
Automated Software Engineering manuscript No.
(will be inserted by the editor)

A Petri Net Tool for Software Performance Estimation
Based on Upper Throughput Bounds

Ricardo J. Rodŕıguez

Received: date / Accepted: date

Abstract Functional and non-functional properties analysis (i.e., dependabil-
ity, security, or performance) ensures that requirements are fulfilled during
the design phase of software systems. However, the Unified Modelling Lan-
guage (UML), standard de facto in industry for software systems modelling,
is unsuitable for any kind of analysis but can be tailored for specific analysis
purposes through profiling. For instance, the MARTE profile enables to an-
notate performance data within UML models that can be later transformed
to formal models (e.g., Petri nets or Timed Automatas) for performance eval-
uation. A performance (or throughput) estimation in such models normally
relies on a whole exploration of the state space, which becomes unfeasible for
large systems. To overcome this issue upper throughput bounds are computed,
which provide an approximation to the real system throughput with a good
complexity-accuracy trade-off. This paper introduces a tool, named PeabraiN,
that estimates the performance of software systems via their UML models. To
do so, UML models are transformed to Petri nets where performance is esti-
mated based on upper throughput bounds computation. PeabraiN also allows
to compute other features on Petri nets, such as the computation of upper
and lower marking place bounds, and to simulate using an approximate (con-
tinuous) method. We show the applicability of PeabraiN by evaluating the
performance of a building closed circuit TV system.

Keywords Petri net, UML, Software Performance, Optimization

R.J. Rodŕıguez
Dpto. de Informática e Ingenieŕıa de Sistemas
Universidad de Zaragoza, Maŕıa de Luna 1, 50018 Zaragoza, Spain
Tel.: (+34) 876 555531
Fax: (+34) 976 761914
E-mail: rjrodriguez@unizar.es

2 Ricardo J. Rodŕıguez

1 Introduction

Software systems are normally modelled with Unified Modelling Language
(UML) OMG (2011b), the standard de facto in industry for software modelling.
However, UML semantics is ambiguous [Fecher et al (2005)] and lacks for a
support of formal validation (i.e., whether the system fulfils the requirements)
and verification (i.e., whether the system fulfils internal correctness proper-
ties). Usually, verification and validation (V&V) are carried out in a system
model focusing on the functional properties but avoiding non-functional prop-
erties. Examples of these non-functional properties are dependability, security
or performance.

However, the system performance evaluation (or throughput, defined as
completed jobs per unit of time), that is, to estimate how long the system
takes to complete, is a primordial study in certain systems, mainly by its likely
trade-off with other non-functional properties. For instance, let us suppose an
embedded real-time distributed system of fire sensors deployed along a for-
est for early prevention of fire disasters. In this case, the system performance
becomes crucial: the less the sensor activities take, the less battery consump-
tion and thus a longer sensor useful life. This issue clearly evidences that the
sooner the system performance is evaluated, the sooner it can be redesigned
to get a better performance and save potential overruns. Note that the cost of
redesigning a system in deployment has been quantified to be over the half of
the total budget in certain domains [Randimbivololona (2001)].

UML can be tailored for specific purposes through profiling [Selic (2007);
Lagarde et al (2007)]. A UML profile enriches UML models by extending its
semantics. For instance, the Modelling and Analysis for Real-Time Embed-
ded systems (MARTE) [OMG (2011a)] profile provides an analysis framework
called Quantitative Analysis Model (GQAM) that enables performance spec-
ification in UML models. A UML model with performance annotations (that
is, UML enriched with MARTE profile) can be transformed to a formal model
where performance evaluation is carried out, such as Stochastic Petri Nets
(SPN) [Molloy (1982)]. Petri nets (PN) [Murata (1989)], among other formal
models, have been extensively studied in the literature as formal modelling
language to evaluate UML models (the reader is referred to [Merseguer et al
(2002); López-Grao et al (2004); Woodside et al (2005); Koch and Parisi-
Presicce (2006); Bernardi and Merseguer (2007); Berardinelli et al (2009);
Distefano et al (2011)], for naming a few).

However, a Petri net model of a software system can be so complex that
exact performance evaluation becomes a highly complex computational task.
The main reason for this complexity is the well-known state-space explosion
problem. As a result, a task that requires an exhaustive state-space exploration
becomes unachievable in a reasonable time for large systems. A way to over-
come this problem is to estimate the performance by computing performance
bounds [Campos and Silva (1992); Liu (1995); Rodŕıguez and Júlvez (2010);
Rodŕıguez et al (2013)].

A PN Tool for SPE Based on Upper Throughput Bounds 3

The computation of lower and upper throughput bounds gives an estima-
tion about where the real system throughput is contained and can be a good
approximation to future system performance improvement plans. This pa-
per introduces an improvement of the tool PeabraiN [Rodŕıguez et al (2012)],
which implements previously published algorithms to compute lower and upper
throughput bounds [Campos and Silva (1992); Rodŕıguez and Júlvez (2010);
Rodŕıguez et al (2013)] in a Petri net. These algorithms intensively use lin-
ear programming (LP) techniques for which polynomial complexity algorithms
exist, so they offer a good trade-off between accuracy and computational com-
plexity.

PeabraiN was initially presented in [Rodŕıguez et al (2012)], where a collec-
tion of modules for performance estimation and resource optimisation based
on bounds computation for SPNs were introduced, as well as a SPN sim-
ulation analysis module based on exact Gillespie’s stochastic simulation al-
gorithm Gillespie (1976). This paper introduces the plug-in architecture of
PeabraiN in more detail, and a complete description of its features. Besides,
as case study we evaluate a building closed circuit TV system. The system is
first modelled with UML, and annotated with MARTE to specify performance
and resources data. Then, it is transformed to Petri net to carry a performance
evaluation out using upper throughput bounds. We also show the benefit of
applying this kind of computation instead of simulation techniques.

The plug-in architecture of PeabraiN allows a modular extension of the
tool, which helps to easily enhance the tool features. PeabraiN was designed
following structural and architectural patterns such as Facade and Model-
View-Controller, respectively. PeabraiN includes several enhancements with
respect to [Rodŕıguez et al (2012)], such as the computation of lower and up-
per bounds for the average marking of places and the computation of structural
implicit places. The Simulator module has been also improved in several ways:
First, it computes the average marking of places; second, it creates an exter-
nal file of results to make easier the handling after experiments; and third, a
new simulation method, an approximate stochastic simulation algorithm (us-
ing Tau-Leaping method [Gillespie (2007, 2008)]), has been implemented. An-
other interesting feature of PeabraiN is the command-line execution, which
enables the automation of evaluation by using scripts, and integration into
batch executions.

Contribution. In brief, the contribution of this paper is three-fold: First, we
introduce a Petri net tool whose plug-in architecture enables a rapid proto-
type implementation of methods that use LP techniques on Petri nets. We
exemplify it by extending PeabraiN with a module for computing structural
implicit places; Second, an approximate simulation method faster than exact
simulation is also introduced. Experiments show that this method performs
better for nets with large number of resources; and third, we demonstrate how
upper throughput bounds computation in a formal model, such as Petri nets,

4 Ricardo J. Rodŕıguez

becomes useful to estimate the performance of a complex software system
modelled with UML.

The outline of this paper is as follows. Section 2 reviews the literature about
tools for performance evaluation in UML/PN models. Section 3 introduces
some preliminary concepts needed to follow the rest of the paper, such as
Petri nets, performance estimation based on bounds, and UML profiles. The
plug-in architecture of PeabraiN and its last enhancements are explained in
more detail in Section 4. Section 5 introduces the case study: A UML model
annotated with MARTE of a building closed circuit TV system is transformed
to a Petri net to estimate its performance using upper throughput bounds.
Finally, Section 6 states some conclusions and future work.

2 Related Work

We have reviewed the literature focusing on tools that enable to evaluate
performance in UML models or Petri nets and the tools that allow to compute
upper/lower throughput bounds in Petri net models.

UML models can be transformed to different formal models, such as Petri
nets or other timed automatas. In this work, we focus on tools that transform
a UML model to Petri nets [Distefano et al (2011)]. Some of these tools are
ArgoPN [Delatour and de Lamotte (2003)], ArgoPerformance [Distefano et al
(2011)] or ArgoSPE [Gómez-Mart́ınez and Merseguer (2006)]. The PN models
obtained after transformation with these tools can be handled with different
PN tools (such as GreatSPN [Baarir et al (2009)] in the case of ArgoSPE) that
compute the performance of the model through simulation, which becomes un-
feasible for large systems due to the well-known state-space explosion problem.
On the contrary, our tool enables not just simulation (exact and approximate
methods) but also performance bound computation from which polynomial
algorithms exist, thus offering a good complexity-accuracy trade-off.

To the best of our knowledge, the only tool for performance bound com-
putation, is GreatSPN [Baarir et al (2009)], which computes lower and upper
throughput bounds of transitions. GreatSPN is a tool for evaluation of perfor-
mance in Petri nets widely used in the community. However, the programming
language paradigm used for its implementation and its platform dependency
makes very difficult to extend its functionalities, unlike PeabraiN.

