Extraction and Analysis of Retrievable Memory Artifacts from
Windows Telegram Desktop Application

Pedro Ferndndez-Alvarez?, Ricardo J. Rodriguez®*

“Dpto. de Informdtica e Ingenieria de Sistemas, Universidad de Zaragoza, Spain

Abstract

Instant messaging applications have become a very common way of communicating, and today there are many applications of this
type. The forensic analysis of these applications can help provide essential clues to solve or clarify a possible crime. This type
of applications generally store their data in a secure way or transmit it through encrypted channels and thus, the forensic analysis
of memory takes on special relevance to analyze them. Following a three-phase forensic analysis methodology, this work has
developed a forensic analysis environment for instant messaging applications composed of two tools. One of the tools is responsible
for extracting the content of a process that runs on a Windows system, while the other focuses on studying the information present
in the process memory of an instant messaging application. This second tool can be easily adapted and extended to provide analysis
support for any instant messaging application. As a case study, we focus on the Telegram application for Windows systems called
Telegram Desktop. Adapting these tools to this application, their joint use allows obtaining forensic artifacts of interest for an
investigation, such as user contacts or the content of conversations that have taken place, among others, even when the application
is blocked. Obtaining these data is of great help for a forensic analyst, since the analysis of these data can be vital to clarify the
events that occurred in some type of criminal act. Both tools are open source under the GNU/GPLV3 license to promote their use

and extensibility to applications of other instant messaging services.

Keywords: Digital forensics, memory forensics, instant messaging, Telegram Desktop, Windows

1. Introduction

Instant messaging (IM) applications allow us to communi-
cate quickly and easily. Today, a large part of society makes use
of these applications to have text, audio, or even video conver-
sations on a daily basis (Statista Research Department, 2020).
Unfortunately, the misuse of IM apps allow cybercriminals to
utilize them for malicious purposes (such as harassment, extor-
tion, or fraud; to name a few) (Mohtasebi and Dehghantanha,
2011). Likewise, they can be useful to clarify criminal cases.
In both cases, the forensic analysis of IM applications can help
provide essential clues to solve or clarify a possible crime.

The digital artifacts of interest in IM applications are, among
others, the sent/received messages or the contacts. Some of
these artifacts are securely stored in a database using encryp-
tion, which protects the confidentiality of data against attackers
who have physical access to the devices. Likewise, IM applica-
tion communications are typically established using end-to-end
encryption, which also ensures data confidentiality against net-
work attacks. Therefore, digital storage forensics fails to pro-
vide evidence. To overcome this, the running IM application
can be used to obtain evidence, as the encrypted data must be
decrypted when the application needs to use it. However, the
application could be blocked, preventing access and making re-
cently viewed data inaccessible. Furthermore, the data deleted

*Corresponding author
Email address: rjrodriguez@unizar.es (Ricardo J. Rodriguez)

Preprint submitted to DFRWS EU 2022

by the user is not accessible through the GUI. Hence, memory
forensics becomes especially interesting for working with IM
applications to get even more evidence.

With the exponential growth of IM applications and the
emergence of smartphones, many researchers have shown big
interest in investigating IM applications on mobile platforms to
acquire evidences for forensic analysis (Cichonski et al., 2012).
However, little attention has been paid to desktop platforms.

To fill this gap, in this paper we focus on the forensic analysis
of IM applications for desktop platforms, and, in particular, for
the Windows operating system (Windows, for short), which at
the time of this writing is the predominant operating system on
the market worldwide, with almost a 75% share (GlobalStats,
2021). In this regard, we follow an analysis methodology on
which we then build an analysis environment for IM applica-
tions that can be easily extended for forensic practitioners and
researchers to improve their analysis capabilities. To show its
practitability, we study in detail the memory artifacts that can
be extracted from a Telegram Desktop application running
on Windows, one of the 5 most popular IM apps as of July
2021, according to the number of monthly active users (Statista
Research Department, 2021).

Consequently, this paper has the following contributions.
First, we provide an analysis environment for IM applications
based on the three-phase analysis methodology commonly used
in digital forensics (extraction, analysis, and reporting). In ad-
dition, we also develop and publish other tools that are neces-

December 16, 2021

sary for our analysis environment. Second, we consider the
Telegram Desktop application for Windows as case study,
providing a detailed study of the memory artifacts that we can
obtain. As a by-product of our research, we also publish the
tools built on top of our analysis environment to analyze the
Telegram Desktop application for Windows. All the soft-
ware we developed is publicly and freely available under the
GNU/GPLVv3 license to foster research in this area.

The rest of this paper is organized as follows. Section 2 re-
views related works covering IM forensics which also analyze
RAM in chronological order. Section 3 provides some back-
ground on virtual memory, memory mapping of Windows pro-
cesses, and Telegram. Section 4 describes the analysis method-
ology we followed and the tools we developed to extract mem-
ory artifacts from IM applications. These analysis tools are sub-
sequently evaluated with the Telegram Desktop application
in Section 5. Finally, Section 6 concludes this paper.

