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Abstract— The increasing shift of various critical services towards Infrastructure-as-a-Service (IaaS) cloud data centers 

(CDCs) creates a need for analyzing CDCs’ availability, which is affected by various factors including repair policy and system 
parameters. This paper aims to apply analytical modeling and sensitivity analysis techniques to investigate the impact of these 
factors on the availability of a large-scale IaaS CDC, which (1) consists of active and two kinds of standby physical machines 
(PMs), (2) allows PM moving among active and two kinds of standby PM pools, and (3) allows active and two kinds of standby 
PMs to have different mean repair times. Two repair policies are considered: (P1) all pools share a repair station and (P2) each 
pool uses its own repair station. We develop monolithic availability models for each repair policy by using Stochastic Reward 
Nets and also develop the corresponding scalable two-level models in order to overcome the monolithic model’s limitations, 
caused by the large-scale feature of a CDC and the complicated interactions among CDC components. We also explore how 
to apply differential sensitivity analysis technique to conduct parametric sensitivity analysis in the case of interacting sub-
models. Numerical results of monolithic models and simulation results are used to verify the approximate accuracy of 
interacting sub-models, which are further applied to examine the sensitivity of the large-scale CDC availability with respect 
to repair policy and system parameters.   

Index Terms—Availability; Sensitivity analysis; Markov chain; IaaS; Cloud computing; Stochastic Reward Nets 
  

1 INTRODUCTION
The past few years have witnessed fundamental changes 

caused by cloud computing to business computing models. In-
frastructure as a Service (IaaS) is one of the basic cloud ser-
vices. This cloud service is provisioned to customers in the 
form of virtual machines (VMs), which are deployed on phys-
ical machines (PMs). Each VM has specific characteristics in 
terms of number of CPU cores, amount of memory and 
amount of storage. It was reported that global spending on 
IaaS cloud services is expected to reach 56 Billion USD by 
2020 [1]. The ever-increasing demands for IaaS cloud ser-
vices have created the need for cloud service providers (CSPs) 
to analyze cloud infrastructure availability in order to main-
tain high cloud service availability [2] while reducing various 
costs. Service availability is commonly specified via Service 
Level Agreements (SLAs) [3]-[5]. Any availability violation 
may cause the loss of revenue. In addition, some common 
IaaS cloud management tools, such as OpenStack [6], have 
allowed configuring standby PMs for high availability. How-
ever, there is no suggestion about how to configure.  

System availability is affected by various factors, such as 
system parameters and repair policy. The latter one deter-
mines how quickly PMs get repaired upon their failure. Repair 
policy analysis is significant to the CDC design with respect 
to CDC availability. State-space models are popular and 
found effective for system availability analysis [7]. They also 
allow the derivation of sensitivity functions of the measures 
of interest with respect to various system parameters, which 
are assigned in a continuous domain. These functions could 
be applied to assess the impact of each of these parameters on 

system quality of service (QoS) and then to identify the QoS 
bottlenecks for systems of interest.  

This paper aims to explore analytical modeling and sensi-
tivity analysis techniques to improve the availability of a 
large-scale IaaS cloud data center (CDC). Following Ghosh et 
al. [12], we assume that there are three PM pools, namely hot 
(running PMs), warm (turned on, but not ready PMs) and cold 
(turned off PMs). Thus, there are two kinds of standby PMs, 
warm-standby and cold-standby. A small provisioning delay 
is needed for deploying default VM images on hot PMs. Ad-
ditional provisioning time (to make the PM ready) is required 
for the VM deployment on a warm PM. Further delay is added 
when PMs in the cold pool are used, since they need to be 
turned on before being used. PMs can move among pools due 
to failure/repair events. PM repair times of different PM pools 
may be different. The main reason of considering the CDC 
with three PM pools in this paper is that the modeling ap-
proach of this scenario could be applied directly to scenarios 
with arbitrary number of pools. Note that although IaaS CSPs 
in production CDCs have offered standby PMs for disaster re-
covery [8], there is no published information about the num-
ber of PM pools. 

Large scale is a feature of CDCs, leading to the well-
known largeness problem [8] associated with a monolithic or 
one-level Markov chain for the availability analysis of an IaaS 
CDC. Moreover, complex interactions among CDC compo-
nents and different failure/repair behaviors further exacerbate 
the largeness problem. Our numerical results show that the 
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monolithic model cannot be solved when each pool size is 
larger than six. Even Stochastic Petri Nets (SPN) [10], which 
could automate the generation of Markov models, still faces 
the issues of generating, storing and solving large models. A 
scalable model could be obtained by resorting to a two-level 
hierarchical model. 

In this paper, we consider two kinds of repair policies: 1) 
each pool has its own Independent Repair Station (IRS), and 
2) all pools Share a Repair Station (denoted as SRS). The re-
pair rates of different PM pools are different. We develop 
monolithic availability models for each repair policy by using 
Stochastic Reward Nets (SRNs) [10] and also develop the cor-
responding scalable two-level models in order to overcome 
the monolithic model’s limitations, caused by the large-scale 
feature of a CDC and the complicated interactions among 
CDC components. Experiments under various settings are 
carried out to verify the approximate accuracy of hierarchical 
models by comparison with numerical results of monolithic 
models and simulation results. Further, we apply the proposed 
hierarchical models to investigate the sensitivity of the large-
scale CDC availability with respect to repair policy and sys-
tem parameters.  

The major contributions are summarized as follows: 

1). For each repair policy, we develop a monolithic model 
and scalable interacting sub-models. Note that the work 
in [12] is close to ours but there is difference not only in 
the modeled system (namely, the repair policy) but also 
in the model design (namely, the modeling of PM fail-
ure). Section 2 details the difference. As mentioned in 
[12], a small change to the modeled system will make the 
modeling more complex. We detail the design and verify 
the approximate accuracy.   

2). Differential analysis method [26] is explored to conduct 
parametric sensitivity analysis of system availability 
based on interacting SRN sub-models. To our best 
knowledge, it is the first time to investigate the ability of 
differential analysis method in parametric sensitivity 
analysis [11] of interacting-type hierarchical models. In 
Section 6, we show that without calculating the exact de-
rivatives of the overall system availability with respect to 
each system input parameter, we could identify parame-
ters which have greatest impact on system QoS. It is done 
by applying differential sensitivity analysis method to 
each sub-model.  

The rest of the paper is organized as follows. Section 2 
presents related work and background knowledge of sensitiv-
ity analysis. Section 3 introduces system architecture consid-
ered in this paper. Section 4 and 5 describe models for each 
repair policy. Numerical results and discussions are presented 
in Section 6. Finally, Section 7 concludes this paper and dis-
cusses future work. 

2 RELATED WORK 
This section first presents related work on modeling cloud 

data centers. Then methods for analyzing the sensitivity of 
system metrics with respect to parameters are presented. 

2.1 Model-based for CDC Availability 
Monolithic analytical models for investigating the availa-

bility of virtualized systems with detailed failures have been 
proposed [14], [15]. These models focused on the evaluation 
of VM and assumed all PMs are homogeneous. Our work in 
this paper analyzed PM availability and distinguished the dif-
ference among PMs in terms of repair rate and state. In [16], 
SPNs and reliability block diagrams were used for quantifica-
tion of sustainability impact, cost and dependability of data 
center cooling infrastructures, but focusing only on the cool-
ing system. A monolithic Markov model for a large-scale sys-
tem may face largeness and stiffness problems. These model-
ing papers ignored scalability issues in availability evaluation 
and hence were not suitable for large-scale CDCs.  

The authors in [18] explored the PM availability analysis 
in the same situation as our paper. They proposed a monolithic 
model without thinking the scalability issue, which is our 
main focus in this paper. Decomposition is an effective ap-
proach to overcome these problems [25]. The authors in [20] 
ignored the moving delay and constructed scalable interacting 
SRN sub-models in order to reduce the analysis complexity 
of a monolithic model. Dependencies among these SRN sub-
models were resolved using fixed-point iteration technique 
[24]. They, in [12], further extended their modeling to the sce-
nario with the PM moving delay, which made the availability 
model more complex to be analyzed. In [12], they assumed 
that (Ri) each pool has its own repair station, (Rii) PM repair 
time for each pool must be same, and (Riii) a failed hot PM 
can be repaired by a warm/cold repair facility. There are two 
major differences between [12] and our work as follows: 

Difference 1. The first is the repair policy. The assumptions 
about repairing PMs in [12] simplified the construction 
of the interacting SRN sub-models. By simplified, we 
mean that our sub-models and sub-model interaction are 
more complicated than in [12]. In a realistic system, the 
repair time of a failed warm PM may be different from 
that of a failed hot PM. In our paper, we first relax the 
second assumption (namely, Rii in the previous para-
graph) by equipping each pool with an independent re-
pair station and then each failed PM of different pools 
has different repair times, denoted as IRS repair policy 
in the rest of paper. We then consider the system which 
has only one repair pool but the failed PMs of different 
pools has different repair times, namely, SRS repair pol-
icy. 

