
A Methodology for Model-based
Verification of Safety Contracts and
Performance Requirements

Proceedings of the Institution of

Mechanical Engineers, Part O: Journal

of Risk and Reliability

000(00):1–13

©The Author(s) 2010

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI:doi number

http://mms.sagepub.com

Elena Gómez-Martínez†∗, Ricardo J. Rodríguez‡, Clara Benac Earle†, Leire Etxeberria Elorza]

and Miren Illarramendi Rezabal]
†Babel Group, ETSINF, Universidad Politécnica de Madrid, Spain
‡Dpto. de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, Zaragoza, Spain
]Embedded Systems Research Group, MGEP, Mondragon Unibertsitatea, Arrasate-Mondragón, Spain

Abstract
The verification of safety requirements becomes crucial in critical systems where human lives depend on their correct

functioning. Formal methods have often been advocated as necessary to ensure the reliability of software systems, albeit
with a considerable effort. In any case, such an effort is cost-effective when verifying safety-critical systems. Often, safety
requirements are expressed using safety contracts, in terms of assumptions and guarantees.

To facilitate the adoption of formal methods in the safety-critical software industry, we propose a methodology based
on well-known modelling languages such as UML and OCL. UML is used to model the software system while OCL is
used to express the system safety contracts within UML. In the proposed methodology a UML model enriched with OCL
constraints is transformed to a Petri net model that enables to formally verify such safety contracts. The methodology is
evaluated on an industrial case study. The proposed approach allows an early safety verification to be performed, which
increases the confidence of software engineers while designing the system.

Keywords
Safety analysis, Rail system safety, Performance modelling, Modelling/simulation, Life cycle engineering

1. Introduction

The growing adoption of software in safety-critical systems has put safety assessment in the spotlight, becoming a crucial
software engineering task as recognised by several initiatives (e.g., the ARTEMIS JU nSafeCer project [1]). Moreover, the
design and development of a system must be done with safety in mind, rather than add it in as an afterthought [2]. Several
real examples can be found in the literature showing the impact of a lack of safety assessment in industrial systems, such as
the flight errors of Air Canada airline, the explosion caused by an overflow in Ariane 5, or the unavailability of the Patriot

∗Corresponding author; e-mail: egomez@babel.ls.fi.upm.es

2 Journal name 000(00)

Missile control system in US army base camps [3; 4]. The earlier safety assessment is carried out in a system, the sooner
it can be redesigned to properly fulfil safety requirements, thus saving production and other costs.

Contract-based design is a popular approach for the design of complex component-based systems where safety properties
are difficult to guarantee [5; 6]. A key benefit of using contracts is that they follow the principle of separation of concerns [7],
separating assumptions that the environment of a component obeys from what a component guarantees under such an
environment.

The Unified Modelling Language (UML) [8] is widely adopted to model the design of a system. By providing the means
to include safety requirements in UML, the integration of safety activities in the normal software lifecycle is facilitated. For
safety specification, two approaches have been proposed: (i) to use the Object Constraint Language (OCL) [9], which is a
well-known language among the modelling engineering community; and (ii) to use specific UML profiles [10], which extend
the semantics of UML models. In [11], the use of both techniques was proposed to express fire prevention requirements of
a hospital facility.

Safety requirements modelling is an important part when designing, but some mechanisms must also be provided
to assess that safety requirements are indeed fulfilled [2]. To this goal, several formal verification techniques have been
proposed (e.g., model checking [6]).

In this paper, we focus on safety requirements and assessment in UML models. Namely, we explore the representation
of safety requirements as OCL constraints and their verification using Petri nets [12] as the formal model, obtained after
transformation of UML models enriched with OCL, plus UML profiles. By combining standard engineering practice, i.e.,
UML modelling, with formal verification techniques, i.e., Petri nets, we provide a rigorous safety analysis available for
software engineers.

As case study, we evaluate our approach in a real industrial scenario. We model a train door controller with UML,
specify its safety requirements, transform these models into Petri nets, and analyse them using well-established analysis
tools. The train door controller is in charge of opening and closing train doors and is developed by CAF Power & Automation
company1.

A previous version of this work can be found in [13]. Several enhancements have been carried out with respect to the
aforementioned work. In particular, the contribution of this paper is threefold: (i) We propose a three-step methodology
for model-based safety verification; (ii) We generalise and formalise the specification of safety requirements as OCL
constraints; and (iii) we formalise the transformation from OCL into Petri nets.

Although our aim in this work is to propose a methodology for the full development and analysis of safety and critical
systems, there are some current limitations. In this work, the focus is on a set of safety and performance requirements
that are represented at a very high abstraction level (components’ level). However, consistency between models is not
guaranteed. Moreover, some of the tools we used are not compliant with safety standards such as EN5012x and ISO26262,
and hence, safety systems cannot be certified by means of our approach. Our approach is notwithstanding useful to safety
engineers, since they may assess their designs at early phases, thus reducing development costs.

The rest of the paper contains the following sections. Firstly, Section 2 outlines the basic concepts. Section 3 presents
our methodology for model-based verification of safety contracts. Then, Section 4 applies our proposal to an industrial case
study. Section 5 discusses obtained results. Finally, Section 6 covers related work and Section 7 states some conclusions
and future work.

1 http://www.cafpower.com/es/

Gómez-Martínez et al. 3

2. Previous Concepts

2.1. UML

The Unified Modeling Language (UML) [8; 14] is a semi-formal general-purpose visual modelling language used for
specifying software systems. In this paper, some knowledge of UML is assumed. For more details we refer to [8; 14].

UML can be tailored for specific purposes by profiling. Profiling was introduced by UML to indeed add new capabilities
to the language. A UML profile is a UML extension to enrich UML model semantics defined in terms of: stereotypes

(concepts in the target domain), tagged values (attributes of the stereotypes) and constraints (formulae that apply to
stereotypes and UML elements to extend their semantics). Numerous UML profiles can be found in the literature targeting
different specific domains and non-functional properties system analysis (e.g., performance, dependability, security, etc.).
For instance, MARTE (Modeling and Analysis of Real-Time and Embedded systems) profile [15] provides support for
schedulability and performance analysis in real-time and embedded systems, while DAM (Dependability Analysis and
Modelling) profile [16] supports dependability analysis and SecAM (Security Analysis and Modelling) profile [17] focuses
on security aspects. In this paper, we use the MARTE profile to indicate the duration of activities in a UML model.

Another extension to enrich UML semantics is the Object Constraint Language (OCL) [9]. OCL is briefly introduced
in the following section.

2.2. Object Constraint Language

The Object Constraint Language (OCL) [9] is a formal language used to describe constraints on UML models. The main
purpose of OCL is to provide additional relevant information to a UML diagram while avoiding ambiguities arising from
the use of informal specification languages. Compared to other formal languages, OCL is sufficiently simple as to be usable
in an industrial setting.

An OCL expression can be adopted at four different levels: at classes, at specific class methods, at attributes, or at
association roles. An OCL expression provides a textual description about what it is expected or what it is performed by
a system. Note that an expression may incorrectly describe the system behaviour by a lack of consistency and coherence
between OCL expressions and system’s activity.

Unfortunately, a UML model annotated with OCL and a profile that provides support for non-functional properties
specification is not a suitable model to quantitatively or qualitatively evaluate these properties. To this aim, we propose the
use of Generalized Stochastic Petri Nets, which are introduced in the following.

2.3. Modelling and Analysis of Real-Time and Embedded systems

UML lacks the quantifiable notion of time, so that a UML design lacks the ability to adequately represent time concepts,
which is a fundamental feature in the QoS evaluation of a system. To overcome this limitation, the UML-MARTE (UML
Profile for Modeling and Analysis of Real-Time and Embedded systems) defined by [15] provides a framework within
UML that overcomes this problem introducing such capabilities as annotations (stereotypes and tagged values).

According to UML, each stereotype is made of a set of tags which define its properties. For example, the gaScenario

stereotype has respT as tagged value of MARTE to indicate the response time to be predicted in this scenario. Time durations
of activities are specified by means of gaStep stereotype and the hostDemand tagged value. The values assigned to tags
are either basic UML types or NFP types expressed using the Value Specification Language (VSL) syntax. In particular,
for complex NFP different values can be set: a value or variable name prefixed by the dollar symbol (value property); the
origin of the NFP (source), e.g., a requirement (req), a calculated parameter (calc), an estimated (est) or measured (mea)
value; the type of statistical measure (statQ), e.g., a mean or a variance. VSL enables the specification of variables and
complex expressions according to a well-defined syntax.

4 Journal name 000(00)

2.4. Generalized Stochastic Petri Nets

In this paper, we consider Petri nets [12] as the formal modelling language. More precisely, we translate the annotated
UML diagrams into Generalized Stochastic Petri Nets (GSPNs) [18], following the guidelines proposed in [19].

