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Abstract

A memory dump contains the current state of a system’s physical memory at the time of its acquisition. Among other things, it
contains the processes that were running at the time of acquisition. These processes can share certain functionalities provided by
shared object files, which are internally represented by modules in Windows. However, each process only maps in its address space
the functionalities it needs, and not the entire shared object file. In this way, the current tools for extracting modules from existing
processes in a memory dump from a Windows system obtain the partial content of the shared object files instead of the entire file.
In this paper we present two tools, dubbed Modex and Intermodex, which are built on top of the Volatility 3 framework. These
tools allow a forensic analyst to extract a 64-bit module from one or more Windows memory dumps as completely as possible. To
achieve this, they aggregate the contents of the same module loaded by multiple processes that were running in the same memory
dump or in different dumps (we called it intradump and interdump, respectively). Additionally, we also show how our developed
tools are useful to detect dynamic-link library (DLL) hijacking attacks, a widely used attack on Windows where attackers trick
processes into loading a malicious DLL instead of the benign one.
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1. Introduction

Memory forensics is a subfield of digital forensics (Wu et al.,
2020) that consists of collecting a snapshot of the system in
its current state (called memory dump), which is then analyzed
with appropriate tools (such as Volatility (Ligh et al., 2014),
Rekall (Rekall, 2014), or Helix3, to name a few). A com-
plete survey of state-of-the-art memory acquisition techniques
is given in (Latzo et al., 2019). This type of forensics is useful
in scenarios where encrypted storage, encrypted network traf-
fic, or even no activity traces are written to disk. Storage-based
forensics may be impracticable or useless in these scenarios.

A memory dump contains relevant data (called memory ar-
tifacts) for incident analysis, comprising elements such as the
running processes, open files, logged users, or open network
connections at the time of memory acquisition. A memory
dump can also contain many artifacts that are more likely to
reside in memory rather than in disk, due to their volatile na-
ture, such as as residual IP packets, Ethernet frames, and other
associated data structures (Beverly et al., 2011).

Much modern malware performs memory-only attacks,
where no activity traces or malware footprints are left on
disk (Oosthoek and Doerr, 2019; Manna et al., 2022). Tra-
ditional storage-based forensics are useless in detecting these
types of threats, which can only be analyzed using memory
forensics. In this work, we focus on Windows, since today it
is still the predominant operating system that is abused by pro-
grams with malicious intent (AV-TEST, 2022).
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In essence, Windows malware are pieces of software that pri-
marily rely on Windows APIs to interact with the Windows
operating system. For Windows operating systems, much of
the operating system functionality accessible through Windows
APIs is provided by dynamic-link libraries (DLL) files.

A DLL is a module that contains functions and data that can
be used by other modules (Microsoft, 2022a). In Windows ter-
minology, a module is an executable file or DLL (Microsoft,
2021b). When a Windows program is running, much of its
functionality may be provided by one or more modules. For
example, some programs may contain many different modules,
and each program module is contained and distributed in DLL
files. Using DLLs helps promote code modularization, code
reuse, and efficient memory usage, among other benefits.

Multiple processes can load the same module into memory
when the functionality provided by such a module is needed.
Due to memory usage optimization techniques, not all pro-
cesses will map the entire module or even the same parts of
the module in their address space: the pages (fixed-length, con-
tiguous blocks of virtual memory) mapped for a given process
are those accessed by the process. Therefore, current tools for
extracting modules from memory dumps (such as the Volatil-
ity 3 plugin windows.modules.Modules with the --dump pa-
rameter) are imprecise, as only the mapped pages into a single
process address space are extracted.

Taking this shortcoming into account, we have developed
tools to get as much content as possible from a given module.
In particular, our goal is to extract a module as complete as
possible from a single memory dump (we called it intradump
extraction) or several memory dumps (interdump extraction).
This extraction is particularly useful when a module is loaded
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by more than one process on the same machine, or by multiple
processes running on different machines, as it allows a foren-
sic analyst to get the running module as complete as possible
even when the content of the device is encrypted. Note that
although we focus on modules from 64-bit DLL files in this pa-
per, our tools are also valid for extracting modules from 64-bit
executable files.

