
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Profiling the Publish/Subscribe Paradigm for
Automated Analysis Using Colored Petri Nets

Abel Gómez · Ricardo J. Rodŕıguez ·
Maŕıa-Emilia Cambronero ·
Valent́ın Valero

Received: date / Accepted: date

Abstract UML sequence diagrams are used to graphically describe the mes-
sage interactions between the objects participating in a certain scenario. Com-
bined fragments extend the basic functionality of UML sequence diagrams with
control structures, such as sequences, alternatives, iterations, or parallels. In
this paper, we present a UML profile to annotate sequence diagrams with
combined fragments to model timed Web services with distributed resources
under the Publish/Subscribe paradigm. This profile is exploited to automati-
cally obtain a representation of the system based on Colored Petri nets using a
novel model-to-model (M2M) transformation. This M2M transformation has
been specified using QVT and has been integrated in a new add-on extending
a state-of-the-art UML modelling tool. Generated Petri nets can be immedi-
ately used in well-known Petri net software, such as CPN Tools, to analyze
the system behavior. Hence, our model-to-model transformation tool allows
for simulating the system and finding design errors in early stages of system
development, which enables us to fix them at these early phases and thus
potentially saving development costs.

Abel Gómez
Internet Interdisciplinary Institute (IN3)
Universitat Oberta de Catalunya, Avda. Carl Friedrich Gauss, 5, 08060 Castelldefels
(Barcelona), Spain
E-mail: agomezlla@uoc.edu

Ricardo J. Rodŕıguez (corresponding author)
Centro Universitario de la Defensa
Academia General Militar, Carr. de Huesca s/n, 50090 Zaragoza, Spain
E-mail: rjrodriguez@unizar.es

Maŕıa-Emilia Cambronero and Valent́ın Valero
Dpto. de Sistemas Informáticos
Universidad de Castilla-La Mancha, Escuela Superior de Ingenieŕıa Informática de Albacete,
02071 Albacete, Spain
E-mail: memilia.cambronero@uclm.es,valentin.valero@uclm.es

2 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

Keywords UML 2.5 · Distributed Resources · Publish/Subscribe · Auto-
mated Analysis · WSRF · WSN · Colored Petri Nets · CPN Tools

1 Introduction

Web services are usually stateless (Alonso et al, 2004), which means that no
state information from clients is stored as interactions with the server occur.
RESTful web services, for instance, are built to work on resources (data and
services) under a client/server architecture using a stateless communication
protocol (such as HTTP). However, in many cases we have stateful distributed
services, in which the user has got the ability to access and manipulate states,
that is, data values that persist and evolve as a result of Web service (WS)
interactions. Consider for instance a user shopping through an online website,
in which the user can add/remove items to/from the shopping cart during
the interaction. In this case, SOAP (Simple Object Access Protocol) is usu-
ally the messaging protocol used for the cient/server interactions. SOAP is a
platform- and language-independent standardized protocol, which has some
WS-extensions to provide additional functionalities, such as WS-Addressing,
WS-Security, and WS-AtomicTransaction.

It is therefore desirable to have Web service conventions to enable the dis-
covery of, introspection on, and interaction with stateful distributed resources
in standard and interoperable ways. In particular, we focus our attention on
timed Web services managing a collection of distributed resources using the
Publish/Subscribe (PS) paradigm and the OASIS WSRF standard. The Pub-
lish/Subscribe paradigm (Lin and Plade, 2003) provides a loosely coupled form
of interaction between the participants in a distributed system that want to
be notified when some event of interest occurs. Publish/Subscribe systems
are usually divided into two categories: subject-based and content-based. In
subject-based systems, a publisher makes visible a message (within a topic) and
all subscribers to such a topic will then receive the notification message. In the
content-based approach, however, subscribers indicate a predicate or condition
related to a resource, so they are only notified when a change in the resource
makes such a predicate to hold. The latter is the case we consider in this paper,
where resources are published by some publisher, with an initial state (integer
value) and subscribers can submit their subscription conditions in order to
be notified when these conditions are true. On the other hand, WSRF is the
de-facto OASIS standard for modeling and accessing stateful resources using
Web services, so it provides us with standardized operations for the resource
management. These operations allow us to set/get the resource property val-
ues and lifetime. In addition, Web Services Notification (WSN) (Niblett and
Graham, 2005) complements WSRF by establishing a standardized way for
Web services to interact by using subscriptions and event notifications.

In this paper, we use UML 2.5 sequence diagrams extended with the so
called Combined Fragments (OMG, 2015) to define the interactions in a Web
service composition managing a collection of distributed resources. However,

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 3

UML sequence diagrams are not very suitable to execute or to analyze the
modeled system in an automatic way. A common solution to overcome this
issue in the scientific community is to transform these UML models to other
formal models for which a well-defined mathematical framework exists, and
hence these obtained models are suitable for analysis purposes. In this pa-
per, we consider an extension of Petri nets, particularly Colored Petri nets
(CPN1) (Jensen, 1997), as formal model since Petri nets are a mathematical
formalism that easily represent common characteristics of computer systems,
such as concurrency, synchronization, conditional branching, and sequencing.
A CPN model also allows for expressing the timing events occurring in the
system.

UML can be also extended to customize UML models for a particular
domain by means of profiling (Selic, 2007). The particular problem domain
is first mapped to a UML model, obtaining a UML domain model. Then, a
UML profile is built from this UML domain model. A UML profile defines one
or more stereotypes that are used to mark a model element as representing a
particular kind of object in the corresponding domain. These stereotypes can
also be extended with a list of properties (termed as attribute values), useful
to enrich the type description. A UML model in which a profile is being used
is usually termed a UML annotated model.

The contribution of this paper is three-fold. First, we present a UML pro-
file for the Publish/Subscribe paradigm. This UML profile, created following
the guidelines given in (Lagarde et al, 2007; Selic, 2007), enables us to eas-
ily represent the underlying concepts of the Publish/Subscribe paradigm in
UML models. Second, we propose a pattern-based M2M transformation to
translate UML annotated models into CPNs. We describe the model trans-
formation using a running example. Third, we present a tool that implements
the M2M transformation using the QVT (OMG, 2016) OMG standard. This
tool is able to automatically transform UML models annotated with our novel
profile into a CPN model. The obtained CPN model is compatible with the
format used by CPN Tools, a widespread tool for editing, simulating, and
analyzing CPN models (Jensen et al, 2007). Hence, the obtained models can
be analyzed to find design errors, thus enabling us to detect and fix design
errors in early stages of system development and hence, to save production
(and other) costs (Randimbivololona, 2001). We describe also the validation
that can be carried out in the generated CPN model.

This paper stems from previous proposals. A first preliminary version of
this work was published in (Cambronero and Valero, 2013), where a smaller
set of UML 2.0 constructions was considered. However, the time aspects were
excluded in such a model. Afterwards, in (Valero and Cambronero, 2017), an
algebraic syntax for sequence diagrams with combined fragments and WSRF
was defined. An operational semantics to define the behavior of the modeled
systems in a rigorous way was also introduced. In this paper, we consider
those previous works as basis, and introduce a (more abstract) system view of

1 In this paper, we use CPN interchangeably as a singular and plural acronym.

4 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

the Publish/Subscribe paradigm by providing a new UML profile. This UML
profile is complemented by a novel M2M transformation implemented in its
companion tool. This tool allows us to obtain the corresponding formal models
and thus, enables us to analyze the modeled system in an effective way.

This paper is organized as follows. Section 2 gives some background on the
Publish/Subscribe paradigm and Colored Petri nets. The technical approach
that we followed in this paper is introduced in Section 3. Section 4 describes
the UML profile for the Publish/Subscribe paradigm that we constructed,
as well as the CPN metamodel used. We illustrate how our transformation
tool performs by means of a running example. Section 5 briefly describes the
implementation of the tool, including the QVT specification. The verification
and validation of the generated TCPN models are explained in Section 6.
Related work is presented in Section 7. Finally, Section 8 concludes the paper
and provides possible lines of future work.

2 Background

This section first describes the required background on the Publish/Subscribe
paradigm. Then, Colored Petri nets are introduced.

2.1 The Publish/Subscribe Paradigm

Web service systems consist of a collection of services, resources, and clients.
Clients and services are interacting with each other, so they are the participants
in the system. Resources are published and managed by their corresponding
Web services, according to the WSRF standard. Hence, the services provide
a set of operations for the other participants to access and manipulate the
resources.

These participants have their own local variables, whose values or prop-
erties range over specific domains. Variable values can be assigned, read, or
checked in guards, whereas resources are assumed to have a lifetime and a
numeric property that can be read or assigned2. Resources must be published
before they are available for the participants. Before using a resource, a par-
ticipant must first discover the resource. Once the resource is discovered, the
participant is ready to use it. Furthermore, the participants can subscribe to
resources, so they will be notified and some actions will be performed when
subscription conditions related to the resource property value hold.

The behavior of the system interaction is then defined by using sequence
diagrams, extended with Combined Fragments (CF). Specifically, we use the
following basic control structures: parallel (par), strict sequencing (strict),
guarded choice (alt), and iteration (loop). These are the most relevant op-
erators, capturing the main control structures usually considered in the scope

2 Without loss of generality, in this paper we assume a single Real property.

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 5

of system workflows, and rich enough to describe the general workflow of in-
teractions among the participants and the resources being used.

On the other hand, taking as reference the algebraic syntax defined in (Valero
and Cambronero, 2017), participants can also execute local actions, such as
variable assignments or time delays.

In this paper, we assume that WS-Resources are published during the
system deployment (publish operation). WS-Resources contain different prop-
erties. A textual tag serves to identify the specific WS-Resource type, so the
clients or other services that need to use a WS-Resource of such a class can in-
voke a discover operation indicating this tag. An End Point Reference (EPR)3

must also be indicated to identify the resource, as well as its initial property
values and lifetime. There can be several distinct implementations of a WS-
Resource (e.g., a printing service may be offered using different printers), so
the discovery mechanism will only return the EPR of one of them.

We have also operations to get or set the resource property values and a
subscription operation. As previously mentioned, this operation can be used by
a participant to perform some actions when the resource property value fulfills
a certain condition. As actions, a reference to a UML sequence diagram can be
used. As conditions to be fulfilled, a numeric interval is indicated so the actions
enclosed in the corresponding UML sequence diagram are performed when the
resource property takes a value in this interval. Furthermore, subscriptions
have also a lifetime, so they are removed once its lifetime expires.

2.2 Colored Petri nets

Colored Petri nets (Jensen, 1997; Jensen and Kristensen, 2009) are a well-
known formalism for the design and analysis of concurrent systems. CPN are
supported by CPN Tools (CPN Tools, 2017), which is a tool that allows us
to easily create, edit, simulate, and analyze CPN. In the following, the reader
is assumed to be familiar with the basics of Petri nets. First, we give an
informal introduction to Petri nets and Colored Petri nets. Next, we provide
a formal definition of the CPN formalism. For a complete description of the
CPN formalism, the reader is referred to (Jensen and Kristensen, 2009).

Petri nets (Murata, 1989) are a mathematical and graphical formalism that
easily represent common characteristics of computer systems such as branch-
ing, sequencing, or concurrency, to name a few. Roughly speaking, a Petri net
is a bipartite graph of places and transitions joined by arcs, describing the
flow of a system with concurrency and synchronization capabilities. Graphi-
cally, places are represented by circles, transitions by rectangles, and arcs are
represented by directed arrows. An arc can have an integer inscription, indi-
cating the weight of the arc. A place can hold tokens, graphically represented
by black dots or by a number inside the place and denoted as the marking of
the place. When all input places of a transition t are marked with a number

3 An integer value that unequivocally identifies each published resource.

6 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

of tokens equal or greater than their weights, the transition t is said to be
enabled. An enabled transition can fire, yielding to a new marking obtained
from removing tokens from input places and setting tokens in output places.
The number of tokens removed/set from/in each place corresponds to the arc
weight connecting every place with the transition.

A CPN is an extension of Petri nets, in which places have a color set (a
data type) associated to them that specifies the set of allowed token colors
at this place. That is, each token in a place of a CPN has an attached data
value (color) to it that matches the corresponding color set of the place. For
instance, a place can have as color set the set of integer numbers INT, the
untimed color set of the Cartesian product INT2=INT×INT, or a singleton
color set (UNIT), which contains a single value (), denoted by unit. Other
complex data types can also be defined by using data types constructors, such
as list, union, and record.

Timed Colored Petri nets (TCPN) (Jensen and Kristensen, 2009) are a
timed extension of CPN, in which there is a global clock that represents the
total time (either discrete or continuous) elapsed in the system model. In this
paper, we consider a discrete time scale, since as mentioned in (Baeten and
Middelburg, 2002), measuring time on a discrete time scale means that time is
divided into slices, and timing of actions is done with respect to the time slices
in which they are performed. Actually, computers measure time by means of
discrete clocks, and if they are used to control a physical system, the state of
the physical system is sampled and adjusted at discrete points in time.

The inclusion of time and data makes that the classical properties on PNs
(e.g., reachability, liveness, and deadlock freeness) become undecidable in the
TCPN model. In addition, state space exploration usually leads to infinite
state graphs, because now the nodes in these graphs are timed markings. Thus,
the analysis of properties must usually be done by simulations, i.e. properties
are checked by executing the model with different initial markings and then
drawing conclusions from the experimental results.

Color sets can then be timed or untimed in a TCPN. Therefore, tokens
from timed color sets have a timestamp, indicating the time at which they will
be available for the firing of transitions. Tokens from untimed color sets do
not carry any time information and they are always considered available.