Difference 2. The interacting sub-models proposed in [12] 
could not capture the PM failure process in both hot and 
warm sub-models in an approximately accurate way in 
some situations. We analyze the reason in Section 4 and 
make experimental evaluation in Section 6.   

 

Failure characteristics of CDC servers were studied in [19], 
where hardware failure/repair rates of PMs in cloud systems 
were empirically obtained. The results are applicable for set-
ting the failure/repair rates of the models we propose in this 
paper. A variety of pure performance models for cloud ser-
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vices were proposed in the last few years. See [13] and refer-
ences therein. These models are complementary to our models 
to capture IaaS cloud service behaviors. In the following we 
focus on the literature on cloud availability analysis. In [17], 
cloud service availability was evaluated from a user-centric 
point of view, unlike our work that considers a cloud service 
provider’s point of view. 

2.2 Sensitivity analysis 
Sensitivity analysis allows the exposure of system QoS 

bottleneck as well as providing guidelines for the system op-
timization. It could be divided into nonparametric and para-
metric sensitivity analysis [27]. The first kind studies output 
variations caused by modifications in the structure of a model 
(e.g., addition or removal of a given component in a model). 
The second studies the output variations due to a change in 
system parameter values. There are several approaches for 
performing sensitivity analysis [26]. The following presents 
three approaches to be used in this paper:  

(i) Vary one parameter at a time within the considered 
range while keeping the others constant and observe system 
measures of interest with respect to the varying parameter. In 
order to determine the parameters that cause the greatest im-
pact on the system QoS, simulations or numerical analysis for 
all parameters in their defined ranges must be done.  

(ii) Differential sensitivity analysis (also called directed 
method). It computes the sensitivity of a given measure Y, 

which depends on a specific parameter q , as ( ) YS Yq q
¶

=
¶

, 

or ( ) YSS Y
Yq
q

q
¶

= ×
¶

 for a scaled sensitivity. The sign of SSq
denotes whether an increase of q causes a corresponding in-
crease or instead a decrease of the measure Y. Its absolute 
value indicates the magnitude of the variations of Y for small 
variations of q . This method is only suitable for continuous 
parameters. 

(iii) Sensitivity index. This technique is designed for inte-
ger-valued parameters which are not properly evaluated by 
the differential sensitivity analysis approach. The sensitivity 

formula is min{ ( )}( ) 1
max{ ( )}

YS Y
Yq
q
q

= -  , where 1[ , ]nq q qÎ  , 

1 2min{ ( )} min{ ( ), ( )... ( )}nY Y Y Yq q q q=  and 

1 2max{ ( )} max{ ( ), ( )... ( )}nY Y Y Yq q q q= .  

Sensitivity analysis has been conducted in cloud systems. 
In [27], the last two methods mentioned above were used for 
sensitivity analysis of the availability of a virtualized system, 
which was modeled as a continuous-time Markov chain 
(CTMC). The authors in [28] studied a hierarchical model, 
which consisted of several independent sub-models, each of 
which was modeled as a CTMC. Thus, the overall system 
measure is the multiplication of the measure of each sub-
model. Then the sensitivity of the overall system availability 
with respect to a system continuous parameter could be ob-
tained accordingly by calculating the overall availability sen-
sitivity with respect to each component and the component 
availability sensitivity with respect to this parameter. But in 

our hierarchical models, there exist complex interactions 
among sub-models. It is hard, if not impossible, to compute 
the derivative of the whole system measure with respect to 
any system parameter. In Section 6, we show that although 
( )S Yq  of each parameter could not be calculated, we could 

identify parameters which impact system most significant by 
applying differential sensitivity analysis method to each sub-
model and then ignoring some parameters with less impact on 
system QoS.  

3 SYSTEM DESCRIPTION 
In this paper, we assume that there are three PM pools 

(namely hot, warm and cold) in a CDC. It is known that there 
exist several types of failures in a cloud system such as soft-
ware failures, hardware failures and network failures [12]. 
This paper considers the overall effect of these possible fail-
ures with an aggregated mean time to failure (MTTF) [22], 
[23]. Failure detection is assumed to be an instantaneous 
event. PMs in the same pool have independent and identical 
distributed TTFs. TTFs of hot, warm and cold PM pools are 
exponentially distributed. As in [12], mean TTF rates are as-
sumed as h w cl l l> in this paper. Three possible reasons 
for such assumption are as follows. It is known that software 
execution could speed up hardware component failure, such 
as fan and hard disk. In addition, software aging is unavoida-
ble and then a computer is forced to shut down if there is no 
active action to take. The third is that a computer could gen-
erate corrupted files, which could damage the computer hard-
ware on the long term.  

Upon failure of a hot PM, this failed PM is moved from the 
hot PM pool to the pre-determined repair station for repair. 
Meanwhile, a PM available in the warm pool is moved to the 
hot pool. When the warm pool is empty but there exists a PM 
available in the cold pool, moving this PM to the hot pool is 
performed. Similarly, when a warm PM fails, it is moved from 
the warm pool for repair and a PM is moved from the cold 
pool to perform the role of this warm PM. For each pool, if 
there is a PM moving from other pools in order to play the 
role of a failed PM, this moving PM will return to its original 
pool after the failed PM completes its repair. Time to move a 
PM from one pool to another follows an exponential distribu-
tion.PM repair activities are work conserving and repaired 
PMs are as good as new. We consider two kinds of repair pol-
icies as follows:  

 
1). Independent repair station (IRS). Each pool has its own 

repair station. There is at least one repair facility in each 
station. Each facility repairs a failed PM independently. 
A PM in a pool could be repaired only by a repair facility 
of this pool's repair station. If the number of PMs in a 
pool to be repaired is larger than the number of the corre-
sponding repair facilities/servers, failed PMs are placed 
in the corresponding waiting queue. Hot, warm and cold 
PM mean repair times are exponentially distributed. 

2). Sharing repair station (SRS). The hot, warm and cold 
pools share a single repair station. Failed hot PMs have 
the repair priority over the failed PMs of the other pools, 
while failed warm PMs have priority over cold failed 
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PMs. The priority is non-preemptive. Similar to previous 
policy, PM repair time is exponentially distributed.  

TABLE 1 summarizes definitions of system input parame-
ters to be used in the following sections. hn , wn , cn , rhn , rwn  
and rcn are design parameters, but MTTF, MTTR and MTTM 
values could be experimentally measured. Note that we try to 
use notations similar to those used in [12] in order to highlight 
the difference of our models from those in [12] and then indi-
cate the challenges of modeling in this paper.  

 
TABLE 1 System Input Parameter Definition 

Symbol Description 

hn , wn , cn  
Denote the initial numbers of non-failed 
PMs in the hot, warm and cold PM 
pools, respectively. 

1/ hl  ,1/ wl  , 
1/ cl  

Denote mean time to fail (MTTF) for 
hot, warm and cold PMs, respectively. 

1/ hµ  ,1/ wµ  , 
1/ cµ  

Denote mean time to repair (MTTR) for 
hot, warm and cold PMs, respectively. 

rhn , rwn , rcn  
Denote repair facility number for hot, 
warm and cold repair stations, respec-
tively. Used in IRS policy 

rn  Denote repair facility number, used for 
SRS policy 

1/ whg  ,1/ hwg  ,
1/ hcg  ,1/ chg  ,
1/ cwg , 1/ wcg  

Denote mean time to move (MTTM) be-
tween two pools, e.g., whg is the moving 
rate from warm pool to hot pool. 

 

4 SYSTEM MODELS UNDER SRS POLICY 

This section first presents monolithic SRN model under 
SRS repair policy. Then the corresponding scalable interact-
ing SRN sub-models are given.  