A GSPN is a graphical and mathematical formalism used for the modelling of concurrent and distributed systems.
Informally, a GSPN is a bipartite graph of places and transitions joined by arcs, describing the flow of the system with
concurrency and synchronous capabilities. Graphically, places and transitions are respectively represented by circles and
bars; while arcs are depicted by directed arrows. Places can hold tokens (graphically represented by a black dots or by a
number inside a place) that represent system resources or system workload, while transitions represent system activities. A
transition is enabled when its input places hold enough tokens. The firing of enabled transitions represents a change in the
system state. When a transition fires, tokens from input places are removed and placed in output places. The weight of arcs
connecting these places and transition determine how many tokens are removed/placed. A GSPN distinguishes two kind of
transitions: immediate transitions, which fire at zero time (i.e., its firing does not consume any time); and timed transitions,
which may follow different firing distributions such as uniform, deterministic or exponential distributions. In this paper,
we consider timed transitions with exponentially distributed random firings. Immediate transitions, depicted as thin black
bars, can have also associated probabilities to represent the system routing alternatives. Exponential transitions, drawn as
white boxes, account for the time that takes an activity to complete. Furthermore, there exist different semantics for the
firing of transitions; infinite and finite server semantics being the most frequently used. Since infinite server semantics is
more general (finite server semantics can be simulated by adding self-loop places), we will assume that the exponential
transitions work under infinite server semantics.

A GSPN defines also a function Π : T → N that maps transitions of the Petri net system onto natural numbers
representing the priority level of each transition. The priority of a transition t is indicated by π(t). In case of transitions
enabled at the same marking, the transition with highest priority fires first. Similarly, a GSPN also allows to define
marking-dependent enabling functions for transitions. These functions return a value of 1 to indicate whether the transition
is enabled, 0 otherwise. Enabling conditions of a transition t are depicted as boolean formulae between square brackets. In
these functions, the marking of a place p is denoted by #(p).

3. A Methodology for Model-based Safety and Performance Assessment

In this paper, we present a scenario-based methodology to verify performance and safety requirements at early stages.
The proposed methodology is an extension of the performance analysis methodology presented in [20]. The performance
assessment methodology has been evaluated in several case studies [21; 22; 20]. Both performance and safety methodologies
follow Software Performance Engineering (SPE) principles and techniques [23].

The proposed joint methodology uses UML diagrams [8] enriched with performance information by means of the
MARTE profile [15], and safety constraints expressed in OCL [9]. For the assessment, Petri nets are used (namely,
GSPN [18]). Therefore, this merged methodology allows safety and performance assessment at early design phases. This
assessment is in fact obtained as a “by-product” of the software life-cycle.

The proposed methodology depicted in Figure 1 comprises five different phases, which are outlined in the following
paragraphs:

1. Design. The software system is modelled using UML diagrams, mainly UML Composite Diagram (UML-CoD), UML
Class Diagrams (UML-CD), UML Interaction Overview Diagrams (UML-IOD), UML Sequence Diagrams (UML-
SD), and UML State Machine Diagrams (UML-SM). This phase captures the main system structural elements, their
behaviour, and interactions. As results, a set of UML diagrams representing the software system is obtained.

Gómez-Martínez et al. 5

2. Specification. This phase captures non-functional requirements of the critical system. It is composed of two parallel
activities:

• Performance Specification. In this phase, UML diagrams are annotated with performance information according
to the MARTE profile. Scenarios which may become crucial for the performance of the system are identified.

• Safety Specification. Each scenario where safety issues may arise is further specified by means of safety require-
ments. Safety requirements are first expressed as Safety Contracts Fragments [24], and then translated into OCL
within UML models.

As results UML diagrams annotated with OCL and MARTE are obtained in this phase.

3. Transformation into a Formal Model. In this phase, UML models enriched with MARTE annotations and OCL
constraints are translated into a so-call performance and safety model. Specifically, we use the formalism of GSPN [18].
As result, we obtain a GSPN that represents a safety-critical system, accounting for performance and safety issues.

4. Analysis. The aforementioned GSPNs are analysed to obtain measures of interest, such as response time, scalability,
or occurrence probability of undesired states. These measures can be obtained by analysis or simulation of the model.
We use the GreatSPN [25] tool for computing them.

5. Assessment. Lastly, the assessment phase verifies whether performance and safety requirements are fulfilled, which
helps system designers to consider alternatives for improving system design from a performance-safety perspective.

Note that this methodology for assessing safety-critical systems is transparent to software designers, that is, a software
designer should not be concerned with the formalism and tools used in the analysis phase, but rather focus on the design
and specification phases.

In the sequel, we describe in detail these phases. The proposed methodology is evaluated in Section 4, where safety
properties of an industrial case study are verified.

3.1. Design Phase

The first step in our methodology is to model a software system, as well as its behaviour. Since reuse of software components
is key in, for instance, aerospace and automotive domains [26], a component-based design is followed. We use UML [8]
as the modelling language for software design. We mainly focus on those UML diagrams which allow us to extract
performance or safety information for the next steps of our approach: Class Diagram (UML-CD), Use Cases (UML-UC),
Deployment Diagram (UML-DD), Interaction Overview Diagram (UML-IOD), Sequence Diagram (UML-SD), Activity
Diagram (UML-AD) and State Machine Diagram (UML-SM). For the component-based design, we also use Composite
Structure Diagrams, in particular, the SysML [27] extension. The reason is that in SysML input and output ports can be
defined and they are used in the safety contract as explained in Sect. 3.2. The following paragraphs explain how we use
each of these diagrams. For a more extended explanation of these UML diagrams, see [8].

• UML Class Diagram (UML-CD) describes the static structure of a system in terms of classes and relationships
between classes. Classes are essentially organized through aggregation, inheritance or association relationships.

• UML Composite Structure Diagram is a type of static structure diagram which represents the internal structure of
a structured classifier or collaboration to describe a functionality. Thus, a Composite Structure Diagram represents
runtime instances collaborating over communication links to achieve some common objectives. This diagram can
include, among others, parts, a set of one or more instances which are owned by a containing classifier instance,
and ports, which define a property of a classifier that specifies a distinct interaction point between that classifier and
its environment or between the (behaviour of the) classifier and its internal parts. Ports may specify inputs, outputs

6 Journal name 000(00)

First Design

Safety Specification

UML Diagrams

Safety Requirements

Analysis

Results

OCL Contracts

Performance Specification

Performance Information

MARTE annotations

Assessment
New Design

UML Diagrams

Transformation into Formal Model

Petri nets

NO

YES

objectives?

Fig. 1. Methodology for model-based safety analysis.

Gómez-Martínez et al. 7

as well as operating bidirectionally. In contract-based design each safety critical component of the system and non-
critical components are seen as separated components [28] which interact with their environment. In the proposed
methodology, we use Composite Structure Diagrams to represent components and subcomponents of a critical system.

• UML Use Case Diagram (UML-UC) is a behavioural diagram that describes the functionality of a system in such a
way that shows all available functionalities. In our approach, UCs model usage scenarios, as well as the population,
that is, the number of concurrent users in each scenario if this would be the case.

• UML Interaction Overview Diagram (UML-IOD) is a special and restricted kind of UML Activity Diagram which
represents the flow relationships among fragments and UML Sequence Diagrams. IODs represent high-level scenarios,
as well as their population.

• UML Deployment Diagram (UML-DD) identifies the system software components as well as the hardware nodes in
which the former are deployed. DDs are used to have a static view of the software architecture and, for the performance
perspective, to show potential communication delays and/or the available resources.

• UML Sequence Diagram (UML-SD) shows object interactions; more specifically the messages exchanged between
the system components arranged in time sequence. It provides useful constructors such as loops, alternatives or parallel
execution. It is used to model usage scenarios with respect to a timeline. SDs represent the behaviour of usage scenarios
with time information, host demands, messages size exchanged and acquisition/release of resources.

• UML Activity Diagram (UML-AD) specifies the control flow of a component, subsystem, or system. An activity
represents an action in the execution of the activity. In our methodology, ADs are employed to express execution times
of actions within a specific activity, as well as the acquisition/release of concrete resources.

• UML State Machine Diagram (UML-SM) describes the lifetime of objects. A state represents a time period in the
life of an object during which the object satisfies some condition, performs some action or waits for an event. SMs
are mainly used to get information concerning activities duration. In component-based design, the internal states of a
component are modelled using a UML-SM.

The software engineer decides which of these UML diagrams better express the performance and safety design of the
software system, as well as the level of detail, i.e., an IOD shows high-level interactions while a SM specifies object level.
Nevertheless, from the performance and safety perspective, it is sufficient to model a UML-CS and at least one behavioural
view (IOD, SD, AD and/or SM).

3.2. Specification Phase

Once the system is designed and modelled by means of UML diagrams and, following SPE principles, we now introduce
the performance and safety specification of the software system, i.e., information that is relevant from performance and/or
safety perspective. We focus on potential critical scenarios, which must meet both safety and performance requirements.
Recall that this phase is divided into two parallel activities (or steps), which are further described in the following paragraphs.