Let us illustrate this by means of a running example. Figure 1 shows a
TCPN as it is presented in CPN Tools. Specifically, it consists of four places
(with timed and untimed color sets) and two transitions. Places p1 and p2 have
INTT as timed color set (INT timed, as specified by the color set annotation
in the left corner of the figure). Similarly, p3 has INT2 as untimed color set,
whereas p4 has the untimed singleton color set, expressed by UNIT (this color
set is not explicitly indicated in CPN Tools, since all places have UNIT as
color set by default). In CPN Tools, the current number of tokens on every
place is drawn at the top right-hand side of the graphical place representation,
while the color set of the place is drawn at the bottom right-hand side. The
specific color of the current tokens in a place are described by the notation
n‘v@s, meaning that there are n instances of color v with timestamp s. A

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 7

colset INTT=int timed;
colset INT2=product INT*INT;

p1

INTT

1`1@2++2`2@5

p2

INTT

1`3@1++2`6@7

p4

1

p3

INT2

t1

[x<5]

t2

x

y

(2*x,y)

(x,y)

x

y

Fig. 1 Graphical view of a TCPN in CPN Tools.

symbol ‘+++’ (respectively, ‘++’) is used to represent the union of timed
(resp. untimed) colors in CPN Tools. Thus, place p1 has one token with value
1 and timestamp 2, and two tokens with value 2 and timestamp 5.

In CPN, arc inscriptions are now arc expressions, constructed using vari-
ables, constants, operators, and functions. Arc expressions must evaluate to a
color or multiset of colors in the color set of the attached place. For instance,
the integer variable x in the arc connecting the place p1 with the transition t1
can evaluate either to the token with value 1 or one of the tokens with value
2, since x is an INT variable.

Enabling of transitions is then redefined in CPNs. For any transition t
with variables x1, x2, . . . , xN in its input arc expressions, a binding of t is an
assignment of concrete values to these variables, which are used to evaluate the
input and output arc expressions of t. A binding of a transition t is enabled if
there are tokens in its precondition places matching the obtained values of the
corresponding arc expressions. Thus, arc expressions are evaluated by assigning
values to the variables and those values are then used to select the tokens that
must be removed or added when firing the corresponding transition.

Furthermore, transitions can have guards that can restrict their firing, as
well as priorities. Guards are predicates constructed by using the variables,
constants, operators, and functions of the model. A guard must evaluate to
true with the selected binding for the transition to be fireable. Transitions can
also have a priority. In the event of a conflict between two transitions that
can be fired (executed) at a given time, the transition with the highest level
of priority is fired first, where smaller values of priority correspond to higher
levels of priority. Obviously, we can also have conflicts that cannot be resolved

8 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

by priorities. In that case, the transition to be fired is non-deterministically
chosen.

In TCPNs, we can also include delays associated either to output arcs or
to transitions, which are used to age the time stamps of the tokens produced
at the output places with respect to the current time. Hence, an enabled and
fireable transition in a TCPN model means that: the transition is binding
enabled, its guard evaluates to true with the selected binding, and the to-
kens selected for the firing from its precondition places are available, i.e. their
timestamps are less than or equal to the current model time. In addition, the
transition can only fire if there is no other enabled transition with a higher
level of priority.

The semantics of firing a TCPN is similar to firing a Petri net, but consid-
ering color sets: when an enabled transition is fired, new tokens are generated
at the output places, with colors according to the corresponding output arc
expressions, and the selected tokens for its firing (from the binding) are re-
moved from its input places. As previously mentioned, tokens on timed places
are only available at the time they have attached. This time will therefore
determine the instant at which a transition will be able to use these tokens
for its firing. When there are no enabled transitions at the current instant, the
global clock is advanced to the earliest time at which a transition is enabled.

Let us now introduce the TCPN model in a more formal way.

Definition 1 (Timed Colored Petri Nets)
We define a Timed Colored Petri Net (TCPN) as a tuple (P, T,A, V,G,E, π),
where4:

– P is a finite set of places, with colors in a set Σ, which can be either timed
or untimed. We denote the color set of place p by Σp.

– T is a finite set of transitions (P ∩ T = ∅).
– A ⊆ (P×T) ∪ (T×P) is a set of directed arcs. PT-arcs are those connecting

places with transitions (P × T), while TP-arcs connect transitions with
places (T × P).

– V is a finite set of typed variables in Σ, i.e. Type(v) ∈ Σ, for all v ∈ V .
– G : T −→ EXPRV is the guard function, which assigns a Boolean expres-

sion to each transition, i.e. Type(G(t)) = Bool.
– E : A −→ EXPRV is the arc expression function, which assigns an expres-

sion to each arc. Arc expressions evaluate to multisets of the color set of the
place connected to the arc. For any transition t ∈ T , the arc expressions
of the PT-arcs connected to t are called PT-arc expressions of t (respec-
tively, for TP-arcs). In the case of timed color sets, the arc expressions can
indicate a delay for the time at which the tokens will be available, with the
syntax ms@ + x, where ms is the multiset of tokens and x the time delay.

4 We use the classical notation on Petri nets to denote the precondition •x and postcondi-
tion x• of both places and transitions: ∀x ∈ P ∪ T : •x = {y | (y, x) ∈ A}; x• = {y | (x, y) ∈
A}

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 9

– π : T −→ IN is the priority function, which assigns a priority level to each
transition. We use levels P1, P2, P3, and P4, where P1 is the greatest
priority level.

In this definition, EXPRV denotes the expressions constructed using the
variables in V , with the same syntax admitted by CPN Tools. �

Definition 2 (Markings)
Given a TCPN N = (P, T,A, V,G,E, π), a marking M is defined as a function
M : P −→ B(Σ), such that ∀p ∈ P, M(p) ∈ B(Σp), i.e., the marking of p
must be a multiset of colors in Σp (which can be empty).

A marked TCPN (MTCPN) is then defined as a pair (N,M), where N is
a TCPN, and M a marking of it. �

We define the semantics for MTCPNs as in (Jensen and Kristensen, 2009),
taking into account that transitions have associated priorities. We first intro-
duce the notion of binding, then the enabling condition and finally the firing
rule for MTCPNs.

Definition 3 (Bindings)
Let N = (P, T,A, V,G,E, π) be a TCPN. For any transition t, Var(t) denotes
the set of variables that appear in the PT-arc expressions of t. Then, a binding
of a transition t ∈ T is a function b that maps each variable v ∈ Var(t) into
a value b(v) ∈ Type(v). B(t) will denote the set of all possible bindings for
t ∈ T . For any expression e ∈ EXPRV , e〈b〉 will denote the evaluation of e for
the binding b. A binding element is then defined as a pair (t, b), where t ∈ T
and b ∈ B(t). The set of all binding elements is denoted by BE . �

Definition 4 (Enabling condition)
Let N = (P, T,A, V,G,E, π) be a TCPN and M a marking of it. We say that
a binding element (t, b) ∈ BE is enabled at the current time at marking M
when the following conditions are fulfilled:

1. The guard of t is evaluated to true for binding b: G(t)〈b〉 = true.
2. For all p ∈ •t, E(p, t)〈b〉 is included in M(p), and these tokens on M(p)

have a timestamp less than or equal to the current time, i.e., we have in
M(p) enough available tokens to fire t with the binding b.

3. There is no other binding element (t′, b′) ∈ BE fulfilling the previous con-
ditions such that π(t′) < π(t).

Time can only elapse when there is no enabled binding element for the
current time. In this case, time elapses to the earliest time at which some
transition can be fired. �

Definition 5 (Firing rule)
Let N = (P, T,A, V,G,E, π) be a TCPN, M a marking of N , and (t, b) ∈ BE
an enabled binding element at marking M .

The firing of (t, b) has the following effects on M :

10 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

– For any p ∈ •t, the tokens in E(p, t)〈b〉 are removed from M(p).
– For any p ∈ t•, the tokens in E(t, p)〈b〉 are produced in M(p).

�

Example 1 Let us illustrate how the execution of a TCPN works. Consider
the TCPN depicted in Figure 1. In this TCPN places p1 and p2 have the
INTT color set (timed integer), p3 has INT2 as color set (INT × INT), and
p4 has the UNIT color set (untimed with no information). Place p1 has three
tokens at the initial marking, one with value 1 and available at time 2, and
two tokens with value 2 available at time 5. In the same way, place p2 has also
three tokens, one with value 3 available at time 1, and two tokens with value
6 available at time 7. Place p3 is initially empty and p4 has one token. This is
usually written using vector notation as follows:

M0 = (1‘1@2 + + + 2‘2@5, 1‘3@1 + + + 2‘6@7, ∅, 1)

According to the token timestamps in p1 and p2, transition t1 can be fired
at time 2, by using the token on p1 with value 1, the token on p2 with value
3, and the token on p4. Hence, the corresponding binding for this firing is
x = 1, y = 3. Once t1 is fired, these tokens are removed from their places and
a new token is obtained in p3, with color (2x, y) = (2, 3). Then, the marking
at time 2, after the firing of t1 is:

M1 = (2‘2@5, 2‘6@7, 1‘(2, 3), ∅)

Now, the only transition that is fireable is t2, at time 2, too, because p3 has
an untimed color set. The binding now is (x = 2, y = 3), so the firing of t2
produces the following marking:

M2 = (1‘2@2 + + + 2‘2@5, 1‘3@2 + + + 2‘6@7, ∅, 1)

Thus, we can intuitively see that transitions t1 and t2 fire alternatively in this
TCPN until the following marking is reached:

M = (1‘8@2 + + + 2‘8@3, 1‘3@3 + + + 2‘6@5, ∅, 1)

Given this marking, no further transition can be fired. Hence, we have reached
a dead marking. �

3 Methodology

In this section, we describe our proposed methodology to build Timed Colored
Petri nets from UML systems annotated with the Publish/Subscribe profile.
This methodology consists of three phases, as sketched in Figure 2 (the scope
of this paper is enclosed with a dotted line).

The first phase devotes to the analysis and design phase using UML. In
this phase, we consider three different UML diagrams that cover the static

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 11

and dynamic behavior of the system, as well as all actors involved in the
Publish/Subscribe system under consideration. In particular, a UML Deploy-
ment diagram (UML-DD) is used to describe the resources and services, a
UML Class diagram (UML-CD) is used to represent the clients, and a UML
Sequence diagram (UML-SD) is used to represent the interactions between
clients, services, and resources. As a final step, these UML models are auto-
matically transformed into Colored Petri nets using the model transformation
that we introduce in Section 4.3, which are similar to the approaches given
in (Bernardi et al, 2002; Distefano et al, 2011).

The second phase refers to the verification and validation phase. Here, the
TCPN models obtained after transformation are first syntactically checked
by using some OCL rules in order to guarantee their correctness, after which
they are validated by using CPN Tools, and specifically the monitor features,
which allow us to validate some properties of TPCN models in an easy way.
General properties of the Publish/Subscribe paradigm can thus be checked at
this point by simulations, using monitors defined on the obtained models. For
instance, we can check that “a resource whose lifetime expires is not available
any more, and all subscriptions to this resource have also been removed”. We
can also check that “an active subscription whose condition holds is immedi-
ately notified”, which means that the associated actions are performed as soon
as the subscription condition is met.

Let us remark that in this paper we focus on the analysis, design, verifi-
cation, and validation phases. As future work, we aim at extending our work
with the possibility of coming back to the UML model from errors detected
at the validation phase by using the CPN Tools monitors features. This feed-
back to the user at the UML models would allow the user to edit the UML
specification to fix these errors and generate again the corresponding TCPN

Verification & Validation phase (CPN)

Publish/Subscribe Core
Subscription Model

Coloured Petri Net models
(related to UML models)

Implementation phase
(in any OOP language)

Source code

...........

...........

...........

...........

...........

...........

Model
transformation

......

......

......

......

Analysis reports
......
......
......
......

Fix design errors

Transformation to codeErrors
detected?

Yes

No (from UML models)

Scope of this paper

Analysis & Design phase (UML)

UML Deployment Diagram
annotated with

Publish/Subscribe profile

UML Sequence Diagrams
annotated with

Publish/Subscribe profile

UML Class Diagrams
annotated with

Publish/Subscribe profile

Fig. 2 UML-WSRF to CPNS methodology.

12 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

model. This point requires further research in order to link the properties
with the UML models in an automatic way, specially in the case of properties
that are specifically defined for a particular scenario. Moreover, currently our
tool is integrated with the CPN Tools, which provides simulation and analysis
capabilities, but always through the use of its graphical interface.

The last phase in the figure concerns implementation, which is also out
of the scope of this paper. Once we are aware that the UML models are
correct, several techniques can be used to transform UML models directly
into code (Czarnecki and Eisenecker, 2000). This code can later be extended
to implement other system aspects not considered by the PS paradigm.

4 UML Profile for the Publish/Subscribe Paradigm

In this section, we first introduce the UML domain model and the profile
that leverages the Publish/Subscribe paradigm (described in Section 2.1) we
propose to annotate UML models. Then, we describe the metamodel used for
CPN and the model transformation patterns from UML models annotated
with our profile to Timed Colored Petri nets.

4.1 Description of the Profile

The Unified Modeling Language (UML) (OMG, 2015) – a standard modeling
language in the software development industry – is a powerful language that
allows representing from architectural to behavioral aspects of systems.

UML can be tailored for specific purposes through profiling (Selic, 2007). A
UML profile provides a set of stereotypes and tagged values that are added into
UML models to extend its semantics. To build a UML profile, a domain model
shall be modeled in first place. This model captures all intrinsic characteristics
of the domain under consideration. In our case, we defined a domain model
for the PS paradigm. Then, following the rules given in (Lagarde et al, 2007;
Selic, 2007), a UML profile conformed by a set of stereotypes and its tags is
obtained. Stereotypes define concepts in the domain under study, while tags
are the attributes of a stereotype.

For instance, the Modelling and Analysing of Real-Time Embedded sys-
tems (MARTE) UML profile– actually, a standard promoted by the Ob-
ject Management Group (OMG, 1989) – enables schedulability and perfor-
mance analysis for real-time and other application domains. A specialization
of MARTE, the non-standard Dependability Analysis and Modelling (DAM)
UML profile (Bernardi et al, 2011), enables to express dependability issues in
UML models. Similarly, the non-standard Security Analysis and Modeling (Se-
cAM) profile (Rodŕıguez et al, 2015) allows to express security characteristics
into UML models.