4.1 Monolithic SRN model 
Figure 1 shows the monolithic SRN model for the availa-

bility analysis of IaaS cloud under SRS repair policy. The 
numbers of tokens in places hP , wP and cP represent the num-
ber of non-failed PMs in hot, warm and cold pools respec-
tively. The firing of each of transitions bwhfT , bchfT and hfT  rep-
resents the failure event of a hot PM. That is, there are three 
cases that will occur when a hot PM fails: 

Case F1) A non-failed warm PM is available for moving 
to the hot pool, represented by firing bwhfT ; 

Case F2) The warm pool is empty but a non-failed cold 
PM is available, denoted by firing bchfT ; 

Case F3) Both the warm and cold pools are empty and 
then the failed hot PM cannot be substituted by any other pool 
PM, represented by firing hfT .  

Guard functions 1[ ]mg  and 2[ ]mg  are used to achieve the 
mutual exclusion of these three cases. All guard functions of 
the SRS monolithic model are described in TABLE A.1 of Ap-
pendix A. The overall hot PM failure rate is equal to hl mul-
tiplied by the number of non-failed hot PMs. Since only one 
case (case F1-F3) occurs at any time instant of a hot failed 
PM, the firing rate of each of hfT  , bchfT  and bwhfT  is # h hP l×  . 

Here, # hP  represents the number of tokens in place hP . TA-
BLE A.2 of Appendix A summarizes rates of transitions mod-
eling PM failure in monolithic SRN model under SRS Policy. 

We now detail the analysis for Case F1: Warm PM moving 
occurs if a hot PM fails. When transition bwhfT fires, one token 

is taken from places wP  and hP  each, and one token is put in 
place whmP , modeling a warm PM borrowed for moving to the 
hot pool. Each token in place whmP represents a PM waiting for 
its moving completion. When a moving is completed, the fir-
ing of transition whmT  is triggered. Then one token is removed 
from place whmP   and one token is deposited to places hP   , 

bwhP  and BhP  each. Rate of transition whmT   is determined by 
the number of tokens in place whmP  , allowing all moving PMs 
to move in parallel. Place bwhP  keeps track of the number of 
failed hot PMs, each of which is replaced by a warm PM. It 
also represents the number of warm PMs, having moved to 
the hot pool. Similar explanations can be applied to Case F2: 
Cold PM moving occurrence in the case of hot PM failure. All 
moving rates are given in TABLE A.3 of Appendix A. 

Now we explain Case F3: Neither warm nor cold PM is 
available for substitution of a failed PM. In this case, transi-
tion hfT  fires. A token is removed from place hfP  modeling 
the reduction in the number of available PMs in the hot pool 
by one and a token is deposited in place hfP  representing the 
failed PM to be repaired and given back to the hot pool.  

Failure events of PMs in the warm and cold pools are mod-
eled in a similar way. Note that guard function 3[ ]mg  is de-
fined to achieve mutual exclusion of transitions bcwfT and wfT , 
each modeling a warm PM failure event. Note also that place
BhP , BwP  and BcP keep track of the number of failed PMs in 

the hot, warm and cold pool, respectively. 

 

 
 



AUTHOR ET AL.:  TITLE 5 

 

  
Figure 1 Monolithic SRN model under SRS policy 

 

 
Repair behaviors. The SRS repair policy says a failed 

PM will be repaired with the priority of that pool, where it 
fails. After it completes its repair, it moves back to its original 
pool. The details are given as follows. Place RP keeps track of 
the number of available repair facilities. Transitions hrT , wrT  
and crT  are used to represent the repair events of failed PMs 
in each pool. Their rates, given in TABLE 2, depend on the 
number of available repair facilities allocated to each pool, 
which are kept track by place RhP , RwP  and RcP , respectively. 
The number of tokens in place RhP  is determined by three fac-
tors: 1) the number of tokens in BhP , 2) the number of tokens 
in place RP , and 3) the priority of Rht . The number of tokens 
of places RwP  and RcP are determined in the same way. This 
paper assumes the priority of Rht  , Rwt   and Rct  as 

Rh Rw Rct t t³ ³ , representing the fact that free repair facilities 
in RP are first assigned to serve hot failed PMs, then to warm 
failed PMs and cold failed PMs. Only when BhP is empty, a 
warm failed PM in the waiting queue is handled. Similarly, 
only when BhP and BwP are both empty, a cold failed PM in the 
waiting queue is serviced. Such priority repairing policy aims 
to reduce PM moving to some extent and then increases sys-
tem availability. We explain this as follows. All warm and 
cold PMs have been moved to hot pools or failed. Namely, 
there is no available warm and cold PMs. In this situation, the 
highest priority of repairing failed hot PMs could lead to the 
quick increase in the number of the available hot PMs. If a 
failed warm or cold PM is repaired first, they could be used 
by the hot pool through the moving process.  

Immediate transitions 1wrt   , 2wrt   , 1crt  and 2crt  model the 

start of moving PMs coming back to their original pool after 
their corresponding PM repair process is completed. The to-
kens in places hcmP  , hwmP   and wcmP   denote the number of re-
paired PMs for moving. This process is modeled by transi-
tions hcmT , hwmT  and wcmT , respectively. 

 
TABLE 2 Rates of Transitions Modeling the Repair of Failed PMs in Mon-

olithic SRN Model under SRS Policy 

Transition Firing rate 

hrT  # Rh hP µ×  

wrT  # Rw wP µ×  

crT  # Rc cP µ×  
 

4.2 Interacting SRN sub-models 
An effective way to overcome the scalability problem of 

the monolithic model is to decompose it into SRN sub-models. 
There are three challenges in designing interacting sub-mod-
els: 

(C1) Decomposing components of the monolithic model. 
Effective decomposion is the basis for capturing the influence 
among PM pools in each sub-model. 

 (C2) Defining rates of transitions modeling PM failure in 
each sub-model such that each sub-model captures the impact 
of the behaviors of the other sub-models on this sub-model.  

(C3) Defining rates of transitions modeling each pool PM 
repairing behaviors in order to reflect pool repairing priority 
and different pool repairing rates. 

 

 

Ph Tbchf Pchm Tchm Pbch Phcm Thcmt cr1

Tbwhf Pwhm Twhm Pbwh Phwm Thwmt wr1

Twf Pwf t wr2

Tbcwf Pcwm Tcwm Pbcw t cr2
Pw

Thf Phf t hr1 ThrPhr

Twr
Pwr

Pwcm Twcm

Tcf Pcf

Pc
Tcr

[ g1m]

[ g2m]

[ g3m]

PBh

PBw

PRh

PRw

PRc

t Rh

t Rw

t Rc

PR
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(a) Hot SRN sub-model 
 

(b) Warm SRN sub-model 
 

  
(c) Cold SRN sub-model (d) Import graph of interactions among SRN sub-models 

 

Figure 2 Interacting SRN sub-models under SRS policy 

Figure 2 (a, b and c) show the SRN sub-models for hot, 
warm and cold pools, respectively. Each SRN sub-model uses 
output measures of the other SRN sub-models as input to gen-
erate its output measures. Note that despite the similarity be-
tween Figure 2(a) and Fig. 2 in [12], firing rates of hfT , bchfT
and bwhfT are different. We highlight these transitions in Figure 
2(a). More details about modeling difference are given in Sec-
tion 4.2.1. Figure 2 (d) shows the import graph of the interac-
tions among these SRN sub-models. TABLE 3 summarizes 
the definitions of variables in Figure 2(d).  

 
TABLE 3 Definition of Variables in Figure 2(d) 

Symbol Description 

[ ]hE P  , [ ]wE P  ,

[ ]cE P  

Denote mean numbers of non-failed 
PMs in the hot, warm and cold PM 
pools, respectively. 

[ ]bwhE P  , [ ]bchE P  ,

[ ]bcwE P  

Denote mean number of PMs moving 
from warm/cold pool to hot pool and 
from cold to warm pool, respectively.  

[ ]hfE P , [ ]wfE P  

Denote, respectively, mean number of 
failed hot and warm PMs in the situation 
where there is no available PMs from 
the other pools to substitute. 

[ ]whmE P  
Denote mean number of PMs moving 
from the warm pool to replace a failed 
hot PM. 

wp , cp  
Denote the probabilities that at least one 
non-failed PM is available in the warm 
and cold pools, respectively. 