MATLAB [The MathWorks (2010)] has also an optimisation package that
can be used for LP computations. Nevertheless, it is a proprietary software and
it depends of a proprietary software library (namely, MATLAB Component
Runtime library) for a final software deployment. Besides, the representation
of a PN in MATLAB is done in its mathematical form, what clearly makes the
comprehension of the model at a glance harder. The extension of a MATLAB
tool is neither not so straightforwardly.

Our tool, which is based on PIPE [Bonet et al (2007)] as we will show in
the next section, has several benefits over the related tools: First, it allows an
easy extension through modules; second, it uses the standard PN file format,

A PN Tool for SPE Based on Upper Throughput Bounds 5

Petri Net Markup Language (PNML) [Hillah et al (2009)], so it allows an in-
terchange of files between different PNML-compliant tools; third, it facilitates
a user-friendly GUI editor; and finally, it is a multi-platform and open source
tool, which enables to be executed in different environments and its function-
alities can be improved/revised by the community. Finally, it is worth also
mentioning that PIPE enables to import standard performance format files,
such as Performance Model Interchange Format (PMIF) [Smith et al (2010)].
Therefore, a UML specification can be transformed to PMIF and then im-
ported into PIPE [Lladó and Harrison (2011); Bonet and Lladó (2012)], which
clearly extends the usability of this tool.

3 Preliminary Concepts

This section introduces concepts and references for the algorithms imple-
mented in PeabraiN, as well as it presents the UML profiles.

3.1 Petri nets

A Petri net [Murata (1989)] is a 4–tuple N = 〈P, T,Pre,Post〉, where P and
T are disjoint non-empty sets of places and transitions, and Pre (Post) are
the pre–(post–)incidence non-negative integer matrices of size |P | × |T |. The
pre- and post-set of a node v ∈ P ∪ T are respectively defined as •v = {u ∈
P∪T |(u, v) ∈ F} and v• = {u ∈ P∪T |(v, u) ∈ F}, where F ⊆ (P×T)∪(T×P)
is the set of directed arcs. A Petri net is said to be self-loop free if ∀p ∈ P, t ∈
T t ∈ •p implies t 6∈ p•. Ordinary nets are Petri nets whose arcs have weight
1. The incidence matrix of a Petri net is defined as C = Post−Pre.

A vector m ∈ Z|P |≥0 which assigns a non-negative integer to each place is
called marking vector or marking. A Petri net system, or marked Petri net
S = 〈N ,m0〉, is a Petri net N with an initial marking m0.

A transition t ∈ T is enabled at marking m if m ≥ Pre(·, t), where
Pre(·, t) is the column of Pre corresponding to transition t. A transition t
enabled at m can fire yielding a new marking m′ = m + C(·, t) (reached

marking). This is denoted by m t−→m′. A sequence of transitions σ = {ti}ni=1

is a firing sequence in S if there exists a sequence of markings such that
m0

t1−→m1
t2−→m2 . . .

tn−→mn. In this case, marking mn is said to be reachable
from m0 by firing σ, and this is denoted by m0

σ−→mn. The enabling degree
of a transition t enabled at a marking mi, denoted as emi(t), is the biggest

integer number k such that mi ≥ k ·Pre(·, t). The firing count vector σ ∈ Z|T |≥0
of the firable sequence σ is a vector such that σ(t) represents the number of
occurrences of t ∈ T in σ. If m0

σ−→m, then we can write in vector form
m = m0 + C · σ, which is referred to as the linear (or fundamental) state
equation of the net.

Two transitions t, t′ are said to be in structural conflict if they share,
at least, one input place, i.e., •t ∩ •t′ 6= ∅. Two transitions t, t′ are said

6 Ricardo J. Rodŕıguez

to be in effective conflict for a marking m if they are in structural conflict
and they are both enabled at m. Two transitions t, t′ are in equal conflict if
Pre(·, t) = Pre(·, t′) 6= 0. The equal conflict relation is an equivalence relation
that partitions the set of transitions into equivalence classes ECS, called equal
conflict sets. Transitions belonging to a given equal conflict set are in extended
free-choice conflict.

A Petri net is said to be strongly connected if there is a directed path
joining any pair of nodes of the graph. A state machine is a particular type of
ordinary Petri net where each transition has exactly one input arc and exactly
one output arc, that is, |t•| = |•t| = 1,∀t ∈ T .

A p-semiflow is a non-negative integer vector y ≥ 0 such that it is a left
anuller of the net’s incidence matrix, yᵀ ·C = 0. A p-semiflow implies a token
conservation law independent from any firing of transitions. A t-semiflow is
a non-negative integer vector x ≥ 0 such that is a right anuller of the net’s
incidence matrix, C·x = 0. A p- (or t-)semiflow v is minimal when its support,
‖v‖ = {i|v(i) 6= 0}, is not a proper superset of the support of any other p- (or
t-)semiflow, and the greatest common divisor of its elements is one.

A place p ∈ P is said to be implicit in S if it never is the unique place to
constraint the occurrence of its output transitions. That is, an implicit place
p has enough tokens in any reachable marking of S such that the firing of its
output transitions does not depends on marking of p. Thus, its removal does
not affect the net system behaviour. A place p is structurally implicit in N if
for any initial marking m0, the initial marking of p can be chosen such that
p becomes implicit (i.e., p can be removed from the net without affecting the
the net behaviour). Algebraically, a place p is structurally implicit if and only
if there exits a p-semiflow y such that y ≥ 0,y(p) = 0 and yᵀ ·C ≤ C(p, ·). A
structurally implicit place p becomes implicit when its initial marking m0(p) ≥
max(0, z), where z is solved by the following LPP [Garcia-Valles and Colom
(1999):

z = minimize yᵀ ·m0 + µ

subject to yᵀ ·C ≤ C(p, ·)
yᵀ ·Pre(·, t) + µ ≥ Pre(p, t),∀t ∈ p•

y(p) = 0

y ≥ 0, µ ≥ 0

(1)

Definition 1 [Silva and Colom (1988) Let be 〈N ,m0〉 be a net system. The
structural marking bound N of a given place p in N is

N(p) = maximum m(p)

subject to m = m0 + C ·σ
m ≥ 0,σ ≥ 0

(2)

A Stochastic Petri Net system (SPN) is a pair 〈S, δ〉 where S is a Petri net
system and δ : T → R+ is a positive real function such that δ(t) is the mean

A PN Tool for SPE Based on Upper Throughput Bounds 7

of the exponential firing time distribution associated to each transition t ∈ T .
If δ(t) > 0, then transition t is a timed transition. Otherwise, i.e., δ(t) = 0,
transition t is an immediate one. It will be assumed that all transitions in
conflict are immediate.

The average marking vector, m, in an ergodic Petri net system is defined
as [Florin and Natkin (1989)]:

m(p) =
AS

lim
τ→∞

1

τ

∫ τ

0

m(p)udu (3)

where m(p)u is the marking of place p at time u and the notation =
AS

means

equal almost surely.
Similarly, the steady-state throughput, χ, in an ergodic Petri net is defined

as [Florin and Natkin (1989)]:

χ(t) =
AS

lim
τ→∞

σ(t)τ
τ

(4)

where σ(t)τ is the firing count of transition t at time τ .
The vector of visit ratios expresses the relative throughput of transitions

in the steady state. The visit ratio v(t) of each transition t ∈ T normalised

for transition ti , vti(t), is expressed as vti(t) =
χ(t)

χ(ti)
= Γ(ti) · χ(t), ∀t ∈ T ,

where Γ(ti) =
1

χ(ti)
represents the average inter-firing time of transition ti

and χ(t) is the steady-state throughput of transition t.
In general, the vector of visit ratios v depends on the structure of the

net, on the routing rates, on the initial marking m0, and on the service times
δ [Campos and Silva (1992)]. When the vector of visit ratios depends only
on the structure of the net and on the routing rate, the Petri net is a Freely
Related T-semiflows net (FRT-net) [Campos and Silva (1992)]. The range of
FRT-nets is relatively broad. Examples of these kind of nets are mono-T-
semiflow nets (i.e., nets having a single T-semiflow), choice-free nets, Process
Petri nets [Tricas (2003)], and nets where every conflict is an equal conflict.
It is known that the continuous time Markov chain associated to these nets
is ergodic [Campos and Silva (1992)], what implies the existence of the above
limits.

In a FRT-net, the vector of visit ratios v normalised for transition ti,v
ti ,

can be calculated by solving the following linear system of equations [Campos
and Silva (1992)]: (

C
R

)
· vti = 0

vti(ti) = 1

(5)

where R is a matrix containing the rates r(t) associated to transitions in equal
conflict.

8 Ricardo J. Rodŕıguez

3.2 Performance Estimation Based on Bounds

A lower bound for the average inter-firing time of transition ti, Γlb(ti), can
be computed by solving the following LP problem (LPP) [Campos and Silva
(1992)]:

Γ(ti) ≥ Γlb(ti) = maximum yᵀ ·Pre ·Dti

subject to yᵀ ·C = 0

yᵀ ·m0 = 1

y ≥ 0

(6)

where Γ(ti) is the average interfiring time of transition ti and Dti is the vector
of average service demands of transitions, Dti(t) = s(t) · vti(t) (the vector of
visit ratios vti is normalised for transition ti). In the sequel, we omit the
superindex ti in Dti for clarity.

