consumption evaluation. This will increase the
quantitative rigor of computer algorithm engineering efforts
in this area.

ACKNOWLEDGMENT

The research of R. J. Rodrı́guez and S. Bernardi was
supported by the EU Horizon 2020 research and innovation
programme under grant agreement no. 644869 (DICE), the
Spanish MINECO project CyCriSec (TIN2014-58457-R) and
the Aragon Government Ref. T27 - DisCo research group.
Part of this work was carried out when R. J. Rodrı́guez was
a Visiting Professor at TU Ilmenau.



SUBMITTED TO IEEE SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 10

REFERENCES

[1] W. F. Tichy, “Where’s the Science in Software Engineering?: Ubiquity
Symposium: The Science in Computer Science,” Ubiquity, no. March,
pp. 1–6, Mar. 2014.

[2] C. U. Smith, “Introduction to Software Performance Engineering: Ori-
gins and Outstanding Problems,” in Proceedings of the 7th International
Conference on Formal Methods for Performance Evaluation. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 395–428.

[3] “Standard Performance Evaluation Corporation,” [Online; https://www.
spec.org/], accessed on October 20, 2017.

[4] “Transaction Processing Corporation,” [Online; http://www.tpc.org], ac-
cessed on October 20, 2017.

[5] “Defence Advanced Research Projects Agency,” [Online; http://www.
darpa.mil], accessed on October 20, 2017.

[6] J. Waller, Performance Benchmarking of Application Monitoring Frame-
works, ser. Kiel Computer Science Series. Department of Computer
Science, Kiel University, Dec. 2014, no. 2014/5, dissertation, Faculty of
Engineering, Kiel University.

[7] “Model Checking Contest at Petri Nets,” [Online; https://mcc.lip6.fr],
accessed on October 20, 2017.

[8] T. Murata, “Petri Nets: Properties, Analysis and Applications,” in
Proceedings of the IEEE, vol. 77, no. 4, April 1989, pp. 541–580.

[9] I. Grobelna, R. Wiśniewski, M. Grobelny, and M. Wiśniewska, “Design
and Verification of Real-Life Processes With Application of Petri Nets,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47,
no. 11, pp. 2856–2869, Nov. 2017.

[10] X. Han, Z. Chen, Z. Liu, and Q. Zhang, “Calculation of Siphons
and Minimal Siphons in Petri Nets Based on Semi-Tensor Product
of Matrices,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 47, no. 3, pp. 531–536, Mar. 2017.

[11] G. Liu, P. Li, Z. Li, and N. Wu, “Robust Deadlock Control for
Automated Manufacturing Systems With Unreliable Resources Based
on Petri Net Reachability Graphs,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, pp. 1–15, 2018.

[12] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Frances-
chinis, Modelling with Generalized Stochastic Petri Nets, ser. Wiley
Series in Parallel Computing. John Wiley and Sons, 1995.

[13] ISO, “Systems and software engineering – High-level Petri nets –
Part 2: Transfer format,” International Organization for Standardization,
Geneva, Switzerland, ISO/IEC 15909-2:2011, 2008.

[14] E. G. Amparore, G. Balbo, M. Beccuti, S. Donatelli, and G. Franceschi-
nis, 30 Years of GreatSPN. Cham: Springer International Publishing,
2016, pp. 227–254.

[15] R. J. Rodrı́guez, “A Petri Net Tool for Software Performance Estimation
Based on Upper Throughput Bounds,” Automated Software Engineering,
vol. 24, no. 1, pp. 73–99, Jan. 2017.

[16] A. Zimmermann, “Modelling and performance evaluation with
TimeNET 4.4,” in Quantitative Evaluation of Systems - 14th Int. Conf.,
QEST 2017, Berlin, Germany, September 2017, pp. 300–303.