• [ ]E x denoted the mean value of x. 

 
The generated cyclic dependency between them is solved 

by using a fixed point iteration algorithm. Note that some 
places and transitions of the monolithic model appear in more 

than one sub-model. For example, whmT  appears in both hot 
and warm SRN sub-models. We present the details of sub-
models and interacting parameters in the following. 

4.2.1 SRN sub-models for three pools 
The hot pool SRN sub-model is constructed from the 

structure of the monolithic model by keeping the transitions 
that directly interact with place hP  and removing the others. 
The SRN sub-models of the warm and cold pools are con-
structed in a similar way.  

Input and output parameters of hot SRN sub-model. For 
hot pool SRN sub-model, input parameters include design pa-
rameters (namely, hn and rn ), measured parameters (namely, 

hl  , hµ  , whg   and chg ), and output measures from warm pool 
(namely, wp  , [ ]wE P   and [ ]bwhE P  ) and from cold pool 
(namely, cp  , [ ]cE P  and [ ]bchE P  ). wp  , [ ]wE P   , cp   and [ ]cE P
are used in defining failure-related rates. [ ]bchE P and [ ]bwhE P
are involved in computing repair-related rates. From hot sub-
model, the following measures are computed: 
� [ ]hE P . Used to compute the rates of transitions bwhfT and 

bchfT in warm and cold pool SRN sub-models, respectively. 

� [ ]hfE P . Used in warm SRN sub-model to compute 
whrT

and wrT , as well as in cold SRN sub-model to compute 

chrT , cwrT    and crT .  

� [ ]whmE P . Used in cold SRN sub-model to compute bchfT . 

Moreover, hot SRN sub-model computes probability k
hp

that at least k   non-failed hot PMs are available, (i.e., 
# hP k³ , 1hn k³ ³ ), representing the overall CDC infrastruc-
ture availability. 

Ph Tbchf Pchm Tchm

Tbwhf Pwhm Twhm

Thf Pfh Thr

[ gdh2]

[ gdh1] Tbwhf Pwhm Twhm Pbwh Phwm ThwmTwhr

Twf Pwf

Tbcwf Pcwm Tcwm
Pw

Twr

[ gdw2]

[ gdw3]

[ gdw1]

[ gdw4]

Tbchf Pchm Tchm Pbch Phcm ThcmTchr

Tbcwf Pcwm Tcwm Pbcw Tcwr Pwcm

Twcm

Tcf
Pcf

Pc
Tcr

[ gdc1]

[ gdc2] [ gdc3]

[ gdc4]

Hot

ColdWarm

E( )hP E( )hfPE( )hP E( )hfP
wp cp

cp

wp E( )bwhP E( )wfP
E( )wP

E(# )bcwP
E( )cP

E( )cPE( )wP

E( )whmP
E( )bwhP E( )bchP

E( )bchP
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Output parameters of warm SRN sub-model. Warm SRN 
sub-model aims to compute wp   , [ ]wE P  , [ ]bwhE P  ,  [ ]wfE P
and [ ]cwmE P . All these computed values are used as input pa-
rameters to cold pool SRN sub-model, while the first three 
wp  , [ ]wE P and [ ]bwhE P  are used as input parameters to the 

hot pool SRN sub-model.  

Output parameters of cold SRN sub-model. From cold 
pool sub-model, we compute cp   , [ ]bchE P   and [ ]bcwE P  . 
[ ]bcwE P  denotes the mean number of cold PMs moving to 

warm pool. 

 
TABLE 4 Guard Functions for Interacting SRN Sub-Models under SRS 

Policy 

Guard 
function Value 

1[ ]dhg  if  ( )(1 )(1 ) 0 || # [ ]w c chm cp p P E P- - > ³  
then 1 else 0   

2[ ]dhg  if ( )(1 ) 0 ||  # [ ] &&w c whm wp p P E P- > ³    
# [ ]chm cP E P<   then 1 else 0 

3[ ]dhg  if 0wp > && # [ ]whm wP E P< then 1 else 0 

1[ ]dwg  if   [ ] 0hE P > then 1 else 0 

2[ ]dwg  if   ( ) (1 ) 0 ||  # [ ]c cwm cp P E P- > ³  
then 1 else 0 

3[ ]dwg  if 0cp > &&   # [ ]cwm cP E P< then 1 else 0 

4[ ]dwg  if [ ] [ ] #hf bch bwh rE P E P P n+ + <  then 1 else 0 

1[ ]dcg  if ( )[ ] (1 ) 0 || [ ] [ ]h w whm wE P p E P E P× - > ³    then 1 

else 0 

2[ ]dcg  if [ ] 0wE P >   then 1 else 0 

3[ ]dcg  if [ ] [ ] #hf bwh bch rE P E P P n+ + <  then 1 else 0 

4[ ]dcg    if  
[ ] [ ] [ ] # #hf wf bwh bcw bch rE P E P E P P P n+ + + + <    

then 1 else 0 
 

Failure behaviors. When the authors in [12] and [20] de-
signed the rates of transition hfT  , bchfT  and bwhfT  in hot SRN 
sub-model, they modeled the impact of behaviors of warm 
and cold SRN sub-models. But they ignored that the tokens of 

bchfP  and bwhfP should be less than the available PM number 
in the warm and cold pools, respectively. We propose that the 
PM failing transitions in hot SRN sub-model should be de-
signed from the following three cases: 

(Case FR1) # [ ]whm wP E P<  and # [ ]chm cP E P<  . hl  is di-
vided to transition hfT , bchfT and bwhfT according to wp and cp . 
Note that the authors in [12] only took into account this case. 

(Case FR 2) # [ ]whm wP E P³ and # [ ]chm cP E P< . A failed hot 
PM will be replaced by a cool PM or be sent to be repaired. 
Namely, hl  is divided to transition hfT   and bchfT  according to 

wp and cp .  

(Case FR 3) # [ ]whm wP E P³ and # [ ]chm cP E P³ . The failed 
hot PM will be sent to be repaired. Thus, hl is only for transi-
tion hfT . 

Therefore, the rate of bwhfT  is # h h wP pl× ×  only when 

0wp >  and # [ ]whm wP E P<  . bchfT  = # (1 )h h w cP p pl× × - ×  in the 

case of (1 ) 0w cp p- >  and # [ ]chm cP E P<  ; when 0wp >   and 
# [ ]chm cP E P<  , bchfT  = # h h cP pl× ×  . For hfT  , its value is 

# (1 ) (1 )h h w cP p pl× × - × - when (1 )(1 ) 0w cp p- - > ; its value is
# (1 )h h wP pl× × -   when # [ ]chm cP E P³  .  Following the above 
approach, we could compute the failure rates of transitions 
modeling PM failures in warm and cold sub-models. TABLE 
4 defines guard functions to be used in hot, warm and cold 
pool sub-models. TABLE 5 details the rates of transitions 
modeling PM failures. 

Repair behaviors. According to the SRS repairing policy 
in Section 4.1, only # hfP failed hot PMs are sent back to the 
hot pool after repairing. The left are sent to warm and cold 
pools, which are modeled by transitions 

whrT and 
chrT in warm 

and cold sub-models, respectively. The total number of failed 
hot PMs seen in the hot pool is ( )# [ ] [ ]hf bwh bchP E P E P+ +  . 

The total number of failed hot PMs seen in warm and cold 
SRN sub-models is respectively ( )[ ] [ ]hf bwh bchE P P E P+ + and 

( )[ ] [ ]hf bwh bchE P E P P+ + . Equation (1) describes the rate of 

transition hrT , in which only the number of failed hot PMs is 
considered in order to capture the highest repairing priority of 
the failed hot PMs. The rates of transition whrT  and chrT  in 
warm and cool pools are similarly defined.  

( )

( )

# ,   if # [ ] [ ]

#
,    otherwise

# [ ] [ ]

hf h hf bch bwh r

hf h r

hf bch bwh

P P E P E P n

P n
P E P E P

µ

µ

ì × + + >
ïï

× ×í
ï + +ïî

              (1) 

Following the above approach, we could define the rates 
of repairing warm failed PMs (namely, rates of wrT and

cwrT ) 

and the rates of repairing cold failed PM (namely, rate of crT ) . 
TABLE 6 describes the rates of transitions modeling PM re-
pair.   