Performance Specification Following SPE principles, we introduce performance specification by annotating design dia-
grams. Performance information allows performance objectives to be predicted. Performance objectives not only include
performance metrics with a specific threshold; it is typically a set of numbers describing the context for a particular situation
in a scenario from a performance perspective, called performance scenario. Performance objectives can be expressed in
several different ways, including response time, throughput, or constrains on resource usage [23]. We specify performance
information by means of the MARTE profile [15] and, specifically, the Generic Quantitative Analysis Model (GQAM)
framework. MARTE annotations capture properties, measures and requirements of interest for carrying out performance
analysis.

We use a subset of MARTE annotations detailed in [29]. In our proposal, MARTE annotations account for:

8 Journal name 000(00)

• The performance measure to be computed, which is the response time.
• The system’s closed workload, which describes the number of users that will concurrently populate the system.
• The host demand an activity consumes.
• The routing rates in the system which are expressed as probabilities.
• The utilization of the shared resources, that respectively describe the acquisition and release of the resources.

Safety Specification The second step encompasses the definition of safety requirements to be verified. In this paper, we
assume that safety requirements are informally captured from natural language and formally specified as Safety Contract
Fragments (SCF) [24]. These SCF are later transformed into OCL and integrated into UML models to be analysed in the
next phase.

A SCF defines a safety contract as a set of assumptions and a set of guarantees, for a given component and under a
given environment. An assumption is what is expected to be met by the environment, while a guarantee specifies how the
component behaves in such an environment. A component of a component-based system, considering only its interaction
with the environment, can be formally defined as:

Definition 1. A component C = 〈I,O〉 of a system is composed of a set I of input ports and a set O of output ports.

Given Definition (1), a SCF SC of a component C = 〈I,O〉 can be defined as:

Definition 2. A SFC SC = 〈A,G〉 of a component C = 〈I,O〉 is a tuple of safety assumptions and safety guarantees2.

A safety assumption a ∈ A is a (atomic or composite) logic proposition that relates one or more of the input ports of a

component. Similarly, a safety guarantee g ∈ G is a logic proposition that relates one or more of the output ports of a

component.

Thus, a SCF SC defined over a component C = 〈I,O〉 relates the input and output ports of the component with
the assumptions (i.e., what it is expected) and guarantees (i.e., what it is performed), respectively. Note that for us how
the guarantees are achieved is a black-box operation. Besides, the guarantees are only assured when the assumptions are
fulfilled. Otherwise, the result of the component is not guaranteed and thus, cannot be trusted as a well-performed operation.

Recall that OCL is a UML extension to express constraints acting over a context into UML models (see Section 2.2).
Among other constraints, an OCL can define invariants (inv) as state conditions always fulfilled, or pre/post-conditions
fulfilled before/after an operation is performed. In this paper, we focus on OCL invariants.

Definition 3. An OCL constraintR = 〈X ,V〉 is a tuple conformed by a context X , that represents the context in which is

defined, and the invariant formula V = 〈ls, rs〉, where ls, rs are two logical propositions interpreted as ls implies rs.

Following the above definitions, we can straightforwardly map an SCF into an OCL constraint:

Definition 4. An OCL constraint R = 〈C,SC〉 describes a context defined by a component C, and an invariant formula

defined by the SCF SC = 〈A,G〉.

Thus, a SCF defined over a component can be mapped into an OCL constraint, and integrated within UML models. In
the next phase, these OCL constraints are transformed into Petri nets to drag the safety requirements into the analysis step.

3.3. Transformation into Formal Model

The next phase of our methodology encompasses the transformation of performance and safety scenarios into GSPNs. This
phase in turn is divided into two steps, depending on the model to be transformed: Firstly, UML diagrams with MARTE
annotations; and then, OCL constraints.

2 As in [11], for the sake of simplicity we restrict the logic of SCF assumptions and guarantees to AND and OR logic operators.

Gómez-Martínez et al. 9

Performance Transformation. In this step, we need to obtain a performance model for each critical scenario that we have
previously annotated.

As above mentioned, performance models are formal models that help to obtain measures of interest (e.g., system
response time) by analysis or simulation. There are different kinds of performance formalisms widely accepted in SPE:
queuing networks [30], stochastic process algebras [31] and stochastic Petri nets [18]. There exist SPE methodologies that
translate performance-annotated UML models into the aforementioned formalisms. For example, the work in [32] to obtain
queuing networks, the work in [33] to obtain process algebras or [34; 35] to obtain Petri nets. Some of these methodologies
have associated tools that automate the translation process.

We propose to use stochastic Petri nets (SPN) and concretely generalized (GSPN). Section 2.4 gives a brief introduction
of Petri nets formalism. In the following, we assume that the reader is familiar with this formalism. This choice has been
driven by two main factors: (i) GSPNs provide a formal notation which avoids any source of ambiguity while representing the
stochastic behaviour of systems; (ii) GSPNs have a clear graphical notation and several tools have been developed for analysis
(for instance, GreatSPN [25], TimeNET [36], or PeabraiN [37], among others). Moreover, the transformation from UML
to GSPN can be carried out using well-established tools, such as ArgoSPE [38], ArgoPN [39] and ArgoPerformance [35].

We translated UML diagrams with performance information augmented MARTE profile into GSPNs using the ArgoSPE
plugin developed in [38]. This tool implements the algorithms proposed in [40] and [19]. The entire translation process is
detailed in [29]. Summarizing this process, object states and resources are mapped into places within the Petri net. Events
and actions are translated into immediate and timed transitions, respectively. The average execution of an action is specified
with an exponentially distributed random variable. Alternative fragments or conditions are translated into transition with
probabilities.

Safety Transformation. As second step, OCL constraints are transformed into GSPN as follows. This transformation is
manually carried out since ArgoSPE does not support this translation yet. Recall that each OCL invariant SC of a constraint
〈C,SC〉 is a proposition of a set of assumptions A implying (implies binary operator, →) a set of guarantees. The
satisfaction of a safety constraint (i.e., the invariant) is transformed to indicate the violation of that invariant by reaching a
marking. Thus, assuming SC : A → G we build a representative GSPN model to check whether A ∧ ¬G is fulfilled in a
single-execution of the Petri net.

The transformation is performed following a top-down approach. First, assumptions and guarantees are processed: for
each assumption a ∈ A and guarantee g ∈ G, places pa, pg , are created. Then, a place p¬SC representing the violation of
SC and an input transition t¬SC are added, having a priority π′ greater than the priority of any other transition in the Petri
net, i.e., π′ > π(t),∀t ∈ T , where π(t) is the priority of transition t. We define the following marking-dependent enabling
function f for transition t¬SC :

ft¬SC
=

{
1, fA ∧ f¬G
0, otherwise

(1)

where fA =
∧|A|

i=1 #(pa) ≥ 0 (f¬G =
∧|G|

i=1 #(pg) = 0) is a boolean formula in conjunctive normal form that verifies
whether the marking of pa(pg) is greater than or equal to 0, i.e., #(pa) ≥ 0,#(pg) = 0,∀a ∈ A, g ∈ G.

Note that the inequality of each pa becomes an equality (i.e., #(pa) = 0) only when the negation of an assumption
a is needed, as it happens with the guarantees, otherwise, #(pa) > 0. That is, we consider the fulfillment of an assump-
tion/guarantee as having a token in the place that represents such an assumption/guarantee). Similarly, the fulfillment of
the negation of an assumption/guarantee means to have no token in such a place.

Currently, the translation of OCL constraints is not automatically integrated in ArgoSPE. Thus, some manual tuning
is needed. Once the Petri nets that represent the system and the safety constraints are obtained, they are merged using
transitions that set tokens in places that represent the same issue in the Petri net of the system, regardless whether they are
expressing the negation of clauses or not: the negation of a clause only indicates the symbol when checking the marking

10 Journal name 000(00)

Fig. 2. Transformation from an OCL invariant SC = 〈a1 ∨ a2, g1 ∨ g2〉 into Petri nets.

of the place. The composition is carried out using the tool called algebra of GreatSPN [25]. As a final step, we manually
tune the merged network to ensure that places pa, pg and places that represent the same issue are identical, i.e., they have
exactly the same input and output transitions and the same initial marking. Recall that a place p is identical of a place q 6= p

iff m0(p) = m0(q), •p = •q, and p• = q•.
The full process of transformation performed guarantees the following:

• The priority of t¬SC equal to the maximum priority of the Petri net ensures that, once enabled, this immediate transition
is fired first.

• Places pa, p¬g,∀a ∈ A,∀g ∈ G being identical to places that represent the same issue ensure that those additional
places truly represent when the issue is occurring, at any time.

• The marking-dependent enabling function ft¬SC
ensures that all conditions are evaluated at the same time.

Let us illustrate this transformation with a small example. Consider a SC = 〈a1 ∨ a2, g1 ∨ g2〉. Four places
(pa1

, pa2
, pg1 , pg2) are added and set as identical places to places that represent the same issue in the original Petri net.