[17] F. Kordon and F. Hulin-Hubard, “Benchkit, a tool for massive concurrent
benchmarking,” in 14th International Conference on Application of
Concurrency to System Design, ACSD’14, Tunis La Marsa, Tunisia,
2014, pp. 159–165.

[18] S. Bernardi and J. Campos, “Computation of performance bounds
for real-time systems using time Petri nets,” IEEE Trans. Industrial
Informatics, vol. 5, no. 2, pp. 168–180, 2009.

[19] ——, “On performance bounds for interval time Petri nets,” in 1st Int.
Conf. on Quantitative Evaluation of Systems (QEST 2004). Enschede,
The Netherlands: IEEE Computer Society, September 2004, pp. 50–59.

[20] J. Campos, “Performance bounds for synchronized queueing networks,”
Ph.D. dissertation, Departamento de Ingenierı́a Eléctrica e Informática,
Universidad de Zaragoza, Spain, Research Report GISI-RR-90-20, Oc-
tober 1990.

[21] E. Pacini Naumovich and S. Bernardi, “Modelado de redes de Petri con
intervalos de tiempo mediante la herramienta ITPN-PerfBound,” in Proc.
of V Encuentro de Investigadores y Docentes de Ingeniera (EnIDI’09),
Los Reyunos, Mendoza (Argentina), 2009.

[22] S. Bernardi, J. Campos, and J. Merseguer, “Timing-failure risk assess-
ment of UML design using time Petri net bound techniques,” IEEE
Trans. Industrial Informatics, vol. 7, no. 1, pp. 90–104, 2011.

[23] S. Bernardi and G. Balbo, “Concurrent Generalized Petri Nets: Regen-
erative Conditions,” in IEEE Proc. of the 9th Int. Workshop on Petri
Nets and Performance Models, Aachen (Germany), R. German and
B. Haverkort, Eds., 2001, pp. 125–134.

[24] S. Bernardi, S. Marrone, J. Merseguer, R. Nardone, and V. Vittorini,
“Towards an MDE approach for NFPs assessment using multiformalism:
an application to performability,” Group of Discrete Event Systems
Engineering, University Zaragoza, Tech. Rep., 2015.

[25] L. Berardinelli, S. Bernardi, V. Cortellessa, and J. Merseguer, “The fault-
error-failure chain: a challenge for modeling and analyzing performa-
bility in UML-based software architectures,” Group of Discrete Event
Systems Engineering, University Zaragoza, Tech. Rep., 2010.

[26] S. Bernardi and J. Merseguer, “Performance evaluation of UML design
with stochastic well-formed nets,” Journal of Systems and Software,
vol. 80, no. 11, pp. 1843–1865, 2007.

[27] ——, “QoS assessment via stochastic analysis,” IEEE Internet Comput-
ing, vol. 10, no. 3, pp. 32–42, 2006.

[28] L. Berardinelli, S. Bernardi, V. Cortellessa, and J. Merseguer, “UML
profiles for non-functional properties at work: Analyzing reliability,
availability and performance,” in Proceedings of the 2nd International
Workshop on Non-functional System Properties in Domain Specific
Modeling Languages (NFPinDSML2009). Affiliated with MoDELS 2009,
Denver, Colorado, October 4, 2009., M. Boskovic, D. Gasevic, C. Pahl,
and B. Schätz, Eds., vol. 553. CEUR-WS.org, 2009.

[29] J. Merseguer, J. Campos, and E. Mena, “Analysing internet software
retrieval systems: Modeling and performance comparison,” Wireless
Networks, vol. 9, no. 3, pp. 223–238, 2003.

[30] A. Zimmermann, Stochastic discrete event systems — modeling, evalu-
ation, applications. Springer, 2008.

[31] S. Bernardi and J. Campos, “A min-max problem for the computation of
the cycle time lower bound in interval-based time Petri nets,” IEEE T.
Systems, Man, and Cybernetics: Systems, vol. 43, no. 5, pp. 1167–1181,
2013.