Figure 3 depicts the UML domain model for the Publish/Subscribe
paradigm. A Service can publish one or more Resources, while a Resource

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 13

Service
Resource

 + epr: String [1]
 + tag: String [1]
 + value: Real [1]
 + time: Integer [1]

Client

TimedSetter
 + operation: UpdateOperation [1]
 + time: Integer [1]
 + delay: Integer [0..1]

«DataType»
UpdateOperation

 + operator: SignKind [1]
 + value: String [1]

«Enumeration»
SignKind

plus
minus
mult
div

Setter
 + operation: UpdateOperation [1]

Getter
 + variable: String [1]

Assignments
 + assignments: AssignmentOperation [1..*]

«DataType»
AssignmentOperation
 + property: String [1]
 + value: String [1]

Subscription
 + minValue: Real [1]
 + maxValue: Real [1]
 + subscriptionTime: Integer [1]

 + owningService

 + publishes 1

 1..*

 + owningService

 + updates

 + updates

 + client
 + reads

 + client

 + client

 + assignsValueTo

 + notifiesTo

 + subscribesTo

Fig. 3 UML domain model for Publish/Subscribe paradigm.

Fig. 4 UML profile for Publish/Subscribe paradigm.

14 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

can only belong to a Service. A service can update both the lifetime and value
of its resources (association class TimedSetter), in which both the operation to
be applied over the resource value and a new expiring time are indicated. This
operation can also be delayed as indicated by the optional argument Delay.
A Client can perform different actions on a Resource, such as subscribing to
the resource (specifying the minimum and maximum value of interest to the
client and the subscription time, association class Subscription), getting the
resource value and storing it into a variable (association class Getter), or up-
dating the resource value (association class Setter). Finally, a Client can also
assign values to local variables (association class Assignments).

UpdateOperation and AssignmentOperation are defined as complex data
types. UpdateOperation has two attributes, operator and value. The operator
values are specified as an enumeration type (SignKind), which consists of the
arithmetic operators that allow us to update a resource value. AssignmentOp-
eration has also two attributes, property and value.

The corresponding UML profile that maps the contents of the Publish/-
Subscribe domain model is depicted in Figure 4. Since we need to identify the
UML Sequence Diagram (UML-SD) scenarios in which the Publish/Subscribe
paradigm is being used, we have incorporated the PublishSubscribeScenario
stereotype that extends the Interaction metaclass. This stereotype indicates
the UML-SD in which the subscription from a client to some resources are
expressed.

Service, Resource, and Client classes have been modeled with stereotypes.
The Service stereotype extends the Node UML metaclass, which belongs to
the Deployments UML package. The Resource stereotype extends the Artifact
UML metaclass (which also belongs to the Deployments UML package). Both
stereotypes are related through an association, indicating that a Service may
publish an arbitrary number of resources, while a resource only belongs to a
single service. To verify the correctness of the annotated UML model, we added
an OCL expression (OMG, 2012) into the Resource stereotype to check if the
container of the UML artifact is indeed stereotyped with Service. Finally, the
Client stereotype extends the Lifeline metaclass, from the Interactions UML
package.

The association classes related to the interactions between services and
clients with resources have been modeled as stereotypes extending the Message
metaclass. The tagged values of these stereotypes match with the attributes
of the corresponding associated classes. The optional attribute delay of the
class TimedSetter has also been transformed to a stereotype, also extending
the Message metaclass. Furthermore, we have also included an AbstractSet-
ter stereotype, which defines the operation attribute as an UpdateOperation
complex type. This complex type is used to update the value of a Resource
and thus it defines a tuple with the operation to apply (indicated by operator)
and the value of interest (indicated by variable).

Finally, the association class Assignments has been modeled as the As-
signmentExecution stereotype, which extends the ExecutionSpecification

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 15

metaclass and enables us to indicate the initial assignment of Clients’ at-
tributes.

4.2 A Metamodel for Colored Petri Nets

Figure 5 shows the metamodel for Timed Colored Petri nets, which has been
defined by extending a previous work (Abel Gómez, 2006). The metamodel
has been designed in such a way that it captures all the specifities of CPN
Tools. This design poses two main advantages (at the cost of being tied to
this specific tool): first, it allows us to deal with all the interesting concepts of
this simulation and analysis tool from a single M2M transformation, without
the need of any kind of preprocessing; and second, it eases the serialization of
the final XML file that needs to be fed into the analysis and simulation tool,
because the metamodel is a close representation of the schema that native
CPN Tools net files must validate.

Cpnet is the main class of the model (see Figure 5), and elements in the
model can be differentiated into two groups. On the right-hand side of the fig-
ure, and contained within the Globbox class, we find the elements to declare
color sets, variables, etc.; while on the left-hand side of the figure, and con-
tained within a Binder, we find the elements that visually represent a Petri
net.

More specifically, declarations can be grouped in nested Blocks, and can
be formed by color sets (ColorSet) (either simple or compound – Simple-
ColorSets or CompoundColorSets, respectively), variables (Var), reference
variables (Globref), or CPN ML expressions5 (Ml). Examples of SimpleCol-
orSet are basic datatypes, such as Unit, Integer, Real, String, etc.; while
for CompountColorSet are complex types, such as Cartesian Product, disjoint
Union, etc.

On the other hand, graphical elements are placed inside Pages, which
may be grouped in Binders. All graphical elements inherit from the Dia-
gramElement class, and can be organized in different Groups. Thus, a Page
can hold places (Place), transitions (Trans), arcs (Arc), annotations (Annot),
etc. Places must have an associated color set, which must be defined in the
declarations part. The relationship between the place and its color set is repre-
sented by means of the type role from the class Place to the class ColorSet.
The InitMark determines the initial marking of a given place, i.e., the tokens
owned by the place before starting the simulation. Transitions may have dif-
ferent inscriptions attached, such as firing conditions (TransCond), priorities
(TransPriority), and transition delays (TransTime). Arcs link a place to a
transition, and have an orientation (from place to transition, or vice versa).

5 CPN Tools uses the CPN ML language to specify declarations and net inscriptions. This
language is an extension of the functional programming language Standard ML (Milner et al,
1997).

16 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

C
pnet

P
age

nam
e : E

S
tring

layout(w
idth E

IntegerO
bject, height E

IntegerO
bject, steps E

IntegerO
bject)

layout()
 auxiliarys : A

uxiliary
G

roup

nam
e : E

S
tring

D
iag

ram
E
lem

ent

lineC
olour : C

olour16 =
 B

lack
fillF

illed : E
B

oolean =
 false

lineT
hick : E

Int =
 1

posx : E
Int

lineType : E
S

tring =
 S

olid
posy : E

Int
fillC

olour : C
olour16 =

 W
hite

fillP
attern : E

S
tring

P
lace

height : E
Int =

 40
w

idth : E
Int =

 60
text : E

S
tring

 port : P
ort

G
lobbox

nam
e : E

S
tring

D
eclaration

C
olorS

et

idnam
e : E

S
tring

colorS
etType : E

S
tring

tim
ed : E

B
oolean =

 false
declare : E

S
tring

Initm
ark

expression : E
S

tring

Fusion

nam
e : E

S
tring

G
lobref

idnam
e : E

S
tring

V
ar

idnam
e : E

S
tring

M
l

expression : E
S

tring

B
lock

idnam
e : E

S
tring

A
rc

headsize : E
F

loat =
 0.0

orientation : O
rientation =

 P
toT

currentcyckle : E
S

tring =
 2

order : E
Int

Trans

height : E
Int =

 40
w

idth : E
Int =

 60
explicit : E

B
oolean =

 false
text : E

S
tring

TransC
ond

text : E
S

tring

TransP
riority

text : E
S

tringTransT
im

e

text : E
S

tring

A
nnot

text : E
S

tring

S
im
p
leC

olorS
et

C
om

p
ound

C
olorS

et

U
nit

w
ith : E

S
tring

B
oolean

w
ith : E

S
tring

Integer

w
ith : E

S
tring

LargeInteger

w
ith : E

S
tring

R
eal

w
ith : E

S
tring

T
im

e

S
tring

w
ith : E

S
tring

and : E
S

tring

E
num

erated

w
ith : E

S
tring

Index

w
ith : E

S
tring

P
roduct

R
ecord

List

U
nion

S
ubset

A
lias

O
rientation

undefined
P

toT
T

toP
Inhibitor

B
inder

posy : E
Int

posx : E
Int

w
idth : E

Int
height : E

Int

C
olour16

A
qua

B
lack

B
lue

Fuchsia
G

ray
G

reen
Lim

e
M

aroon
N

avy
O

live
P

urple
R

ed
S

ilver
Teal
W

hite
Yellow

[1..1] page
[0..*] group

[0..1] group

[0..*] groupE
lm

s

[1..1] page

[0..*] places

[0..1] cpnet

[0..1] globbox
[0..1] globbox

[0..*] declarations

[1..1] typ
e

[0..1] initm
ark

[0..*] places

[0..1] fusion

[0..1] cpnet
[0..*] fusions

[1..1] typ
e

[0..*] declarations[0..1] block

[1..1] page

[0..*] arcs

[1..1] place
[0..*] arcs

[0..*] arcs

[1..1] trans

[1..1] page

[0..*] transs

[0..1] cond

[0..1] priority

[0..1] tim
e

[0..1] annot

[1..*] sim
p

leC
o

lo
rs

[0..1] cpnet
[0..1] binder

[0..*] pages [0..1] binder

F
ig.

5
C

olored
P

etrinets
m

etam
odel.

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 17

Finally, places can be fused via the Fusion class. Fused places act as a single
place, thus allowing reuse, and making easier the partitioning of a single CPN
in different pages (every page contains a CPN model).

4.3 Model Transformation: from UML Models to CPN

In the following, we detail the transformation of the UML models annotated
with the profile into TCPN. We first describe the UML parts, annotated with
the profile, and then how the transformation is carried out for each part. To il-
lustrate the transformation process, we have adapted the on-line purchase pro-
cess example already introduced in (Valero et al, 2015) and used it as a running
example. A detailed explanation regarding the patterns of the model trans-
formation is given in https://github.com/abelgomez/publish-subscribe/
blob/master/plugins/io.github.abelgomez.ps.transformer/doc/README.
md.

4.3.1 PS Core Net

Figure 6 illustrates the TCPN of the PS core net model. This core net rules
the resource publication, resource subscription, notifications, and resource ex-
piration. The PS core net model generated by our model transformation is
(slightly) simplified with regard to the previous model introduced in (Valero
et al, 2015). This modification was needed to cope with all automatic trans-
formation contributed in this paper an later explained for the following stereo-
types. A single core net is generated for each UML sequence diagram stereo-
typed as PublishSubscribeScenario. PublishSubscribeScenarios should
include the initialization of resources, the subscription messages of the differ-
ent clients, and the additional interactions which are triggered when notifica-
tions are sent. In the core net, the initial marking of the Roles and Resources
places – which are explained below – are the only variable parts.

In this TCPN, the resources to be published are represented by tokens
on the Resources place, which contain their EPR, tag, value and lifetime. Re-
sources are then published by firing the Publish ok transition, but if we try
to publish a resource with an existing EPR, this operation fails (by firing
publish fail). Published resources are written to the ResourceRegistry place.
Clients’ behaviors are represented by tokens on place Roles, where we indi-
cate a client’s identifier, a resource tag and the subscription conditions for
the indicated resource. The Discover transition is then fired to find published
resources and write the corresponding subscription conditions into the Sub-
scriptionRequest place. The Subscribe transition is then fired to submit the
subscriptions, which are written on the SubscriptionRegistry place.

When the lifetime of a resource expires, the ResourceExpire transition is
fired, which removes the resource token from ResourceRegistry, as well as its

https://github.com/abelgomez/publish-subscribe/blob/master/plugins/io.github.abelgomez.ps.transformer/doc/README.md
https://github.com/abelgomez/publish-subscribe/blob/master/plugins/io.github.abelgomez.ps.transformer/doc/README.md
https://github.com/abelgomez/publish-subscribe/blob/master/plugins/io.github.abelgomez.ps.transformer/doc/README.md

18 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

Notifications_0

Fusion 3
CL

Resource
Registry_0

Fusion 2
REC

Fusion 2

Subscriptions
Removed

ECLIR

Expired
Control

INT

Subscriptions
Time-Out

ECLIR

Expired
Resources

REC

Time
Control

INTT

0

Subscription
Registry

ECLIR

Resources

REC

PosRec

Roles

CLI

PosCli

Subscription
Request

ECLI

Fail
Subscription

Requests
ECLI

Fail
Roles

CLI

Empty

P3

Remove
Subscription

[EPR = EPR1]

P2

Time
Step

@+1

[n < maxTime]

P4

Resource
Expire

[n > cr]

P2

Subscription
Time-Out

[cc < n]

P2

Notify

[v <= condv2, v >= condv1]

P1

Publish_ok

P3

Publish_fail

[EPR = EPR1]

P2

Discover

P2

Re-Subscribe

[C = C1]

P2

Fail
Discover

P4

Fail
Subscribe

P4

Subscribe

P4

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,C,condv1,condv2,cc,tr)

EPR
EPR

EPR

EPR

nn

n
n + 1

n n

(EPR1,R,C,condv1,condv2,cc,tr)

(EPR1,R,C,condv1,condv2,cc,tr)

(EPR1,R,C,condv1,condv2,cc,tr)

(EPR1,R,C,condv1,condv2,cc,tr)

(EPR1,R,C,condv1,condv2,cc,trOld)

(EPR1,R,C,condv11,condv22,condtt+intTime(),tr)

(EPR1,R,C,condv1,condv2,condt+intTime(),tr)

(EPR1,R,C,v,tr)

(EPR,R,v,cr)

(EPR,R,v,intTime()+t)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)(EPR1,R,C,condv1,condv2,condt,tr)

(EPR1,R,C,condv11,condv22,condtt,tr)

(EPR1,R,C,condv1,condv2,condt,tr)(EPR1,R,C,condv1,condv2,condt,tr)

(EPR1,R,C,condv1,condv2,condt,tr)

(C,R,condv1,condv2,condt,tr)

(C,R,condv1,condv2,condt,tr)

(C,R,condv1,condv2,condt,tr)

(EPR,R,v,t)

(EPR,R,v,t)

(EPR,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

Fusion 3

Fig. 6 Timed Colored Petri net of the PS core model (simplified with regard to (Valero
et al, 2015)).

current subscriptions (transition RemoveSubscription). Furthermore, subscrip-
tions can also expire. In that case, the SubscriptionTime-Out transition will
be fired, thus removing the corresponding token from SubscriptionRegistry.
Finally, notifications occur as soon as the associated conditions hold, which is
captured by transition Notify, which has the greatest priority (P1).