As a side product of the solution of (6), y represents the slowest p-semiflow
of the system, thus LPP (6) can also be seen as a search for the most constrain-

ing p-semiflow. This p-semiflow will be the one with highest ratio
yᵀ ·Pre ·D

yᵀ ·m0
.

Therefore, an upper bound Θ(ti) for the steady-state throughput can be calcu-
lated as the inverse of the lower bound for the average inter-firing time Γlb(ti),

that is, Θ(ti) =
1

Γlb(ti)
.

The LPP (6) can be applied when the vector of visit ratios v is known, as
the computation of the vector of average service demands of transitions D is
related to v. After some manipulations, the LPP (6) can be transformed to its

A PN Tool for SPE Based on Upper Throughput Bounds 9

dual [Chiola et al (1993)], which can be used to compute an upper throughput
bound Θ for a transition ti in a SPN:

χ(ti) ≤ Θ(ti) = maximum χ(ti)

subject to m = m0 + C · σ∑
t∈•p

χ(t) ·Post(p, t) ≥
∑
t∈p•

χ(t) ·Pre(p, t), ∀p ∈ P

∀t ∈ T, ∀p ∈ •t : χ(t) ≤ m(p)

δ(t) ·Pre(p, t)

∀t ∈ T, •t = {p} : χ(t) · δ(t) ≥ m(p)−Pre(p, t) + 1

Pre(p, t)

∀t ∈ T, •t = {p1, p2} : χ(t) · σ(t) ·Pre(p1, t) ≥
m(p1)−Pre(p1, t)+

1−N(p1) ·
(

1− m(p2)−Pre(p2, t) + 1

N(p2)−Pre(p2, t) + 1

)
∀tj , tk ∈ ECS, rk · χ(tj) = rj · χ(tk)

m0, σ ≥ 0, χ(t) ≥ 0, ∀t ∈ T
(7)

Similarly, LPP (7) can be also used for computing the upper marking
bound of a given place p in N , considering m(p) as objective function (instead
of χ(ti)).

3.3 UML Profiles

UML [OMG (2011b)], the current standard modelling language for the in-
dustry and the software engineering research community, can be tailored for
specific purposes through profiling [Selic (2007); Lagarde et al (2007)]. A UML
profile is a UML extension to enrich UML model semantics defined in terms
of stereotypes (they are concepts in the target domain that will be added to
the UML model), tags (the attributes of the stereotypes), and constraints
(they are formulae that apply to stereotypes and UML elements to extend
their semantics).

UML profiling has been a very active research field in the last years. As
a matter of fact, several UML profiles can be found targeting at different
domains and at analysis of non-functional properties (e.g., performance, de-
pendability, or security). Examples of these UML profiles are Modelling and
Analysis of Real-Time and Embedded systems (MARTE) [OMG (2011a)], De-
pendability Analysis and Modelling (DAM) [Bernardi et al (2011)] and Secu-
rity Analysis and Modelling (SecAM) [Rodŕıguez et al (2010)]. These profiles
enables to specify performance, dependability and security properties within
UML models, respectively. In this paper, we use the MARTE profile to specify

10 Ricardo J. Rodŕıguez

the activity timing in a UML model and to specify the number of resources
in a system. Namely, we use the MARTE analysis frameworks called Generic
Quantitative Analysis Model (GQAM) and the Generic Resource Modelling
(GRM), which provide stereotypes to these goals (gaStep, hostDemand tagged
value; resource, resMult tagged value, respectively).

4 The PeabraiN Tool: Architecture and Features

PeabraiN, which stands for “Performance Estimation bAsed (on) Bounds
(and) Resource optimisAtIon (for Petri) Nets”, is made of a set of modules
compliant with PIPE-tool modules [Bonet et al (2007)]. In this section, we
firstly introduce its architecture in detail and then the features provided by
the tool.

4.1 Architecture

PeabraiN is programmed with Java and integrated on PIPE [Bonet et al
(2007)]. Aside from PIPE library dependencies, it depends on other libraries
to perform its functionality. These libraries are related to computational oper-
ations in matrices (JAMA) [NIST (2012)], probability distribution functions
(SSJ) [Université de Montréal (2014)], and LP solver-specific interface for Java
(Java ILP) [JavaILP (2013)].

Fig. 1 depicts the UML Class Diagram (UML-CD) of PeabraiN. It has been
designed following the Model-View-Controller (MVC) architectural pattern,
and its closed layered architecture is composed by three layers. Each layer
corresponds with a component in MVC. The main classes added in the last
release are depicted in orange colour. These classes are explained in more detail
in Section 4.3.

The data layer contains classes representing the information needed for
the provided functionalities to execute, in terms of LP problems (i.e., the con-
straints related to the LP problem, the definition of optimisation function,
variable types, etc.). The Facade structural pattern has been followed in this
layer to handle and minimise the classes complexity. The intermediate layer
contains the classes that implement the algorithms and features provided by
PeabraiN. Finally, the GUI layer encloses the classes related to graphic in-
terfaces for collecting/showing from/to the user input data and results of the
functionalities.

The integration of PeabraiN in PIPE is depicted in Fig. 2. PIPE allows
to be extended through modules that must implement the IModule interface.
Note that the integration follows an open architecture, as upper layered classes
communicate with non-immediate lower layered classes. Namely, Fig. 2 shows
how the PIPE-data layer and PeabraiN-data layer are related. The PetriNet-
Model class, which is a matrix representation of the current PN model in
PNML (PIPE format), is created by each one of the PeabraiN modules. Let

A PN Tool for SPE Based on Upper Throughput Bounds 11

Fig. 1 UML Class diagram of PeabraiN.

us remark that our modules do not use PNML as data layer because the mod-
ule algorithms work with the matrix representation as we are mainly solving
LPPs.

12 Ricardo J. Rodŕıguez

Fig. 2 Integration of PeabraiN in the PIPE tool.

4.2 Plug-in Architecture

PeabraiN was designed following also a plug-in architecture to facilitate its ex-
tension. This architecture makes easier to add more functionalities that make
use of LP techniques on PNs. In fact, this is the major benefit of this architec-
ture: It allows a rapid prototype implementation of any algorithm that deals
with Petri nets and LP problems. Let us explain how PeabraiN can be easily
extended by an example.

Recall that to check whether a place is (structurally) implicit can be solved
by an LPP (see LPP (1)). Suppose that a user wants to add this feature
to PeabraiN. The first thing to do is to create a class (termed as Struc-
turalImplicitPlace) that extends the abstract class WellFormedLPP, and fill
in the methods properly. Recall that the Petri net is represented in matrix
form by the PetriNetModel class, and the methods of StructuralImplicitPlace
represent the LPP (1) variables, constraints, objective function, etc. After
that, an intermediate layer class must be created, SIPStrategy, extending the
Strategy abstract class. This class must properly create and communicate with
the new class created (StructuralImplicitPlace). After creating it, it needs to
fill in the arguments needed by StructuralImplicitPlace (if any) and then in-
voke to solve() method. Finally, a class should be created in the GUI layer by
extending the PeabrainGUI abstract class (let us suppose this class is named
as StructuralImplicitPlaceGUI). As last step, the integration with PIPE must
be performed. Thus, a new module named StructuralImplicitPlaceModule im-
plementing IModule and using PetriNetModel is created.

Fig. 3 illustrates interactions between the user, PIPE and PeabraiN when
executing this new feature considering the above mentioned classes. Once the
StructuralImplicitPlaceModule is instanced, it creates a PetriNetModel object,
taking as parameter the current PNML displayed by PIPE. After that, it
creates a SIPStrategy and a StructuralImplicitPlaceGUI, which take as input
parameter the recently created PetriNetModel object. The GUI also collects
the input data provided by the user (i.e. the index of place to check, idxPlace),
and then whether such a place is structurally implicit is checked. The last
release of PeabraiN includes indeed this feature, but the intermediate and GUI

A PN Tool for SPE Based on Upper Throughput Bounds 13

Fig. 3 UML Sequence Diagram for executing Structural Implicit Place module.

layered classes are integrated into StructuralIterator and StructuralBoundGUI,
respectively, as it shares some characteristics with other structural properties
(mainly, the input parameters can be collected using the same GUI).

4.3 Tool Modules

In the following, the PeabraiN modules and what they provide are introduced.

Performance Estimation. It uses an iterative algorithm based on LP prob-
lems [Rodŕıguez and Júlvez (2010); Rodŕıguez et al (2013)] for computing
upper throughput bounds. This iterative approach is applicable for some sub-
classes of Petri nets (namely, Marked Graphs [Murata (1989)] and Process
Petri nets [Tricas (2003)]).