Then, a place p¬SC and a transition t¬SC are added. Let us assume that the maximum priority of any transition of the Petri
net is equal to one. Thus, priority π′ of t¬SC is set to 2, i.e., π′ = 2. Finally, the marking-dependent enabling function
ft¬SC

is defined as ft¬SC
= {1 : (#(pa1

> 0 ∨ #(pa2
) > 0) ∧ (#(pg1 = 0 ∧ #(pg2 = 0)); 0 : otherwise}. Figure 2

shows the Petri net generated with the transformation in this example. Places that refers to the negation of an assumption
or guarantee are drawn with a dotted line.

3.4. Performance and Safety Analysis

According to the proposed methodology, we carry out safety and performance analysis under steady state assumption in
order to validate if the critical system meets safety and performance requirements, respectively. To this aim, we use the
GreatSPN tool [25]. Regarding performance objectives, we compute response time by computing the transition throughput,
since response time is its inverse. Concerning safety requirements, in terms of Petri nets, we verify whether places that
represent violation of safety conditions are eventually marked (i.e., a safety condition is eventually violated) in an execution
of the net.

3.5. Assessment

When the safety-critical system does not meet performance objectives or safety requirements, an assessment phase is
necessary to re-design and improve the initial design. From the performance perspective, we follow the recommendations
detailed in [29; 20]. This systematic performance assessment is based on SPE techniques and techniques [41] and proposes
design alternatives, such as resource replication, the application of performance patterns [42], and performance anti-
patterns [43]. Regarding safety assessment, we are exploring ways to systematically propose new redesigns. For the
moment, this redesign must be done manually by safety experts.

Gómez-Martínez et al. 11

Fig. 3. The TCMS System and others components.

4. Case Study: A Train Doors Controller

In this section, we pursue to perform an early safety verification in a real industrial case study, following the methodology
proposed in Section 3.

4.1. System Description

As case study, we consider the door control management performed by a Train Control and Monitoring System (TCMS).
The TCMS is a complex distributed system that controls many subsystems such as the door control, traction system control,
air conditioning control, video surveillance, passenger information system, etc. The TMCS provides information to the
driver, such as the state of doors, the state of the traction, or the state of the alarm system, which is gathered by a set of
Input/Output (IO) modules. Figure 3 shows the communication architecture among TMCS and other train subsystems.

The system level requirements concerning the operation of opening and closing of doors are satisfied by the following
components:

• The TCMS component decides whether to enable or disable the doors considering the driver’s requests and the train
movement. Thus, doors must be enabled before they can be opened, and disabled before closing;

• The Door component controls and commands the opening and closing of a door;
• The Traction component controls and commands the train movement; and
• The MVB (Multifunction Vehicle Bus) component intercommunicates the components.

Door control systems differ depending on the type of train where they are acting. For instance, a door of a suburban or
underground train has a button that enables passengers to open it upon request, while in the case of long distance and high
speed trains, doors have no buttons since they are opened only upon the driver’s request. In this paper, we consider a door
control system in a suburban train, i.e., a door has open buttons inside and outside the train coach. Note that in this case the
driver must first enable doors before they can be opened upon passenger’s request. Doors also include an obstacle sensor
to prevent a closing operation when an obstacle is detected. Figure 4 depicts the door considered in this system.

The train subsystems such as the door control system are safety-critical systems and, therefore, railway standards must
be applied during their development. The major standards are the European EN5012x family of railway standards. The
following are the three standards relevant to the case study:

• EN50126 [44]: Railway specifications — The specification and demonstration of Reliability, Availability, Maintain-
ability and Safety (RAMS);

12 Journal name 000(00)

Fig. 4. The image of the door.

• EN50128 [45]: Railway applications — Communication, signalling and processing systems — Software for railway
control and protection systems, it is known as the Railway Software Standard and is a specialisation of IEC 61508 for
railway;

• EN50129 [46]: Railway applications — Communication, signalling and processing systems — Safety related electronic
systems for signalling. EN 50129 gives precise guidance how to build a safety case and particularly what has to be
included in the various parts of it;

The Safety Integrity Level (SIL) of the door control system is SIL 2. A SIL specifies a target level of risk reduction and
is typically defined in components that operate in a safety-critical system [47] [45]. There are four discrete integrity levels
associated with SIL with SIL 4 the most dependable and SIL 1 the least. The SIL can be assigned to any safety relevant
function or system or sub-system or component. The SIL level allocation is made taking into account the rate of dangerous
failures and tolerable hazard rate of the function, system, sub-system or component.

The SIL of a system to be developed is determined on system level (EN 50126). The software “inherits” the SIL as any
other part of the system through decomposition. Then, the EN 50128 standard defines what must be done to develop SW
functions with that SIL.

In railway domain EN 50129 standard, which explicitly claims to be “the sector specific interpretation of IEC 61508”, a
safety case is required. A Safety Case is “a structured argument, supported by a body of evidence that provides a compelling,
comprehensible and valid case that a system is safe for a given application in a given environment” [48]. A Safety Case
should demonstrate the fulfilment of the allocated Safety Integrity Level, SIL2 in this case.

In a compositional approach [1] [49], a safety case would contain the top-level claim about the safety of the overall
system, the decomposition into more detailed claims about its constituent subsystems or components, the arguments that
show that the components fulfil the safety-related claims that are made about its properties and parts of the component
specification may be expressed as component contracts, i. e. as assumptions on the component’s environment and guarantees
of properties that the component will satisfy when those assumptions are fulfilled. Some of these contracts will address
safety-related properties and are referred to as “safety contracts”. The safety case will then show, either explicitly or by
referencing other documentation that both the assumptions and the guarantees of these safety contracts are fulfilled.

This paper focuses in the safety contracts that will be part of the safety case. A safety contract approach ensures that
there is traceability between the evidence provided in the safety argument, the software system design and the system
hazards which must be controlled. Establishing such traceability is one of the key challenges for demonstrating the safety
of systems [49].

Gómez-Martínez et al. 13

Fig. 5. UML Composite Structure Diagram of the Train System.

The case study presented here concerns a real system where some simplifications were made. Namely, the interaction
with other components of the TCMS, the dependencies with other subcomponents, and their communication were omitted.
And the main focus is on normal behaviour (although erroneous modes are also described).

4.2. On Design Phase

According to the methodology proposed in Section 3, the first step is to design the critical system. In the following, we
describe each safety-critical component in detail.

Figure 5 shows the UML-CS of the Train System. The system is composed by aTCMS component,N Door components,
a Traction component and a MVB component. The Train System has two external input ports, connected to the input
ports of TCMS component (namely, open_door and close_door), which receive the driver requests for enabling or disabling
the doors. Output ports of the system report about the status of the overall system: A door_status enumerated value to
indicate whether the doors are being opened, closed, already open, already closed or error state; a door_enabled boolean

14 Journal name 000(00)

value to indicate whether the doors are enabled or disabled; and a traction_on boolean value to express whether the traction
system is on or off.

As input, the Door component receives the command to enable or disable the door (enable_door boolean value) from
TCMS component. As output, the Door component reports about the status of the door (doorStatus enumerated value),
and whether the door is enabled (door_enabled boolean value). Note that these outputs are in fact inputs port for TCMS
component.

Traction component receives as input an enable/disable traction command (enableTraction boolean value) from
TCMS component; and provides as output a boolean flag to indicate the traction status (switched_on boolean value).

Finally, the MVB component represents the communication among the components of the Train System.
Figure 5 also shows the subcomponents of the Door component, i.e., the controller (in the following we name it as

DoorController), the limit sensors, the obstacle sensor, and the interior/exterior opening buttons.
Figure 6 shows the UML-SM of DoorController. In its normal behaviour (detailed in the parallel region called

normal) has four states: opening, isOpen, closing, and isClosed (initial state). The interior/exterior opening buttons trigger
when pushed the intButtonOpening and extButtonOpening events, which lead the DoorController state to opening

state, if enableDoor is true. Once the door is totally open, openSensor triggers an openLimitReached event that causes
the DoorComponent to change to isOpen state. It remains in this state until the door is disabled, moving to closing state.
In this state, two exits are possible: When an obstacle is detected, or the interior/exterior opening buttons are pushed and
the door is enabled, the DoorController state moves to opening state again; When the closeSensor component
triggers a closedLimitReached event, since the door has been totally closed, the DoorController is lead to isClosed

state.

Apart from the normal behaviour of control of the door, erroneous behaviours are also modelled in parallel regions.
The door could not be closed if there is an obstacle in the doorway; if the obstacle is there for a long time (EnduringOb-

stacleTime) the driver should be warned. The enduring obstacle can be caused by a person or bulk but also it can be due to
a problem or failure of the obstacle sensor. This behaviour is detailed in the parallel region called ObstacleMonitoring of
the state machine.

