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Abstract—Critical infrastructures as water treatment, power
distribution, or telecommunications, provide daily services es-
sential to our lifestyle. Any service discontinuity can have a high
impact into our society and even into our safety. Thus, security
of these systems against intentional threats must be guaranteed.
However, many of these systems are based on protocols initially
designed to operate on closed, unroutable networks, making
them an easy target for cybercriminals. In this regard, Modbus
is a widely adopted protocol in control systems. Modbus pro-
tocol, however, lacks for security properties and is vulnerable
to plenty of attacks (as spoofing, flooding, or replay, to name a
few). In this paper, we propose a formal modeling of Modbus
protocol using an extension of hierarchical state-machines that
is automatically transformed to a Promela model. This model
allows us to find counterexamples of security properties by
model-checking. In particular, the original contribution of this
paper is the formal demonstration of the existence of man-in-
the-middle attacks in Modbus-based systems. Our approach
also allows to formally evaluate security properties in future
extensions of Modbus protocols.

Keywords-SCADA control systems, Dynamic State Machines,
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I. INTRODUCTION

Modern society relies on large, complex heterogeneous
systems that provide services as water treatment, power
distribution, or logistics, to name a few. Those infrastructures
upon which our economy, industry, and lifestyle depend
are normally named critical infrastructures (Cls) [[1]. They
become critical since a loss of continuous operation of any
of these services can impact our society and our safety.

These disruptions can have different origins, from man-
made to unexpected acts of nature (e.g., earthquakes, power-
ful storms, or tsunamis). These acts of nature are intrinsically
unexpected and unintended. On the contrary, man-made
disruptions are unintended, when they are caused by lack
of qualified and trained personnel, or intended, when they
are intentional as acts of terrorism or sabotage.

CIs heavily rely on automated and distributed control
systems that adopted information and communication tech-
nology solutions to support operation and monitoring of
industrial and critical processes. In industry, these control
systems are known as Supervisory Control and Data Acqui-
sition (SCADA) systems. Many of these industrial systems,
built using legacy devices and in some cases running legacy

Ricardo J. Rodriguez
DIIS, Universidad de Zaragoza, Zaragoza, Spain
Dip. di Matematica e Fisica,
Seconda Universita di Napoli, Caserta, Italy
rjrodriguez@ieee.org

Stefano Marrone
Dip. di Matematica e Fisica,
Seconda Universita di Napoli, Caserta, Italy
stefano.marrone @unina2.it

protocols, have evolved to operate in routable networks that
directly expose a new attack surface for criminals [2].

As stated in [3]], asset owners and industry partners
from different critical sectors (such as chemical, health-care,
transportation, or food and agriculture) reported thousands
of cyber incidents during 2012. According to numerous
industry reports, there is an increasing trend of threats to
these critical infrastructures [4]]. Apart from the well-known
Stuxnet worm case in 2011 that was specially designed
to exploit Siemens PLCs in SCADA networks affecting
Iranian nuclear facilities [5]], [6], other threats have become
publicly known to target energy companies, research centers,
or banking services, as GhostNet, Flame, DarkSeoul, or
DragonFly, to name a few [7].

A well-established protocol in industrial control systems
is Modbus [8]]. Modbus protocol is at the top layer of the OSI
model. Initially designed by Modicon in 1979 as a simple
way for communicating control data between controllers and
sensors using an RS232 port, it was widely adopted and
deployed as a de facto standard in the industrial automation
field. Modbus is a request/response (master/slave) protocol
designed to operate over different links, such as serial buses,
routable networks over TCP/IP, or intercommunicated buses
throughout an RS-485 communication link: a unique address
is assigned to each device intended to communicate using
Modbus. Modbus commands are divided into read and write
commands, device identification and diagnostic. A Modbus
command message contains destination address, code func-
tion, and a sub-code function (it may be none). Normally,
a device acting as master initiates a command containing
the destination device, which replies after performing the
function (or sub-function) requested by the master.

Modbus lacks for any security attribute (recall confi-
dentiality, integrity, and availability): no authentication, no
encryption, and no integrity at all are the main security
concerns of this protocol. This lack of security awareness
can be motivated since Modbus protocol was running in
systems unreachable from external networks — surprisingly,
insider attackers (e.g., disgruntled employees) were not
either considered.