2. Related Work

Yusoff et al. (2017) analyzed the information that three IM
applications (in particular, Telegram, OpenWapp, and Line)
store in internal storage and in RAM of smartphones running on
Firefox OS. As for the internal storage, they only retrieved the
user’s phone number in the OpenWapp application. However,
they successfully identified the user’s phone number in the three
IM applications, and the user messages (only in the OpenWapp
application) when they analyzed the contents of RAM.

Nisioti et al. (2017) focused on data stored in RAM corre-
sponding to the IM applications Messenger, WhatsApp, and
Viber running on Android. They retrieved messages from
RAM even from conversations that occurred 16 months before
the analysis is done.

In (Gregorio et al., 2018), the authors investigated the data
related to Telegram Desktop application stored on the disk
of macOS computers. The authors first found the location
where the application’s local database was stored, which was
encrypted. However, they successfully retrieved the messages
through another type of action. In particular, they copied the
Telegram Desktop application and the (encrypted) data from
a forensic disk image to a forensic environment and then ran the
application in that controlled environment. After that, the appli-
cation loaded its database and decrypted the messages. Hence,
they were able to see them in the application’s user interface. A
limitation of this study is that they do not provide details about
the configuration of the application that allows them to view the
messages in this way.

Thantilage and Le Khac (2019) analyzed data located in
RAM on Windows and macOS platforms, particularly focused
on Skype, WhatsApp, iMessage (macOS only), Viber, and
Messenger applications. The authors were able to retrieve data
on conversations for all the IM applications and operating sys-
tems they considered in their work.

In (Barradas et al., 2019), the authors studied memory arti-
facts stored in RAM on Windows, macOS, and Ubuntu plat-
forms. However, they analyzed IM web applications rather

than desktop applications. In particular, they considered the
IM services of Trillian, Messenger, Hangouts, Skype,
WhatsApp, and Telegram, in different web browsers: Google
Chrome, Mozilla Firefox, Opera, Microsoft Edge, and
Safari. The authors found data corresponding to chats for all
operating systems and web browsers for Messenger and Skype
(in this case, except Mozilla Firefox on Windows). How-
ever, they did not find this information for any operating system
or web browser on the other IM platforms. In addition, they also
studied the data stored in RAM on Android smartphones related
to Viber, Signal, and the same applications mentioned above
(except Skype). In this case, they found data related to chats in
Messenger, WhatsApp, Viber and Hangouts, but not in the
other three IM applications evaluated.

Kazim et al. (2019) studied data related to the IM application
Hangouts stored in RAM of Windows computers. Although
they found information about conversations, they could not re-
construct them chronologically because they did not find the
dates on which the messages found were sent.

Al-Rawashdeh et al. (2020) investigated the Kik application
for Android smartphones. The authors retrieved information
related to chats and contacts by analyzing the contents present
both in the RAM and in the internal storage of the phone.

The above related works show that relevant artifacts can be
found in RAM of IM applications. However, to the best of our
knowledge, at the time of this writing we are not aware of any
research related to what data the Windows Telegram Desktop
application stores in RAM and what data can be retrieved. For
this reason, we chose this application as a case study. This work
is complementary to the aforementioned works, since we have
followed a general analysis methodology that we applied to the
field of memory forensics in IM applications and we have pro-
vided an analysis environment that allows the analysis of any
IM application, after a careful reverse engineering process and
an effort of software development.

Our work also demonstrates that encrypted data of any ap-
plication must be decrypted when the app needs to use it.
Therefore, memory forensics becomes especially interesting for
working with IM applications that store their data securely or
transmit it through encrypted channels.

3. Background

This section details key concepts of the virtual memory man-
ager and Windows process memory mapping that are relevant
to better understand this paper, as well as the multiplatform IM
service Telegram.

3.1. Paging and the Virtual Memory Manager

On Windows, each process has its own private virtual ad-
dress space (Ligh et al., 2014), which is a linear memory space
(i.e., with contiguous addresses) divided into blocks of the same
length, called pages. A page of a virtual address space of a pro-
cess can be in different states (Microsoft Docs, 2018b) (free,
reserved, or committed). Page sizes can be small or large. The
small page size is 4 KiB, while the large page size ranges from

2 MiB to 4 MiB (on x86 and x64 architectures and on ARM,
respectively) (Yosifovich et al., 2017).

Operating systems that have support for virtual memory need
to somehow maintain the relationship between virtual memory
and physical memory. In Windows, this is done through the
page table entries (PTE), which map a process virtual memory
page to a physical memory page.