This scenario is particularly relevant when the forensic an-
alyst wants to analyze whether a DLL module is malicious or
not. In the case of DLLs, a common Windows mechanism that
is abused by attackers is the way that some Windows applica-
tions look for DLLs. Using a DLL hijacking attack (MITRE
ATT&CK, 2021), attackers exploit this mechanism to force an
application to load malicious code (contained in a DLL with the
same name as the non-malicious DLL) into the application’s ad-
dress space. Malware typically uses this attack to execute ma-
licious payloads, escalate privileges, or gain persistence (Uroz
and Rodríguez, 2019), among other goals. Our module extrac-
tion tools perform a variety of checks to detect this attack.

The contribution of this paper is twofold. First, we have de-
veloped two tools, Modex and Intermodex, to do intradump
or interdump extraction, respectively. Both tools are written
in Python 3 and their source code is freely available as open
source under the GNU/GPLv3 license. In particular, Modex is a
Volatility 3 plugin, while Intermodex is a standalone tool that
relies on Modex for its operation. Second, we have integrated
the ability to detect DLL hijacking attacks as a feature in both
tools. We also present the experimental evaluation of the tools
to validate them.

The rest of the paper is organized as follows. Section 2
goes over some background related to (virtual) memory man-
agement, Windows modules, and DLL hijacking attacks. Sec-
tion 3 discusses related work, while Section 4 describes our
Modex and Intermodex tools. Section 5 presents the experi-
ments and limitations of our intradump and interdump extrac-
tion approach. The proof of concept for detecting DLL hijack-
ing attacks is given in Section 6. Finally, Section 7 concludes
the paper and sets out future work.

2. Background

This section explains concepts about Windows memory man-
agement and hijacking attacks that are important to a better un-
derstanding of this paper.

2.1. Paging and the Virtual Memory Manager

Each Windows process has its own private virtual address
space (Ligh et al., 2014), which is a linear memory space (i.e.,
with contiguous addresses) divided into blocks of the same
length, called pages. A page of a process’s virtual address space
can be in different states (Microsoft, 2021c) (free, reserved, or
committed) and its size can be small (4 KiB, on x86 architec-
tures) or large (ranging from 2 to 4 MiB, on x64 and ARM
architectures) (Yosifovich et al., 2017).

Windows maintains the relationship between virtual mem-
ory and physical memory through Page Table Entries (PTEs),

which map a process virtual memory page to a physical mem-
ory page. With PTEs, the virtual memory manager (a Windows
kernel process) keeps track of the virtual addresses of reserved
or committed pages through the Virtual Address Descriptor
(VAD) tree (Yosifovich et al., 2017; Dolan-Gavitt, 2007). In
addition, it ensures that when a thread (in the context of a pro-
cess) reads or writes to addresses in its virtual memory space,
refers to the correct physical addresses (Microsoft, 2021a).

A shared page is a page accessed by multiple processes,
while a private page for a given process is a page accessed only
by that process. Unlike private pages, shared pages are stored
only once in physical memory, and all processes that share a
given page access the same physical address when reading in-
formation from that page through their own virtual addresses.
To make this possible, Windows uses prototype PTEs (Yosi-
fovich et al., 2017), a special type of PTE that enables shared
memory support in Windows and that are not stored in process
page tables (called real or process PTEs).

When a process wants to modify content present in a shared
page, a new private page is created for that process to reflect the
modification, leaving the shared page unchanged. This mecha-
nism, called copy-on-write, prevents modifications to a shared
page from being visible to all processes sharing that page. In
this way, this modification only affects the process that per-
forms it.

2.2. Page Frame Number Database

The page frame number database (PFN DB) is a Windows
kernel data structure that describes each page stored in physical
memory (Yosifovich et al., 2017). This database is, in effect,
an array of elements (called PFN DB entries) that describe the
state of a single physical page.

Among other fields, a PFN DB entry has a field called
PteAddress that contains the virtual address of the PTE that
points to the page represented by that PFN DB entry. This
PteAddress points to a prototype PTE or a real PTE depending
on whether the page represented by a PFN DB entry is shared
or private. In addition, each PFN DB entry has a flag named
PrototypePTE, which is used to indicate whether the PTE ref-
erenced by that PFN DB entry is a prototype PTE or not. This
indicator is useful to differentiate between shared pages and pri-
vate pages. Therefore, it is necessary to parse the PFN DB to
distinguish between PTE types.