[32] E. Gómez-Martı́nez and J. Merseguer, “Performance modeling and
analysis of the universal control hub,” in Computer Performance En-
gineering - 7th European Performance Engineering Workshop, EPEW
2010, Bertinoro, Italy, September 23-24, 2010. Proceedings, ser. Lecture
Notes in Computer Science, A. Aldini, M. Bernardo, L. Bononi, and
V. Cortellessa, Eds., vol. 6342. Springer, 2010, pp. 160–174.

[33] ——, “Impact of SOAP implementations in the performance of a web
service-based application,” in Frontiers of High Performance Computing
and Networking - ISPA 2006 International Workshops, Sorrento, Italy,
December 4-7, 2006, Proceedings, ser. Lecture Notes in Computer
Science, G. Min, B. D. Martino, L. T. Yang, M. Guo, and G. Rünger,
Eds., vol. 4331. Springer, 2006, pp. 884–896.

[34] E. Gómez-Martı́nez, S. Ilarri, and J. Merseguer, “Performance anal-
ysis of mobile agents tracking,” in Proceedings of the 6th Interna-
tional Workshop on Software and Performance, WOSP 2007, Buenes
Aires, Argentina, February 5-8, 2007, V. Cortellessa, S. Uchitel, and
D. Yankelevich, Eds. ACM, 2007, pp. 181–188.

[35] D. Perez-Palacin, J. Merseguer, and S. Bernardi, “Performance aware
self-managed software: evaluation using Petri nets,” University of
Zaragoza, Spain, Tech. Rep., 2013.

[36] S. Bernardi, J. M. Colom, J. Albareda, and C. Mahulea, “A model-based
approach for the specification and verification of clinical guidelines,”
in Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation, ETFA 2014, Barcelona, Spain, September 16-19, 2014,
A. Grau and H. Martı́nez, Eds. IEEE, 2014, pp. 1–8.

[37] J. Campos, G. Chiola, and M. Silva, “Ergodicity and Throughput Bounds
of Petri Nets with Unique Consistent Firing Count Vector,” IEEE
Transactions on Software Engineering, vol. 17, pp. 117–125, 1991.

[38] J. Desel and J. Esparza, Free Choice Petri Nets. New York, NY, USA:
Cambridge University Press, 1995.

[39] J. Campos and M. Silva, “Structural techniques and performance bounds
of stochastic Petri net models,” in Advances in Petri Nets 1992, ser.
Lecture Notes in Computer Science, vol. 609. Springer-Verlag, 1992,
pp. 352–391.

[40] Y. Souissi, “Deterministic systems of sequential processes: A class of
structured Petri nets,” in Advances in Petri Nets 1993, ser. Lecture Notes
in Computer Science, G. Rozenberg, Ed. Springer Berlin Heidelberg,
1993, vol. 674, pp. 406–426.

[41] “GSPN repository,” [Online; https://bitbucket.org/simbern/
gspn-benchmark/wiki/Home].

[42] Colom, J.M. and Teruel, E. and Silva, M., “Logical properties of P/T
systems and their analysis,” in Performance Models for Discrete Event
Systems with Synchronization: Formalisms and Analysis Techniques,
G. Balbo and M. Silva, Eds. Kronos (Zaragoza), 1998, pp. 185–232.

[43] E. G. Amparore, “Reengineering the Editor of the GreatSPN Frame-
work,” in Proceedings of the International Workshop on Petri Nets and
Software Engineering (PNSE’15), ser. CEUR Workshop Proceedings,
vol. 1372. CEUR-WS.org, Jun. 2015, pp. 153–170.

https://www.spec.org/
https://www.spec.org/
http://www.tpc.org
http://www.darpa.mil
http://www.darpa.mil
https://mcc.lip6.fr
https://bitbucket.org/simbern/gspn-benchmark/wiki/Home
https://bitbucket.org/simbern/gspn-benchmark/wiki/Home


SUBMITTED TO IEEE SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 11

[44] L.-M. Hillah, F. Kordon, C. Lakos, and L. Petrucci, Extending PNML
Scope: A Framework to Combine Petri Nets Types. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 46–70.