Resource Optimisation. This module enacts an optimal distribution of re-
sources in a shared-resource PN for a given budget and resource costs, trying
to enhance the system performance as much as possible was implemented. The
theory behind this method was formerly introduced in [Rodŕıguez et al (2013)].
This method is currently applicable for Process Petri nets [Tricas (2003)].

14 Ricardo J. Rodŕıguez

Visit Ratio Computation. Section 3.1 describes how the vector of visit ra-
tios v of a PN, normalised for a transition t ∈ T can be computed. This module
computes whether the vector of visit ratios has a single solution, otherwise re-
ports that there exists more than one solution, and it cannot be computed.

Linear Bound. This module encompasses several computations related to
linear bounds, such as the computation of slowest p-semiflow (see LPP (6)) or
the computation of lower(upper) throughput bounds (see LPP (7)) [Campos
and Silva (1993)]. Recall that the PN structure needs to fulfil a set of condi-
tions so that the computation of performance bounds has some sense. These
conditions are: (i) the PN must be structurally live, (ii) structurally bounded,
(iii) have a home state and (iv) its vector of visit ratios must have a unique
solution. Our tool is limited to automatically check the latter property, as
verifying some of these properties in general nets are NP-decidability prob-
lems [Esparza and Nielsen (1994)]. The latter conditions are also applicable to
the computation of the slowest p-semiflow of a PN since it is indeed an upper
performance bound for the real system performance.

This module also enables to compute the lower and upper average marking
bound for a place in a Petri net, using LPP (7) but changing the optimisation
function as required.

Structural Marking Bound and Structural Enabling Bound. The struc-
tural marking of a place p ∈ P , and the structural enabling of a transition
t ∈ T , can as well be computed by LP problems [Campos and Silva (1993)].
These LP problems are valid for any kind of PN.

Structural Implicit Places. This module allows to compute the structural
implicit places of a net and the initial marking such that these places become
implicit and thus they can be removed from the net. Both features can be
solved by using LPP, as previously explained (see Section 3.1).

This module has been used as example of how to extend the plug-in archi-
tecture of PeabraiN. The classes implementing these features have been high-
lighted (orange) in Fig. 1. Note that these new classes belong to data layer.
As we have previously said, more logic has been added to some intermediate
and GUI layer classes to make use of these features.

GSPN Simulation Analysis. This module incorporates two different stochas-
tic simulation methods for average throughput and average marking computa-
tion in SPNs: An exact (discrete) method using the first reaction method [Gille-
spie (1976)], and an approximate (continuous) method using the Tau-Leaping
method [Gillespie (2007, 2008)].

The exact method is based on the Gillespie’s stochastic simulation algo-
rithm (SSA) [Gillespie (1976)]. It performs a set of replications of the simu-
lation, and estimates the average throughput with a given confidence interval
level and error accuracy. This algorithm uses a Monte Carlo procedure for
numerically generating enabled transitions to be fired [Gillespie (1992)].

A PN Tool for SPE Based on Upper Throughput Bounds 15

Algorithm 1 shows the pseudo-code of the discrete SSA implemented. As
input, it needs two parameters: The Petri net S to be simulated and the
maximum system time tmax to be simulated. As output, it produces a vector
χ of average throughput of transitions. As side product, the vector of average
marking of places m is also obtained.

Input: S, tmax

Output: χ

1 Set simulated time t = 0
2 Set a vector f of firing count of transitions, i.e., f = 0, |f | = |T |
3 Set a vector χ of average throughput of transitions, i.e., χ = 0, |χ| = |T |
4 Set a vector m ∈ R|P |,m = 0, of average marking of places
5 Fire all enabled immediate transitions until no other immediate transitions are

enabled
6 Compute the set A of timed transitions that are enabled
7 if A = ∅ then
8 Raise error message, as no system evolution is possible
9 else

10 Get next timed transition a ∈ A to be fired in a randomly time t′

11 Update the average marking of places in •a
12 repeat
13 t = t+ t′

14 Fire transition a ∈ A, and increment f(a) in one unit
15 Fire all enabled immediate transitions until no other immediate transitions

are enabled
16 Compute the set A of timed transitions that are enabled
17 Get next timed transition a ∈ A to be fired in a randomly time t′

18 Update the average marking of places in •a

19 until t ≥ tmax or A = ∅
20 foreach e ∈ f do
21 χ(e) = f(e)/t
22 end

23 end

Algorithm 1: Discrete Stochastic Simulation Algorithm implemented in
PeabraiN.

Steps 1 – 4 initialise the parameters used in the algorithm, namely the
simulated time, the vector of firing count of transitions, the vector of average
throughput of transitions, and the vector of average marking of places. Then,
all enabled immediate transitions are fired until no other immediate transition
is enabled (step 5). Step 6 computes the set A of timed transitions that are
enabled. Then, if no timed transition is enabled, an error message is reported
indicating that the system cannot evolve, and suggests that initial marking
might be revised. Otherwise, a transition a ∈ A is picked up for firing at
time t′ (step 10). Next step updates the average marking of places contained
in •a. This transition is selected by applying the standard inversion generat-
ing method of Monte Carlo theory [Gillespie (1992)]. Steps 12 – 19 are the
simulation loop. The simulated time is incremented in t′ units (step 13), and
transition a is fired and its firing count is incremented (step 14). Then, pre-
vious steps 5, 6, 10 and 11 are repeated. The iteration loop ends either when

16 Ricardo J. Rodŕıguez

the maximum of simulated time is reached, or when there is no any timed
transition to be fired. Finally, steps 20 – 22 compute the average throughput
of each transition by dividing the number of firing between the total simulated
time.

PeabraiN provides other simulation method that implements Tau-Leaping
method [Gillespie (2007, 2008)], an approximate way of accelerating the SSA
in which each time step advances the system through possibly many events at
the same time. In terms of Petri nets, each step the enabled timed transitions
are fired as much as possible, as indicated by a Poisson distribution.

Algorithm 2 introduces this simulation method. As input, it needs the
Petri net to be simulated, and the maximum of simulated time. As output,
it produces a vector χ of average throughput of transitions. As side product,
the vector of average marking of places m is also obtained. Note that both
algorithms use the same input, and produce the same output.

Input: S, tmax

Output: χ

1 Set simulated time t = 0
2 Set a vector f of firing count of transitions, i.e., f = 0, |f | = |T |
3 Set a vector χ of average throughput of transitions, i.e., χ = 0, |χ| = |T |
4 Set a vector m ∈ R|P |,m = 0, of average marking of places
5 Fire all enabled immediate transitions until no other immediate transitions are

enabled
6 Compute the set A of timed transitions that are enabled
7 if A = ∅ then
8 Raise error message, as no system evolution is possible
9 else

10 repeat
11 Compute τ such that leap condition is fulfilled
12 Fire each transition in A a randomly generated number of times, and

increment f accordingly
13 Update the average marking of places in A accordingly
14 t = t+ τ
15 Fire all enabled immediate transitions until no other immediate transitions

are enabled
16 Compute the set A of timed transitions that are enabled

17 until t ≥ tmax or A = ∅
18 foreach e ∈ f do
19 χ(e) = f(e)/t
20 end

21 end

Algorithm 2: Tau-Leaping Stochastic Simulation Algorithm implemented
in PeabraiN.

Steps 1 – 9 are equivalent to the same steps at Algorithm 1. Both algorithms
mainly differ in the iteration loop. Here, the iteration loop starts in step 11,
where a time τ that fulfils the leap condition is computed. The leap condition
ensures that such a τ is small enough that no propensity function changes by
a significant amount [Gillespie (2007)]. Given a marking m, such a value τ is

A PN Tool for SPE Based on Upper Throughput Bounds 17

computed as:

τ = min
∀a∈A


max(ε ·

∑
∀a∈A

δ(a), 1)

|
∑
p∈Ba

C(p, a) · δ(a) · e(a)|
,

max(ε ·
∑
∀a∈A

δ(a), 1)2

|
∑
p∈Ba

C(p, a)2 · δ(a) · em(a)|

 (8)

where Ba = {••a}
⋃
{a••}, δ(a) is the mean of the exponential firing time

distribution associated to a, and em(a) is the enabling degree of transition a.
After computing τ , each enabled timed transition a fires in [t, t+τ) a num-

ber of times n which is a Poisson random variable with mean (and variance)
δ(a) · e(a) · τ , i.e., n = P(δ(a) · e(a) · τ), and the vector of firing counts is
accordingly incremented (step 12). Similarly, step 13 increments accordingly
the average marking of places in •a,∀a ∈ A. Then, step 14 increments the
simulated time in τ units. As before, previous steps 5 and 6 are repeated.
The iteration loop ends either when the simulated time reaches the maximum
simulated time, or the set of enabled transitions is empty. As in Algorithm 1,
the final steps (18 – 20) compute the average throughput of each transition.

Algorithm 2 outperforms Algorithm 1 for net systems where the population
(i.e., the number of initial tokens) is large, as in each iteration step the enabled
timed transitions are fired more than just one time. Of course, the simulation
results produced by Algorithm 2 may be less exact than the ones computed by
Algorithm 1. Note that enabled timed transitions are fired at a time, regard-
less these firings may enable subsequent immediate transitions. Thus, timed
transitions could be fired multiple times at once which would change the net
behaviour. This is an interesting issue that needs further study. We aim at
studying the structure of nets whose behaviour may be influenced by this
simulation method.