For detecting errors in the limit sensors (openLimitReached or closedLimitReached), impossible combinations of sensors
states are checked: If the door is open (state isOpen) the closedLimitReached could not be 1, if the door is closed (state
isClosed) the openLimitReached could not be 1 and both sensors could not be 1 together. If any of these erroneous situations
occurs a transition is triggered to an error state. This behaviour is detailed in the parallel region called SensorErrorMonitoring

of the state machine.
For detecting errors during opening or closing, in parallel with the normal functioning, the time that remains in opening

or closing states is monitored and if this time is bigger than a specified timeout a transition is triggered to an error state.
This behaviour is detailed in the parallel region called OpeningClosingTimeMonitoring of the state machine.

As critical operations, we focus on the control of doors. In the following, we present the UML Sequence Diagrams
(UML-SD) for the opening and closing of doors.

Figure 7 depicts the UML-SD for door opening scenario (normal behaviour). When a train driver requests the opening
of doors, the TCMS first checks whether the train status is suitable for opening the doors without risk, i.e., the train is
really stopped. Whether this safety constraint is fulfilled, the “enable door” command is sent to the DoorController
component. Then, the DoorController component opens the door when enabled and upon passenger’s request, which
is sent when a passenger press the interior/exterior opening door button.

Similarly, the door closing scenario is shown in Figure 8. When the driver commands doors closing, the TCMS
system sends the “not enable door” command to theDoorController component. TheDoorController component
disables the door and closes it when the operation can be safely completed, i.e., there is no any obstacle detected. Otherwise,

Gómez-Martínez et al. 15

Fig. 6. UML State Machine Diagram of the DoorController.

16 Journal name 000(00)

sdOpeningDoors

loop [until dc.Status == OPENING]

loop

[!limitReached]

[for all Door]

alt

tr : Traction

Passenger

dc.openSensor :

LimitSensor

dc.button :

DoorButton

Driver

db : DriverButton t : TCMS dc : Door

isLimitReached()

press()

enableTraction(FALSE)
enableDoors()

open()

changeStatus(OPENING)

switchLED(OFF)

changeStatus(DISABLED)

enableDoor(TRUE)

switchLED(ON)

traction_on(FALSE)

press

changeStatus(OPEN)

switchLED(ON)

changeStatus(ENABLED)

doorStatus(OPEN)

doorStatus(OPENING)

open()

enabledDoors()

doorStatus(CLOSED,ENABLED)

<<gaScenario>>

{respTime=(expr=$RT_Opening,unit=’s’,

statQ=mean,source=calc)}

Fig. 7. UML Sequence Diagram representing the door opening operation.

Gómez-Martínez et al. 17

the door is opened, and closing operation is again carried out. Recall that this closing/opening loop occurs until the door
can be safely closed.

4.3. On Specification Phase

On Performance Specification Phase. Concerning our case study, safety engineers estimate the following performance
objectives (PO) that the system must meet:

PO1. Response time of the Opening Doors scenario should be between 3 and 5 seconds.

PO2. Response time of the Closing Doors scenario should be between 3 and 5 seconds.

These performance requirements are collected by two predicted variables named $RT_Opening and $RT_Closing,
respectively, in the gaScenario stereotype of MARTE (see upper grey-highlighted note in Figures 7 and 8). In this case,
response time is a measure to be calculated during analysis as indicated by source=calc. The unit of measurement are
seconds and the statistical measure is a mean. Performance information use as duration activities within the UML model
are gathered from technical specifications of real industrial train systems.

On Safety Specification Phase. A safety engineer defines the following safety requirements (SR) in the context of this case
study:

SR1. When a door is enabled, traction is off, and a passenger press the opening button, the door starts to open unless the
door is already open.

SR2. When an obstacle is detected and the door is closing, it starts to open.

SR3. When the door is enabled and the close event is received, the door starts to close unless the door is already closed.
The close event is translated by the TCMS and sent to the Door component as ¬ enable_door.

In this phase, these requirements are expressed in terms of SCFs considering the component-based system depicted in
Figure 5:

• SR1 = 〈door_enabled ∧ ¬traction_on ∧ (inButtonOpening ∨ extButtonOpening), doorStatus =

OPENING〉, defined on the TCMS component.
• SR2 = 〈obstacle, doorStatus = OPENING ∨ doorStatus = IS_OPEN〉. In this case, defined on the

DoorController component.
• SR3 = 〈door_enabled ∧ ¬enable_door, doorStatus = CLOSING〉. This SCF is defined also on the TCMS

component.

Since we do not distinguish between internal or external button opening in our Petri net model, in the sequel we consider
inButtonOpening ∨ extButtonOpening as a single event named openButton. Note that SR1,SR3, requirements are
defined on the TCMS component, while the context of SR2 is the DoorController component since the input and
output ports that relate the SR2 belong to DoorController. As we have previously defined in Section 3.2, assumptions
and guarantees of an SCF relate input and output ports of the components where they are defined.

Following Definition 4, these SCF are transformed into OCL, embedded within the UML-CD of the system. Namely,
the constraints expressed as OCL language are shown at Code 1. Each OCL rule in that listing corresponds respectively to
each one of the aforementioned SCF.

The context of OCL is directly taken from where SCF are defined. Finally, these OCL rules are transformed into Petri
nets and integrated within the GSPN of the case study, as we explain in the next section.

18 Journal name 000(00)

sd ClosingDoors

loop
[for all Doors]

loop
[until d.status == CLOSING]

alt

[limitReached]

[!limitReached and obstacleDetected]

[!limitReached and !obstacleDetected]

t : TCMS d.obsSensor :

ObstacleSensor

d : Door d.closeSensor :

LimitSensor

db : DriverButton

Driver

anyObstacleDetected()

isLimitReached()

closeDoor()

changeStatus(CLOSED)

changeStatus(CLOSING)

doorStatus(CLOSED)

closeDoors()

enableDoor(FALSE)

doorStatus(CLOSING)

switchLED()

press

<<gaScenario>>

{respTime=(expr=$RT_Closing,unit=’s’,

statQ=mean,source=calc)}

Fig. 8. UML Sequence Diagram representing the door closing operation.

Gómez-Martínez et al. 19

Code 1. OCL constraints obtained from SCF transformation.

context TCMS
inv: door_enabled and not traction_on and open_button

implies doorStatus = OPENING

context DoorController
inv: obstacle

implies (doorStatus = OPENING or doorStatus = IS_OPEN)

context TCMS
inv: door_enabled and not enable_door

implies doorStatus = CLOSING

4.4. On Transformation Phase

Following the methodology proposed in Section 3, this phase encompasses the transformation of the performance and
safety scenarios described by UML-SDs, enriched with MARTE and OCL constraints, into GSPNs.

For this purpose, we use the ArgoSPE tool developed by [38]. Figure 9 depicts the GSPN obtained after transformation
of UML-SD shown in Figures 7 and 8. The left-hand side of the figure represents the door opening scenario, while the
right-hand side represents the door closing. The transformation process is partially done in an automatic way by ArgoSPE,
since OCL constraints transformation is unsupported by the current release of ArgoSPE and thus some manual tuning is
needed.

Some additional modifications are made manually. Specifically, those related to other elements of the system that are
not completely considered in the first Safety-Oriented Design Phase. In particular, we have also modelled the Traction
operation without considering human interaction, thus, our system automatically speeds up after closing the door and it
brakes when the traction receives a traction stop signal.

OCL constraints described in the previous section are now transformed into Petri nets, following the guidelines given
in Section 3.3. The Petri nets generated from SR1,SR2, and SR3 are depicted in Figure 10. Let us briefly exemplify how
a PN representing an OCL constraint is built. Recall that we represent the violation of the safety condition as a Petri net.
Consider OCL constraint TCMS_SR1. Applying our transformation, such an invariant is violated when (door_enabled∧
¬traction_on∧open_button∧¬(doorStatus = OPENING) if fulfilled. A place is generated to represent each of the
clauses, and extra places/transitions are added to join them into a place that represents the OCL constraint (place ¬SR1,
in this case, see Section 3.3).

Our aim during analysis is to check whether the places ¬SR1,¬SR2, and ¬SR3 are marked in a single run execution
of the net, thus indicating that safety conditions are not fulfilled. Recall that the probability of (eventually) violating a safety
condition (i.e., an invariant) is represented as a place being (eventually) marked.

These nets can finally be merged with the PN of the safety scenarios depicted in Figure 9. Both nets are merged using the
transitions that create tokens in places representing the same issue, i.e., places tractionOn and doorStatusOPENING
in Figure 10 represent the same state than p_traction_on_TRUE and p_door_CLOSING, respectively, in Figure 9.
The connection to places representing safety contracts have been highlighted (grey colour) in Figure 9. Recall that places
in Figure 10 depicted with a dotted line represent the negation of an assumption or guarantee and thus we should check
whether these places are marking or not.

4.5. On Analysis Phase

In this step, the software engineer reviews the performance and safety objectives, which were defined during the design
step, and carries out the analysis of the performance and safety model.

20 Journal name 000(00)

O
p

en
in

g
D

oo
r

C
lo

si
n

g
D

oo
r

Fig. 9. Petri net corresponding to the opening and closing of a door.