2.3. Windows Modules

On Windows, an image is any executable, shared dynamic
library, or driver file loaded as part of the kernel or a user-mode
process, while an image file is the file as in disk. Internally, an
image and a process are represented by a module (Microsoft,
2021b). In what follows, we adhere to this terminology.

A Windows image file follows the Portable Executable (PE)
format (Microsoft, 2022c), which encapsulates the information
necessary for the Windows PE loader to manage the executable
code. When an image file runs, the Windows PE loader creates
a virtual address space for the process and maps the image file
from disk to the process address space. It tries to load the image
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at its preferred base address (defined in a PE field) and maps
the PE sections into memory. During this mapping, multiple
pages (typically small pages) are allocated to accommodate the
content of the image file. In addition to the memory required
to hold the PE sections, more memory is allocated to hold the
process stack and heap. In addition, external dynamic shared
libraries on which the program depends are also loaded into
the same memory space in a similar way, allocating memory
appropriately.

When a module’s preferred base address is already occupied,
the Windows PE loader relocates the module appropriately, set-
ting references to certain memory addresses in the module’s
code if necessary. Apart from this relocation process, the ad-
dress space of the stack, the heap, and external dynamic shared
libraries are randomized (on every Windows boot) thanks to Ad-
dress Space Layout Randomization (ASLR), a software security
mechanism to prevent certain memory corruption vulnerabili-
ties.

2.4. Hijacking Execution Flow Attacks
Hijacking execution flow attacks can be for the purposes of

persistence (Uroz and Rodríguez, 2019), escalating privileges,
or hiding malicious actions behind a legitimate process. Ac-
cording to MITRE (MITRE ATT&CK, 2021), there are two
techniques that adversaries can use in Windows to execute their
own malicious payloads by hijacking the way operating sys-
tems search and load DLLs.

One of these techniques is DLL search order hijack-
ing (MITRE ATT&CK, 2022), where adversaries take advan-
tage of the Windows DLL search order (Microsoft, 2022b) to
make a particular program load a malicious DLL that has the
same filename as the legitimate DLL, but different content. A
similar technique is DLL side-loading, where adversaries run
the legitimate program themselves to force the loading of a ma-
licious DLL.

A program can import one or more functions from a DLL,
which implement the functionality required by the application.
Therefore, the malicious DLL must not only have the same file-
name as the legitimate one, but also the same exported function
names. In addition, they must also provide the expected imple-
mentation of these exported functions so that the program can
work as usual. DLL proxying, which consists of simply calling
the functions of the legitimate DLL instead of implementing
the exported functions, allows an attacker to do this. As a re-
sult, the malicious DLL acts as a proxy between the program
and the legitimate DLL. A well-known malware that uses this
technique is Stuxnet (Langner, 2011).

3. Related Work

Memory forensics has been considered as the basis for mal-
ware analysis in many works, although this approach is not
without its problems (Martín-Pérez and Rodríguez, 2021). Co-
hen (2017) discusses the effective use of YARA (a very popular
tool for identifying and classifying malware samples) to scan
for malware in memory. Other approaches are based on ma-
chine learning. For instance, Aghaeikheirabady et al. (2014)

Modex

Intermodex

0100...

0100...

0110...

0101...

Memory dumps

Module name

0100...

1000...

0010...

0001...

Memory dump

0100...

0001...

0111...

0100...

Final module

{ ......
{ ...
} ...

}
JSON metadata

Figure 1: High-level diagram of Modex and Intermodex. Solid arrows indi-
cate the tool inputs, while dashed and dotted arrows indicate tool dependencies
and outputs, respectively.

use information from various sources such as VADs (Dolan-
Gavitt, 2007), registry hives, and other internal process struc-
tures to detect malware. Also, the work in (Mosli et al., 2016)
uses features (registry keys, DLLs, and the called operating
system functions, among others) extracted from the reports of
Cuckoo Sandbox. Bozkir et al. (2021) use a different approach,
combining machine learning and image processing for malware
classification of Windows processes extracted from memory.