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 19

Client
 + bought: Boolean [1]
 + m: Real [1]

Fig. 7 Running example: UML Deployment diagram (left side) and UML Class diagram
(right side) of the on-line purchase process annotated with the PS profile.

4.3.2 Publish-Subscribe Scenarios

Figure 7 (left side) illustrates the UML-DD (left side) and the UML-CD (right
side, annotated with the PublishSubscribeScenario stereotype) of the run-
ning example. There exists a client who is willing to buy a laptop using her
credit card. She is waiting for a good offer due to her limited amount of money,
though. The artifact CR in the UML-DD diagram represents her current bud-
get, as maintained by her personal bank. She also disposes of some cash, as
indicated by the attribute m of Client class. Surfing on the Internet, the client
finds two offers from two different on-line shops. However, both laptop prices
still overrun her budget. Services Shop1, Shop2, and resources L1, L2, represent
the on-line shops and the laptops, respectively.

Figure 8 depicts the actions of the client with the resources in a UML-
SD annotated with PublishSubscribeScenario stereotype. Consider that the
client has some cash (for instance, 2000e). Since she wants to pay by credit
card, she first decides to subscribe to her bank deposit during 1 year to let her
know when her credit is lower than 1000e and then make a deposit to increase
it (triggering UML-SD Deposit). After that, she decides to subscribe to both

20 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

«PublishSubscribeScenario»
sd: Subscription

par

par

:Shop1 :Shop2 :L1 :L2 :CR
«Client»
c:Client

«Subscription»
minValue=0.0
maxValue=1000.0
subscriptionTime=365
triggers=Deposit
resource=CR
client=c

«AssignmentExecution»
assignments=[bought='false', m='2000.0']

«Subscription»
minValue=0.0
maxValue=850.0
subscriptionTime=365
triggers=Purchase L2
resource=L2
client=c

«Subscription»
minValue=0.0
maxValue=850.0
subscriptionTime=365
triggers=Purchase L1
resource=L1
client=c

«TimedSetter»
time=15
resource=L2
service=Shop2
operation=(operator='mult', value='0.8')

«Delayed»
delay=10

«TimedSetter»
time=30
resource=L1
service=Shop1
operation=(operator='mult', value='0.7')

«Delayed»
delay=10

update

«TimedSetter, Delayed»

subscribe

«Subscription»

subscribe

«Subscription»

subscribe

«Subscription»

update

«TimedSetter, Delayed»

subscribe

«Subscription»

subscribe

«Subscription»

subscribe

«Subscription»

update

«TimedSetter, Delayed»

update

«TimedSetter, Delayed»

Fig. 8 Running example: UML-SD Subscription of the on-line purchase process annotated
with the PS profile.

resources during 1 year to keep posted as soon as some offer in the laptop price
comes up (triggering UML-SD Purchase L1 and Purchase L2, respectively).

A UML-SD stereotyped with PublishSubscribeScenario creates a place
Start Subscription and two transitions (Acquire Locks and End Subscription)
into the generated TCPN. Additionally, every Client and Resource lifelines
have an associated place which is used to avoid race conditions issues when
handling client/resources attributes.

These places are in fact fusioned places, i.e., places that act as a single one
although they are drawn multiple times in different parts of the CPN. The
Acquire Locks and End Subscription transitions represent respectively the be-
ginning and the ending of the UML-SD. In particular, the first transition also
has as input places the client/resource lock places that represent the clien-
t/resources involved into the UML-SD. Similarly, the ending transition has
as output places the same client/resource lock places, ensuring the conserva-
tiveness of the tokens (i.e., the acquired locks are eventually released). The
subnet resulting from all the interactions described in the UML-SD lifelines
is then enclosed between these two transitions. This internal subnet is built
in a compositional way, by applying the rest of the patterns explained in this
section. The places that serve to connect these patterns have UNIT as color
set.

A PublishSubscribeScenario SD should be accompanied by a DD de-
scribing the allocation of Services and Resources (a node Service1 and an

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 21

Listing 1 Variables and colorsets generated by transformation of Figure 7.

1 (∗ C l i e n t s d e c l a r a t i o n s ∗)
2 c o l s e t CLIENT = product STRING ∗ BOOL ∗ REAL timed ;
3 var c l i e n t : STRING;
4 var bought : BOOL;
5 var m: REAL;
6 (∗ Resources d e c l a r a t i o n s ∗)
7 (∗ L2 ∗)
8 var cr R2 : INT ;
9 var EPR R2 : INT ;

10 (∗ CR USER ∗)
11 var cr R3 : INT ;
12 var EPR R3 : INT ;
13 (∗ L1 ∗)
14 var cr R1 : INT ;
15 var EPR R1 : INT ;
16 (∗ Value d e c l a r a t i o n s ∗)
17 va l m1 = 1
18 va l m2 = 1
19 c o l s e t V0m1 = i n t with 0 . . m1;
20 c o l s e t V0m2 = i n t with 0 . . m2;
21 va l PosCli =1 ‘(” C l i e n t ” ,”CR USER” , 0 . 0 , 1 0 0 0 . 0 , 3 6 5 , ” Deposit ”)@0++
22 1 ‘ (” C l i e n t ” ,” L2 ” , 0 . 0 , 8 5 0 . 0 , 3 6 5 , ” Purchase L2 ”)@0++
23 1 ‘ (” C l i e n t ” ,” L1 ” , 0 . 0 , 8 5 0 . 0 , 3 6 5 , ” Purchase L1 ”)@0 ;
24 va l PosRec =1 ‘(3 ,”CR USER” , 1 5 0 0 . 0 , 3 6 5)@0++
25 1 ‘ (1 , ” L1 ” , 9 5 0 . 0 , 3 6 5)@0++
26 1 ‘ (2 , ” L2 ” , 9 8 0 . 0 , 3 6 5)@0 ;
27 va l maxTime=4

artifact Resource1 in this case). Note that the association between resources
and services is directly taken from the node-artifact relationship. Finally, let us
also note that both Service1 and Resource1 are also included in the UML-SD.

As introduced in Section 3, in addition to UML-DD, UML-CD are also
used to provide the static view of the system under analysis. Recall that Fig-
ure 7 (right side) shows the Client class of the running example. In this case,
it has two attributes, a boolean-type brought and a real-type m. The transfor-
mation of this part is straightforward. The Client class is directly transformed
into a timed product color set. The first component is a single string used
to unequivocally identify every instance of the class (i.e., to identify the class
objects), while the rest of the components are each of the class attributes).
For the sake of simplicity, our transformation algorithm also defines a set
of variables following the attributes defined within the class (e.g., “var att1:
DATATYPE1”, “var att2: DATATYPE2”, etc.). Therefore, the existence of a
lifeline in a UML-SD stereotyped as Client is straightforwardly transformed
to a colored place having the previously mentioned timed product color set as
color set and an initial token with the values of object Client1.

The set of variables and color sets in the CPN model generated by the
annotations in the UML-SD PublishSubscribe scenario, the UML-CD, and the
UML-DD are collected in Listing 1. Note that it also sets the initial marking
of the PS core CPN model introduced previously.

The TCPN generated by our approach is depicted in Figure 9. The “Fusion
n” tag in some places of the net means that they are Fusion places, and

22 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

Client_0

Fusion 1
CLIENT

("Client", false, 0.0)

Fusion 1

Client_1

Fusion 1
CLIENT

("Client", false, 0.0)

Fusion 1

Resource
Registry_1

Fusion 2
REC

Resource
Registry_2

Fusion 2 REC

Start
Subscription

()

Client_LCK_0

Fusion 4
LOCK

()

CR_USER_LCK_0

Fusion 5
LOCK

()

L1_LCK_0

Fusion 7
LOCK

()

L2_LCK_0

Fusion 6
LOCK

()

ASG_bought_0

ASG_m_0

SET_L1_0

@+10

SET_L2_0

@+10

Acquire
Locks

End
Subscription

(client, false, m)

(client, bought, m)

(client, bought, 2000.0)

(client, bought, m)

(EPR, "L1", v, cr)

(EPR, "L1", v, cr)

(EPR, "L1", v * 0.7, 30)

(EPR, "L1", v, cr)

(EPR, "L2", v, cr)

(EPR, "L2", v, cr)

(EPR, "L2", v * 0.8, 15)

(EPR, "L2", v, cr)

l

l

l

l

l

l

l

l

Fusion 6

Fusion 7

Fusion 5

Fusion 4

Fusion 2

Fusion 2

Part of the net generated by the PublishSubscribeScenario stereotype

Part of the net generated by
the PublishSubscribeScenario stereotype

Part of the net generated by the AssignmentExecution stereotype

Part of the net generated by
the TimedSetter stereotype

Part of the net generated by
the TimedSetter stereotype

Part of the net generated by
the Delayed stereotype

Part of the net generated by
the Delayed stereotype

Part of the net generated by a parallel combined fragment

Part of the net generated by a parallel combined fragment

Fig. 9 Running example: TCPN model of UML-SD depicted in Figure 8.

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 23

thus they correspond to a same place that is used in several CPN pages. For
instance, this is the case of the Resource Registry place, which also appears
in the PS core net model shown in Figure 6. In the following, we describe
each part of the net considering the transformation of the stereotypes shown
in Figure 8. For the sake of readability, we have added dashed boxes in the
figure to highlight from which stereotype comes each part of the net.

The Subscription stereotype. Once the basic elements have been transformed
(core net, client definitions, and external structure of the Subscription PN),
let us explain the transformation for subscription interactions (Subscription
stereotype). Consider the resource L1, owned by Shop1 and having (1, ’RL’,
950.0, 365) as attribute values. Consider also the Client who subscribes to such
a resource by means of a Subscription stereotyped message, as depicted in
Figure 8 (third subscription message). Note that Client subscribes for a time
frame of 365 days, triggering the UML-SD named Purchase L1 once the values
of L1 are in the interval of [0, 850.0]. As shown in Listing 1, both Resource
and Subscription stereotypes are transformed into the corresponding initial
colored tokens in the PS core CPN. Let us remark that the Resource stereo-
type serves us to populate the Resources place, whereas the Subscription
stereotyped message serves us to populate the Roles place.

The AssignmentExecution stereotype. This stereotype is used in a UML-SD
stereotyped with PublishSubscribeScenario to indicate when the attributes
of a Client object are modified.

Our transformation tool automatically verifies the correctness of the model,
i.e., it checks whether every property specified in each AssignmentOperation
matches to some attribute of the Client class. Any datatype error in the spec-
ified values is indicated by the tool, indicating a mismatch data type error in
the corresponding arc inscription.

Regarding the transformation, every execution specification in the anno-
tated UML-SD generates a branch in the sequential Colored Petri net that
represents the execution of the overall UML-SD. Then, each execution specifi-
cation annotated with AssignmentExecution generates a transition for each of
the AssignmentOperation attributes. This transition is connected to the place
that stores the current status (values) of the object Client through an input and
output arc. As input arc, it receives a tuple of the form (client1, att1, att2, . . . ,
atti, . . . , attn), which represents the particular instance of Client and the val-
ues of its set of attributes. As output arc, it returns a colored token conformed
by (client1, att1, att2, . . . , atti, . . . , attn). The only value that is modified in the
tuple of the output arc inscription is the one specified in the attributes of the
stereotype.

For instance, in the UML-SD depicted in Figure 8 the Client assigns the
values of false and 2000.0 to its attributes brought and m, respectively. This
execution specification, annotated with AssignmentExecution, generates the
part of the net depicted in the second dashed box (from the top) in Figure 9,
following the aforementioned pattern. Note that the transformation model

24 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

follows the assignment operations from left to right (that is, first the value of
brought is set, and then the value of m).

Moreover, let us remark that since this action occurs inside a Publish-
SubscribeScenario UML-SD, the Client lock was acquired at the beginning
(first dashed box) and hence no race conditions arise.

The TimedSetter and Delayed stereotypes. Let us recall the running exam-
ple as depicted in Figure 8. The client was subscribed to both resources to be
aware if some changes were produced in their prices for a year. Let us con-
sider now that a few days later after the subscription (consider for instance 10
days), the sales period begins so both shops simultaneously reduce their laptop
prices. In particular, Shop1 offers a 30% off for Laptop1 during 30 days, while
Shop2 offers a 20% off for Laptop2 during 15 days. Note that both resource
subscriptions and the update of the laptop prices occur inside a parallel com-
bined fragment. These actions have been annotated with TimedSetter and
Delayed stereotypes in the UML-SD Subscription.

Recall that the TimedSetter stereotype allows us to update the value of
a resource as indicated by the operator attribute. This stereotype also allows
us to update the resource lifetime. In the running example, the current value
of the resource L1 is multiplied by 0.7, representing the 30% off of the sales
offer. The generated subnet of TimedSetter stereotype (red dashed box in the
central part of Figure 9) contains two places and one transition (SET L1 0),
which is connected to the Resource Registry place. The arc inscription of the
arc from the transition to the Registry place is used to update the value of the
resource, taking into account the operation to perform and the value specified
as stereotype attribute values. For instance, the incoming arc of SET L1 0 is
(EPR, “L1”, v, cr) while the output arc is (EPR, “L1”, v×0.7, 30) (see the
attribute values of the TimedSetter stereotype in Figure 9).