In this paper, we assess a security analysis of the Mod-
bus protocol using formal models. In particular, we use a



high-level formalism based on hierarchical state machines,
named Dynamic StaTe Machine (DSTMJ} to model the
Modbus protocol. Through an automatic transformation [9],
a Promela model is obtained from the Modbus DSTM
model to verify its security properties by model checking
techniques. Our modeling allows to formally verify the
weaknesses of Modbus protocol, as well as to provide
a formal framework to evaluate solutions against security
concerns. In particular, we demonstrate the existence of man-
in-the-middle attacks in Modbus-based systems.

This paper is organized as follows. Section [[I] reviews the
related work. Section [I1l|introduces our approach to evaluate
the Modbus protocol. The formal assessment of Modbus
protocol is shown in Section Section |V| concludes the
paper and outlines future work.

II. RELATED WORK

Modbus protocol and its security have been largely studied
in the literature. The seminal work of Huitsing et al. [[10]
grouped the attacks on the Modbus serial and TCP protocols
into three different categories: attacks to the Modbus proto-
col specification, attacks to vendor implementations of the
Modbus protocol, and attacks to control system assets (i.e.,
information technology, networking, or telecommunications
assets). Almost 60 attack instances were identified and
classified according to this taxonomy, including spoofing,
replay, and flooding attacks.

The risk of malicious traffic to Modbus/TCP protocol was
demonstrated in [11]. By measuring Round-Trip Time and
TCP Time-sequence Graph, they evaluated the impact of
injection of malicious traffic. As expected, availability of the
system was compromised. In [[12], the authors confirmed that
Modbus protocol was vulnerable to flooding attacks. They
also proposed two algorithms to detect these attacks, based
on anomaly and signature detection. Similarly, in [[13] the
Modbus/TCP communication channel between assets was
modeled using deterministic finite automaton, later used to
detect intrusions by network packet analysis.

Regarding the addition of security to Modbus protocol,
Fovino et al. [14] proposed an extension of Modbus pro-
tocol to support authentication, non-repudiation, and replay
protection. Although the security properties were fulfilled,
their solution implicitly introduced overhead in terms of
performance and packet size that may impact performance
needed in real-time systems.

Security analysis of complex systems by means of formal
methods and model checking in particular is not new in
the scientific landscape. This paper could not, for sake of
the space, cope with a complete survey of this topic: above
all, we report the seminal work of Sheyner [15]] with the
definition of scenario and attack graph and their applications

'In this paper, we use DSTM interchangeably as singular and plural
acronym.

in network security [16]. The original contribution of this
paper relies on the application of these techniques to the
Modbus protocol in a technically sound and high usable
model-driven methodology.

To the best of our knowledge, our work is the first one to
formally verify the security properties of Modbus protocol,
pinpointing its major flaws. Furthermore, we propose a
modeling approach suitable for evaluating security solutions
of the Modbus protocol and related applications.

III. GENERAL APPROACH

This section shows our approach for the formal assess-
ment of the Modbus protocol. We exploit the well-known
formal technique of model checking to generate counterex-
amples with respect to the security property to verify. In or-
der to avoid the error-prone activity of modeling the Modbus
protocol into the low-level syntax and formalism adopted by
a model checker, a high-level state-based formalism (namely,
DSTM) is used to describe the protocol as a set of state
machines. Then, a model transformation is employed to
derive automatically the notation (i.e., Promela) analyzable
by the model checker (i.e., SPIN) from the source model. In
the following, we describe the steps of our approach and
give the basics of DSTM formalism, also discussing the
motivations of its choice.

A. Overview

As shown in Fig. [} the adopted approach starts from
a high-level model of the protocol expressed in terms of
state machines. Among the different existing state-based
formalisms, we choose Dynamic StaTe Machine (DSTM),
which is a recent extension of hierarchical state machines
synthetically described in Section Through an auto-
matic transformation [9] a Promela model is derived by
the Modbus DSTM model. Promela is a textual verification
modeling language introduced by Holzmann [17]. This for-
malism considers a model as a set of concurrent processes
that exchange messages over a set of channels or through
shared variables. The Promela model is later analyzed by
the SPIN model checker [18]].

According to our approach, the Promela model of the
Modbus protocol is enriched with temporal logic formulas
derived from the set of requirements to assess. This enriched
model is then analyzed by the SPIN model checker to
generate a counterexample if the property to evaluate is not
fulfilled. In this paper, we consider security properties which
should ideally be true on the protocol: in this case, a coun-
terexample represents the sequence of messages exploitable
to compromise security.