The prevalence of certain DLLs in processes contained in
a memory dump is used as a characteristic of the malicious
behavior in Duan et al. (2015). The detection of DLL hi-
jacking attacks that we perform in this paper is similar to the
work in (Case et al., 2020), where a Volatility plugin called
hooktracer_messagehooks is introduced that helps analyze
hooks in a Windows memory dump. This plugin helps deter-
mine if hooks are associated with malicious keylogger or be-
nign software. Our tools are complementary to this plugin and
can be combined to provide better memory dump analysis.

With regard to malware focused on hiding its presence, Block
and Dewald (2019) developed an approach to detect differ-
ent code injection techniques despite the use of stealthy tech-
niques. Instead of VADs, this approach relies on information
stored in the PFN DB to avoid certain (advanced) stealthy tech-
niques. Likewise, Balzarotti et al. (2015) present different tech-
niques malware can adopt to hide its presence using GPU mem-
ory. The analysis of memory other than the physical memory,
though, is beyond the scope of this paper.

4. Modex and Intermodex

In this section we describe the tools developed in this work,
Modex and Intermodex. Both tools are publicly and freely
available under the GNU/GPLv3 license (Fernández-Álvarez
and Rodríguez, 2022) to foster research in the field of memory
forensics. Figure 1 shows a high-level diagram of both tools
and their relationships to each other and to Volatility 3.
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4.1. Modex

Modex is a Volatility 3 plugin implemented in Python 3 and
designed to extract a 64-bit Windows module from a memory
dump as completely as possible (i.e., it makes an intradump ex-
traction). We chose Volatility because it is the most widely used
framework for extracting digital artifacts from volatile mem-
ory (Volatility Foundation, 2022).

This plugin takes the memory dump path and the name of
a module as arguments and outputs a directory containing sev-
eral files: a file with the extension .dmp (which corresponds to
the extracted module with as many pages as possible), a JSON
file containing metadata about the extracted module, and a log
file with information about the execution of Modex. Currently,
our tool only extracts 64-bit modules. The JSON file contains,
among other data, all the processes where the extracted module
was loaded, and for each page extracted it includes its offset and
whether it was a shared or private page.

The extraction of a module is as follows. Modex walks
through all the processes in the memory dump and checks
which one loaded the given module as an argument. When
loaded into a process, the module is dumped, getting as many
(intermediate) .dmp files as there are processes where the mod-
ule was loaded. Finally, it combines all those intermediate
dumped modules into a single .dmp file (we called it the final
module). Below, we explain each step in detail.

We use the DllList plugin to dump a module that is loaded
in a given process1. This plugin only dumps the module pages
that are assigned in that process, creating what we call an in-
termediate .dmp file. To combine these .dmp files, we need to
know which pages corresponding to the module were allocated
in each process in which the module was loaded, and whether
each of those pages is shared or private. To do this, we rely on
its PrototypePTE flag (see Section 2.2). To help us get this in-
formation, we use the plugin SimplePteEnumerator (Block,
2021), which provides the PTE and the entries in the PFN DB
of pages in a process that fall within a certain range of virtual
addresses. After collecting this information, we can aggregate
all dumped modules to get just one. In the current version of
Modex, modules must have the same path, the same size, and
must all be loaded at the same base address in all processes to
be combined.

We can retrieve zero, one, or multiple pages at each module
offset. When no pages are retrieved, the final module will have
that page filled with zeroes. When only one page is retrieved,
that page is the one that is put into the final module. However,
when multiple pages are found at the same offset, only one of
them can be placed in the final module. Therefore, we have to
decide which page to choose among the candidates. At a given
offset, we distinguish three different cases:

All pages are shared. In this case, we choose one of them
at random, since they all have theoretically the same con-
tent. In our experiments we have found that this is not

1Unlike Volatility 2 (which has a dedicated plugin), Volatility 3’s DllList
plugin has an optional flag to dump modules.

always true and that sometimes (rarely) there are shared
pages with small differences in their content. We discuss
this in more detail in Section 5.2.

Some pages are private and some are shared. Here, we dis-
card the private pages and consider only the shared pages,
choosing one of them at random as in the previous case.
We prioritize the shared pages over the private ones since
we want to retrieve the contents that are most similar to
those stored on the disk.