Gómez-Martínez et al. 21

(a) OCL constraint TCMS_SR1 (b) OCL constraint DoorController_SR2 (c) OCL constraint TCMS_SR3

Fig. 10. Petri net representation of OCL constraints of the case study.

Regarding performance requirements, as determined in Section 4.3, the system has two performance objectives PO1
and PO2: response times between 3 and 5 seconds for both scenarios, i.e., Opening and Closing Doors. Concerning safety
requirements, the system must fulfil safety objectives TCMS_SR1, DoorController_SR2 and TCMS_SR3 described
by means of OCL constraint in Section 4.3.

Therefore, the merged PN depicted in Figure 9 is finally analysed to obtain measures of interest from performance
and safety viewpoint. We use the GreatSPN tool [25] to compute these objectives. The response time of a scenario is
calculated as the inverse of the throughput of the transition that closes the entire execution cycle (see transitions end_cycle

in Figure 9). The computed response times are 3.4 seconds and 4.2 seconds for Opening Doors and Closing Doors scenarios,
respectively.

On the other hand, we also compute the probability of places¬SR1,¬SR2,¬SR3 having a marking greater than zero.
When this situation occurs, it indicates that the OCL constraints TCMS_SR1, DoorController_SR2, and TCMS_SR3
are not fulfilled. A single run execution of the net is performed, and returns zero values for these probabilities, thus safety
contracts are fulfilled in the system model. Let us finally remark that final effort must be focused on assuring that the
system implementation matches the UML models. Otherwise, although a safety verification of models have been proved,
the system may reach unsafe states.

Note that the UML models that we described here are enriched with MARTE profile annotations to carry out performance
analysis, but these enriched data are not used for the safety analysis. However, these data can be necessary for verifying
some safety properties where timing become relevant [50]. To this aim, we may use OCL/RT [51], an extension of native
OCL to specify time issues, in conjunction with the MARTE profile, and translate such an information into the GSPN
models. We consider this an interesting issue which deserves further study.

4.6. On Assessment Phase

According to our methodology detailed in Sect. 3, this phase proposes alternatives for getting an “optimal system config-
uration” for the Train Doors Controller system. These alternatives include resource replication (using utilization resource
analysis) and application of performance patterns and antipatterns, in the performance perspective. As commented in
Sect. 3, we are analysing how to systematize alternatives to improve the system from the safety point of view.

Since in the case study both performance objectives and safety requirements are met, the assessment phase does not
yield further improvements. Therefore, the initial configuration is the “optimal configuration”.

5. Discussion

The assessment of software system is a process that is acquiring increasing importance in industrial practice. The work
carried out allowed us to determine a design and configuration that meet safety and performance requirements and, therefore,
to improve the final product. In the following, we discuss limitations of the outcomes obtained, lessons learned and issues
disclosed while applying the methodology, we also explain some of the consequences of all these matters.

22 Journal name 000(00)

We can interpret the results from two perspectives. On the one hand, we discuss the outcomes explicitly related to the
methodology. On the other hand, we analyse the collected data obtained by applying the methodology to the proposed case
study in order to achieve an optimal configuration.

5.1. Concerning the Methodology

The ultimate aim of our research is to achieve a unique process to evaluate software systems in order to meet non-functional
requirements. Following this rationale, the proposed methodology extends the performance assessment proposed in [20]
to include other feature, in this case, specifically safety requirements. The proposed methodology is therefore intended to
support safety-critical domains that meet both performance and safety requirements.

Concerning the process, the methodology explicitly influences the development process by focusing on safety and
performance properties. The methodology systematically defines all the steps needed to discover potential safety and
performance problems and how to mitigate them.

Bass et al. [52] determine that quality attributes can never be achieved in isolation, the achievement of any one will
have an effect, sometimes positive and sometimes negative, on the achievement of others. As pointed in [20], when we
applied our methodology, the improvement of system safety and performance could influence other quality attributes, such
as maintainability or cost, and in the worst case, the improvement of safety and performance could decrease other quality
attributes. Specifically, since the benefit of using design patterns for improving the quality of a system is widely recognized,
the use of patterns and anti-patterns during the assessment phase influence its maintainability.

Concerning the modelling criterion, it analyses how the performance and safety requirements and system functionalities
are specified and developed. This approach is focused on the components level and captures the system structure model
and its behaviour, then allowing its evaluation from the performance and safety point of view.

Concerning the tools, we used ArgoSPE [38], an ArgoUML3 plugin, to partly automate the process in a transparent
way for software engineers. Although the functionality of this tools is very limited, it is very useful since it allows us to
automatically translate some UM diagrams into GSPNs, specifically UML-CD, UML-SD and UML-SM. Furthermore, it
does not support performance annotations in MARTE, but in a UML previous profile format Thereby, we had the choice of
translating into these annotations or to introduce some performance parameters in the GSPN manually, as observed in [20].
ArgoSPE lacks other plugins, such as tools for identifying performance patterns and anti-patterns automatically. Regarding
safety perspective, the translation of OCL contracts into GSPNs is carried out manually, since this functionality is not
implemented yet. We have detected the need for developing a new framework which integrates all these functionalities:
UML modelling, MARTE annotations, OCL contracts, patterns and anti-patterns detection and GSPN simulation and
analysis in a transparent way to the user and efficient computation times. This framework could also include assessment
of other functional and non-functional properties, such as dependability, security or model checking.

5.2. Concerning the Case Study

The methodology has been applied to an industrial case study in railway domain, described in Sect. 4. The real case study is
a complex distributed system that controls many train subsystems, called TCMS. With the application of our methodology,
we can verify that this TCMS meets performance and safety requirements in the early phase of design.

However, some limitations are still unsolved. First of all, in real implementations, the interaction between subsystems
is usually complex. In our case, for the sake of clarity and comprehension, we have just focused on door controlling. Some
simplifications have been done: interaction with other components of the TCMS, dependencies with other subcomponents,
and their communication were omitted. Another important aspect in real implementations is fault-tolerance and how the

3 http://argouml.tigris.org/

Gómez-Martínez et al. 23

transition to a fail-safe state of the system is made. In our case, the main focus has been in normal behaviour. Possible
environmental faults have been modelled but without describing the transition to a fail-safe state of the system. Similarly,
software and hardware fault tolerance techniques has not been considered. In this regard, Petri nets patterns introduced
in [53] may help to improve our approach.

6. Related Work

Several methodologies have been proposed for the verification of safety properties on critical systems, in particular, the
following propose similar methodologies to the one we propose, see [54; 55]. In [54], contract-based design is used for
“static and dynamic verification of components’ compatibility”. As in our case, contracts are defined within UML models
by using OCL but, in contrast to our approach, there is neither a formal definition of contracts, nor a formal translation of
contracts into OCL. Verification in [54] is achieved by means of flow graphs, an intermediate language between DMOSES
models and the input languages of model checkers. In contrast, in our approach, UML models enriched with MARTE
annotations and OCL constrains are directly translated to GSPN. The advantage in this case is that there is only one
translation step.

The AVATAR methodology presented in [55] comprises similar stages to the one we propose, namely: requirement
capture, system analysis, system design, property modelling, and formal verification by means of model checking. A key
difference with our work is that properties are expressed in the TEPE (Temporal Property Expression Language) created by
the authors. TEPE seems very well suited for the verification of real-time critical systems since it enriches the expressiveness
of other typical property languages with the notion of physical time and unordered signal reception. However, an advantage
of our approach is that we use OCL for safety specification and MARTE for performance specification, both well-known
languages in the software engineering community.

Our methodology extends the performance analysis methodology presented in [20], which is based on principles and
techniques of Software Performance Engineering (SPE) [23]. Concerning methodologies based on SPE principles, to the
best of our knowledge, there are very few initiatives and all of them are focussed on performance analysis. For instance, the
PASA (Performance Assessment of Software Architectures) method, proposed by [56] is a performance scenario-based
software architecture analysis method that provides a framework for the whole assessment process. Nevertheless, some
steps of PASA entrust in the software engineer expertise to be applied and to identify alternatives for improvements. [57]
defined Continuous Performance Assessment of Software Architecture (CPASA). This method adapts PASA to the agile
development process. Unlike our proposal, these methodologies only analyse performance issues.

Regarding contracts, many formalisms have been proposed to express contracts, such as the Requirements Specifica-
tion Language (RSL) [5], the Othello language [6], which is based on Linear Temporal Logic, or Modal Transmission
Systems [58]. Unlike OCL, these languages are more expressive but OCL is a well-known language among modelisation
engineering community. However, a major drawback of these formalisms is that the requirement engineers need to learn a
new formalism each time they need to write contracts in a specific domain. In contrast, OCL is a well-known language in
industry. Besides, to the best of our knowledge some of the proposed formalisms lack the means to verify that a component
model fulfils their contracts [5; 58], or only focus on verification of functional properties [6]. In this work, we have shown
that OCL contracts can be used to perform safety assessment by translating the UML models to Petri nets. Although
currently we also focus on functional properties, the use of UML profiles enables to analyse other non-functional properties
that can affect to safety, such as performance, dependability or security.