4.2.2 SRN sub-model interactions  
As in [12], the cyclic dependencies among the sub-models 

are solved by using fixed point iteration [24]. For each varia-
ble in Figure 2 (d), we could find a function of variables 
( [ ], [ ], [ ], [ ], ,h hf w wf wE P E P E P E P p [ ], [ ], [ ], ,bwh bch bcw cE P E P E P p  

[ ], [ ]c whmE P E P ) to generate it. We use Y to denote these var-
iables. Thus, the fixed point equation for solving the depend-
encies can be expressed as follows: 

      =H ( )x x                                                                      (2)  
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where =( )x Y  and H  is a vector function over set 
11 11C Ì ® . We can show the solution to Equation (2) ex-

ists by using the method similar to [12]. 
 

TABLE 5 Rates of Transitions Modeling PM Failure in Interacting SRN 
Sub-Models under SRS Policy 

Transition Firing rate 

hfT  (hot) if # ( )whm wP E P< && # ( )chm cP E P<  
then # (1 ) (1 )h h w cP p pl× × - × -  
else  
if # ( )whm wP E P³ && # ( )chm cP E P<  
then # (1 )h h cP pl× × - else # h hP l×  
 

bchfT  (hot) 
 

if   # [ ]whm wP E P<  
then # (1 )h h w cP p pl× × - ×  
else # h h cP pl× ×  

bchfT  (cold) if   ( )[ ] [ ]whm wE P E P<  
then [ ] (1 )h h wE P pl× × -  
else [ ]h hE P l×  
 

bwhfT  (hot) # h h wP pl× ×

bwhfT  (warm) [ ]h hE P l×  

wfT  (warm) if # ( )cwm cP E P<  then [ ]h hE P l×  
else # w wP l×  

bcwfT  (warm) # w w cP pl× ×  

bcwfT  (cold) [ ]w wE P l×  

cfT  (cold) # c cP l×  
 

4.3 Performance measures 
The measures considered in this paper are computed by 

using Markov reward approach [8]. Namely, a reward rate 
function is assigned at the SRN level and the expected reward 
rate at steady state is computed as the desired measures [8]. 
The measures considered in this paper include: 

(i) Mean number of PMs in each pool. The mean number 
of non-failed PMs in the hot, warm and cold pool is given by 
the mean number of tokens in the corresponding place hP  , 

wP  and cP  (denoted as [ ]hE P  , [ ]wE P  and [ ]cE P  , respec-
tively). 

(ii) Downtime. This is an availability measure of IaaS 
CDC infrastructure. Using redundant components is an effec-
tive method to improve system availability. A common form 

of redundancy is a k-out-of-n system in which at least k com-
ponents operate for the system success. We consider the IaaS 
CDC infrastructure to be available if the total number of non-
failed hot PMs is greater than or equal to k , where hk n£ . 

TABLE 6 Rates of Transitions Modeling the Repair of Failed PMs in Inter-
acting SRN Sub-Models under SRS Policy  

Transition Firing rate 

hrT  (hot) if [ ] [ ] #bch bwh hf rE P E P P n+ + >   

then  #
# [ ] [ ]

hf h r

hf bch bwh

P n
P E P E P

µ× ×

+ +  

else  #  hf hP µ×  

whrT  
(warm) 

if   [ ] [ ] #  hf bch bwh rE P E P P n+ + £  
then  # bwh hP µ×  

else #   
[ ] [ ] #

bwh h r

hf bch bwh

P n
E P E P P

µ× ×
+ +

 

chrT  (cold) if [ ] [ ] #hf bwh bch rE P E P P n+ + £  
then #  bch hP µ×  
else #   

[ ] [ ] #
bch h r

hf bwh bch

P n
E P E P P

µ× ×
+ +

  

wrT  (warm) if  
[ ] [ ] [ ] # #bcw hf bch bwh wf rE P E P E P P P n+ + + + >

then ( [ ] [ ] # ) #
# [ ]

w r hf bch bwh wf

wf bcw

n E P E P P P
P E P

µ × - - - ×

+
 

else  #  wf wP µ×  

cwrT  (cold) if  
[ ] [ ] [ ] # #hf wf bwh bcw bch rE P E P E P P P n+ + + + £

then #  bcw wP µ×   
else    

max{0,( [ ] [ ] # )} #  
[ ] #

w r hf bwh bch bcw

wf bcw

n E P E P P P
E P P

µ × - - - ×

+
 

crT  (cold) if          
[ ] [ ] [ ] #

                                 # #
bwh hf wf bcw

cf bch r

E P E P E P P
P P n

+ + +

+ + >  
Then 

( [ ] [ ] [ ]
                                         # # )
c r hf wf bwh

bch bcw

n E P E P E P
P P

µ × - - - -

-
  

else  #  cf cP µ×  
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Figure 3 Monolithic SRN model under IRS policy 

 
 

5. SYSTEM MODELS UNDER IRS POLICY 
Figure 3 shows a monolithic SRN model for the availabil-

ity analysis of IaaS cloud under IRS repair policy. The shaded 
parts denotes those differences from the model in [12]. Input 
parameters for this model are the same as those for the mon-
olithic model under SRS repair policy, except that rhn , rwn  
and rcn are used instead of rn . Besides the guard functions de-
fined in TABLE 4, this model requires two additional guard 
functions, defined in TABLE 7. TABLE 8 describes the rates 
of transitions regarding repair. The failure-related and mov-
ing-related transition rates depend on the number of tokens in 
corresponding places, similar to those in the monolithic model 
of SRS policy.  
 
TABLE 7 Guard Functions for Monolithic SRN models under IRS Policy 

Guard function Value 

4[ ]mg  if # 0 || # 0wf bcwP P> >  then 1 else 0 
5[ ]mg  if # 0 || # 0 || # 0hf bch bwhP P P> > >  then 

1 else 0 
 

TABLE 8 Rates of Transitions Modeling the Repair of Failed PMs in Mon-
olithic SRN Model under IRS Policy 

Transition Firing rate 

hrT  if # # #bwh bch hf rhP P P n+ + <  
then (# # # )bwh bch hf hP P P µ+ + ×  else rh hn µ×      

wrT  if # #wf bcw rwP P n+ £  
then (# # )wf bcw wP P µ+ ×  else  

rw wn µ×  

crT  if  # cf rcP n£ then # cf cP µ×  else rc cn µ×    
 

TABLE 9  Rates of Transitions Modeling the Repair of Failed PMs in In-
teracting SRN Sub-Models under IRS Policy 

Transition Firing rate 

hrT (hot) if [ ] [ ] #bwh bch hf rhE P E P P n+ + ³   

then 
#

# [ ] [ ]
hf h rh

hf bch bwh

P n
P E P E P

µ× ×

+ +
 

else #  hf hP µ×   

wrT (warm) if [ ] #bcw wf rwE P P n+ >  then 

#
# [ ]
w rw wf

wf bcw

n P
P E P
µ × ×

+  
 else #  wf wP µ×  

whrT (warm) If   [ ] [ ] #  hf bch bwh rhE P E P P n+ + <  
then #  bwh hP µ×  

else #   
[ ] [ ] #

bwh h rh

hf bch bwh

P n
E P E P P

µ× ×
+ +

 

chrT (cold) if [ ] [ ] #hf bwh bch rhE P E P P n+ + <  
then # bch hP µ×  

else #   
[ ] [ ] #

bch h rh

hf bwh bch

P n
E P E P P

µ× ×
+ +                  

cwrT (cold) if [ ] #wf bcw rwE P P n+ <  then #  bcw wP µ×  

else  
#  

[ ] #
w rw bcw

wf bcw

n P
E P P
µ × ×

+    

crT (cold)   #  cf cP µ×  

 

For interacting SRN sub-models, structures of hot, warm 
and cold pool SRN sub-models are the same as those of SRS 
policy except for guard functions and the repairing-related 
rates. The rates of transitions modeling the repair of failed 
PMs are defined in TABLE 9. Note that there is no guard func-
tion for wrT , chrT  and cwrT in the interacting SRN sub-models 

Ph Tbchf Pchm Tchm Pbch Phcm Thcmt cr1

Tbwhf Pwhm Twhm Pbwh Phwm Thwmt wr1

Twf Pwf t wr2

Tbcwf Pcwm Tcwm Pbcw t cr2
Pw

Thf Phf t hr1

Thr
Phr

Twr Pwr

Pwcm Twcm

Tcf Pcf

Pc
Tcr

[ g1m]

[ g2m]

[ g3m]

[ g4m]

[ g5m]



10  

 

of IRS policy. That is, except for 4[ ]dwg , 3[ ]dcg and 4[ ]dcg , 
the remaining guard functions defined in TABLE 4 are used 
in the interacting SRN sub-models under IRS policy. Note 
that the interactions among SRN sub-models are also equiva-
lent for both repair policies. 