The main reasons of choosing the DSTM formalism as the
high-level representation of Modbus become clearer after
the introduction of the formalism basics. These reasons
are summarized as: (a) DSTM is an extension of state
machines with a formal (textual and graphical) syntax and
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Approach overview.

semantics of both structural elements and annotations over
transitions (i.e., triggers, conditions, and actions); (b) DSTM
introduces external channels on which new messages are
non-deterministically generated by the environment where
the modeled system operates; and (c) an automatic trans-
formation from DSTM to Promela exists that can be used
to derive a complete and complex analyzable model of the
Modbus protocol.

Specifically, the DSTM feature described in the item (b)
is very useful in this case since it is not necessary to specify
a priori the attack vector that is automatically found by the
model checker.

B. The Dynamic StaTe Machines (DSTM) formalism

DSTM [19] are an extension of hierarchical state ma-
chines that add a novel semantics of fork and join syntactical
constructs. This language allows for dynamic and recur-
sive instantiation of machines, for preemptive termination,
and for passing parameters at instantiation time. This new
formalism explicitly offers to modelers the possibility of
instantiating parametric machines by means of the box syn-
tactical construct; it also removes the constraint, implicitly
intended in many languages (e.g., UML), that the branches
of a control flow exiting a fork must always be merged by
a join element.

A DSTM model is a collection of parametric machines,
channels (internal and external) and variables. Additionally,
the definition of own datatypes is also allowed in DSTM,
starting from basic types (i.e., Boolean, Integer and Enu-
merations). Basic types can be composed to constitute com-
pound types and multi-types. Compound types are structured
types similar to records of basic types; multi-types, instead,
are collections of basic and compound types. Channels
can convey messages of any defined type (both a basic,
compound, and multi-type). A DSTM channel can be either
internal or external. Internal channels are entirely managed
by the specified state machines. They have a buffer of a
predefined length and transitions can fire according to the

presence of messages over a channel, read its content, or
remove a message from a channel. On the contrary, external
channels do not have buffers: a message present over them
is valid during a single step and can be only read without
removal.

According to the DSTM semantics, at the starting of
each step, a new message is present over external channels:
if a message was generated during the previous step then
this message is present in the current step; otherwise, a
new message is non-deterministically generated over the
possibilities given by the datatype.

A single machine is composed of vertices and transitions.
Different kinds of vertices may be included in a machine.
Nodes represent the possible control states. An initial node
is also present in each machine, corresponding to the de-
fault entry. Moreover, a machine may contain additional
entering nodes and different exiting nodes, representing
different entering and exiting conditions. Boxes represent
single or multiple machine instantiation (parallel procedure
calls). Transitions are decorated with triggers, conditions,
and actions, which are formally defined over a specific
syntax. A transition entering a box models the instantiation
of the machine(s) associated with the box and specifies the
values of its parameters, while a transition leaving a box
corresponds to a return from that machine(s).

Parallel behavior can be modeled either by associating
multiple machines with a single box, or by explicitly split-
ting and merging the control flow using the fork and join
syntactical constructs. The transitions exiting a fork can
enter both a box or a node: if no node is entered after a fork,
a synchronous instantiation is performed (i.e., the machine
is suspended waiting for the termination of the instantiated
ones); otherwise an asynchronous instantiation is performed
(i.e., the machine continues its execution). Join nodes allow
for merging of multiple control flows from concurrently
executing processes. There is no constraint such that a
fork must be followed by a join. In general, a join either
synchronizes the termination of the involved processes or
forces their termination (if a preemptive transition enters the
join node). Note that asynchronous forks, occurring within
loops, allow for the dynamic instantiation of processes.

IV. SECURITY ANALYSIS OF MODBUS

In this section, we first define a reference scenario for
the application of our approach to the security analysis of
Modbus. Then, we explain all the steps from the Modbus
modeling to discussion of obtained results.

A. Reference Scenario

Fig. [2] shows the scenario where we suppose to have
a simple communication between Alice (a Modbus device
acting as a master) and Bob (other Modbus device acting
as a slave) over an open TCP/IP network. Bob monitors
a physical binary process capturing the value of a variable
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within the physical process upon Alice’s request. Then, the
value of this variable is sent over the network via Modbus
protocol. This communication is threatened by Mallory (an
attacker) who aims to perform a man-in-the-middle attack
to take over this control system and send fake messages
to Alice. More specifically, we want to prove whether is
possible for Alice to receive messages that indicate a value
of the physical process equal to one when the process is
stuck at zero.