Representing safety contracts using OCL has been previously proposed in [50]. The novelty of our work is that we
propose a translation from safety contracts in the form of assumptions and guarantees to OCL. Our work complements the
work of OTHELLO language [6] and OCRA [59]. In particular, the analysis of non-functional properties can complement
the work on verifying functional properties in OCRA [59]. Other work similar to ours is [60], where UML/OCL is used to

24 Journal name 000(00)

express system invariants, transformed into Place/Transition nets (without time) and to LTL logic for the verification. In
contrast to their work, we formalise the safety contracts, and, moreover, our Petri net models capture the timing information.

Some works refine safety contract assumptions in strong and weak assumptions [5; 61]. Strong assumptions specify
what always is fulfilled by the environment, context-independently, while weak assumptions provide additional information
about the context where a component could operate (e.g., the expected timing between input signals). In this paper, we
consider the definition of safety contract as given in [24], having only strong assumptions. In our case, the weak assumptions
can be implicitly described by UML annotations. As future work, we aim at extending our safety contract specification to
explicitly express timing issues.

7. Conclusions and Future Work

Safety-critical systems need to assure that safety requirements are fulfilled before they are deployed. Safety assessment
normally relies on methods applied during the normal operation of the system, detecting design problems that lead to
a non-compliance with the system safety requirements. Thus, these systems are redesigned, normally inducing a huge
cost overhead since the development process has to be is redone. To alleviate this problem, safety assessment should be
performed in early stages of the development lifecycle.

To this aim, in this paper we present a model-based methodology for the safety assessment of critical systems. The
methodology consists of three phases: Safety-oriented design, Safety-oriented specification, and Safety-oriented analysis.
In the safety-oriented design phase, a component-based UML model is sketched using Composite Structure Diagrams
and Sequence Diagrams. These diagrams capture the structure and behaviour of the software systems to be analysed. In
the safety-oriented specification phase, safety requirements are first expressed as Safety Contracts Fragments, and then
translated into OCL. Finally, in the safety-oriented analysis phase, the aforementioned UML models enriched with OCL
constraints obtained from the previous phase are translated into a formal model (in particular, Generalized Stochastic Petri
nets), where the analysis is carried out. The proposed methodology is evaluated with a real industrial case study from the
railway domain, namely, a train door controller system.

Our methodology is an extension of the methodology for performance analysis presented in [20]. The advantage of
extending this existing methodology is clear, since performance and safety can be assessed using a similar approach.

The specification of safety contracts in terms of OCL within UML models allows to express safety requirements
and system characteristics in a single picture. The adoption of formal models in early stages of development lifecycle,
obtained after the transformation of UML/OCL models into Petri nets, ensures an early verification of fulfilment of safety
requirements. Besides, this early adoption becomes also easy since UML/OCL are modelling languages familiar to the
industry engineers community. This approach complements other approaches where more expressive languages than OCL,
for instance, Linear Temporal Logic (LTL), are used to specify safety contracts. In our approach, we sacrifice expressiveness
in favour of simplicity in the contracts specification language. However, this issue can be overcome by extending OCL
with more operators, for instance, temporal operators. Similarly, the lack of specifying event sequences and checking error
propagation can also be overcome by extending OCL semantics. We aim at extending OCL covering these issues as future
work.

Another interesting aspect that deserves further study is the analysis of safety contracts where concrete time values
are considered, for instance, “a door is closed within 5 seconds when the door opening is enabled and the close event is
received”. To allow the analysis of such time constraints, we would need to extend the safety analysis phase of our proposed
methodology. Specifically, we would need to provide the translation process from OCL constraints into Petri nets with time
intervals.

Gómez-Martínez et al. 25

Acknowledgements

The authors are grateful to anonymous referees for providing constructive comments and helping to improve the contents of
this manuscript. The research of the authors was supported in part by the ARTEMIS Joint Undertaking under grant agreement
no. 295373 (project nSafeCer) and by National funding. The research of Ricardo J. Rodríguez was also supported in part by
EU Horizon 2020 research and innovation programme under grant agreement no. 644869 (DICE) and by Spanish MINECO
project CyCriSec (TIN2014-58457-R). The research of Clara Benac Earle was also supported by Spanish MINECO project
STRONGSOFT (TIN2012-39391-C04-02) and by the Madrid Regional Government project nGreens (S2013/ICE-2731).

References

[1] nSafeCer project. Safety Certification of Software-Intensive Systems with Reusable Components. Project Grant Agreement no 295373.

http://safecer.eu/, (2015, accessed 15 February 2015).

[2] Lutz RR. Software Engineering for Safety: A Roadmap. In Proceedings of the Conference on The Future of Software Engineering. ICSE

’00, New York, NY, USA: ACM. ISBN 1-58113-253-0, pp. 213–226. .

[3] Grottke M and Trivedi K. Fighting Bugs: Remove, Retry, Replicate, and Rejuvenate. Computer 2007; 40(2): 107–109. .

[4] Feiler PH. Model-Based Validation of Safety-Critical Embedded Systems. In IEEE Aerospace Conference (AERO). pp. 1–10. .

[5] Damm W, Hungar H, Josko B et al. Using Contract-based Component Specifications for Virtual Integration Testing and Architecture

Design. In Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE). pp. 1–6. .

[6] Cimatti A and Tonetta S. A Property-Based Proof System for Contract-Based Design. In Proceedings of the 38th EUROMICRO

Conference on Software Engineering and Advanced Applications (SEAA). pp. 21–28. .

[7] Kath O, Schreiner R and Favaro J. Safety, Security, and Software Reuse: A Model-Based Approach. In Proceedings of the Fourth

International Workshop in Software Reuse and Safety.

[8] OMG. Unified Modeling Language (UML), 2011. Version 2.4.1, http://www.omg.org/spec/UML/2.4.1/, accessed 10 February 2015.

[9] OMG. Object Constraint Language (OCL). Object Management Group, 2010. V2.2, formal/2010-02-01.

[10] OMG. UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms (QoS & FT), 2008. Version

1.1, http://www.omg.org/spec/QFTP/, accessed 9 February 2015.

[11] Rodríguez RJ and Gómez-Martínez E. Model-based Safety Assessment using OCL and Petri Nets. In Proceedings of the 40th

EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA). pp. 56 – 59. .

[12] Murata T. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 1989; 77(4): 541–580.

[13] Gómez-Martínez E, Rodríguez RJ, Etxeberria L et al. Model-Based Verification of Safety Contracts. In Canal C and Idani A (eds.) Software

Engineering and Formal Methods - SEFM 2014 Collocated Workshops: HOFM, SAFOME, OpenCert, MoKMaSD, WS-FMDS, Revised

Selected Papers, Lecture Notes in Computer Science, volume 8938. Springer, pp. 101–115. .

[14] International Organization for Standardization. ISO/IEC 19505-1: Information technology – Object Management Group Unified Modeling

Language (OMG UML) – Part 1: Infrastructure, 2012.

[15] OMG. A UML profile for Modeling and Analysis of Real Time Embedded Systems (MARTE), 2011, http://www.omgmarte.org/, accessed

4 February 2015. Version 1.1.

[16] Bernardi S, Merseguer J and Petriu DC. Dependability modeling and analysis of software systems specified with UML. ACM Comput

Surv 2012; 45(1): 2.

[17] Rodríguez RJ, Merseguer J and Bernardi S. Modelling and Analysing Resilience As a Security Issue Within UML. In Proceedings of

the 2nd International Workshop on Software Engineering for Resilient Systems. SERENE ’10, New York, NY, USA: ACM. ISBN

978-1-4503-0289-0, pp. 42–51. .

[18] Ajmone Marsan M, Balbo G, Conte G et al. Modelling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing, John

Wiley and Sons, 1995.

[19] Bernardi S and Merseguer J. Performance evaluation of UML design with Stochastic Well-formed Nets. Journal of Systems and Software

26 Journal name 000(00)

2007; 80(11): 1843–1865.

[20] Gómez-Martínez E, González-Cabero R and Merseguer J. Performance assessment of an architecture with adaptative interfaces for

people with special needs. Empirical Software Engineering 2014; 19(6): 1967–2018. .

[21] Gómez-Martínez E, Ilarri S and Merseguer J. Performance Analysis of Mobile Agents Tracking. In Proc. 6th Int. Workshop on Software

and Performance (WOSP’07). ACM. ISBN 1-59593-297-6, pp. 181–188. .

[22] Gómez-Martínez E and Merseguer J. Performance Modeling and Analysis of the Universal Control Hub. In Proc. the 7th European

Performance Engineering Workshop (EPEW’10), Lecture Notes in Computer Science, volume 6342. Springer, pp. 160–174.

[23] Smith CU. Increasing Information Systems Productivity by Software Performance Engineering. In Proc. 7th Int. Conf. Computer

Measurement Group (CMG’81). pp. 5–14.

[24] Söderberg A and Johansson R. Safety Contract Based Design of Software Components. In IEEE International Symposium on Software

Reliability Engineering Workshops (ISSREW). pp. 365–370. .