6. NUMERICAL RESULTS 
This section aims to evaluate the capability of our models. 

Reference [12] is close to our work. There are two modeling 
difference between [12] and our models. The first is the repair 
policy. As mentioned above, [12] required MTTRs of differ-
ent pools to be same, which is a special case of our IRS model. 
Thus, the following doesn’t compare our modeling work with 
[12] from the aspect of repair policy. The second difference is 
the PM-failure rates in hot and warm sub-models. We evaluate 
the effectiveness of our failure-related rate design in 6.2. 

In the following, we first describe basic configurations in 
Section 6.1. Then, the validation of SRS interacting SRN sub-
models is presented in Section 6.2. The verification of IRS 
interact SRN sub-models is presented in Appendix B. Section 
6.3 presents the sensitivity analysis of CDC steady-state avail-
ability (SSA) with respect to repair policy and input parame-
ters of SRS interact SRN sub-models. 

6.1 Experiment configurations 
SPNP software package [30] is used to solve the SRN 

models to obtain analytic-numeric and simulative results as 
well as sensitivity ( )S SSAq  . The fixed point iteration ap-
proach used for solving the interacting SRN sub-models is im-
plemented in Python. Parameters are configured according to 
[12] and [31]. Without loss of generality, the mean time to 
moving (MTTM) between pools are set to 30 minutes. The 
PM mean time to repair (MTTR) of hot, warm and cold pool 
are set to 2, 5 and 10 hours. In default, MTTFs of hot, warm 
and cold PMs are assumed to be 500, 1750 and 2500 hours 
respectively. Note that simulation results are obtained by 
means of simulation of the corresponding monolithic model, 
which directly solves the stochastic net instead of generating 
the underlying Markov model. The following simulation re-
sults are obtained with a 95% confidence interval. 

6.2 Validation of interacting SRN sub-models under 
SRS policy 

The advantage of interacting SRN sub-models over their 
corresponding monolithic SRN model was detailed in [12] 
from the aspects of execution time and number of model states. 
This section focuses on validating approximate accuracy of 
our interacting SRN sub-models. These results are obtained 
by varying hn from 3 to 10000. Unless otherwise specified, the 
other system input parameters are set as follows.  w hn n=  
when 100hn £  otherwise, 100wn = .  c hn n= when 10hn £ ; 
otherwise, 25cn = . “-” represents no solutions.  

Comparison between monolithic SRN model and inter-
acting SRN sub-models. When pool size (initial number of 
PMs in a pool) is greater than 5, the SRS monolithic SRN 

model becomes unsolvable. Thus we do experiments by var-
ying hn  from 3 to 5. k denotes the number of available hot 
PMs below which the IaaS CDC is assumed unavailable. For 
each pool size, we vary the value of k and report the results. 
TABLE 10 present downtime values (in minutes per year), in-
dicating the increasing downtime value with increasing value 
of k. Note that as long as the number of non-failed hot PMs is 
consistent between hierarchical and monolithic models at 
each time instant, downtime is consistent. That is, the con-
sistent downtime is just sufficient condition for verifying the 
accuracy of the interacting sub-models. It is necessary to fur-
ther examine the number of warm and cold non-failed PMs. 
TABLE 11 presents mean number of non-failed PMs, validat-
ing the approximate accuracy of interacting SRN sub-models 
under these configurations.  

 
TABLE 10  Comparison of Downtime Values (In Minutes per Year) be-

tween Monolithic SRN Model and Interacting SRN Sub-Models under 
SRS Policy 

Pool size k Monolithic model Interacting sub-models 

3 
1 0.000524 0.000524 
2 1.572603 1.572603 
3 1573.6516 1573.6516 

4 
2 0.0020945 0.00209 
3 3.14311 3.1431116 
4 2097.154493 2097.15449 

5 
3 0.0052324 0.0052324 
4 5.23503 5.23503107 
5 2620.1343 2620.134359 

 
 

TABLE 11  Comparison of Mean #PMs in Each Pool between Monolithic 
SRN Model and Interacting SRN Sub-Models under SRS Policy  

Pool 
size 

Monolithic model Interacting sub-models 
hot warm cold hot warm cold 

3 2.997 2.975100 2.9896 2.997 2.97517 2.98960 
4 3.996 3.966896 3.9862 3.996 3.96689 3.98615 
5 4.995 4.958600 4.9827 4.995 4.95860 4.98270 
 

Comparison with simulation results. When pool size is 
increasing, monolithic model can’t work. Thus, simulation re-
sults are used to verify interacting sub-models. TABLE 12 and 
Figure 4 show the results by varying hot pool size hn from 5 
to 10000.  Unless otherwise specified, “SRS-simu” denotes 
simulation results and “SRS-INum” denotes numerical results 
of interacting sub-models in the following. SSA is calculated 
by setting hk n=  . The other parameter values remain un-
changed as default. We observe that: 

(1) The analytic-numerical results approximate to simula-
tion results from the aspect of the available PM number in 
each pool, shown in TABLE 12. 

(2) The hierarchical model’s accuracy decreases from the 
aspect of steady-state availability with the increasing hn  , 
shown in Figure 4. Analytic-numerical results of interacting 
SRN sub-models agree with simulation results when hn <250. 

When hn ≥250, there exists inconsistency. The main reason is 
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that when hn and rn increase, more hot PMs will fail in unit 
time and then standby PMs should be moved to hot pool. Later 
the failed hot PM which completes its repair will return to the 
pool where the corresponding substitution PM comes from. 
Such frequent moving leads to large variation in the number 
of tokens in places in each sub-model. Our interacting sub-
models use mean values to reflect the interaction between 
sub-models and then the large variation is covered, leading to 
the inconsistency between numerical and simulation results. 
This suggests the importance of designing interacting varia-
bles in Figure 2(d).   
TABLE 12  Comparison of Mean Number of Non-Failed PMs in Each Pool 

between Numeric Solution of Interaction SRN Sub-Models and Simu-
lation Results of the System under SRS Policy  

Pool 
size 

Interacting sub-models Simulation 
hot warm cold hot warm cold 

5 4.9950  4.9586  4.9827  4.9959  4.9641  4.9870  
6 5.9940  5.9503  5.9792  5.9950  5.9565  5.9823  
7 6.9930  6.9420  6.9758  6.9931  6.9497  6.9797  
8 7.9920  7.9330  7.9723  7.9929  7.9396  7.9729  
9 8.9910  8.9255  8.9688  8.9933  8.9333  8.9701  

10 9.9900  9.9372  9.9262 9.9953  9.9450  9.9240 
50 49.950 49.686 24.730 49.951 49.669 24.693 

100 99.900 99.372 24.561 99.891 99.247 24.479 
250 249.75 98.428 24.549 249.65 96.952 24.147 
500 499.50 96.935 24.568 499.31 94.883 24.338 
750 749.25 95.476 24.575 748.80 93.002 24.491 

1000 999.00 93.973 24.579 998.31 90.670 24.538 
2500 2497.5 84.991 24.610 2496.3 80.691 24.594 
5000 4995.0 70.010 24.661 4993.9 65.865 24.647 
7500 7492.5 55.029 24.713 7491.1 51.616 24.718 

10000 9990.0 40.048 24.764 9987.7 38.586 24.796 
 
 

 
Figure 4 SSA over hot pool size under SRS policy 

 
Comparison with [12] in terms of failure-related rates in 

each sub-model. We do experiments to show the problem of 
the failure-related rates in Fig.2 of [12]. hn is set to10000 and 

MTTM between hot and warm pools varies from 30 minutes 
to 3 minutes. The other parameters are set as default. Figure 5 
shows mean number of non-failed hot PMs. “SRS-simu” de-
notes simulation results. “SRS-INum-New” denotes numeri-
cal results by applying our interacting sub-models with failure 
transition rates set as in TABLE 5. “SRS-INum-old” denotes 
numerical results by applying our interacting sub-models but 
failure-related rates set as in [12]. As mentioned above, the 
inconsistency of the non-failed hot PM number between nu-
merical and simulation results indicates interacting sub-mod-
els’ inaccuracy. “SRS-INum-old” results are far away from 
simulation results. Thus, the interacting sub-models with rates 
defined in TABLE 5 can capture the system behaviors more 
accurately. 