The Delayed stereotype allows us to specify a delay on a given message. Let
us remark that the transformation pattern for the Delayed stereotype will be
inserted before any other pattern produced by other stereotypes also applied
on the same message (see the green dashed boxes in 9). Its transformation
follows a similar scheme to the TimedSetter stereotype. Recall that the update
of the price of L1 was done 10 days after the client subscription, as specified
by the Delayed stereotype in Figure 8. In this case, two places and a new
transition connected to them are generated. These new places represent the
beginning and ending of the delay operation and thus they are connected to
the sequential CPN representing the evolution of the whole UML-SD. The
transition is connected to the Resource Registry place through input/output
arcs that do not change the resource attributes, but serve us to check that it is
already published. The value of the Delayed::delay attribute is the time that
the new transition generated takes to fire (see the annotation @+10 under the
transition in Figure 9).

Transformation of parallel combined fragments. Combined fragments are UML
structural components whose transformation is not directly linked to any

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 25

stereotype of the UML profile. Consider the parallel combined fragment of the
UML-SD as depicted in Figure 8 (bottom side). The transformation of this
fragment is as follows (third dashed box in the figure). First, a fork transition
creates a new branch of execution, separate from the sequential execution of
the overall UML-SD, which terminates with a corresponding join transition.
This branch corresponds in the figure with the part indicated in the right-hand
side of the enclosing box. Notice that two places are also produced as the out-
put of this fork transition. Then, for the new branch a new fork transition
splits the execution into the parts indicated in the parallel fragment (two in
this case), creating the initial and final places for each one. A join transition
is also created in order to link the termination of the parallel branches with
the original sequential flow (penultimate dashed box). Then, each part of the
parallel fragment is transformed into its corresponding TCPN, following the
patterns explained along this section.

4.3.3 Triggered Sequence Diagrams

Triggered sequence diagrams (triggeredSDs) are those UML-SD describing the
interactions happening when the value of a Resource is between the minimum
and maximum values specified by a subscribed Client. That is, they represent
the UML-SD that takes place when the given conditions are fulfilled.

Let us illustrate how the transformation of a triggeredSD is carried out
by means of the UML-SD Deposit. Recall that this UML-SD was triggered
when the credit of the client is lower than 1000e (see the first Subscription
message in Figure 8). The UML-SD Deposit of the running example is depicted
in Figure 10, while the TCPN generated is shown in Figure 11. As before, we
have highlighted with dashed boxes the interesting parts of the generated net.

The transformation into TCPN is very similar to the one of a UML-SD
stereotyped with the PublishSubscribeScenario. In particular, two places
Start Deposit and Finish Deposit, and two transitions are created. The first
transition works similar to the previous Acquire Locks transition: as input arc,
it consumes tokens from the Start Deposit place, from all places that represent
the client and resource locks of the clients and resources which interact in
the UML-SD, and from the Notifications place. As initial marking, the Start
Deposit place contains a string-typed token with the “Deposit” value.

The Notifications place is then used to activate this subnet when a noti-
fication occurs. As an illustration, in our running example the input arc of
the initial transition and the Notifications place has as inscription the tuple
(EPR, “CR USER”, “Client”, v, “Deposit”)), which indicates the participants
of the UML-SD stereotyped (“Client” and “CR USER”) and the name of the
triggered SD (“Deposit”).

Transformation of alternative combined fragments. Notice now the use of an
alternative combined fragment in Figure 10 to specify a conditional flow in
a sequence diagram. With this alternative combined fragment we indicate

26 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

sd: Deposit

alt

[m > 1000.0]

:CR

«AssignmentExecution»
assignments=[m='m - 1000.0']

«Setter»
resource=CR
client=c
operation=(operator='plus', value='1000.0')

update

«Setter»

update

«Setter»

«Client»
c:Client

Fig. 10 Running example: UML-SD Deposit, annotated with PS profile.

Client_2

Fusion 1
CLIENT

("Client", false, 0.0)

Resource
Registry_3

Fusion 2
REC

Client_3

Fusion 1
CLIENT

("Client", false, 0.0)

Fusion 1

Notifications_1

Fusion 3 CLFusion 3

Start
Deposit

()

Finish
Deposit

Client_LCK_1

Fusion 4
LOCK

()

CR_USER_LCK_1

Fusion 5
LOCK

()

P2

ASG_m_1

SET_CR_USER_0

[m > 1000.0]

P1
(client, bought, m - 1000.0)

(client, bought, m)

(EPR, "CR_USER", v + 1000.0, cr)

(EPR, "CR_USER", v, cr)

(client, bought, m)

(client, bought, m)

(EPR,"CR_USER","Client",v,"Deposit")

l

l

l

l

Fusion 5

Fusion 4

Fusion 2

Fusion 1

Part of the net generated by an alternative combined fragment

Part of the net generated by
an alternative combined fragment

Part of the net generated by
the Setter stereotype

Fig. 11 Running example: TCPN model of UML-SD depicted in Figure 10.

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 27

an interaction between a Client and a CR that only occurs if the condition
m > 1000.0 is fulfilled.

The transformation of this fragment is similar to the parallel combined
fragment. First, a branch is created by the transition below the Start Deposit
place, which separates the sequential Petri net that represents the execution of
the overall UML-SD from the new branch for the combined fragment (on the
right). The part produced for the alternative combined fragment is enclosed in
the dashed boxes at the top and bottom of the figure. The combined fragment
has its own sequential flow, so a new fork transition is used to separate this
flow from the alternatives, which are started by transitions labeled with the
corresponding guards. These transitions are connected with the Client place
so as to obtain the attribute values (m and bought) required in their guards.
Only one of these transitions can fire (see the conflict place in the right-hand
side), and they must fire before the transition corresponding to the default
condition, so they have a higher priority than the transition representing the
default condition.

Finally, each part in the alternative combined fragment is individually
transformed into its corresponding TCPN following the rules explained in this
section. In our running example the default case is empty, so its transforma-
tion is straightforward. Thus, there are two branches in the generated TCPN
(see Figure 11), one branch without any activity (left branch) and the other
branch having the condition m > 1000.0 (right branch). Furthermore, this
branch contains the generated TCPN of the contents shown in the alternative
fragment (the transformation of an AssignmentExecution stereotype and a
Setter stereotype, explained later).

The Setter stereotype. The UML-SD depicted in Figure 10 also shows a mes-
sage stereotyped with Setter. The Client is modifying the value of resource
CR by operating on its current value (in particular, its value is being incre-
mented in 1000 units).

The transformation of this stereotyped message follows a similar approach
to the TimedSetter stereotype (see the dashed box in the central part of
Figure 11). The generated subnet contains two places and one transition
(SET CR USER 0), which is also connected to the Resource Registry place
in order to modify the resource property value.

Let us now see the UML-SD Purchase L1 depicted in Figure 12, which cor-
responds to the triggeredSD for the third client’s subscription in the UML-SD
Subscription (see Figure 8). The generated TCPN for this UML-SD Purchase
L1 is shown in Figure 13. In this UML-SD, the Getter stereotype is used in
order to get the values of the resource properties.

The Getter stereotype. The Getter stereotype is used in the UML-SD to in-
dicate the variable in which the value of a resource is stored. Note that in
the UML-SD depicted in Figure 12 there are two messages stereotyped with
Getter, getting the values of the resources L1 and CR in the client’s variables

28 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

sd: Purchase L1

alt

[PPL1 <= 850.0 andalso balance >= PPL1 andalso bought = false]

:L1 :CR

«Getter»
variable=balance
resource=CR
client=c

«Getter»
variable=PPL1
resource=L1
client=c

«Setter»
resource=CR
client=c
operation=(operator='minus', value='PPL1')

«AssignmentExecution»
assignments=[bought='true']

getPpl1

«Getter»

updateBalance

«Setter»

getBalance

«Getter»

getPpl1

«Getter»

getBalance

«Getter»

updateBalance

«Setter»

«Client»
c:Client

Fig. 12 Running example: UML-SD Purchase L1, annotated with PS profile.

Resource
Registry_8

Fusion 2
REC

Resource
Registry_9

Fusion 2
REC

Client_6

Fusion 1
CLIENT

("Client", false, 0.0)

Client_7

Fusion 1
CLIENT

("Client", false, 0.0)

Resource
Registry_10

Fusion 2
REC

Resource
Registry_11

Fusion 2
REC

Fusion 2

Notifications_3

Fusion 3
CL

Fusion 3

Start
Purchase L1

()

Finish
Purchase L1

Client_LCK_3

Fusion 4
LOCK

()

CR_USER_LCK_3

Fusion 5
LOCK

()

L1_LCK_1

Fusion 7
LOCK

()

P2

SET_CR_USER_2

ASG_bought_2

[PPL1 <= 850.0 andalso balance >= PPL1 andalso bought = false]

P1

(EPR, "CR_USER", v - PPL1, cr)

(EPR, "CR_USER", v, cr)

(EPR_R1, "L1", PPL1, cr_R1)

(EPR_R1, "L1", PPL1, cr_R1)

(client, true, m)

(client, bought, m)

(client, bought, m)

(client, bought, m)

(EPR_R1, "L1", PPL1, cr_R1)

(EPR_R1, "L1", PPL1, cr_R1)

(EPR_R3, "CR_USER", balance, cr_R3)

(EPR_R3, "CR_USER", balance, cr_R3)

(EPR,"L1","Client",v,"Purchase L1")

l

l

l

l

l

l

Fusion 7

Fusion 5

Fusion 4

Fusion 2

Fusion 1

Fusion 2

Fusion 2

Fusion 1

Part of the net generated by
the Getter stereotype

Fig. 13 Running example: TCPN model of UML-SD depicted in Figure 12.

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 29

PPL1 and balance. These variables are then used as part of the guard condition
in the subsequent alternative combined fragment.

The transformation of the Getter stereotype is enclosed in a dashed box in
Figure 13. As in the previous cases, input and output arcs are produced to link
the transition starting the corresponding branch with the Resource Registry
place, so as to obtain the property values and assign the client’s variables with
the values obtained (PPL1 and balance).

5 A Tool for Modeling and Simulating the Publish/Subscribe
Paradigm

To effectively automate the analysis of models expressing Publish/Subscribe
interactions, we have implemented a complete toolset for their definition and
automatic transformation. This toolset has been implemented using the Eclipse
ecosystem due to its variety of tools for model-based development. In fact,
Eclipse and its Eclipse Modeling Framework (EMF) (Eclipse Foundation,
2004) have become a de facto standard for building model-based tools, provid-
ing a common base for different purposes, e.g., model transformation (OMG,
2016; INRIA and LINA, 2014), reverse engineering (Brunelière et al, 2014;
The Eclipse Foundation, 2014), code generation (Bettini, 2016; Musset et al,
2006), or document generations (Gómez et al, 2014), to name a few.

Eclipse is an open source software development environment aimed at pro-
viding a platform for highly integrated tools. Indeed, it is usually described as
“an open extensible IDE for anything and yet nothing in particular” (Eclipse
Foundation, 2004) Specific tools can be plugged-in the base Eclipse plat-
form to define a particular IDE configuration all together. Some preeminent
projects within the Eclipse ecosystem that provide tools extending such core
framework are the Eclipse Modeling Framework (EMF) (Eclipse Foundation,
2017a), Eclipse Papyrus (Eclipse Foundation, 2017c), or the QVT Operational
SDK(Eclipse Foundation, 2017b).

All these tools, among others that are presented next, are the baseline for
our tool. In the following, we first introduce the description of the architecture
of our tool and then illustrate how the UML models are transformed to CPN
using QVT by means of a practical example. Finally, we show what our tool
looks like from the final user’s point of view.

5.1 Architecture and Components Description

Figure 14 describes the architecture of our tool, showing the most remark-
able components. The components with a white background represent coarse-
grained Eclipse components, on which our tool relies; while the components
with a light gray background represent the different component that were de-
veloped in the context of this work, and make our toolset for the modeling and
transformation of the Publish/Subscribe paradigm up. Finally, the dark gray

30 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

component on the lower right-hand side of the figure represents the external
CPN Tools tool. Next, a more detailed description follows:

Eclipse Runtime and Eclipse UI are the component-based runtime envi-
ronment (McAffer et al, 2009; OSGi Alliance, 2008) and the user interface
facilities provided by Eclipse, respectively.

EMF Runtime provides the modelling, meta-modelling, and code genera-
tion capabilities within the Eclipse platform. EMF uses Ecore (Steinberg
et al, 2009) as the canonical language to describe models. An Ecore model
is, essentially, a subset of the UML class diagram and thus, can be consid-
ered as the reference implementation of the EMOF language proposed by
the OMG (OMG, 1989).

Eclipse UML2 is an EMF-based implementation of the Unified Modeling
Language 2.x OMG metamodel for the Eclipse platform. This component
is considered to be a reference platform for UML that guarantees interop-
erability and provides the basis for the adoption and use of Model-Based
Software Engineering (MBSE). This is the metamodel implementation used
by our tool to support the definition of UML Class Diagrams, Sequence Di-
agrams, and Deployment Diagrams as presented in Section 3.

Papyrus UML is an industrial-grade open source Model-Based Engineering
(MBE) tool built on top of Eclipse. Papyrus has notably been used in
industrial projects and is the base platform for several industrial modeling
tools. Papyrus offers a very advanced support of UML profiles that enables
users to define editors for DSLs based on the UML2 standard and its
extension mechanisms. The main feature of Papyrus regarding this latter
point is a set of very powerful customization mechanisms which can be
leveraged to create user-defined Papyrus perspectives and give it the same

Fig. 14 Architecture of the Publish/Subscribe Modelling and Simulation Tool.

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 31

look and feel as a native DSL editor. This component has been used to
implement our Publish/Subscribe profile described in Section 4.1.

QVT Operational provides an implementation and an interpreter for the
Operational Mappings Language defined in the Query/View/Transforma-
tion (QVT) (OMG, 2016) standard. The transformation patterns described
in Section 4.3 are encoded in a QVT Operational Mappings transformation
(as we briefly illustrate in the next subsection), which is executed by in-
voking this component.

CPN Tools Toolkit6 provides the implementation of the metamodel pre-
sented in Section 4.27. This metamodel is an extended and cleaned up ver-
sion of a previous implementation8, and is provided in a separate fashion
from the Publish/Subscribe SDK tool for reusability purposes. This compo-
nent also provides the ability to automatically post-process the generated
Petri nets, applying a graph layout algorithm for a proper visualization.