B. The Modbus DSTM Model

According to the described modeling and analysis
methodology of Section [[II, a DSTM model of this scenario
is built. This model comprises of three state machines:
Master, Slave, and Main. The latter is the main machine of
the DSTM (i.e., the first instantiated machine); it is trivial
since it only instantiates the two other machines through
a box. Before the description of the other two machines
(representing the behaviors of Alice and Bob, respectively),
it is necessary to describe the data portion of the Modbus
model. In this model, the attacker Mallory is represented
by the external environment, which sends valid messages
towards both the Alice and Bob according to the semantics
of the DSTM formalism.

Listing 1

D abl
//enumerations

Enum address {slaveA, masterA};

Enum fcode {RIR, DIA};

Enum subcode {NONE, RCM, FLOM};

Enum answer {EXCEPTION, SAMPLE};
//structures

Struct toMasterMsg {address, answer, Int};
Struct toSlaveMsg {address, fcode, subcode};
//channels

Chn external toMaster of toMasterMsg;

Chn external toSlave of toSlaveMsg;
//master’s variables

Int sampleToMaster;

//slave’s variables

address vaddress;

fcode vfcode;

subcode vsubcode;

Bool listenOnlyMode;

Int phenSample;

Datatypes and variables declared in the model are re-
ported in Listing [I] Beyond the enumerations, we define
the two structures toMasterMsg and toSlaveMsg, modeling
the messages towards Alice and Bob, respectively. Two
external channels are also defined: toMaster and toSlave,

ask: /toSlave!<slaveA,RIR,NONE>
Master

receive: toMaster?
[toMaster[?<masterA,SAMPLE,_>]]
/toMaster[?]<_,_,sampleToMaster>

Figure 3. DSTM model of the Modbus master.

which are the input channel for the master and for the
slave, respectively. According to the DSTM semantics, it
indicates that when no messages are generated by Alice or
by Bob, a message compliant with the message structure
of the channel is non-deterministically generated by the
external environment, i.e., Mallory. Furthermore, different
variables are needed both by Alice’s and Bob’s behavioral
state machines. The DSTM model of the Alice’s behavior
is shown in Fig. 3] It is a trivial cyclic state machine
that in turn: (1) asks to the slave the value of its input
register (transition ask) sending a Read Input Register (RIR)
message, and (2) waits for a message containing a valid
sample (transition receive).

Fig. @] depicts the slave state machine. This state machine
is typical of a Modbus slave and can be found in its
specification [8]]. Starting from the top, transition 71 sets
the variable listenOnlyMode to false. Then T2 waits for a
message over the channel foSlave; when a new message
is received, its fields are stored in the variables vaddress,
vfcode, and vsubcode. In the following three steps, before
entering the node executeMbFunction, the three fields of the
received message are verified: 73 ensures that the received
function code is valid, 74 verifies the validity of the address
field, while 75 and 76 verify the coherence between the
received function code and subcode (if a RIR message is
received then the subcode must be equal to NONE, otherwise
a valid subcode is required). Transitions 77, T8, and T9
perform the execution of the received function: when a
device diagnostic (DIA) message is received the variable
listenOnlyMode is set consequently; otherwise, a sample of
the phenomenon (equal to 0) is prepared. Transitions 770
and TII turn back to the first node, possibly sending a
message with the sample to the master if a RIR message
has been received and the variable listenOnlyMode is equal
to false. Transitions from 712 to 715 model exceptions and
send the related exception message to the master.

C. Security Analysis

We define now a proper logical formula indicating that
the security property is always fulfilled to get a complete
counterexample describing the attack scenario whether the
property is violated. The property, as a CTL formula, is
shown in Equation |l| and uses sampleToMaster (SM), a
variable defined in the DSTM model. It can be described as
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T12: [vfcode!=RIR && vfcode!=DIA]

5 T2: toSlave? /toSlave[?]<vaddress,vfcode,vsubcode>

T1: /listenOnlyMode=false
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&
<

T13: [vaddress!=psaddress]

1 validateFunctionCode

T3: [vfcode==RIR || vfcode==DIA]

v

T14: [vfcode==DIA && vsubcode==NONE

l validateDataAddress

T4: [vaddress==slaveA]
A4

T5: [vfcode==DIA &&
(vsubcode==RCM ||
vsubcode==FLOM)]