In the next section we compare the performance and accuracy of both
algorithms in a case study. As future work, we aim at evaluating them with a
large set of Petri nets.

4.4 Extended Features

In this section, we summarise other features that PeabraiN provides and are
used by all modules. Namely, PeabraiN allows to select the LP solver to be used
and to execute all module using the command-line interface. The first feature
could be used, for instance, to evaluate the performance of LP solvers in the
computation of some Petri net properties; while the latter feature enables to
batch executions without user interaction, and to concatenate the execution
of different modules.

Linear Programming Solver Selector. A PeabraiN Settings option has been
added into PIPE to allow a user to select the LP solver to be used in LP com-
putations. To this aim, we have followed a Model-View-Controller architectural

18 Ricardo J. Rodŕıguez

(a)

Defau l t = GLPK
Solver7 = MiniSat +,/ usr / l i b / MiniSat+
So lver6 = SAT4J , / usr / l i b /SAT4J
So lver5 = GLPK, / usr / l i b / l i b g l p k . so
So lver4 = Mosek , / usr / l i b /Mosek
So lver3 = Gurobi , / usr / l i b /Gurobi
So lver2 = ILOG CPLEX, / usr / l i b / i l o g c p l e x
So lver1 = Lp solve , / usr / l i b / l p s o l v e

(b)

Fig. 4 (a) LP solver selector GUI and (b) configuration file to dynamically generate solver
list.

pattern for the design of the solver selector window, which allows to the user
to select the LP solver to be used by PeabraiN modules. This window has been
integrated into the PIPE menu, thus allowing an easily configuration from the
main PIPE window. Besides, the LP solver list is dynamically generated and
its content relies on a configuration file1 that can be easily modified (following
a given syntax) by any user. This new GUI and a example of configuration
file are given in Fig. 4(a) and (b), respectively. We have also used the Single-
ton creational pattern to ensure a unique instance of the LP solver across all
modules. This enhances the performance of PeabraiN, as the same solver can
be concurrently used by different modules, thus saving the LP loading penalty
time.

Command-Line Interface. PeabraiN also provides a way to execute any
module via a command-line interface (CLI). This feature enables to batch
computations in Petri nets without the need of user interaction, and even to
easily integrate PeabraiN modules and results with other tools.

Fig. 5 depicts the UML-CD of PeabraiN Command-Line Interface modules.
Note that the integration with PeabraiN modules are done through module
strategies (left-side classes of the figure). We have followed the same design
rules as with PeabraiN. Thus, the Facade structural pattern and a plug-in
architecture have been used: When a new module needs CLI support, a devel-
oper only needs to extend PeabraiNCLI class and fill in the required methods

1 Named “.solverselector.conf”, and located at the home folder of the user.

A PN Tool for SPE Based on Upper Throughput Bounds 19

properly. Moreover, this new functionality was designed under the idea of min-
imising as much as possible the modification of current code when adding CLI
support for other modules. Therefore, the PipeCLI, which is the one currently
executed by a user when executing PeabraiN through a console, automatically
loads the modules that can be executed by checking a predefined CLI module
path.

The support of these dynamic CLI modules rises other dynamic features,
such as the dynamic generation of help messages, which report about the usage
of each module with its corresponding module parameters. To this aim, the
parameters are collected by the MyParamValue class, which defines a set of
methods and properties for input parameters. Recall that a module has some
mandatory (and common) parameters, such as the PNML file and the LP
solver to be used by the module, and other specific parameters, such as the
identification label of a place or a transition in the case of structural marking
bound and structural enabling bound modules, respectively.

4.5 Tool Remarks

In this last part, we summarise the kind of Petri nets where the methods pro-
vided by PeabraiN can be applied. Exact simulation methods are valid to any
kind of Petri net subclass (e.g., a simple net). However, approximate simula-
tion methods are only applicable to nets where only immediate transitions are
in conflict. Besides, this simulation method is recommended for nets with a
high number of tokens since accuracy error is higher when population is low.
Similarly, lower/upper throughput (marking) bound computation can be done
in any kind of Petri net using the LPP (7). Iterative upper throughput bound
algorithms, and resource optimisation, are valid for Petri nets where the vec-
tor of visit ratios is computable. Likewise, computing slowest p-semiflow using
LPP 6 is only possible when the vector of visit ratios is known. Recall that
the vector of visit ratios is easily computable when it depends only on the net
structure and on the routing rates. Otherwise, the reachability set of a net is
needed to compute it.

Tool Availability. PeabraiN is released under GNU GPL version 3 license,
and further information about tool requirements and installation steps, tool
binaries and sources can be found in the project web page http://webdiis.

unizar.es/GISED/?q=tool/peabrain.

5 Case Study: A Building CCTV System

In this section, we study the performance of a Building Closed Circuit TV
System (CCTV), inspired by the system introduced in [Petriu and Woodside

http://webdiis.unizar.es/GISED/?q=tool/peabrain
http://webdiis.unizar.es/GISED/?q=tool/peabrain

20 Ricardo J. Rodŕıguez

#
m

y
P
a
ra

m
V
a
lu

e
 :

 M
y
P
a
ra

m
V
a
lu

e

#
p
n
M

o
d
e
l
:

P
e
tr

iN
e
tM

o
d
e
l

#
S
tr

a
te

g
y
 :

 S
tr

a
te

g
y

-x
m

lF
il
e
n
a
m

e
 :

 s
tr

in
g

+
c
h
e
c
k
A

n
d
F
il
lP

a
ra

m
s
(a

rg
s
 :

 S
tr

in
g
[]

)
:

v
o
id

+
lo

a
d
X

M
L
F
il
e
()

 :
 v

o
id

+
g
e
tF

il
e
()

 :
 S

tr
in

g

+
h
tm

l2
te

x
t(

h
tm

l
:

S
tr

in
g
)

:
S
tr

in
g

+
g
e
tP

a
ra

m
V
a
lu

e
L
e
n
g
h
t(

)
:

in
t

+
g
e
n
X

M
L
(m

o
d
u

le
 :

 S
tr

in
g
)

:
v
o
id

+
c
o
m

p
u
te

()
 :

 v
o
id

+
g
e
tR

e
s
u
lt

s
()

 :
 v

o
id

+
b
u
il
d
P
a
ra

m
V
a
lu

e
V
e
c
to

r(
)

:
v
o
id

+
c
re

a
te

S
tr

a
te

g
y
()

 :
 v

o
id

P
e
a
b
r
a
iN
C
L
I

+
m

a
in

(a
rg

s
[]

 :
 S

tr
in

g
)

:
v
o
id

-p
ro

c
e
s
s
A

rg
s
(a

rg
s
 :

 S
tr

in
g
[]

)
:

v
o
id

-c
h
e
c
k
_
m

o
d
u
le

(m
o
d
u
le

 :
 S

tr
in

g
)

:
C

la
s
s

-h
e
lp

_
b
a
s
e
()

 :
 v

o
id

-g
e
tC

la
s
s
e
s
(p

a
c
k
a
g
e
N

a
m

e
 :

 S
tr

in
g
)

:
C

la
s
s
[]

-f
in

d
C

la
s
s
e
s
(d

ir
e
c
to

ry
 :

 F
il
e
,
p
a
c
k
a
g
e
N

a
m

e
 :

 S
tr

in
g
)

:
L
is

t<
C

la
s
s
>

P
ip
e
C
L
I

-p
a
ra

m
C

h
a
r

:
s
tr

in
g

-d
e
s
c
 :

 s
tr

in
g

-d
e
s
c
fu

ll
 :

 s
tr

in
g

-o
p
ti

o
n
a
l
:

b
o
o
le

a
n

-v
a
lu

e
 :

 O
b
je

c
t

-a
s
s
ig

n
e
d
 :

 b
o
o
le

a
n

-p
a
ra

m
s
 :

 i
n

t

+
s
e
tV

a
lu

e
(o

 :
 O

b
je

c
t)

 :
 v

o
id

+
g
e
tV

a
lu

e
()

 :
 O

b
je

c
t

+
g
e
tP

a
ra

m
C

h
a
r(

)
:

S
tr

in
g

+
g
e
tD

e
s
c
()

 :
 S

tr
in

g

+
g
e
tD

e
s
c
F
u
ll
()

 :
 S

tr
in

g

+
g
e
tA

s
s
ig

n
e
d
()

 :
 B

o
o
le

a
n

+
s
e
tA

s
s
ig

n
e
d
()

 :
 v

o
id

+
g
e
tO

p
ti

o
n
a
l(

)
:

b
o
o
le

a
n

+
g
e
tP

a
ra

m
s
()

 :
 I
n
t

+
s
e
tO

p
ti

o
n
a
l(

a
 :

 b
o
o
le

a
n
)

:
v
o
id

M
y
P
a
r
a
m
V
a
lu
e

S
lo
w
e
s
tP

S
e
m
if
lo
w
C
L
I

S
tr
u
c
tu
r
a
lE
n
a
b
li
n
g
B
o
u
n
d
C
L
I

R
e
s
o
u
r
c
e
O
p
ti
m
is
a
ti
o
n
C
L
I

L
in
e
a
r
B
o
u
n
d
C
L
I

S
tr
a
te
g
y

P
e
r
fo
r
m
a
n
c
e
E
s
ti
m
a
ti
o
n
S
tr
a
te
g
y

P
e
r
fo
r
m
a
n
c
e
E
s
ti
m
a
ti
o
n
C
L
I

V
is
it
R
a
ti
o
s
C
o
m
p
u
ta
ti
o
n
C
L
I

S
tr
u
c
tu
r
a
lM

a
r
k
in
g
B
o
u
n
d
C
L
I

L
in
e
a
r
B
o
u
n
d
S
tr
a
te
g
y

V
is
it
R
a
ti
o
s
S
tr
a
te
g
y

S
tr
u
c
tu
r
a
lI
te
r
a
to
r

R
e
s
o
u
r
c
e
O
p
tS
tr
a
te
g
y

P
e
tr
iN
e
tM

o
d
e
l

Fig. 5 UML Class diagram of PeabraiN Command-Line Interface.