Publish/Subscribe SDK is our Eclipse-based tool, which reuses, extends,
and interacts with all the previous components. It is composed by:
– the Publish/Subscribe Profile, an implementation of the profile de-

scribed in Section 4.1, which is based on Eclipse UML2 and Papyrus
UML;

– the Publish/Subscribe Transformer, an implementation of the trans-
formation presented in Section 4.3 from the Eclipse UML2 metamodel
profiled with the Publish/Subscribe Profile to the CPN Tools Toolkit
metamodel; and

– the Publish/Subscribe UI, the extensions plugged-in into the Eclipse
User Interface, which allows invoking our transformation tool.

The CPN Tools component represents the external tool that is automati-
cally invoked by the Publish/Subscribe UI once a UML model annotated
with the Publish/Subscribe Profile is transformed into a Petri net by the
Publish/Subscribe Transformer component.

5.2 From UML Models to TCPN: A Practical Example Using QVT

As previously introduced, the transformation patterns described in Section 4.3
have been encoded using the QVT Operational Mappings Language (QVTo).

A QVTo transformation represents the definition of a unidirectional trans-
formation that is expressed imperatively. As Listing 2 shows, a transformation
defines a signature indicating the models involved in the transformation and
an entry operation for its execution (named main). The code excerpt shows
the signature and the entry point of a transformation called ps2cpntools,
which transform a UML model into a CPN Tools (TCPN) net. In the exam-
ple, the main entry operation firstly calls the interaction() helper (which

7 In fact, and following the model-driven development principles (Selic, 2003; Czarnecki
and Eisenecker, 2000), the metamodel shown in Figure 5 is indeed the implementation itself.

8 https://issigit.dsic.upv.es/agomez/intergenomics

https://issigit.dsic.upv.es/agomez/intergenomics

32 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

Listing 2 Transformation declaration and main entry point, excerpt of the
UML+Publish/Subscribe to CPN Tools QVT transformation (ps2cpntools)

1 transformation ps2cpntools (in uml : UML , out cpn : CPN);
2

3 main () {
4 var cpnet := uml. interaction ().map cpnet ();
5 -- Once the transformation has been executed , force the
6 -- automatic layout of the CPNet for all its pages
7 cpnet . binder .pages -> forEach (p) {
8 var nNodes := p.places ->size () + p.transs ->size ();
9 p. layout (nNodes * 40, nNodes * 40, 3000) ;

10 }
11 }
12

13 mapping UML :: Interaction :: cpnet () : CPN :: Cpnet {
14 globbox := self .map invariantGlobbox ();
15 binder := object CPN :: Binder {
16 posx := 300;
17 posy := 30;
18 width := 500;
19 height := 500;
20 pages += self .map invariantPage ();
21 pages += self .map scenarioPage ();
22 pages += self . message [isSubscription ()]. subscription ().map

subscriptionPage ();
23 }
24 }

Listing 3 A transformation mapping, excerpt of the UML+Publish/Subscribe to CPN
Tools QVT transformation (ps2cpntools)

1 mapping PS :: Getter :: getterSubnet
2 (inout _page : CPN :: Page , in trans : CPN :: Trans) {
3 var pResourceRegistryGetter = pResourceRegistry (_page);
4 self . variable .map asRealVariable ();
5 var inscription : String =
6 ’(EPR_R {1} , "{2}" , {3} , cr_R {4}) ’
7 . _format (
8 self . resource .epr , self . resource ._tag , self .variable , self .

resource .epr);
9 create_arc (_page , pResourceRegistryGetter , trans , inscription);

10 create_arc (_page , trans , pResourceRegistryGetter , inscription);
11 }

is not shown, but simplifying, retrieves the Interaction selected by the user)
and then applies a mapping operation called cpnet on it. As shown in the
listing, the cpnet mapping operation is the operation in charge of creating the
corresponding instance of the Cpnet class of the metamodel shown in Figure 5.
Additionally, it initializes some of the Cpnet attributes by calling other map-
ping operations (line 14), or by directly instantiating new objects (lines 15–23).
Objects that are created inline (such as the Binder) can also call subsequent
mapping operation to initialize their attributes (lines 20–22).

Listing 3 shows another example mapping that, thanks to its simplicity,
serves as a clear demonstration of how the transformation patterns described
in Section 4.3 can be described using QVTo. Specifically, it shows the basic
pattern for the Getter stereotype. The mapping specifies that the getter-

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 33

Fig. 15 Publish/Subscribe Modeling and Simulation Tool.

Subnet mapping operation will be applied for a Getter stereotype application
(line 1). Additionally, the mapping will receive a modifiable page and a read-
only transition (line 2). The page is the element owning the place and the
arcs created by this mapping, while the transition is the element to which
the subnet created by this pattern will be attached. The pResourceRegistry
operation will create and retrieve a fusioned place representing the Resource
Registry. The instruction in line 4 creates a Real variable in the global Globbox,
which will be later used in the arc expressions. Finally, lines 5–8 create the
arc expression (the same for both arcs, making use of the Resource identifiers
to avoid naming collisions), and lines 9–10 create the arcs between the place
representing the Resource Registry and the transition passed as argument.

To inspect how other transformation patterns have been translated into
QVTo, the full code of the ps2cpntools transformation can be checked on-
line9.

34 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

5.3 Users’ View

Although our tool for Modeling and Simulating the Publish/Subscribe Paradigm
interacts with different tools and components, as well as relies on different
models and file types, the orchestration among all these elements is performed
in a transparent way from the final users’ point of view. Thus, what a user
sees is a light-weight integration of our tool within the Papyrus modeling en-
vironment10. Once the Publish/Subscribe profile is loaded into a UML model,
users can apply the stereotypes defined in Section 4.1 to their models.

Figure 15 shows what the modeling environment looks like. In particular,
this figure illustrates the Purchase L1 UML-SD shown in Figure 12(a) (all the
UML diagrams in Sections 4 and 5 have been directly included in this paper as
they have been modeled with the only help of Papyrus and our profiling tool).
The bottom part of the figure shows the Properties view, which allows setting
the different tagged values. Specifically, the figure shows how the operation
tagged value of the updateBalance message (stereotyped as Setter) is set to
(operator=minus, value=’PPL1’).

Finally, after a transformation process is launched from the Eclipse UI, a
CPN Tools Petri net is generated and opened in the CPN Tools simulator, as
show in Figure 16. The figure shows in the active page the Purchase L1 subnet
(i.e., the same net that the one shown in Figure 12(b)), with the automatically
generated layout11 during a simulation.

A limitation of our current approach is that the user must know how to
use the CPN Tools for simulating the generated TCPN model. Unfortunately,
CPN Tools does not provide a way to interact with it in a seamlessly mode
(e.g., via command-line interface). Our next step is to solve this limitation by
investigating how to interact with the graphical user interface of CPN Tools
without any user intervention.

6 Verification and validation phases

In this section, we describe the verification and validation phases that are
performed for the generated TCPN models, after the transformation of UML
annotated models with the PS profile.

9 The full code is available at https://github.com/abelgomez/publish-subscribe/tree/
master/plugins/io.github.abelgomez.ps.transformer/transformation
10 Please refer to our on-line documentation for a detailed description of the tool user

interface https://github.com/abelgomez/publish-subscribe/
11 Please note, that Figures 12(b) and 16 look different because the layout of the Petri net

shown in Figure 12(b) has been manually tweaked for readability purposes.

https://github.com/abelgomez/publish-subscribe/tree/master/plugins/io.github.abelgomez.ps.transformer/transformation
https://github.com/abelgomez/publish-subscribe/tree/master/plugins/io.github.abelgomez.ps.transformer/transformation
https://github.com/abelgomez/publish-subscribe/

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 35

Fig. 16 Generated Petri net in CPN Tools.

6.1 Verification phase

The verification phase takes place in two phases. Firstly, during the annota-
tion of the UML model with the PS profile. This profile contains a set of OCL
rules to verify the correctness of the annotated model with regard to the UML
profile. For instance, the ownerIsService OCL rule shown at the top of Fig-
ure 4 that verifies if the owner of a resource has been stereotyped with the
Service stereotype. Secondly, during the transformation phase. The transfor-
mation patterns that have been defined for each stereotype are applied in a
compositional way. Thus, as we have seen in the previous section, we define
the transformation by pieces, where the behavior of each individual operator
is first translated into a corresponding TCPN representation, whose behav-
ior is the same as the operator it comes from. Thus, from this compositional
approach we guarantee that generated TCPN model reflect the behavior in-
dicated in the UML annotated model. In addition, the QVT transformation
also incorporates several OCL rules to verify that the UML annotated model
is well-formed.

6.2 Validation phase

Once we have the generated CPN models we can accomplish the validation
phase. Table 1 contains a general set of properties that must hold for the
TCPN model obtained by the translation. These properties have been checked
by using the monitor features of the CPN Tools in the running example used in
Section 4.3, and all of them are satisfied. A monitor is a mechanism to observe,
inspect, control, or modify a simulation of a TCPN. Monitors allow to inspect

36 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

Property to check
1 If a resource is published, this resource becomes published with the informa-

tion provided by the publisher.
2 If a resource was already published, the publish operation fails.
3 A published resource becomes expired when its lifetime runs out.
4 All subscriptions to an expired resource are removed.
5 A discovery operation must work for a published resource.
6 A discovery operation fails when there is no published resource with the in-

dicated tag.
7 If TimedSetter is invoked with time argument 0 (new lifetime) and the re-

source is published, it becomes immediately expired or unpublished.
8 Operations TimedSetter, Setter, Getter and Subscription fail when they are

invoked for an expired or not published resource.
9 If TimedSetter is invoked with a positive argument time, the resource becomes

expired (unpublished) once the new indicated lifetime elapses.
10 Operation Getter returns the actual property value of the resource, if it is

currently published.
11 Operation Setter changes the actual value of the resource, if it is published.
12 A Subscription operation is immediately notified if the resource is published

or a Setter operation or TimedSetter operation is performed such that the
current value of the resource belongs to the indicated subscription interval.

13 A subscription is removed when its associated lifetime runs out.
Table 1 Global properties of Publish/Subscribe paradigm to be fulfilled in the generated
TCPN models.

the markings of places and the occurring binding elements during a simulation,
and they can take appropriate actions based on the observations. Therefore,
monitors are used for different purposes, such as stopping a simulation when
a particular place is empty, counting the number of times a transition occurs,
updating a file when a transition occurs with a variable bound to a specific
value, or calculating the average number of tokens on a place.

Property 1 in Table 1 checks the basic functionality regarding the eventual
publication of a resource. Property 2 allows us to check if the publish operation
fails when the resource is already published. Property 3 captures the resource
expiration when its lifetime runs out. Property 4 checks if all the subscriptions
to an expired resource are removed. Properties 5 and 6 state the behavior of
the discovery operation; specifically, property 5 checks if the discovery opera-
tion works with an already published resource, and property 6 if the discovery
operation fails when the resource with the indicated tag does not exist. Proper-
ties 7, 8, 9, 10, and 11 capture the behavior of TimedSetter, Getter and Setter
operations. Specifically, property 7 checks if the resource becomes immediately
unpublished when the TimedSetter operation is invoked with time argument
0 for a published resource. Property 8 captures whether TimedSetter, Setter
and Getter fail when they are invoked for an expired resource. Property 9 tests
the behavior of TimedSetter when it is invoked with a positive argument and
the updated lifetime elapses. Properties 10 and 11 check if Getter and Setter
operations work properly when the resource is published. Properties 12 and 13
capture the basic functionality regarding the subscription and notification, re-
spectively. Specifically, property 12 checks if the Subscription operation works
properly, that is, if the notification is sent when the resource value belongs to

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 37

Fig. 17 Monitor feature of CPN Tools defined for Property 2.

the subscription interval, once it has been published or a Setter operation has
modified its value. Finally, property 13 checks if the subscription is removed
when its lifetime expires.

As an example, Figure 17 depicts the monitor used to check property 2 (we
cannot publish twice a same resource). This monitor is defined as a breakpoint
monitor (specifically, a transition enabled monitor), which checks whether a
transition is enabled or not, stopping the simulation when enabled (CPN Tools,
2017). Thus, in this example the monitor stops the simulation when the tran-
sition Publish fail is enabled. To start the simulation we consider the following
initial marking in the Resource Registry place:

1‘(1,"L1",950.0,365)@0+++
1‘(2,"L2",980.0,365)@0+++
2‘(3,"CR_USER",1500.0,365)@0

As shown, there are both laptop resources of types L1 and L2 and two
identical user credit cards (CR USER), with the same EPR (3). Thus, once
the first instance of the credit card is published, the second instance cannot be
published and transition Publish fail becomes enabled, activating the monitor
and stopping the simulation process. Figure 18 shows the state at which the
simulation stopped, in which only one credit card has been published.

Validation of the running example

Finally, the obtained TCPN model of the running example has been simulated,
obtaining the following sequence of relevant events in the system:

1. Once the CPN Tools simulator tool opens, the initial TCPN marking for
the PS Core Subscription page is that shown in Listing 1.

2. After 10 days, both laptop prices are reduced to 665e and 784e, respec-
tively.

3. Both subscription conditions are then fulfilled, so the Notification place
becomes marked with the two corresponding tokens.