[45] D. Beyer, S. Löwe, and P. Wendler, “Benchmarking and resource
measurement,” in Model Checking Software - 22nd International Sym-
posium, SPIN 2015, Stellenbosch, South Africa, August 24-26, 2015,
Proceedings, ser. Lecture Notes in Computer Science, B. Fischer and
J. Geldenhuys, Eds., vol. 9232. Springer, 2015, pp. 160–178.

[46] R. Rubinstein and D. Kroese, Simulation and the Monte Carlo Method.
Wiley, 2008.

[47] J. Banks, J. Carson, B. Nelson, and D. Nicol, Discrete Event System
Simulation. Upper Saddle River, N.J.: Prentice Hall, 2000.

[48] G. S. Shedler, Regenerative Stochastic Simulation. Boston: Prentice
Hall, 1992.

[49] D. Gillespie, “Approximate accelerated stochastic simulation of chem-
ically reacting systems,” Journal of Chemical Physics, vol. 115, no. 4,
2001.

[50] M. Villen-Altamirano and J. Villen-Altamirano, “RESTART: a straight-
forward method for fast simulation of rare events,” in Proceedings of
Winter Simulation Conference, Dec. 1994, pp. 282–289.

[51] P. Heidelberger, “Fast simulation of rare events in queueing and relia-
bility models,” ACM Trans. Model. Comput., vol. 5, no. 1, pp. 43–85,
1995.

[52] A. Zaliaeva, “Better Stopping Criterion for SCPN Simulation,” mathesis,
Department of Computer Science and Automation, Technische Univer-
sität Ilmenau, Oct. 2017.

[53] University of Hamburg, “Petri Net tool database,” [Online; http://
www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html], accessed
on October 1, 2015.

[54] A. Charalambous, “Extension of PIPE2 to support coloured generalised
stochastic Petri nets,” Imperial College, Tech. Rep., 2014.

[55] R. Pelánek, “Beem: Benchmarks for explicit model checkers,” in Model
Checking Software, ser. Lecture Notes in Computer Science, D. Bošnački
and S. Edelkamp, Eds. Springer Berlin Heidelberg, 2007, vol. 4595,
pp. 263–267.

[56] S. Blom and H. Garavel, “Very Large Transition Systems (VLTS)
Benchmark Suite,” [Online; http://cadp.inria.fr/resources/vlts/], accessed
on October 20, 2015.

[57] P. Ganty, “Coverability Checkers included in Mist,” [Online; https://
github.com/pierreganty/mist/wiki], accessed on October 1, 2015.

[58] L. M. Hillah and F. Kordon, “Petri Nets Repository: A Tool to
Benchmark and Debug Petri Net Tools,” in Proceedings of the 38th
International Conference on Application and Theory of Petri Nets and
Concurrency (PETRI NETS 2017), W. van der Aalst and E. Best, Eds.
Cham: Springer International Publishing, Jun. 2017, pp. 125–135.

[59] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in IEEE International Symposium on
Circuits and Systems, vol. 3, May 1989, pp. 1929–1934.

[60] K. M. van Hee and Z. Liu, “Generating benchmarks by random stepwise
refinement of Petri nets,” in Proc. of the Workshops of the 31st Int. Conf.
on Application and Theory of Petri Nets and Other Models of Concur-
rency (PETRI NETS 2010) and of the 10th Int. Conf. on Application
of Concurrency to System Design (ACSD 2010), S. Donatelli, J. Kleijn,
R. J. Machado, and J. M. Fernandes, Eds., vol. 827. Braga, Portugal:
CEUR-WS.org, June 2010, pp. 403–417.