All pages are private. In this case, we choose the page that
most closely resembles the shared page corresponding to
that offset (i.e., the one with the fewest modifications). To
do this, we create a similarity matrix of the pages as a
square matrix of dimension the number of pages to com-
pare. To populate it, we calculate a similarity score be-
tween every two pages to reflect how similar their content
is. In particular, we use TLSH (Oliver, 2021) as the simi-
larity digest algorithm (Breitinger et al., 2014). In TLSH,
the more similar two pages are, the closer the similarity
score is to zero (i.e., its score trend is descending (Martín-
Pérez et al., 2021b)). We then add the values in each row
and choose the page corresponding to the row with the
lowest value as the page to include in the final module.

4.2. Intermodex

Intermodex is a tool written in Python 3 also with the goal
of extracting a module as complete as possible, but using mul-
tiple memory dumps (i.e., it makes an interdump extraction).
This type of extraction can be useful for detecting a malicious
DLL deployed on some workstations in a corporate environ-
ment that are centrally managed by the organization.

It accepts as arguments the path to a directory where vari-
ous memory dumps are located and the name of the module to
extract. Since we currently cannot handle multiple dumps at
once from Volatility, we have implemented this tool as a sep-
arate tool but using Modex underneath. To perform extraction
across multiple memory dumps, Intermodex first uses Modex
to extract the module given as an argument from each memory
dump and then combines all these extracted modules appropri-
ately. The combination of extracted modules follows the same
rules as Modex, relying on the metadata generated for each ex-
tracted module.

As before, the output of Intermodex consists of three files:
a .dmp file that represents the combined module, metadata in
JSON format, and an execution log file. Intermodex also
offers the option of performing a derelocation process on the
extracted module, to make it more similar to the file on disk.
Since Modex and Intermodex share functionality and source
code, they are both in the same software repository (Fernández-
Álvarez and Rodríguez, 2022).

At the moment, Intermodex only combines the extracted
modules if, considering all memory dumps together, all pro-
cesses where the module of interest was loaded had that mod-
ule loaded at the same base address, with the same path, and
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the same size. This limitation is discussed in more detail in
Section 5.4.

Note that the memory dumps provided to Intermodex can
be from the same machine or from different machines. How-
ever, when they are from different machines, the extraction will
make sense if those machines have a similar configuration (so
that the same versions of the modules are combined). Other-
wise, combining different versions of modules can be problem-
atic if there are substantial differences between them.

5. Experiments

In this section we describe the experiments performed to
evaluate the Modex and Intermodex tools. First, we describe
the methodology followed to carry out the experiments. Then,
we present and discuss the results obtained. Finally, we detail
some interesting findings and the limitations of our approach.

5.1. Methodology
For the evaluation, we have used a virtual machine Windows

10 64-bit (Pro edition, version 21H2) with 8 GiB of RAM on
top of the VirtualBox virtualization software. We use Win-
dows 10 because it is the most popular version of Windows to-
day (StatCounter, 2022). We installed four applications on that
machine: a web browser (Google Chrome), a word processor
(Microsoft Word), a PDF reader (Adobe Acrobat Reader
DC), and a spreadsheet processor (Microsoft Excel). We
have selected these types of programs because they are the most
used and these particular applications because they are the most
popular in their respective categories.

In this virtual machine we simulate the usual behavior of
users, performing a memory dump and shutting down the ma-
chine after each simulation. This simulation is done manually,
as we did not find any tool that fit our purposes without invest-
ing a considerable amount of time. To simulate user activity,
we perform the following steps: (1) power on the machine; (2)
open Google Chrome and use its search engine to find three
popular news websites, visiting them, scrolling through them,
and visiting some news articles; (3) open Microsoft Word
and create a document that includes text and images; (4) view
and navigate multiple PDF files with Adobe Acrobat Reader
DC; and (5) open Microsoft Excel and insert some data into
a spreadsheet. Each application is used for 5 minutes. These
steps are repeated twice, defining two experimental scenarios.
The first time we do not close the applications after using them,
while the second time we explicitly close them.

As objects for the measurements of the experiments, we se-
lect a subset of DLLs that are loaded by all the applications
we chose for the experiments (in particular and ordered in de-
creasing order of size, ntdll.dll, user32.dll, ole32.dll,
kernel32.dll, advapi32.dll, and gdi32.dll). These
DLLs provide important functionality for Windows applica-
tions and are also used by many processes, in addition to the
applications selected for experimentation.