A PN Tool for SPE Based on Upper Throughput Bounds 21

(2003); Woodside et al (2005)]. The CCTV collects video images from a set of
cameras, stores them for forensics analysis if needed, and analyses them in real-
time to report suspicious behaviours. The system is first modelled with UML
and annotated with MARTE [OMG (2011a)] profile, and then converted to a
Petri net (PN). Lastly, its performance is estimated using upper throughput
bound computation under different scenarios. We also simulate the system
with PeabraiN and other existing PN tools to validate the results.

5.1 System Description

Fig. 6 depicts the UML deployment diagram (UML-DD) of CCTV, including
the hardware resources (depicted as cubes) and their network links (arrows be-
tween cubes, or cubes in the case of intranets). The architecture of the CCTV
is composed by a database server and an application server, both connected
through an intranet. The database server deploys a component, DatabaseM-
anager, in charge of interacting with the database, represented as an storage
resource (HardDisk). The application server embraces three different elements:
The access controller, the video acquisition and the alarm controller. The video
acquisition controller is composed by four different resources: VideoController,
AcquireProc, StoreProc y BufferManager. All resources are annotated with
MARTE [OMG (2011a)] to express its multiplicity (resource stereotype, and
resMult tagged value). We assume that the system is able to run in paral-
lel with several instances of each resource (but the VideoController), which
outperforms a non-parallel execution.

In this paper, we focus on the UML Sequence Diagram (UML-SD) of ac-
quire/store video scenario depicted in Fig. 7. The VideoController iterates
acquiring and storing video frames for each camera deployed in the system.
The number of cameras to iterate has been set to a variable $nCameras for
sensitive analysis. Each image frame is processed by an instance of Acquire-
Proc resource. This resource allocates a memory buffer to process the image.
The memory buffer handling is performed by an instance of BufferManager
resource. Once the memory buffer is allocated, the image frame is transferred
over the network (represented by an external operation with a throughput
depending on the number of packets $nP transmitted) and sent to StoreProc
resource to be stored into the database. An instance of StoreProc resource gets
the image and writes it into the database. After that, it analyses the image
and raises an alarm when some suspicious behaviour is detected. The image
analysis can be carried out using a behavioural profiling based on multiple
observations method to achieve a 91% of success [Bouma et al (2013)]. Suspi-
cious behaviour rate has set to $ssRate input parameter, and will be used for
sensitive analysis. Once the image has been analysed, the previous acquired
memory buffer is released, and image processing for the camera is finished.

The acquire (release) of a resource has been indicated through the gaAcqStep
(gaRelStep) stereotype (see MARTE annotations in Fig. 7), also denoting the
number of resources acquired (released). To avoid cluttering we only show the

22 Ricardo J. Rodŕıguez

Fig. 6 CCTV UML Deployment diagram (annotated with MARTE).

first acquire (release) of resource AcquireProc. The rest of resources are an-
notated in the same way. Activities are annotated with gaStep stereotype
to specify how long takes, on average, each activity using the tagged-value
hostDemand.

Description as a Petri net. Figure 8 shows the PN obtained from the
transformation of the UML-SD depicted in Fig. 7. The transformation from
UML to PN is documented in [Distefano et al (2011)], and can be carried out
by several tools, such as ArgoPN [Delatour and de Lamotte (2003)], ArgoPer-
formance [Distefano et al (2011)] or ArgoSPE [Gómez-Mart́ınez and Merseguer
(2006)] (see Section 2). In this paper, ArgoSPE tool2 has been chosen since
the output format is compatible with GreatSPN tool [Baarir et al (2009)], a
PN tool later used for simulate the system. A parser from GreatSPN input net
format to PeabraiN has also been implemented. Note that ArgoSPE is useful
in this context since software engineers usually work with UML diagrams and
this tool transforms them to PNs. Nevertheless, any of the other tools could
be used in conjunction with PeabraiN to obtain a PN model from a UML
model. Note that any system transformed to Petri net could be analysable

2 Available at https://argospe.tigris.org.

https://argospe.tigris.org

A PN Tool for SPE Based on Upper Throughput Bounds 23

Fig. 7 CCTV Acquire/Store Video scenario.

Fig. 8 Petri net of the CCTV. Resource places are depicted in light grey.

24 Ricardo J. Rodŕıguez

Transition Activity Value(s)
T3 procOneImage 1.8ms
T4 getBuffer 1.5ms
T6 allocBuffer 0.5ms
T8 getImage 12ms (assuming $nP = 8)
T9 passImage 0.9ms
T12 storeImage 1.1ms
T13 store 2ms
T15 writeImage 7.2ms (assuming $nB = 8)
T17 analyseImage 5ms
t18 $suspiciousProb 0.91
t′18 (1 - $suspiciousRate) 0.09
T20 raiseAlarm 2ms
T23 freeBuff 0.2ms
T25 releaseBuff 0.5ms

(a) Delay of net transitions
Place Parameter Value(s)
p1 No. of cameras {50, 100, 150}
p16 Acquire process instances {10, 20, 30}
p17 Buffer manager instances {10, 20, 30}
p18 Store process instances {10, 20, 30}
p19 Database manager instances 5
p33 Alarm controller instances 2

(b) Initial marking of net places

Table 1 CCTV experiment settings.

with PeabraiN. Of course, depending on the net structure some features may
not apply (see Section 4.5).

Each resource annotated in Fig. 6 is represented by a (light-grey high-
lighted) place in the PN: p1 (number of cameras), p16 (acquire process), p17
(buffer manager), p18 (store process) and p19 (database manager), and p33
(alarm controller). Table 1 summarises the number of instances of each re-
source, since they will be represented by tokens in the respective places.

The acquire (release) of a resource is transformed into an immediate tran-
sition with an input (output) arc. For example, transition t23 represents the
acquire of the Acquire Process, while t10 represents the release of such a re-
source. The activities, self-messages in Fig. 7, are transformed into an expo-
nential transition in the PN with its corresponding duration (given in Table 1).

In the sequel, we analyse the properties of the PN obtained after transfor-
mation from the UML-SD of Fig. 7. The net is composed of 33 places and 29
transitions. In fact, the PN is a process Petri net [Tricas (2003)], a subclass
of PN where the analysis methods introduced in [Rodŕıguez et al (2013)] to
compute improved upper throughput bounds and resource optimisation apply.
The net has six minimal p-semiflows: y1 = {p1−15, p20−32}, y2 = {p3−10, p16},
y3 = {p6, p7, p17, p28, p29}, y4 = {p12−15, p18, p20−30, p32}, y5 = {p15, p19, p20},
y6 = {p24−26}. For the sake of readability, we have shorten and grouped the
place names. All places are covered by some p-semiflow, therefore the net is
bounded. Similarly, the net has two minimal t-semiflows: x1 = {t1−21, t23−28}
and x2 = {t1−28, t′18}. All transitions are covered by some t-semiflow, there it

A PN Tool for SPE Based on Upper Throughput Bounds 25

might be bounded and live. Transitions t18, t
′
18, are in an extended free-choice

conflict, while transitions t5, t24, are in structural (but not free-choice) conflict.
When both transitions are in an effective conflict for a given marking m, the
transition to be fired is randomly chosen.

We compute the structural implicit places using the new feature of PeabraiN.
The net has four implicit places, which match with the places representing re-
sources (but the number of cameras) within the system: p16 (acquire process),
p17 (buffer manager), p18 (store process) and p19 (database manager), and
p33 (alarm controller). In fact, the initial marking for each one of these places
such that they become structurally implicit is equal to the initial marking of
p1 (number of cameras in the system). That is, if the initial marking of the
former places are greater than or equal to the initial parking of p1, then they
can be removed without effect to the behaviour of the Petri net.