! .
l validateDataValue

T6: [vfcode==RIR && vsubcode==NONE]

T9: [vfcode==RIR] /phenSample=0

k executeMBFunction

/listenOnlyMode=true

T7: [vfcode==DIA && vsubcode==FLOM]

\ Y.
(sendModbusExcepﬁonResponse]

T15: /toMaster!<masterA,EX,0>

f sendModbusResponse |
———

T8: [vfcode==DIA && vsubcode==RCM]|
\ /listenOnlyMode=false

T10: [vfcode==RIR && listenOnlyMode==false]
/toMaster! <masterA,SAMPLE, phenSample>

T11: [vfcode!=RIR || listenOnlyMode==true]

Figure 4. DSTM model of the Modbus slave.

“it is always true that, once SM is equal to 1, it still remains
equals to 17.

AG((SM == 1) = AG(SM == 1)) 1)

This CTL expression is translated into a Promela never
claim that, attached to the Promela model obtained by
the DSTM mode, is analyzed by SPIN. A counterexample
is obtained whose excerpt of, focusing on the messages
exchanged between parties, is reported in Listing [2}

<masterA, SAMPLE, 0>
<slaveA,RIR, NONE>
<masterA, SAMPLE, 0>

M->A:
M->B:
M->A:
M->B:
M->A:
A->B

B->A

M->B:
M->A:
A->B

M->A:
M->B:
M->A:
A->B

M->A:
M->B:

<slaveA,RIR, NONE>
<masterA, SAMPLE, 0>

<slaveA,DIA, FLOM>
<masterA, SAMPLE, 0>

<masterA, SAMPLE, 0>
<slaveA,RIR, NONE>
<masterA, SAMPLE, 0>

<masterA, SAMPLE, 0>
<slaveA,RIR, NONE>

A->B
M->A:
M->B:
M->A:
A->B
M->A:
M->B:
M->A:
A->B

<masterA, SAMPLE, 0>
<slaveA,RIR, NONE>
<masterA, SAMPLE, 0>

<masterA, SAMPLE, 0>
<slaveA,DIA,FLOM>
<masterA, SAMPLE, 1>

M->A:
M->B:
M->A:
A->B

M->A:
M->B:
M->A:

<masterA, SAMPLE, 0>
<slaveA, RIR, NONE>
<masterA, SAMPLE, 1>

<masterA, SAMPLE, 0>
<slaveA,RIR,NONE>
<masterA, SAMPLE, 1>

The counterexample clearly states that Mallory (M) can
exploit the lack of security mechanisms by sending to Bob
(B) a diagnostic message and forcing the listen only mode
status and then, acting as a slave, by responding to the data
request from Alice (A) setting the value of the physical
process to one, regardless its real value.

D. Discussion

Let us justify the plausibility of this scenario. Modbus
specification addresses diagnostic functions only in serial
line and ModbusPlus communication [8]. However, some
solutions allow these functionalities also in scenarios which
exploit the tunneling of serial communication over TCP/IP
and TCP/IP Modbus gateways [20].

Regarding performance, as the DSTM model proposed
in this paper just focused on a subset of the Modbus
functionalities, the amount of time SPIN needs to compute
the reported counterexample is very negligible (much less
than one second on a medium/high performance laptop).
Moreover, SPIN does not generate the shortest possible
counterexample: optimizing strategies are necessary to au-
tomatically generate compact solutions.

Although up to date there are no test made on a larger
model in the context of Modbus security, first and promising



results about the scalability of a similar approach using
DSTM language and automatic test generation were reported
on the railway domain [9], [[19].

V. CONCLUSIONS AND FUTURE WORK

Critical infrastructures are complex, heterogeneous sys-
tems that rely on automated and distributed control systems
built using legacy devices and running legacy protocols.
A wide adopted protocol in industrial control systems is
Modbus. However, Modbus lacks for any security concern.

In this paper, we analyzed security of Modbus using
formal models. In particular, we used a high-level formal-
ism based on hierarchical state-machines (namely, Dynamic
StaTe Machine) to obtain a model suitable for model-
checking. Our approach allowed to find security flaws in
Modbus protocol on complex control scenarios by instantiat-
ing and parameterizing the proposed state-machine models.
Here, we proved the existence of man-in-the-middle attacks
in Modbus-based systems.

As long-term goal, we aim at completing the modeling of
Modbus protocol including all functionalities and to create
a library of security properties to capture the traditional
cyberattacks in SCADA systems.
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