 

 
Figure 5 SSA comparison over moving rate under SRS policy 

6.3 Sensitivity analysis 
This section applies interacting sub-models for sensitivity 

analysis. We first compare the effect of repair policy on sys-
tem availability in Section 6.3.1. Section 6.3.2 focuses on SRS 
policy and applies the last two sensitivity analysis methods 
described in Section 2.2 to carry out sensitivity analysis with 
respect to system parameters. We compare SRS and IRS pol-
icies by assuming the cost of each repair facility is same and 
the cost of each PM in a pool is same. Then we could compare 
SRS and IRS by using only SSA or the number of non-failed 
PMs or the number of repair facilities. 

6.3.1 The impact of repair policy on system availability based 
on numerical analysis of interacting sub-models 

In some scenarios, SRS and IRS repair policies produce 
the same availability but IRS requires more standby PMs in 
order to maintain a certain level of availability. Namely, in 
these scenarios where there are not enough standby PMs, the 
system availability cannot be maintained to a certain level un-
der IRS policy but SRS could. Thus, an IaaS CDC with SRS 
policy can maintain a level of availability with less cost than 
using IRS policy in terms of the number of standby non-failed 
PMs.  
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In the following two subsections, we compare two repair 
policies in terms of repair facility number and repair rate. 

(A) Varying the number of repair facilities 

Experiments are carried out by letting hn  =1000, 
10w cn n= =  , hµ  =2 hours, wµ  =50 hours, cµ  =100 hours, 
1rw rcn n= = . Other parameter values are set as default in 

Section 6.2. We do experiments by varying rhn from 3 to 8. 
Note that r rh rw rcn n n n= + +  . Figure 6 shows the results. 
“SRS-INum” denotes the numerical results under SRS policy. 
“IRS-Num” denote the numerical results under IRS policy. 
From Figure 6, we observe that 1) SRS policy can achieve 
higher availability than IRS policy under the same number of 
repair facilities; namely, SRS policy with less investment can 
achieve higher availability, compared to IRS policy; 2) in-
creasing the number of repair facilities for hot pool can sig-
nificantly improve system availability under IRS policy but 
this improvement stops after 7rn = .  

  
Figure 6 SSA over the total number of repair facilities for failed PMs  

(B) Varying repair time 

This subsection examines the effect of system repair capa-
bility (repair time of a failed hot PM) on system availability. 
We set hn  =1000, rhn  =4, 10w cn n= =  , 1rw rcn n= =  , wµ  =50 
hours, cµ  =100 hours, 1rw rcn n= =  . We do experiments by 

varying 1
hµ

 from 2 hours to 1 hour. The values of the other 

parameters remain unchanged as default in Section 6.2. Figure 
7 shows SSA of interacting SRN sub-models under IRS and 
SRS. We observe that 1) IRS policy requires more powerful 
repair capability in order to achieve the same availability level 
as SRS when number of PMs are fixed; for example, the avail-
ability achieved under IRS at hµ =0.7 is similar to under SRS 

at hµ =0.6; 2) the increasing repair capability reduces the dif-
ference of SSA between two repair policies. 

  

    
Figure 7 SSA over repair rate of hot PMs  

     

6.3.2 The impact of input parameters on system availability 
under SRS policy 

This subsection aims to investigate which system param-
eters are the most relevant to the improvement of system 
availability when SRS policy is applied. The last two ap-
proaches presented in Section 2.2 are used for sensitivity anal-
ysis. Let hn =1000. The values of the other parameters are set 
as in Section 6.2. We first use “sensitivity index” method to 
check the effect of rn on availability by setting rn =10 and rn
=100. The availability value variation is less, indicating that 
the SSA sensitivity to rn is zero under this set of system pa-
rameters.  

Now the direct method-based technique is used to analyze 
the first twelve parameters in the first column of TABLE 13. 
Note that we cannot calculate ( )S SSAq due to the complicate 
interactions among of the interacting sub-models. But we 
could apply direct method to each sub-model and then rank 
the sub-model input parameters. By analyzing the sensitivity 
rank in each sub-model, we could get the parameters which 
produces the highest impact on system availability. The de-
tails are as follows. 

Parametric sensitivity analysis is carried out to hot sub-
model. The second column shows ( )S SSAq of input parame-
ters in the first column of  TABLE 13. Note that all the values 
in TABLE 13 are obtained by using SPNP software package. 
“\” means that this parameter is not the input to the sub-model. 
Besides system parameters, [ ]bchE P  , [ ]bwhE P  , wp  and cp  are 
also input parameters to hot sub-model. But the second col-
umn does not show [ ]( )

bchE PS SSA  and [ ]( )
bwhE PS SSA  because

[ ]bchE P and [ ]bwhE P are used to calculate hrT  in the hot sub-
model and the computing formula of hrT is complicated. See 

hrT  in TABLE 6. It is hard, if not impossible, to directly cal-
culate [ ]( )

bchE PS SSA  and [ ]( )
bwhE PS SSA  . From the numerical 

analysis results of the system parameter’ initial settings, we 
observe that [ ] [ ] #bch bwh hf rE P E P P n+ + >  seldom occurs un-
der the system input parameter settings. That means both 
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[ ]( )
bchE PS SSA and [ ]( )

bwhE PS SSA are very small and then their 
effects on system availability could be ignored.  

TABLE 13  Sensitivities with respect to Parameters for Each Pool 

Parameter Hot  
(Y=SSA) 

Warm 
(Y=pw) 

Cold 
 (Y= pc) 

hl  -4.9900E+02 4.2435E-21 0 

wl  \ 2.8473E-25 1.8556E-27 

cl  \ \ 1.8557E-27 

hµ  0.0000E+00 -1.6178E-15 0 

wµ  \ 0.0000E+00 8.4722E-29 

cµ  \ \ -4.4067E-27 

whg  4.9900E-01 -9.5870E-22 \ 

chg  0.0000E+00 0  0 

cwg  \ -1.2332E-24 7.1499E-31 

hwg  \ -9.5870E-22 \ 

hcg  \ \ 0 

wcg  \ \ -8.0158E-30 

wp  -9.98E-01 \ 0 

cp  0.0000E+00 1.5997E-28 \ 

 

Although ( )S SSAq of some parameters does not exist in 

the second column, such as wl and cl , these parameters may 

affect SSA. For example, wl and cl affect the system availa-

bility through wp . Since ( )
wp

S SSA is -9.98E-01 and wp is the 
output of warm sub-model, it is necessary to study warm sub-
model. Direct method is applied to warm sub-model and the 
third column of TABLE 13 gives ( )wS pq of the related model 

input parameters. Similarly, we give the ( )cS pq of the related 

parameters in the fourth column because ( )
cp wS p exists in the 

third column. Here, its value is 1.5997E-28, very small. Note 
that the values of the 3rd column affect the system availability 
through wp and the 4th column through ( )w cp p× . Since the val-
ues in the third and fourth columns are very small, they affect 
the system availability less, compared to the order of magni-
tude of whg   and hl  in the 2nd column. That means that whg  
and hl are the parameters most significantly affecting system 

availability. The third is hµ . Since hl =0.002, hµ =0.5, whg =2 

and SSA =0.9199 under k=998, we could calculate ( )S SSAq

of whg , hl and hµ , shown in TABLE 14. The calculation de-
tails are as follows. 