4. Only one purchase can proceed, because we only have one token in the
Lock places. Thus, we have obtained the two possible purchases in different

38 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

Notifications_0

Fusion 3
CL

Fusion 3

Resource
Registry_0

Fusion 2 RECFusion 2

Subscriptions
Removed

ECLIR

Expired
Control

INT

Subscriptions
Time-Out

ECLIR

Expired
Resources

REC

Time
Control

INTT

0

Subscription
Registry

ECLIR

Resources

REC

PosRec

Roles

CLI

PosCli

Subscription
Request

ECLI

Fail
Subscription

Requests
ECLI

Fail
Roles

CLI

REC

Empty

P3

Remove
Subscription

[EPR = EPR1]

P2

Time
Step

@+1

[n < maxTime]

P4

Resource
Expire

[n > cr]

P2

Subscription
Time-Out

[cc < n]

P2

Notify

[v <= condv2, v >= condv1]

P1

Publish_ok

P3

Publish_fail

[EPR = EPR1]

P2

Discover

P2
Re-Subscribe

[C = C1]

P2

Fail
Discover

P4

Fail
Subscribe

P4

Subscribe

P4

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,C,condv1,condv2,cc,tr)

EPR
EPR

EPR

EPR

n n

n
n + 1

n n

(EPR1,R,C,condv1,condv2,cc,tr)

(EPR1,R,C,condv1,condv2,cc,tr)

(EPR1,R,C,condv1,condv2,cc,tr)

(EPR1,R,C,condv1,condv2,cc,tr)

(EPR1,R,C,condv1,condv2,cc,trOld)

(EPR1,R,C,condv11,condv22,condtt+intTime(),tr)

(EPR1,R,C,condv1,condv2,condt+intTime(),tr)

(EPR1,R,C,v,tr)

(EPR,R,v,cr)

(EPR,R,v,intTime()+t)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)
(EPR1,R,v,cr)(EPR1,R,C,condv1,condv2,condt,tr)

(EPR1,R,C,condv11,condv22,condtt,tr)

(EPR1,R,C,condv1,condv2,condt,tr)(EPR1,R,C,condv1,condv2,condt,tr)

(EPR1,R,C,condv1,condv2,condt,tr)

(C,R,condv1,condv2,condt,tr)

(C,R,condv1,condv2,condt,tr)

(C,R,condv1,condv2,condt,tr)

(EPR,R,v,t)

(EPR,R,v,t)

(EPR,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR,R,v,t)

3
1`(1,"L1",950.0,365)@0+++
1`(2,"L2",980.0,365)@0+++
1`(3,"CR_USER",1500.0,365)@0

1 1`0@0

1

1`(3,"CR_USER",1500.0,365)@0

1

2

1`(1,"L1","Client",0.0,850.0,365,"Pur
chase L1")@0+++
1`(2,"L2","Client",0.0,850.0,365,"Pur
chase L2")@0

3
1`(1,"L1",950.0,365)@0+++
1`(2,"L2",980.0,365)@0+++
1`(3,"CR_USER",1500.0,365)@0

Fig. 18 TCPN final marking with monitor.

simulations. For instance, when laptop 2 is bought, the Credit Card balance
is now 716e. This situation is shown in Figure 19.

5. Since the credit card is lower than 1000e, the subscription condition for
the Deposit UML-SD is fulfilled, so it is notified (the corresponding token
is included in the Notification place. This situation is shown in Figure 20.

6. The Purchase subnet is activated again with the other token (laptop 1),
but as we now have that variable bought is true, its execution follows the
default branch (no action) and terminates its execution.

7. Finally, the subnet corresponding to Deposit is therefore executed, and the
client’s credit card balance is increased by 1000e.

In this model, we have also checked other situations by changing the initial
values of resources and client’s information (initial credit card budget and cash

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 39

Resource
Registry_4

Fusion 2
REC

Fusion 2

Resource
Registry_5

Fusion 2
REC

Fusion 2

Client_4

Fusion 1
CLIENT

("Client", false, 0.0)

Fusion 1

Client_5

Fusion 1
CLIENT

("Client", false, 0.0)

Fusion 1

Resource
Registry_6

Fusion 2
REC

Fusion 2
Resource

Registry_7

Fusion 2
REC

Fusion 2

Notifications_2

Fusion 3
CL

Fusion 3

Start
Purchase L2

()

Finish
Purchase L2

Client_LCK_2

Fusion 4
LOCK

()

Fusion 4

CR_USER_LCK_2

Fusion 5
LOCK

()

Fusion 5

L2_LCK_1

Fusion 6
LOCK

()

Fusion 6

P2

SET_CR_USER_1

ASG_bought_1

[PPL2 <= 850.0 andalso balance >= PPL2 andalso bought = false]

P1

(EPR, "CR_USER", v - PPL2, cr)

(EPR, "CR_USER", v, cr)

(EPR_R2, "L2", PPL2, cr_R2)

(EPR_R2, "L2", PPL2, cr_R2)

(client, true, m)

(client, bought, m)

(client, bought, m)

(client, bought, m)

(EPR_R2, "L2", PPL2, cr_R2)

(EPR_R2, "L2", PPL2, cr_R2)

(EPR_R3, "CR_USER", balance, cr_R3)

(EPR_R3, "CR_USER", balance, cr_R3)

(EPR,"L2","Client",v,"Purchase L2")

l

l

l

l

l

l

1 1`()

3
1`(1,"L1",665.0,30)@10+++
1`(2,"L2",784.0,15)@10+++
1`(3,"CR_USER",716.0,365)@10

3
1`(1,"L1",665.0,30)@10+++
1`(2,"L2",784.0,15)@10+++
1`(3,"CR_USER",716.0,365)@10

1 1`()

1 1`("Client",false,2000.0)@10

1 1`("Client",false,2000.0)@10

1 1`()

3

1`(1,"L1",665.0,30)@10+++
1`(2,"L2",784.0,15)@10+++
1`(3,"CR_USER",716.0,365)@10

3
1`(1,"L1",665.0,30)@10+++
1`(2,"L2",784.0,15)@10+++
1`(3,"CR_USER",716.0,365)@10

1 1`()

1 1`(1,"L1","Client",665.0,"Purchase L1
")@10

1 1`()

Fig. 19 Laptop 2 is bought and credit card balance low.

available). For instance, we have checked the situation in which the initial
credit card balance is 300e, with a cash of 300e. In this scenario, we have
obtained that the Deposit subnet is immediately performed, so the credit card
balance increases to 600e, and even when the laptop prices are reduced, she
cannot afford to buy any of them, so the default branch is executed on both
subnets with no action at all. Figure 21 shows that even though the laptop
prices are reduced and the credit card balance is increased, she cannot buy any
laptop. The enabled transition in the center of the figure corresponds to not
buying the laptop, since the credit card balance is not enough. This transition
has priority P2, so it fires because the transition on the right, which has a
greater priority (P1) cannot be fired.

7 Related Work

The Publish/Subscribe paradigm has received considerable attention in the
last few years. A survey on this subject was carried out by Lin and Plade (Lin
and Plade, 2003) and also by Eugster et al. (Eugster et al, 2003), and for-
malizations of this paradigm can be found in (Baldoni et al, 2003; Garlan
et al, 2003). From these works, it becomes obvious that the way in which
the Publish/Subscribe systems are modeled varies considerably depending on
the specific model’s goals. In our case, we have used a mechanism to publish

40 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

Notifications_0

Fusion 3
CL

Resource
Registry_0

Fusion 2 RECFusion 2

Subscriptions
Removed

ECLIR

Expired
Control

INT

Subscriptions
Time-Out ECLIR

Expired
Resources

REC

Time
Control

INTT

0

Subscription
Registry

ECLIR

Resources

REC

PosRec

Roles

CLI

PosCli

Subscription
Request

ECLI

Fail
Subscription

Requests
ECLI

Fail
Roles

CLI

REC

Empty

P3

Remove
Subscription

[EPR = EPR1]

P2

Time
Step

@+1

[n < maxTime]

P4

Resource
Expire

[n > cr]

P2

Subscription
Time-Out

[cc < n]

P2

Notify

[v <= condv2, v >= condv1]

P1

Publish_ok

P3

Publish_fail

[EPR = EPR1]

P2

Discover

P2
Re-Subscribe

[C = C1]

P2

Fail
Discover

P4

Fail
Subscribe

P4

Subscribe

P4

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,C,condv1,condv2,cc,tr)

EPR

EPR

EPR

EPR

n n

n

n + 1

n n

(EPR1,R,C,condv1,condv2,cc,tr)

(EPR1,R,C,condv1,condv2,cc,tr)

(EPR1,R,C,condv1,condv2,cc,tr)

(EPR1,R,C,condv1,condv2,cc,trOld)

(EPR1,R,C,condv11,condv22,condtt+intTime(),tr)

(EPR1,R,C,condv1,condv2,condt+intTime(),tr)

(EPR1,R,C,v,tr)

(EPR,R,v,cr)

(EPR,R,v,intTime()+t)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)(EPR1,R,C,condv1,condv2,condt,tr)

(EPR1,R,C,condv11,condv22,condtt,tr)

(EPR1,R,C,condv1,condv2,condt,tr)(EPR1,R,C,condv1,condv2,condt,tr)

(EPR1,R,C,condv1,condv2,condt,tr)

(C,R,condv1,condv2,condt,tr)

(C,R,condv1,condv2,condt,tr)

(C,R,condv1,condv2,condt,tr)

(EPR,R,v,t)

(EPR,R,v,t)

(EPR,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR,R,v,t)

(EPR1,R,C,condv1,condv2,cc,tr)

Fusion 3

21`(1,"L1","Client",665.0,"Purchase L1
")@10+++
1`(3,"CR_USER","Client",716.0,"Depo
sit")@10

3

1`(1,"L1",665.0,30)@10+++
1`(2,"L2",784.0,15)@10+++
1`(3,"CR_USER",716.0,365)@10

1 1`4@4

3
1`(1,"L1",950.0,365)@0+++
1`(2,"L2",980.0,365)@0+++
1`(3,"CR_USER",1500.0,365)@0

Fig. 20 Credit card low balance notified.

distributed resources identified by a textual name, and a mechanism to allow
clients to discover these resources, by using these names.

To the best of our knowledge, there is no work combining the main features
of UML 2.5 sequence diagrams with the WSRF standard for the description
of distributed resources so as to automatically generate its corresponding rep-
resentation in Colored Petri nets to simulate and validate the system. In a
preliminary work (Valero and Cambronero, 2017), we presented a UML for-
mal framework based on a timed process algebra to model timed Web services
with distributed resources and then, we provided a graphical model of timed
Web services based on sequence diagrams that integrates the publish/subscribe
paradigm in the context of distributed resources, with the goal that users have
a formal framework to design these systems. In this work, we have used the
formal framework presented in (Valero and Cambronero, 2017) as basis to de-

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 41

Fig. 21 Credit card balance low, no purchase.

fine a UML profile and develop a tool that allows us to obtain automatically
a corresponding TCPN.

Bran Selic (Selic, 2000) presented a generic framework for modeling re-
sources with UML, focusing on the notion of abstract resources, which define
the common characteristics of resources regardless of their specific manifesta-
tion. The Publish/Subscribe paradigm was not considered in this paper and
resources were modeled as servers with services, characterized by both their
functional and non-functional aspects (such as response time and availability),
thus focusing on Quality of Service (QoS) analysis.

There is considerable work on providing translations from UML sequence
diagrams to Colored Petri nets but, as previously mentioned, none of them
integrate WSRF-resources in UML sequence diagrams. For instance, R. Mi-
randola and V. Cortellessa (Mirandola and Cortellessa, 2000) used UML dia-
grams (in particular, use case diagrams, sequence diagrams, and deployment
diagrams) to obtain a performance model of the system based on a queueing
network, which can therefore be helpful as a support for early design decision
making. Fernandes et al. (Fernandes et al, 2007) also presented a translation
of use cases and UML 2.0 sequence diagrams to Colored Petri nets supported
by CPN Tools, but the transformation is only performed on a specific case
study, an elevator controller. Bowles and Meedeniya (Bowles and Meedeniya,
2010) defined a formal strongly consistent transformation from UML sequence
diagrams to colored Petri nets by using a set of transformation rules, showing
that the obtained CPNs are equivalent in terms of trace semantics.

Translations of UML sequence diagrams to other formalisms have also been
done. A true-concurrent semantics for UML sequence diagrams was defined

42 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

by Juliana Bowles (Juliana Bowles, 2006b,a), using a two-level logic inter-
preted over labeled event structures. Starting from these two works, Bowles,
Bordbar and Alwanain (Juliana Bowles, Behzad Bordbar and Mohammed Al-
wanain, 2015) checked the consistency of a composition of UML sequence di-
agrams, using a set of logical constraints to describe their behavior. Bernardi
et al. (Bernardi et al, 2002) proposed patterns for model transformation from
UML sequence diagrams and state-charts into a particular subclass of timed
Petri nets. However, only plain UML models (not annotated) were consid-
ered. A transformation of UML sequence diagrams into State Machines by
using graph transformation techniques was defined by Grønmo and Møller-
Pedersen (Grønmo and Møller-Pedersen, 2011), by taking the parallel, choice,
loop, and neg Combined Fragments, although time and resources were not con-
sidered in that approach. In (Cambronero et al, 2010), we used the RT-UML
profile (OMG, 1989) for UML 2.0 and defined a corresponding process alge-
bra, capturing the main aspects related to sequence diagrams extended with
combined fragments to obtain a translation into a network of timed automata.
Hence, the modeled system is suitable for simulation and analysis by means of
the existing tools supporting timed automata, such as UPPAAL (Larsen et al,
1997). In that work resources were not considered, so the current work ex-
tends such a previous work by introducing a WSRF-compliant UML profile of
distributed resource management, including the Publish/Subscribe paradigm.
Tribastone and Gilmore (M. Tribastone and S. Gilmore, 2008) defined a trans-
lation of UML sequence diagrams annotated with stochastic information into
the stochastic process algebra PEPA (Hillston, 1996) to carry out quantitative
evaluation. In (Distefano et al, 2011), Distefano et al. proposed a methodology
to validate the performance of a UML model representing a software architec-
ture. They annotated the UML models and derived a Stochastic Petri net
where performance measures are assessable.

Testing and analysis of model transformation has also been studied by
Hilken et al. (Hilken et al, 2018). In that paper, the authors proposed the use
of partitioning techniques based on classifying terms for testing models and
model transformation. Anatasakis et al. (Anastasakis et al, 2010) describe how
to transform UML models into Alloy in order to apply the Alloy analizer (Jack-
son, 2006) and thus check and identify design faults within a specification. In
a similar way, Gogolla et al. (Gogolla et al, 2005) study the testing and certi-
fication of UML and OCL models by using the validation tool USE (Richters
and Gogolla, 2000).