We collect a memory dump after each step in both scenarios
(for a total of 10 memory dumps). We have obtained the mem-
ory dumps through the VirtualBox dump function. For each

DLL and scenario, we first execute Modex on the first memory
dump (obtained after the first step). Next, we run Intermodex
on the first and second memory dumps, then Intermodex on
the first, second, and third, and so on until we consider all five
memory dumps for each scenario.

5.2. Results and Discussion

We first explore whether the DLLs selected for the experi-
ments are used in multiple processes in both scenarios. Figure 3
shows a box plot of the percentage of processes by scenario
where each DLL is loaded. All of them (except ole32.dll)
are loaded by a large number of processes. This is in line with
what we expected, as the chosen DLLs provide important func-
tionality, and will help the validation of our tools as there will
be many modules to combine.

Intradump extraction. Next, we evaluate the performance of
our Modex tool. To do this, we first calculate the number of
pages retrieved for the DLLs in the processes where they were
loaded, without combining any pages. The results of these in-
termediate dumped modules are plotted on Figure 2a. We ex-
plicitly marked in this graph the size of each module (in small
pages). We only found small pages (i.e., 4 KiB) in all experi-
ments we ran. These results reflect the fact that, for any given
process, only the mapped pages on its address space can be
retrieved. Additionally, the number of shared pages is greater
than the number of private pages for all modules, which is an
expected result since DLLs are designed to be shared between
different processes.

Figure 2b shows the number of pages retrieved, but after
combining the intermediate dumped modules with the Modex
tool. As before, we explicitly marked in this graph the size of
each module (in small pages). As shown, the combined mod-
ule contains more pages in all cases. Also, the number of pri-
vate pages decreases when modules are combined, since shared
pages take precedence over private pages. As a result, the re-
sulting final modules have fewer private pages. As a conclu-
sion, our findings show that the intradump extraction allows to
obtain more complete modules than if they are extracted from
individual processes.

Interdump extraction. Next, we evaluate the performance of
our Intermodex tool. The evolution of the recovered pages
in both scenarios when more memory dumps are taken into ac-
count is shown in Figure 4. Regardless of the scenario, the num-
ber of retrieved pages increases when considering more mem-
ory dumps. Recall that in our experiments, each new dump
contains a new running application. Therefore, when a new ap-
plication is started it is likely to use some functions of the DLL
that others do not, and thus load these pages that were not pre-
viously in memory.

In general, the results in both scenarios are very similar, with
slightly variations in the number of pages. The ole32.dll
DLL exhibits a different behavior between scenarios when con-
sidering the last two memory dumps. This difference can be
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caused by many factors, such as the presence of a system pro-
cess that suddenly started running after the third memory dump
and loaded new pages from ole32.dll.

Finally, we compare the number of pages retrieved in both
scenarios when considering only the last memory dump or
when considering all memory dumps. The results are plotted
on Figure 5. In the first scenario, there is practically no differ-
ence as the same content was in memory in both situations be-
cause the applications were not closed. These results may vary
on systems with restricted RAM and a large number of running
applications, as not all program content will fit in RAM when
more programs are started and the operating system will swap.

In the second scenario, considering more memory dumps
is clearly beneficial. As shown in Figure 5b, the number of
pages retrieved is higher considering all memory dumps than
just the last memory dump, particularly for the ntdll.dll,
user32.dll, and ole32.dll DLLs. Since we expected these
differences to be larger, we performed a manual inspection of
the memory dumps and discovered that some processes (in par-
ticular, the Google Chrome and Adobe Acrobat Reader DC
application processes) continued to run in the background even
though the user had closed the application windows.

5.3. Observations from Our Results

In our experiments, we found that Modex sometimes detected
pages marked as shared and owned by a DLL loaded at the same
base address in multiple processes with different content. This
problem was found in DLLs other than the ones used for exper-
imentation. The number of times we have run into this is very
low, and each time we manually verified that the contents of all
the pages of that particular DLL were the same except for a few
pages. Since this happens very rarely, we treat it as an anomaly
and implement functionality to analyze it in Modex.