[61] G. Bergmann, A. Horváth, I. Ráth, and D. Varró, “A benchmark
evaluation of incremental pattern matching in graph transformation,”
in Graph Transformations, ser. Lecture Notes in Computer Science,
H. Ehrig, R. Heckel, G. Rozenberg, and G. Taentzer, Eds. Springer
Berlin Heidelberg, 2008, vol. 5214, pp. 396–410.

[62] R. J. Rodrı́guez and J. Campos, “On Throughput Approximation of
Resource Allocation Systems by Bottleneck Regrowing,” IEEE Trans-
actions on Control Systems Technology, 2017, accepted for publication.
To appear.

Ricardo J. Rodrı́guez (M’13) is currently an Assis-
tant Professor at the Centro Universitario de la De-
fensa, General Military Academy, Zaragoza, Spain.
He received M.S. and Ph.D. degrees in Computer
Science from the University of Zaragoza, Zaragoza,
Spain, in 2010 and 2013, respectively. He was a Vis-
iting Researcher at the Cardiff University, Cardiff,
U.K., in 2011 and 2012, and at the Mälardalen
University, Västerås, Sweden, in 2014. He was also
a Visiting Professor at the Second University of
Naples, Caserta, Italy, during a three-month period in

2016 and at TU Ilmenau, Ilmenau, Germany, in 2017. His research interests
include performability and dependability analysis, program binary analysis,
and contactless card security. Dr. Rodrı́guez has been involved in reviewing
tasks for international conferences and journals. He is a member of the IEEE
Computer Society and of the IEEE-IES TCFA Subcommittee on Fault Tolerant
and Dependable Systems.

Simona Bernardi is an Assistant Professor in the
Department of Computer Science and Systems En-
gineering at the University of Zaragoza, Spain. She
received a MS degree in Mathematics and a PhD
degree in Computer Science, in 1997 and 2003,
respectively, both from the University of Torino,
Italy. She has been visiting researcher at the Car-
leton University (ON, Canada), the Università degli
Studi of L’Aquila and the Università Federico II of
Napoli, Italy. Her research interests are in the area
of software engineering and process mining, in par-

ticular model driven engineering, verification and validation of performance,
dependability and survivability software requirements, and formal methods
for the modelling and analysis of software systems. She has been serving
as a referee for international journals, and as a program committee member
for more then 30 different international conferences and workshops. She is
co-author of the book “Model-driven dependability assessment of software-
systems”, published by Springer.

Armin Zimmermann (M’06) is professor of Sys-
tems and Software engineering and director of the
Institute for Computer and Systems Engineering
at Technische Universität Ilmenau, Germany. He
received Diploma (1993), Ph.D. (1997), and Habil-
itation (2006) degrees from Technische Universität
Berlin and was a visiting researcher at the University
of Zaragoza in 1999. He is head of the TimeNET
tool development since the late 1990’s and author
of the Springer book “Stochastic Discrete Event
Systems”. He serves as Associate Editor of IEEE

Transactions on Industrial Informatics since 2008 and is a member of the
Industrial Automated Systems and Controls Subcommittee of the IEEE IES
Technical Committee on Factory Automation (TCFA). His research interests
include discrete-event system modeling and performance evaluation / rare-
event simulation as well as their tool support with applications in reliability
and embedded systems.

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html
http://cadp.inria.fr/resources/vlts/
https://github.com/pierreganty/mist/wiki
https://github.com/pierreganty/mist/wiki

	Introduction
	Evaluation Framework
	Generalized Stochastic Petri Net repository
	Guideline for Evaluation of Simulation Solvers

	GSPN Simulation
	Comparative Analysis
	Correctness and Accuracy of Simulation Results
	Execution Time and Memory Peak Consumption

	Related Work
	On SPN Tools
	On Model Benchmarks

	Conclusion
	References
	Biographies
	Ricardo J. Rodríguez
	Simona Bernardi
	Armin Zimmermann