[25] Baarir S, Beccuti M, Cerotti D et al. The GreatSPN tool: recent enhancements. SIGMETRICS Perform Eval Rev 2009; 36(4): 4–9.

[26] Sljivo I, Gallina B, Carlson J et al. A Method to Generate Reusable Safety Case Fragments from Compositional Safety Analysis. In

Schaefer I and Stamelos I (eds.) Software Reuse for Dynamic Systems in the Cloud and Beyond - 14th International Conference on

Software Reuse, ICSR 2015, Miami, USA, January 4-6, 2015, Lecture Notes in Computer Science, volume 8919. Springer, pp. 253–268.

.

[27] OMG. Systems Modeling Language (SysML), 2012. Version 1.3, http://www.omgsysml.org/, accessed 13 February 2015.

[28] Sangiovanni-Vincentelli A, Damm W and Passerone R. Taming Dr. Frankenstein: Contract-based design for cyber-physical systems.

European Journal of Control 2012; 18(3): 217–238.

[29] Gómez-Martínez E. Software Performance Assessment at. Architectural Level: a Methodology and its Application. Phd thesis, Universidad

de Zaragoza, 2014. Http://zaguan.unizar.es/record/13510/files/TESIS-2014-021.pdf.

[30] Lazowska ED, Zahorjan J, Graham GS et al. Quantitative System Performance: Computer System Analysis Using Queueing Network

Models. Prentice-Hall, 1984.

[31] Hermanns H, Herzog U and Katoen JP. Process Algebra for Performance Evaluation. Theoretical Computer Science 2002; 274(1-2):

43–87. .

[32] Petriu DC and Woodside M. Software Performance Models from System Scenarios in Use Case Maps. In Proc. 12th Int. Conf. on

Computer Performance Evaluation, Modelling Techniques and Tools (TOOLS’02), Lecture Notes in Computer Science, volume 2324.

Springer, pp. 141–158.

[33] Tribastone M and Gilmore S. Automatic Translation of UML Sequence Diagrams into PEPA Models. In Proc. 5th Int. Conf. on the

Quantitative Evaluation of Systems (QEST’08). IEEE Computer Society, pp. 205–214.

[34] Bernardi S and Merseguer J. Performance evaluation of UML design with Stochastic Well-formed Nets. J Syst Softw 2007; 80(11):

1843–1865. .

[35] Distefano S, Scarpa M and Puliafito A. From UML to Petri Nets: The PCM-Based Methodology. IEEE Trans Softw Eng 2011; 37(1):

65–79.

[36] Zimmermann A. Modeling and evaluation of stochastic Petri nets with TimeNET 4.1. In Proceedings of the 6th International Conference

on Performance Evaluation Methodologies and Tools (VALUETOOLS). pp. 54–63.

[37] Rodríguez RJ, Júlvez J and Merseguer J. PeabraiN: A PIPE Extension for Performance Estimation and Resource Optimisation. In

Proceedings of the 12th International Conference on Application of Concurrency to System Designs (ACSD). IEEE, pp. 142–147. .

[38] Gómez-Martínez E and Merseguer J. ArgoSPE: Model-based Software Performance Engineering. In Proc. 27th Int. Conf. on Applications

and Theory of Petri Nets and Other Models of Concurrency (ICATPN’06), Lecture Notes in Computer Science, volume 4024. Springer,

pp. 401–410. . Tool available at: http://argospe.tigris.org.

[39] Delatour J and de Lamotte F. ArgoPN: a CASE Tool Merging UML and Petri Nets. In Proc. 3rd Int. Workshop on New Develop-

ments in Digital Libraries and the 1st Int. Workshop on Validation and Verification of Software for Enterprise Information Systems

(NDDL/VVEIS’03). ICEIS Press. ISBN 972-98816-2-6, pp. 94–102.

Gómez-Martínez et al. 27

[40] López-Grao JP, Merseguer J and Campos J. From UML Activity Diagrams to Stochastic Petri Nets: Application to Software Performance

Engineering. In Proc. 4th Int. Workshop on Software and Performance (WOSP’04). ACM, pp. 25–36.

[41] Smith CU. Performance Engineering of Software Systems. Addison–Wesley, 1990.

[42] Smith CU and Williams LG. Performance Solutions: A Practical Guide to Creating Responsive, Scalable Software. Addison–Wesley,

2002.

[43] Smith CU and Williams LG. Software Performance Antipatterns. In Proc. 2nd Int. Workshop on Software and Performance (WOSP’00).

ACM, pp. 127–136.

[44] CENELEC. EN50126 Railway applications - The specification and demonstration of Reliability Availability Maintainability and Safety

(RAMS), 1999.

[45] CENELEC. EN50128 Railway applications - Communications signalling and processing systems - Software for railway control and

protection systems, 2001.

[46] CENELEC. EN50129 Railway applications - Communication signaling and processing systems - Safety related electronic systems for

signaling, 2003.

[47] International Electrotechnical Comission. IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related

systems, 2010.

[48] Defence standard 00-56 issue 4: Safety management requirements for defence systems, 2007.

[49] Safecer. Deliverable d2.1.4 & d4.1.2: Standards-oriented, domain-specific aspects in reusing software in safecer domains.

http://www.safecer.eu/images/pdf/pSafeCer_Deliverable_D4_1_2.pdf, 2013.

[50] Bate I, Hawkins R and McDermid J. A Contract-based Approach to Designing Safe Systems. In Proceedings of the 8th Australian

Workshop on Safety Critical Systems and Software - Volume 33. SCS ’03, Australian Computer Society, Inc. ISBN 1-920-68215-5,

pp. 25–36.

[51] Cengarle MV and Knapp A. Towards OCL/RT. In FME 2002: Formal Methods – Getting IT Right, Lecture Notes in Computer Science,

volume 2391. Springer Berlin Heidelberg. ISBN 978-3-540-43928-8, 2002. pp. 390–409. .

[52] Bass L, Clements P and Kazman R. Software Architecture in Practice. SEI Series in Software Engineering, Addison-Wesley, 2005. ISBN

0-321-15495-9.

[53] Rodríguez RJ, Júlvez J and Merseguer J. Quantification and Compensation of the Impact of Faults in System Throughput. Proceedings

of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2013; 227(6): 614–628. .

[54] Pérez ZAD. Model-driven development methodology for hybrid embedded systems based on UML with emphasis on safety-related

requirements. Phd, Faculty of Electrical Engineering and Computer Science, University of Kassel, 2014.

[55] Knorreck D, Apvrille L and de Saqui-Sannes P. Tepe: A sysml language for time-constrained property modeling and formal verification.

SIGSOFT Softw Eng Notes 2011; 36(1): 1–8. .

[56] Williams LG and Smith CU. PASASM : A Method for the Performance Assessment of Software Architectures. In Proc. 3rd Int. Workshop

on Software and Performance (WOSP’02). ACM, pp. 179–188.

[57] Pooley RJ and Abdullatif AAL. CPASA: Continuous Performance Assessment of Software Architecture. In Proc. 17th IEEE Int. Conf.

and Workshops on the Eng of Computer-Based Systems (ECBS’10). IEEE Computer Society. ISBN 978-0-7695-4005-4, pp. 79–87.

[58] Bauer SS, David A, Hennicker R et al. Moving from Specifications to Contracts in Component-Based Design. In Lara J and Zisman A

(eds.) Proceedings of the 15th International Conference on Fundamental Approaches to Software Engineering (FASE), Lecture Notes

in Computer Science, volume 7212. Springer Berlin Heidelberg. ISBN 978-3-642-28871-5, 2012. pp. 43–58. .

[59] Cimatti A, Dorigatti M and Tonetta S. OCRA: A tool for checking the refinement of temporal contracts. In 28th IEEE/ACM International

Conference on Automated Software Engineering (ASE). IEEE, pp. 702–705.

[60] Bouabana-Tebibel T and Belmesk M. Integration of the Association Ends within UML State Diagrams. Int Arab J Inf Technol 2008;

5(1): 7–15.

[61] Sljivo I, Gallina B, Carlson J et al. Strong and Weak Contract Formalism for Third-Party Component Reuse. In IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW). pp. 359–364. .

	Introduction
	Previous Concepts
	UML
	Object Constraint Language
	Modelling and Analysis of Real-Time and Embedded systems
	Generalized Stochastic Petri Nets

	A Methodology for Model-based Safety and Performance Assessment
	Design Phase
	Specification Phase
	Performance Specification
	Safety Specification

	Transformation into Formal Model
	Performance Transformation.
	Safety Transformation.

	Performance and Safety Analysis
	Assessment

	Case Study: A Train Doors Controller
	System Description
	On Design Phase
	On Specification Phase
	On Performance Specification Phase.
	On Safety Specification Phase.

	On Transformation Phase
	On Analysis Phase
	On Assessment Phase

	Discussion
	Concerning the Methodology
	Concerning the Case Study

	Related Work
	Conclusions and Future Work