After careful analysis, we discovered that the differences
in these pages correspond to memory addresses stored within
those pages. We need to investigate further to understand the
reason behind these anomalies. As a consequence, we have
extended the algorithm of Modex to, in case of detecting this
problem, choose the most repeated shared page to insert it in
the final module.

5.4. Limitations

ASLR is a software security mechanism that helps prevent
certain memory corruption vulnerabilities by changing the base
addresses of modules on every Windows startup. The base ad-
dress of a module is the lowest virtual address associated with
its image. Today, most DLLs have this mechanism enabled.

With the current versions of Modex and Intermodex, the
base addresses of the modules must be the same to be com-
bined. This can be a limitation when mixing memory dumps
from different machines. A realistic scenario where there are
multiple memory dumps is a corporate environment where mul-
tiple computers are centrally managed so that they all have the
same configuration (and few differences between them), and
some have been infected by a malicious DLL. To solve this is-
sue, a page-granularity level derelocation process is required to

normalize the page content (Martín-Pérez et al., 2021a) before
combining the dumped modules. We plan to add this feature to
our tools as future work.

6. DLL Hijacking Detection

In this section, we first describe how the feature incorporated
in Modex and Intermodex works to detect DLL hijacking at-
tacks. Then we validate it through a proof of concept.

6.1. Description of the Detection Method

The DLL hijacking techniques described in Section 2.4 can
be detected using Modex and Intermodex with the --detect
flag. When this argument is given, our tools try to detect
whether the module given as argument has been hijacked and
no modules are extracted, as the goal is to detect DLL hijack-
ing techniques. In this case, the JSON file provided as out-
put contains information about the detection of DLL hijacking
techniques. When a hijacking attack is detected, Modex indi-
cates the affected processes, while Intermodex also indicates
the affected memory dumps.

Detection of DLL hijacking techniques is as follows. We
first list all processes that have the module given as an argument
loaded. We then check the module path and size in each of these
processes. We consider the actual path and size of the module
to be those that are most common for all the modules identified
above. This allows us to detect both the loading of modules
with the same name but different path, and modules on the same
path but different size. Consequently, we define a potential case
of DLL hijacking when at least one path is different from the
most common path or at least one size is different from the most
common size. A disadvantage of this approach is that it will not
detect this attack when the paths and sizes of the malicious DLL
and the legitimate DLL match.

Note that our detection approach assumes the actual path
and size of the module of most processes that have the module
loaded. Therefore, we assume that the processes targeted by
DLL hijacking techniques are a minority. We believe this as-
sumption is valid, as attackers generally want to be as stealthy
as possible to avoid detection.

Finally, note that the limitations mentioned in Section 5.4 do
not apply in this case, as we do not use any base addresses to
perform the detection. As a result, Intermodex can detect DLL
hijacking considering multiple memory dumps from different
machines at the same time, as long as they all have similar set-
tings (i.e., same version of Windows, same Windows updates
installed, etc.).

6.2. Proof of Concept

To test this new functionality, we have created a DLL hijack-
ing Proof of Concept (PoC). In particular, we have used the
DLL proxying technique (see Section 2.4), following the de-
tails published in (Barile, 2021) and (Labro, 2019). The chosen
victim application is VLC media player, which is a popular
free and open source media player. The DLL we are targeting is
cryptbase.dll, which is loaded by VLC media player, as
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(b) Closing applications.

Figure 5: Number of pages retrieved in both scenarios considering only the last memory dump or considering all memory dumps.

well as other processes, and is not on the list of known DLLs.
Known DLLs, stored in the KnownDLLs Windows object (Yosi-
fovich et al., 2017), are not valid targets because if the DLL is in
this list (such as kernel32.dll or user32.dll, for instance),
Windows guarantees that the system copy of the DLL is used
instead of searching and loading it (Microsoft, 2022b).

Our malicious DLL is placed in the same directory as VLC
media player to make it easier to load when the application
is run. When running, it simply opens a command shell win-
dow when the DLL is loaded, and all the legitimate functions
of cryptbase.dll are appropriately proxied. We run this PoC
in the same scenarios to those described in Section 5.1, but on
a virtual machine running Windows 10 Education edition with
4 GiB of RAM due to hardware limitations to carry out the ex-
periment. In either case, the version of the Windows OS is the
same, albeit with a different edition. After running VLC media
player and verifying that our malicious DLL is loaded, a mem-
ory dump of the machine is acquired (Infected Dump). We also
acquired a memory dump when the application was running
without our PoC (Clean Dump).