5.2 Experiments and Discussion

In the sequel, we validate PeabraiN’s new features by evaluating the CCTV
under different workloads. We set the number of resources as expressed in
Table 1: The number of cameras will vary between 50, 100 and 150, while the
number of resource instances in the application server varies between 10, 20
and 30 (but the alarm controller, which remains equal to 2). Similarly, the
database manager instances is set to 5.

The experiments have been run in a machine with Intel Pentium 4 CPU
3.60GHz 2048KiB cache, 3GiB RAM 533MHz, running a 32-bit Linux distri-
bution. The net depicted in Fig. 8 has been simulated with the two simulation
methods provided by PeabraiN (exact, approximate). The set of experiments
has been executed with two different confidence level and accuracy configura-
tions: 95%− 5%, and 99%− 1%.

Tables 2 and 3 summarise the throughput and execution time results of
the set of experiments performed, respectively. Throughput results are taken
from the throughput of transition t1. The first column indicates the number
of cameras, while the second the number of other resource instances in the
application server. Then, the results given by PeabraiN using both simula-
tion methods, as well as its execution time (in seconds), is shown. Lastly, the
percentage of approximate simulation result with respect to exact simulation
result is shown.

The results of Table 2 show that approximate simulation method performs
better when the number of tokens is high. In fact, the results are almost the
same with the most populated net. It also remarkable that the simulation
parameters (confidence level and accuracy) do not a have a big impact in the
results. In all cases, the difference remains at ±0.5%.

Similarly, the execution of approximate simulation method clearly outper-
forms the execution of exact simulation method. Table 3 shows that approx-
imate simulation method executes near to half a time the execution time of
exact simulation method, for all cases under study.

26 Ricardo J. Rodŕıguez

No. of Other resource PeabraiN PeabraiN %
cameras instances (exact) (approximate)

Confidence interval 95%, accuracy 5%
50 10 0.5788341 0.6130577 5.91%

20 0.6933366 0.6956743 0.34%
30 0.6942851 0.69478 0.07%

100 10 0.5818307 0.6154501 5.78%
20 0.6981312 0.69637 −0.25%
30 0.6972403 0.6957046 −0.22%

150 10 0.5839596 0.6169496 5.65%
20 0.6973815 0.6995541 0.31%
30 0.6958464 0.6958727 0.00%

Confidence interval 99%, accuracy 1%
50 10 0.5799806 0.612705 5.64%

20 0.6967369 0.6958847 −0.12%
30 0.6952727 0.6961634 0.13%

100 10 0.5812165 0.6148568 5.79%
20 0.6963155 0.6929288 −0.49%
30 0.6963199 0.6939515 −0.34%

150 10 0.5846464 0.6176673 5.65%
20 0.6971197 0.6964626 −0.09%
30 0.6963669 0.6956921 −0.10%

Table 2 CCTV experiment: Throughput results.

No. of Other resource PeabraiN PeabraiN %
cameras instances (exact) (approximate)

Confidence interval 95%, accuracy 5%
50 10 206.529 98.692 −52.21%

20 216.059 109.268 −49.43%
30 220.462 114.761 −47.95%

100 10 182.443 99.581 −45.42%
20 219.214 108.902 −50.32%
30 220.079 109.632 −50.19%

150 10 181.053 101.071 −44.18%
20 218.096 110.519 −49.33%
30 220.4 110.857 −49.70%

Confidence interval 99%, accuracy 1%
50 10 179.754 98.978 −44.94%

20 220.374 114.931 −47.85%
30 218.702 113.891 −47.92%

100 10 181.305 101.368 −44.09%
20 215.844 108.217 −49.86%
30 217.812 109.141 −49.89%

150 10 182.096 100.06 −45.05%
20 219.847 111.187 −49.43%
30 223.386 110.701 −50.44%

Table 3 CCTV experiment: Execution time results (in seconds).

A PN Tool for SPE Based on Upper Throughput Bounds 27

In brief, the approximate simulation method is recommended for highly
populated nets (i.e., Petri nets with a huge number of tokens). About the
simulation parameters, a high confidence level and low accuracy error are
recommended since the difference on execution time when changing them is
negligible.

Let us compute the upper throughput bound of the most populated net
in the experiments (that is, 150 cameras and 30 other resources). The slowest
p-semiflow is y5 = {p15, p19, p20}, with a throughput of 0.694445. The compu-
tation of this bound takes 0.2830 seconds. Note that this upper throughput
bound is almost identical to the simulation result, but the execution time
is less than half a second, instead of 220.4 seconds (or 223.38 seconds, with
confidence level 99%, accuracy error 1%).

The slowest p-semiflow is also given feedback about what is the most con-
straining resource/part in the system. Thus, whether a system designer would
need to optimise this system, s/he has two choices: either to increment the
number of instances of database manager (since the place representing such a
resource is contained in the support of y5), or to improve the function writeIm-
age represented by transition T15 (see Table 1).

Therefore, upper throughput bounds computation provides to software de-
signers rapid information about what functions and resources can be optimised
in order to improve system performance.

6 Conclusions and Future Work

Software systems modelling with UML, standard de facto in the software devel-
opment industry, can be enriched with UML profiles such as MARTE to specify
performance data (e.g., duration of activities, transmissions, etc.) within UML
models. These annotated UML models can be transformed to formal models
to enhance the analysis capabilities. In this paper, we consider Petri nets as
formal model obtained from UML models enriched with MARTE annotations.
Existing tools for performance (or throughput) evaluation in Petri nets rely
either on the exploration of the whole state space, or either on simulating the
net. However, these methods are unfeasible for large systems either because
of the well-known state-space explosion appears, or simulation does not con-
verge in a reasonable time. To overcome these issues, upper throughput bounds
can be computed. This paper introduces PeabraiN, a Petri net tool that en-
ables, among other features, the computation of upper (and lower) throughput
bounds.

PeabraiN is a collection of PIPE-modules to simulate and compute several
Petri net properties that can be compute using Linear Programming prob-
lems. Some of these properties are, for instance, upper (and lower) throughput
bounds, slowest p-semiflow or structural marking (and enabling). PeabraiN
also enables to compute structural implicit places of a net, and lower and up-
per average marking bound for places. Besides, it allows to select the Linear
Programming solver to be used, and incorporates a command-line interface to

28 Ricardo J. Rodŕıguez

easily batch computations and collect results. Apart from a exact simulation
method, it implements an approximate method to simulate Stochastic Petri
nets using the Tau-Leaping method.

This paper introduces the plug-in architecture of PeabraiN and how it can
be easily extended, as well as the modules and features provided by the tool.
By means of a case study that models a building closed circuit TV system we
also show the benefit of using upper throughput bounds to evaluate the per-
formance in large systems where the exact performance computation becomes
unfeasible, in terms of execution time. In summary, the usage of upper through-
put bounds provides a software designer in a fast way information about what
are the slowest methods in the system, in which initial improvement efforts
should be targeted to obtain a better system performance.

As future work, we plan to integrate PeabraiN with UML CASE tools. This
integration brings several benefits into the foreground: First, formal methods
can be automatically adopted in the design and analysis of UML models; and
second, it easily provides feedback to the software engineers about what the
most constraining resources/slowest activities in the system are, and then more
effort should be done to optimise them. We also aim at extending the tool with
more features related to Petri nets. We are at the moment implementing a web
service using AJAX and PHP for remotely executing PeabraiN.

Acknowledgements The author would like to thank Iván Pamplona, an undergraduate
student who helped in the implementation of PeabraiN enhancements. This work was par-
tially supported by the EU Horizon 2020 research and innovation programme under grant
agreement no. 644869 (DICE) and by the Spanish MICINN project CyCriSec (TIN2014-
58457-R).

References

Baarir S, Beccuti M, Cerotti D, De Pierro M, Donatelli S, Franceschinis G
(2009) The GreatSPN tool: recent enhancements. SIGMETRICS Perform
Eval Rev 36(4):4–9

Berardinelli L, Bernardi S, Cortellessa V, Merseguer J (2009) UML Profiles
for Non-functional Properties at Work: Analyzing Reliability, Availability
and Performance. In: Boskovic M, Gasevic D, Pahl C, Schatz B (eds) 2nd
International Workshop on Non-functional System Properties in Domain
Specific Modeling Languages (NFPinDSML), CEUR, CEUR, Denver, Col-
orado, USA, vol 553

Bernardi S, Merseguer J (2007) Performance evaluation of UML design with
Stochastic Well-formed Nets. Journal of Systems and Software 80(11):1843–
1865

Bernardi S, Merseguer J, Petriu D (2011) A Dependability Profile within
MARTE. Journal of Software and Systems Modeling 10(3):313–336

Bonet P, Lladó CM (2012) Importing PMIF Models into PIPE2 Using M2M
Transformation. In: Proceedings of the 3rd ACM/SPEC International Con-

A PN Tool for SPE Based on Upper Throughput Bounds 29

ference on Performance Engineering (ICPE), ACM, New York, NY, USA,
pp 245–246

Bonet P, Lladó C, Puigjaner R, Knottenbelt W (2007) PIPE v2.5: A Petri Net
Tool for Performance Modelling. In: Proceedings of the 23rd Latin American
Conference on Informatics (CLEI), Costa Rica