8 Conclusions and Future Work

Many Web services behave as stateful distributed services, allowing a user to
access and manipulate states when the user interacts with the service. In this
paper, we focus on timed Web services that manage a collection of distributed
resources using the Publish/Subscribe paradigm and the OASIS WSRF stan-
dard. These systems present the following characteristics: (i) the resources are

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 43

published by some publisher and subscribers can submit their subscription con-
ditions to be notified when these conditions become true; and (ii) resources
have standardized operations for the management of resources.

In this paper, we have proposed a UML profile for the Publish/Subscribe
paradigm that enables us to represent the underlying concepts of this paradigm
in the UML models by means of annotations. We have also introduced a set
of rules for transforming a UML annotated system into a formal model; par-
ticularly, to Colored Petri nets. Furthermore, we have developed a model-
to-model transformation tool that follows these rules and provides us with
a Colored Petri net model compatible with the format used by CPN Tools,
a well-known tool for editing, simulating, and analyzing these nets. The ob-
tained model becomes useful to detect and fix design errors in early stages
of system development, thus saving production costs. To foster research in
this area and for the sake of the reproducibility of our research in this pa-
per, we publish our tool and the UML models of the case study that we used
for the evaluation under an open source license, namely, the Eclipse Public
License (Eclipse Foundation, 2004). All information is available at https:
//github.com/abelgomez/publish-subscribe/.

As future work, we aim at further extending the validation of properties
of the Publish/Subscribe paradigm to include also properties more specific to
the particular problem under consideration. Furthermore, we aim at improving
the feedback to the user regarding the design errors detected and at provid-
ing a more seamlessly integration with CPN Tools to facilitate the adoption
of our approach for non-expert users in Petri nets. Similarly, the automatic
generation of code is also an important phase of our methodology that needs
further research.

Acknowledgements The research of A. Gómez and R. J. Rodŕıguez was supported in
part by the EU H2020 through the DICE Project under Grant 644869 and in part by the
Spanish MINECO through CyCriSec Project under Grant TIN2014-58457-R. The research
of M. E. Cambronero and V. Valero was supported by the Spanish Ministry of Science
and Innovation and the European Union FEDER Funds through the DArDOS Project un-
der Grant TIN2015-65845-C3, subproject 2-R, and also by the JCCM regional project SB-
PLY/17/180501/000276, which is also co-financed by the European Union FEDER Funds.

References

Abel Gómez (2006) Intergenomics - Transpat2CPN. Available at https://
issigit.dsic.upv.es/agomez/intergenomics, last accessed Oct. 2018

Alonso G, Casati F, Kuno H, Machiraju V (2004) Web Services: Concepts,
Architectures and Applications. Springer-Verlag

Anastasakis K, Bordbar B, Georg G, Ray I (2010) On Challenges of Model
Transformation from UML to Alloy. Software and System Modeling 9:69–86

Baeten J, Middelburg C (2002) Process Algebra with Timing. EATCS Mono-
graphs Series

https://github.com/abelgomez/publish-subscribe/
https://github.com/abelgomez/publish-subscribe/
https://issigit.dsic.upv.es/agomez/intergenomics
https://issigit.dsic.upv.es/agomez/intergenomics

44 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

Baldoni R, Contenti M, Tucci S, Virgilio A (2003) Modelling Publish/Sub-
scribe Communication Systems: Towards a Formal Approach. In: Proc. 8th
IEEE International Workshop on Object-Oriented Real-Time Dependable
Systems, pp 304–311

Bernardi S, Donatelli S, Merseguer J (2002) From UML Sequence Diagrams
and Statecharts to analysable Petri Net models. In: Proceedings of the Third
International Workshop on Software and Performance (WOSP2002), ACM,
Rome, Italy, pp 35–45

Bernardi S, Merseguer J, Petriu D (2011) A Dependability Profile within
MARTE. Journal of Software and Systems Modeling 10(3):313–336

Bettini L (2016) Implementing Domain-Specific Languages with Xtext and
Xtend, 2nd edn. Packt Publishing

Bowles J, Meedeniya D (2010) Formal Transformation from Sequence Dia-
grams to Coloured Petri Nets. In: 2010 Asia Pacific Software Engineering
Conference, pp 216–225

Brunelière H, Cabot J, Dupé G, Madiot F (2014) MoDisco: A model
driven reverse engineering framework. Information and Software Technol-
ogy 56(8):1012–1032

Cambronero ME, Valero V (2013) Modelling Distributed Service Systems with
Resources Using UML. In: Proceedings International Conference on Com-
putational Science (ICCS’13), Procedia Computer Science, pp 140–148

Cambronero ME, Valero V, Dı́az G (2010) Verification of Real-Time Systems
Design. Software Testing, Verification and Reliability 20(1):3–37

CPN Tools (2017) CPN Tools Homepage. [Online; http://www.cpntools.
org/], accessed on Oct. 2018

Czarnecki K, Eisenecker UW (2000) Generative Programming: Methods,
Tools, and Applications. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA

Distefano S, Scarpa M, Puliafito A (2011) From UML to Petri Nets: The PCM-
Based Methodology. IEEE Transactions on Software Engineering 37(1):65–
79

Eclipse Foundation (2004) Eclipse: The Platform for Open Innovation and
Collaboration. Available at https://www.eclipse.org/, Accessed on Oct.
2018

Eclipse Foundation (2017a) Eclipse Modeling Project. Available at http://
www.eclipse.org/emf/, Accessed on Oct. 2018

Eclipse Foundation (2017b) Eclipse QVT Operational. Available at https://
projects.eclipse.org/projects/modeling.mmt.qvt-oml, Accessed on
Oct. 2018

Eclipse Foundation (2017c) Papyrus. Available at https://eclipse.org/
papyrus/, Accessed on Oct. 2018

Eugster PT, Felber PA, Guerraoui R, Kermarrec AM (2003) The Many Faces
of Publish/Subscribe. ACM Computing Surveys 35(2):114–131

Fernandes JM, Tjell S, Jorgensen JB, Ribeiro O (2007) Designing Tool Sup-
port for Translating Use Cases and UML 2.0 Sequence Diagrams into a
Coloured Petri Net. In: Scenarios and State Machines, 2007. SCESM ’07:

http://www.cpntools.org/
http://www.cpntools.org/
https://www.eclipse.org/
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
https://eclipse.org/papyrus/
https://eclipse.org/papyrus/

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 45

ICSE Workshops 2007. Sixth International Workshop on, pp 2–2
Garlan D, Khersonsky S, Kim J (2003) Model-Checking Publish-Subscribe

Systems. In: Proc. 10th International SPIN Workshop on Model Checking
Software (SPIN’03), pp 166–180

Gogolla M, Bohling J, Richters M (2005) Validating UML and OCL models
in USE by automatic snapshot generation. Software & Systems Modeling
4(4):386–398

Grønmo R, Møller-Pedersen B (2011) From UML 2 Sequence Diagrams to
State Machines by Graph Transformation. Journal of Object Technology
10(8):1–2

Gómez A, Penadés MC, Canós JH, Borges MR, Llavador M (2014) A frame-
work for variable content document generation with multiple actors. In-
formation and Software Technology 56(9):1101–1121, special Sections from
“Asia-Pacific Software Engineering Conference (APSEC), 2012” and “ Soft-
ware Product Line conference (SPLC), 2012”

Hilken F, Gogolla M, Burgueño L, Vallecillo A (2018) Testing Models and
Model Transformations Using Classifying Rerms. Software & Systems Mod-
eling 17(3):885–912

Hillston J (1996) A Compositional Approach to Performance Modelling. Cam-
bridge University Press

INRIA, LINA (2014) ATLAS transformation language. URL http://www.
eclipse.org/atl/

Jackson D (2006) Software Abstractions: Logic, Language, and Analysis. The
MIT Press, London, England

Jensen K (1997) Coloured Petri Nets. Basic Concepts, Analysis Methods
and Practical Use. Monographs in Theoretical Computer Science, Springer-
Verlag

Jensen K, Kristensen L (2009) Coloured Petri Nets. Modelling and Validation
of Concurrent Systems. Springer-Verlag

Jensen K, Kristensen LM, Wells L (2007) Coloured Petri Nets and CPN Tools
for modelling and validation of concurrent systems. International Journal
on Software Tools for Technology Transfer 9(3):213–254

Juliana Bowles (2006a) Decomposing Interactions. In: Johnson, Michael
and Vene, Varmo (ed) Algebraic Methodology and Software Technology,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp 189–203

Juliana Bowles (2006b) Modelling Concurrent Interactions. Theoretical Com-
puter Science 351(2):203 – 220, Algebraic Methodology and Software Tech-
nology

Juliana Bowles, Behzad Bordbar and Mohammed Alwanain (2015) A Logical
Approach for Behavioural Composition of Scenario-Based Models. In: 17th
International Conference on Formal Engineering Methods (ICFEM 2015),
LNCS vol. 9407, pp. 252–269

Lagarde F, Espinoza H, Terrier F, Gérard S (2007) Improving UML Profile
Design Practices by Leveraging Conceptual Domain Models. In: Proceedings
of the 22nd IEEE/ACM International Conference on Automated Software
Engineering, ACM, New York, NY, USA, ASE’07, pp 445–448

http://www.eclipse.org/atl/
http://www.eclipse.org/atl/

46 A. Gómez, R.J. Rodŕıguez, M.E. Cambronero, V. Valero

Larsen KG, Pettersson P, Yi W (1997) UPPAAL in a Nutshell. International
Journal on Software Tools for Technology Transfer 1(1-2):134–152

Lin Y, Plade B (2003) Survey of Publish-Subscribe Event Systems. Tech.
Rep. 16, Computer Science Department, Indiana University

M Tribastone and S Gilmore (2008) Automatic Translation of UML Sequence
Diagrams into PEPA Models. In: International Conference on Quantitative
Evaluation of Systems (QEST’08), pp 205–214

McAffer J, VanderLei P, Archer S (2009) OSGi and Equinox: Creating Highly
Modular Java Systems. Eclipse series, Addison-Wesley

Milner R, Tofte M, Macqueen D (1997) The Definition of Standard ML. MIT
Press, Cambridge, MA, USA

Mirandola R, Cortellessa V (2000) UML Based Performance Modelling of Dis-
tributed Systems. In: Proc. 3rd International Conference on the Unified
Modelling Language: Advancing on the Standard, UML’00, Lecture Notes
in Computer Science, vol 1939, pp 178–193

Murata T (1989) Petri Nets: Properties, Analysis and Applications. In: Pro-
ceedings of the IEEE, vol 77(4), pp 541–580

Musset J, Juliot É, Lacrampe S, Piers W, Brun C, Goubet L, Lussaud Y,
Allilaire F (2006) Acceleo user guide

Niblett P, Graham S (2005) Events and Service-Oriented Architecture:
The OASIS Web Services Notification Specifications. IBM Systems Jour-
nal 44(4):869–886

OMG (1989) Object Management Group. http://www.omg.org/, Accessed on
Oct. 2018

OMG (2012) Object Constraint Language (OCL), Version 2.3.1. [Online;
http://www.omg.org/spec/OCL/2.3.1/], accessed on Oct. 2018

OMG (2015) Unified Modeling Language (UML), v2.5. Available at http:
//www.omg.org/spec/UML/2.5

OMG (2016) Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, Version 1.3. Available at http://www.omg.org/spec/QVT/1.
3/

OSGi Alliance (2008) OSGi Service Platform Core Specification. Tech. rep.,
OSGi Alliance, available at http://www.osgi.org/Specifications/

Randimbivololona F (2001) Orientations in Verification Engineering of Avion-
ics Software. In: Informatics, Lecture Notes in Computer Science, vol 2000,
Springer Berlin/Heidelberg, pp 131–137

Richters M, Gogolla M (2000) Validating UML Models and OCL Constraints.
In: Evans A, Kent S, Selic B (eds) International Conference on the Unified
Modeling Language 2000, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp 265–277

Rodŕıguez RJ, Merseguer J, Bernardi S (2015) Modelling Security of Crit-
ical Infrastructures: A Survivability Assessment. The Computer Journal
58(10):2313–2327

Selic B (2000) A Generic Framework for Modeling Resources with UML. Com-
puter journal, IEEE Computer Society Press 6:64–69

http://www.omg.org/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/QVT/1.3/
http://www.omg.org/spec/QVT/1.3/
http://www.osgi.org/Specifications/

Profiling the Publish/Subscribe Paradigm for Automated Analysis Using CPNs 47

Selic B (2003) The pragmatics of model-driven development. IEEE Software
20(5):19–25

Selic B (2007) A Systematic Approach to Domain-Specific Language Design
Using UML. In: 10th IEEE Int. Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC), IEEE Computer So-
ciety, Santorini Island, Greece, pp 2–9

Steinberg D, Budinsky F, Paternostro M, Merks E (2009) EMF: Eclipse Mod-
eling Framework 2.0, 2nd edn. Addison-Wesley Professional

The Eclipse Foundation (2014) MoDisco Eclipse Project. URL http://www.
eclipse.org/MoDisco/, available at http://www.eclipse.org/MoDisco/

Valero V, Cambronero ME (2017) Using Unified Modelling Language to Model
the Publish/Subscribe Paradigm in the Context of Timed Web Services with
Distributed Resources. Mathematical and Computer Modelling of Dynami-
cal Systems 23(6):570–594

Valero V, Macià H, Dı́az G, Cambronero ME (2015) Colored Petri Net Mod-
eling of Web Services Resources. In: 20th International Workshop on Formal
Methods for Industrial Critical Systems (FMICS’15), Lecture Notes in Com-
puter Science, vol. 9128., pp 81–95

http://www.eclipse.org/MoDisco/
http://www.eclipse.org/MoDisco/
http://www.eclipse.org/MoDisco/

	Introduction
	Background
	Methodology
	UML Profile for the Publish/Subscribe Paradigm
	A Tool for Modeling and Simulating the Publish/Subscribe Paradigm
	Verification and validation phases
	Related Work
	Conclusions and Future Work