Running Modex on Infected Dump successfully detected our
PoC, giving the process identifier (PID) of the VLC media
player process as suspicious. Results are displayed in List-
ing 1. Similarly, running Intermodex on Infected Dump and
Clean Dump also successfully detected our PoC, marking the
same PID as suspicious and Infected Dump as the dump where
that process was running (see Listing 2). The detection is suc-
cessful because neither the malicious module’s path nor its size
match the original module’s values.

{
"memory_dump_location ": "file :/// tmp/

MemoryDumps/InfectedDump.elf",
"mapped_modules ": [

...
],
"dll_hijacking_detection_result ": true,
"suspicious_processes ": [

3208

{
"dll_hijacking_detection_result ": true,
"suspicious_processes ": {

"file :/// tmp/MemoryDumps/
InfectedDump.elf": [
3208

]
}

}

Listing 2: DLL hijacking detection of our PoC with Intermodex.

]
}

Listing 1: DLL hijacking detection of our PoC with Modex.

Using a technique such as DLL proxying like the one we
used in our PoC, threat actors can hide their malicious code
behind a popular and legitimate process and give the impression
that it is a common library. Also, the library used in this PoC
(cryptbase.dll) is signed by Microsoft, so it does not look
suspicious at a quick glance. Therefore, we believe that being
able to detect DLL hijacking techniques can be valuable in a
forensic investigation.

In short, the output of our tools can help the forensic ana-
lyst to know which DLLs may be malicious, indicating which
of them (and even the processes where they are located) must
be analyzed later in more detail. Also, if the infections oc-
curred on one or more machines and the current limitations
described in Section 5.4 are irrelevant in that particular situa-
tion, the Intermodex tool can extract the malicious module as
completely as possible for further detailed analysis.

6.3. Limitations

A current drawback of our detection approach is that our
tools need a DLL name. To work around this issue, for now,
Modex and Intermodex can be built into an analysis pipeline
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to iterate through all modules found in a memory dump. As
future work, we will refactor our code to enable this feature
directly in the tools.

In addition, our detection approach can be circumvented by
an attacker hijacking DLLs on 32-bit processes, since we focus
exclusively on 64-bit processes. Similarly, if the hijacked DLL
is loaded only in a single process, there would be no other pro-
cesses to compare against, and therefore our approach will not
be able to detect it.

7. Conclusions and Future Work

Multiple processes can load the same module to use its func-
tionality. However, each process only allocates to its memory
address space the parts (at page granularity) strictly necessary
to function. Current tools for extracting modules from mem-
ory dumps focus on specific processes, making it difficult to
retrieve a complete module. In this paper, we have developed
a Volatility 3 plugin, dubbed Modex, which extracts a 64-bit
module from a Windows memory dump as complete as possi-
ble. To do this, it combines the pages of the same module that
are mapped in different processes. We have called this intrad-
ump extraction. With the same goal, but taking into account
multiple memory dumps (interdump extraction), we have cre-
ated the Intermodex tool. Both tools are available under the
GNU/GPLv3 license.

To validate our tools, we have simulated user behavior using
widely used software on a virtual machine. Our results show
that for a given module, the more processes that are taken into
account, the more pages we can retrieve. Similarly, the more
memory dumps we consider, the more pages we can retrieve.
We have also investigated hijacking execution flow attacks and
implemented functionality in Modex and Intermodex to detect
a particular type of these attacks (specifically, DLL hijacking)
in a single memory dump and multiple memory dumps, respec-
tively.

Our approach, however, has certain limitations when using
dumps from different machines, such as combining the same
modules with different base addresses. We aim to address this
limitation as future work. Additionally, we would like to extend
our tools to detect DLL injection techniques. Finally, we would
also like to apply our approach to packed malware. This type
of malware decrypts itself in memory before running, so ex-
tracting and combining modules form multiple memory dumps
can help obtain partially decrypted malware, making it easier to
analyze.
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