(1) ( )
h

SS SSAl =  

( )( )  ( ) ( ) ( ) ( ) ( )
h w h c h

h
p w p w cS SSA S SSA S p S p S p

SSA l l l
l

× + × + ×  

 
-1.08490533 =(-499+0.998*((-4.2435e-21)+(-

1.5997e-28)*0))*0.002/0.9199 
 

(2) ( )
wh

SS SSAg = ( )( ) ( ) ( )
wh w wh

wh
p wS SSA S SSA S p

SSA g g
g

× + ×  

1.08490533=(0.499+0.998*(9.5870e-22))*2/0.9199 
 
(3) ( )

h
SS SSAµ =  

( )( )  ( ) ( ) ( ) ( ) ( )
h w h c h

h
p u w p w cS SSA S SSA S p S p S p

SSA µ µ
µ

× + × + ×  

 
8.7757E-16=0.5/0.9199*(0+0.998*(1.6178E-15)) 
 

 
TABLE 14  Scaled sensitivities for SSA  

Parameter q ( )SS SSAq  

hl  -1.0849038 

whg  1.0849038 

hµ  8.7757E-16 

 

 

Figure 8 SSA over whg  
 

 

Figure 9 SSA over hl  

 
Now we vary whg   and hl  to investigate their effects on 
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system availability. First, 1/ whg  varies from 0.05 hours to 2 
hours but the other parameters are fixed. Figure 8 reveals the 
system steady-state availability increase quickly with the in-
creasing whg . Since it has a positive sensitivity value, system 

availability increases with the increased whg  . Figure 9 shows 
the impact of hl with a negative sensitivity value. Thus, re-
ducing hl could improve SSA. 

7. CONCLUSIONS AND FUTURE WORK 
The primary focus of this paper is to explore stochastic 

modeling and sensitivity analysis techniques for analyzing the 
impact of repair policy and system parameters on the IaaS 
CDC availability. We examined two repair policies: (i) inde-
pendent repair station (IRS), i.e., each pool having its own 
repair facilities; and (ii) sharing repair station (SRS), i.e., all 
PM pools share all repair facilities. Interacting SRN sub-mod-
els are developed for each policy. The corresponding mono-
lithic SRN models are also developed, and their analytic nu-
merical results and simulation results are used to verify the 
accuracy of the interacting SRN sub-models.  

The numerical analysis results show that an IaaS CDC 
with SRS policy maintains the same level of availability with 
less cost than using IRS policy. As long as there are enough 
repair facilities and MTTR is small enough, there is no differ-
ence between these two repair policies in terms of system 
availability. Parametric sensitivity analysis based on the hier-
archical models is conducted by applying differential analysis 
method to each sub-model. 

We summarize future research as follows. This paper used 
an aggregate of failures occurring in a PM. We endeavor to 
extend the modeling approach proposed in this paper to cap-
ture influences caused by different types of failures. Various 
availability solutions for cloud were proposed [21]. Future 
work also includes using our proposed modeling approach to 
analyze these solutions and compare from a model-based 
analysis point of view. Large scale is a fact of life in CDCs. 
Thus, developing an effective approach for analyzing para-
metric sensitivity based on interacting-type hierarchical 
model and applying the hierarchical model to design the strat-
egy for deploying standby PMs in an optimized way are our 
future research directions. Finally, in reality, a cloud repair 
system must include at least two types of repair facilities: au-
tomated (software-based) and manual in which human inter-
vention is required. We plan to model that and then investigate 
how various parameters influence availability. 
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APPENDIX A. SYMBOL SETTINGS OF SRN MODELS UNDER 
SRS POLICY 

The definitions of guard functions and transitions due to 
PM failure and moving in Figure 1 are same as in [12]. To 
make our paper complete, we describe these defnitions in the 
following. TBLE A.1 shows the guard functions.  TABLE A.2 
and A.3 summarize rates of transitions modeling PM failures 
and PM moving, respectively. Note that the settings of PM 
moving rates in the interacting SRN sub-models are same as 
in TABLE A.3. 

TABLE A.1 Guard Functions for Monolithic SRN Model under SRS Policy 
Guard function Value 

1[ ]mg  if # wP =0 and # cP =0 then 1 else 0 
2[ ]mg  if # wP =0 and # cP >0 then 1 else 0 

3[ ]mg  if # cP =0 then 1 else 0 
 

TABLE A.2 Rates of Transitions Modeling PM Failures in Monolithic SRN 
Model under SRS Policy 

Transition Firing rate 

hfT  # h hP l×  

bchfT  # h hP l×  

bwhfT  # h hP l×  

wfT  # w wP l×  

bcwfT  # w wP l×  

cfT  # c cP l×  
 
 
 

TABLE A.3 Rates of Transitions Modeling PM Moving in Monolithic SRN 

Model and Interacting SRN Sub-Models under SRS Policy 
Transition Firing rate 

whmT  # whm whP g×  

chmT  # chm chP g×  

cwmT  # cwm cwP g×  

hcmT  # hcm hcP g×  

hwmT  # hwm hwP g×  

wcmT  # wcm wcP g×  
 

APPENDIX B. VERIFYING INTERACTING SRN SUB-MODELS 
UNDER IRS POLICY 

This section aims to validate the approximate accuracy of 
interacting SRN sub-models under IRS policy. 70%rh rn n= × , 

20%rw rn n= ×   and 10%rc rn n= ×  . The settings of the other 

system input parameters and rn are same as in the default set-
tings of Section 6.2. 

When pool size (initial number of PMs in a pool) is greater 
than 6, the monolithic SRN model under IRS policy becomes 
unsolvable. Thus we do experiment by varying hn from 3 to 
6. For each pool size, we vary the value of k and report the 
results. TABLE B.1 presents the downtime values (in minutes 
per year), indicating the increasing downtime value with in-
creasing value of k. TABLE B.2 presents mean number of 
non-failed PMs, validating the approximate accuracy of inter-
acting SRN sub-models under these configurations. When 
pool size is increasing, monolithic model can’t work. Thus, 
simulation results are used to verify interacting sub-models. 
TABLE B.3 shows the results by varying hot pool size from 5 
to 10000. The other parameter values remain unchanged as 
default.  These results confirm the conclusion of Section 6.2. 

 
TABLE B.1 Comparison of Downtime Values (In Minutes per Year) between 

Monolithic SRN Model and Interacting SRN Sub-Models under IRS 
Policy 

Pool size k Monolithic model Interacting sub-models 

3 
1 0.000524 0.000524 
2 1.572603 1.572603 
3 1573.6516 1573.6516 

4 
2 0.0020945 .00209 
3 3.14311 3.1431116 
4 2097.154493 2097.15449 

5 
3 0.0052324 0.0052324 
4 5.23503 5.23503107 
5 2620.1343 2620.134359 

6 
4 0.01045698 0.010456998 
5 7.847318 7.847318111 
6 3142.591768 3142.591768 

 
 
TABLE B.2 Comparison of Mean #PMs in Each Pool between Monolithic 

SRN Model and Interacting SRN Sub-Models under IRS Policy 

Pool Monolithic model Interacting sub-models 
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size hot warm cold hot warm cold 
3 2.997 2.97486 2.98958 2.997 2.97484 2.98958 
4 3.996 3.96633 3.98609 3.996 3.96631 3.98609 
5 4.995 4.95772 4.98259 4.995 4.95769 4.98259 
6 5.994 5.94904 5.97909 5.994 5.94900 5.97909 

 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE B.3 Comparison of Mean Number of Non-Failed PMs in Each Pool 
between Numeric Solution of Interacting Sub-Models and Simulation 
Results under IRS Policy  

Interacting sub-models Simulation 

Pool 
size hot warm cold hot warm cold 

5 4.9950  4.9586  4.9827  4.9959  4.9641  4.9870  
6 5.9940  5.9503  5.9792  5.9950  5.9565  5.9823  
7 6.9930  6.9420  6.9758  6.9931  6.9497  6.9797  
8 7.9920  7.9330  7.9723  7.9929  7.9396  7.9729  
9 8.9910  8.9255  8.9688  8.9933  8.9333  8.9701  

10 9.9900 9.9356 9.9240 9.9840 9.9360  9.9290 
50 49.950 49.686 24.697 49.935 49.662 24.705 

100 99.900 99.371 24.439 99.898  99.315  24.435 
250 249.75 98.428 24.445 249.69  97.982  24.485  
500 499.50 96.091 24.459 499.32 95.528 24.480 
750 749.25 95.449 24.559 748.79  93.772 24.485 

1000 999.00 93.800 24.565 998.37 91.452 24.491 
2500 2497.5 84.896 24.610 2496.1 81.819 24.616 
5000 4995.0 70.008 24.662 4993.7  67.178  24.495  
7500 7492.5 55.029 24.713 7491.4  52.150  24.622 

10000 9990.0 40.049 24.764 9989.0 41.226 24.524 
 
. 

 