Bouma H, Vogels J, Aarts O, Kruszynski C, Wijn R, Burghouts G (2013)
Behavioral profiling in CCTV cameras by combining multiple subtle sus-
picious observations of different surveillance operators. In: SPIE Defense,
Security, and Sensing, International Society for Optics and Photonics, pp
87,451A–87,451A

Campos J, Silva M (1992) Structural Techniques and Performance Bounds of
Stochastic Petri Net Models. Lect Notes Comput Sc 609:352–391

Campos J, Silva M (1993) Embedded Product-Form Queueing Networks and
the Improvement of Performance Bounds for Petri Net Systems. Perform
Evaluation 18(1):3–19

Chiola G, Anglano C, Campos J, Colom J, Silva M (1993) Operational Analy-
sis of Timed Petri Nets and Application to the Computation of Performance
Bounds. In: Proceedings of the 5th International Workshop on Petri Nets
and Performance Models (PNPM), IEEE Computer Society Press, Toulouse,
France, pp 128–137

Delatour J, de Lamotte F (2003) ArgoPN: a CASE Tool Merging UML and
Petri Nets. In: Proceedings of the 3rd International Workshop on New De-
velopments in Digital Libraries (NDDL) and the 1st International Workshop
on Validation and Verification of Software for Enterprise Information Sys-
tems (VVEIS), pp 94–102

Distefano S, Scarpa M, Puliafito A (2011) From UML to Petri Nets: The PCM-
Based Methodology. IEEE Transactions on Software Engineering 37(1):65–
79

Esparza J, Nielsen M (1994) Decidability Issues for Petri Nets - a survey.
Bulletin of the EATCS 52:244–262

Fecher H, Schönborn J, Kyas M, Roever WP (2005) 29 New Unclarities in the
Semantics of UML 2.0 State Machines. In: Lau KK, Banach R (eds) Formal
Methods and Software Engineering, Lecture Notes in Computer Science, vol
3785, Springer Berlin Heidelberg, pp 52–65

Florin G, Natkin S (1989) Necessary and Sufficient Ergodicity Condition for
Open Synchronized Queueing Networks. IEEE Trans Softw Eng 15(4):367–
380

Garcia-Valles F, Colom J (1999) Implicit Places in Net Systems. In: Pro-
ceedings of the 8th International Workshop on Petri Nets and Performance
Models, pp 104–113

Gillespie D (1992) Markov Processes: An Introduction for Physical Scientists.
Academic Press

Gillespie DT (1976) A General Method for Numerically Simulating the
Stochastic Time Evolution of Coupled Chemical Reactions. J Comput Phys
22(4):403–434

30 Ricardo J. Rodŕıguez

Gillespie DT (2007) Stochastic Simulation of Chemical Kinetics. Annu Rev
Phys Chem 58:35–55

Gillespie DT (2008) Simulation Methods in Systems Biology. In: Formal Meth-
ods for Computational Systems Biology, Lecture Notes in Computer Science,
vol 5016, Springer Berlin Heidelberg, pp 125–167

Gómez-Mart́ınez E, Merseguer J (2006) ArgoSPE: Model-Based Software Per-
formance Engineering. In: International Conference of Application and The-
ory of Petri Nets, pp 401–410

Hillah LM, Kindler E, Kordon F, Petrucci L, Tréves N (2009) A primer on the
Petri Net Markup Language and ISO/IEC 15909-2. Petri Net Newsletter
76:9–28

JavaILP (2013) Java Interface to ILP Solvers library. Online, http://

javailp.sourceforge.net/

Koch M, Parisi-Presicce F (2006) UML Specification of Access Control Policies
and their Formal Verification. Software and System Modeling 5(4):429–447

Lagarde F, Espinoza H, Terrier F, Gérard S (2007) Improving UML Profile
Design Practices by Leveraging Conceptual Domain Models. In: Proceedings
of the 22nd IEEE/ACM International Conference on Automated Software
Engineering, ACM, New York, NY, USA, ASE’07, pp 445–448

Liu Z (1995) Performance Bounds for Stochastic Timed Petri Nets. In: Pro-
ceedings of the 16th ICATPN, Springer-Verlag, pp 316–334

Lladó CM, Harrison PG (2011) A PMIF with Petri Net Building Blocks. In:
Proceedings of the 2nd ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE), ACM, New York, NY, USA, pp 103–108

López-Grao JP, Merseguer J, Campos J (2004) From UML Activity Diagrams
to Stochastic Petri Nets: Application to Software Performance Engineering.
In: Proceedings of the 4th International Workshop on Software and Perfor-
mance (WOSP), ACM, New York, NY, USA, pp 25–36

Merseguer J, Campos J, Bernardi S, Donatelli S (2002) A Compositional Se-
mantics for UML State Machines Aimed at Performance Evaluation. In:
Proceedings of the 6th International Workshop on Discrete Event Systems
(WODES), IEEE Computer Society, Washington, DC, USA, WODES ’02,
pp 295–302

Molloy M (1982) Performance Analysis Using Stochastic Petri Nets. IEEE
Trans Comput C-31(9):913–917

Murata T (1989) Petri Nets: Properties, Analysis and Applications. In: Pro-
ceedings of the IEEE, vol 77, pp 541–580

NIST (2012) JAMA : A Java Matrix Package. Online, http://math.nist.
gov/javanumerics/jama/

OMG (2011a) A UML profile for Modeling and Analysis of Real Time Embed-
ded Systems (MARTE). Object Management Group, document formal/11-
06-02

OMG (2011b) Unified Modelling Language: Superstructure. Object Manage-
ment Group, version 2.4, formal/11-08-05

Petriu D, Woodside C (2003) Performance Analysis with UML. In: Lavagno
L, Martin G, Selic B (eds) UML for Real, Springer US, pp 221–240

http://javailp.sourceforge.net/
http://javailp.sourceforge.net/
http://math.nist.gov/javanumerics/jama/
http://math.nist.gov/javanumerics/jama/

A PN Tool for SPE Based on Upper Throughput Bounds 31

Randimbivololona F (2001) Orientations in Verification Engineering of Avion-
ics Software. In: Informatics, Lecture Notes in Computer Science, vol 2000,
Springer Berlin/Heidelberg, pp 131–137

Rodŕıguez RJ, Júlvez J (2010) Accurate Performance Estimation for Stochas-
tic Marked Graphs by Bottleneck Regrowing. In: Proceedings of the 7th
European Performance Engineering Workshop (EPEW), Springer, Lecture
Notes in Computer Science, vol 6342, pp 175–190

Rodŕıguez RJ, Merseguer J, Bernardi S (2010) Modelling and Analysing Re-
silience as a Security Issue within UML. In: Proceedings of the 2nd Interna-
tional Workshop on Software Engineering for Resilient Systems (SERENE),
ACM, London, United Kingdom, pp 42–51

Rodŕıguez RJ, Júlvez J, Merseguer J (2012) PeabraiN: A PIPE Extension
for Performance Estimation and Resource Optimisation. In: Proceedings of
the 12th International Conference on Application of Concurrency to System
Designs (ACSD), IEEE, pp 142–147

Rodŕıguez RJ, Júlvez J, Merseguer J (2013) On the Performance Estimation
and Resource Optimisation in Process Petri Nets. IEEE Transactions on
Systems, Man, and Cybernetics: Systems 43(6):1385–1398

Selic B (2007) A Systematic Approach to Domain-Specific Language Design
Using UML. In: 10th IEEE Int. Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC), IEEE Computer So-
ciety, Santorini Island, Greece, pp 2–9

Silva M, Colom J (1988) On the computation of structural synchronic invari-
ants in P/T nets. In: Rozenberg G (ed) Advances in Petri Nets 1988, Lecture
Notes in Computer Science, vol 340, Springer Berlin Heidelberg, pp 386–417

Smith CU, Lladó CM, Puigjaner R (2010) Performance Model Interchange
Format (PMIF 2): A comprehensive approach to Queueing Network Model
interoperability. Performance Evaluation 67(7):548–568

The MathWorks (2010) Matlab, http://www.mathworks.com/. Version
R2010a

Tricas F (2003) Deadlock Analysis, Prevention and Avoidance in Sequential
Resource Allocation Systems. PhD thesis, Dpto. de Informática e Ingenieŕıa
de Sistemas, Universidad de Zaragoza

Université de Montréal (2014) Stochastic Simulation in Java library. Online,
http://www.iro.umontreal.ca/~simardr/ssj/indexe.html

Woodside M, Petriu DC, Petriu DB, Shen H, Israr T, Merseguer J (2005)
Performance by Unified Model Analysis (PUMA). In: Proceedings of the
5th International Workshop on Software and Performance, ACM, New York,
NY, USA, WOSP ’05, pp 1–12

http://www.mathworks.com/
http://www.iro.umontreal.ca/~simardr/ssj/indexe.html

	Introduction
	Related Work
	Preliminary Concepts
	The PeabraiN Tool: Architecture and Features
	Case Study: A Building CCTV System
	Conclusions and Future Work