The virtual memory manager is a separate Windows process,
primarily responsible for managing physical memory usage. To
do this, it tracks each page of physical memory and ensures
that when a thread in the context of a process reads/writes to
addresses in its virtual memory space, it refers to the correct
physical addresses thanks to the PTEs (Microsoft Docs, 2018a).

This process keeps track of the virtual addresses that are re-
served or used in the process address space through the Virtual
Address Descriptor (VAD) tree (Yosifovich et al., 2017). The
VAD tree is a self-balancing binary tree that has a root (named
Vadroot) and leafs (named Vadnodes) (Dolan-Gavitt, 2007).

Additionally, the virtual memory manager is also responsi-
ble for paging files, which are the pages that are routinely saved
to disk when not in use or when the memory required by the
running process exceeds the available physical memory. These
pagefiles are later retrieved by returning them to physical mem-
ory at the request of the owning thread (that is, when the thread
accesses some virtual memory address of the page saved to
disk). Also, since pages are only loaded into memory on de-
mand (called demand paging), not all content from an applica-
tion program or shared library will be continuously resident in
memory. Recent research has quantified the number of resident
pages on a Windows 10 system at 80% and 20% of the total
content for application programs and dynamic shared libraries,
respectively (Martin-Pérez and Rodriguez, 2021).

3.2. The Windows Process Memory Mapping

On Windows, any executable, shared dynamic library, or
driver file that is loaded as part of the kernel or a user-mode
process is named image, while the file (as in disk) is named im-
age file. Internally, an image and a process are represented by a
module (Microsoft Docs, 2017). In what follows, we adhere to
this terminology.

A Windows image file follows the Portable Executable (PE)
format (Microsoft Corporation, 2021), which is a data structure
used in 32-bit and 64-bit versions of Windows that encapsu-
lates the information necessary for the Windows PE loader to
manage the executable code.

When an image file runs, the Windows PE loader creates a
virtual address space for the process and maps the image file
from disk to the process address space. It tries to load the image
at its preferred base address (defined in a PE field) and maps
the PE sections into memory. During this mapping, multiple
pages (typically 4 KiB pages) are allocated to accommodate the
content of the image file. In addition to the memory required
to hold the PE sections, more memory is allocated to hold the
process stack and heap. In addition, external dynamic shared
libraries on which the program depends are also loaded into
the same memory space in a similar way, allocating memory
appropriately.

3.3. Telegram

Telegram is a multiplatform IM service with client-server ar-
chitecture. Currently, there are official Telegram clients for the
most used operating systems both at the desktop (Windows,
GNU/Linux, macOS) and mobile level (Android, i0S). Addi-
tionally, Telegram can also be used via web browser.

Telegram has a public API that allows access to its func-
tionalities, which allows unofficial clients developed by third
parties to also exist, in addition to official clients. Telegram’s
official clients are open source, unlike the code that runs on
Telegram’s servers.

To use Telegram, it is necessary to have a user account that
is uniquely associated with a mobile phone number. Telegram
allows the simultaneous use of 3 user accounts. A Telegram ac-
count can also be associated with a public username, which can
be chosen by the owner of the account and allows users of the
platform to find other users simply by searching by username,
without having to know their associated phone numbers.

In Telegram, in addition to textual conversations, end-to-
end encrypted voice and video calls can be made. Regarding
text conversations, there are 3 types: one-on-one conversations,
groups, and channels.

One-on-one conversations are conversations in which only
two users participate. These conversations can be regular chats
(which are stored in the Telegram’s servers) or secret chats
(which are conversations held through an end-to-end encrypted
communication channel). Furthermore, Telegram allows one-
on-one conversations with a special type of user, known as bots,
who are computer programs rather human beings.

Group conversations are conversations in which all the users
involved can send messages and read the messages that other
members of the group have sent. There are two types of groups:
normal groups, which are always private and have a maximum
of 200 members; and supergroups, which can be private or pub-
lic and can have up to 200,000 members.

Channels can be seen as a special type of group, in which
only certain users (called administrators or publishers) can send
messages, while the other users of the channel (called sub-
scribers) can only read messages. A channel can be private or
public and can have an unlimited number of subscribers.

The fact that a group or channel is public means that any
Telegram user can join the conversation. On the other hand,
if the conversation is private, it is possible to control who can
participate in the conversation. Messages sent in normal con-
versations, groups and channels travel from the sender to the
Telegram servers in an encrypted manner, where they are de-
crypted and subsequently sent to the receiver or receivers, also
in an encrypted manner.

Telegram uses a symmetric encryption scheme called MT-
Proto to send and store these messages on Telegram’s servers.
As a consequence, Telegram can decrypt them, allowing these
conversations to be synchronized between various devices.
In contrast, secret conversations have end-to-end encryption,
which means that Telegram cannot theoretically decrypt their
contents and therefore these conversations cannot be synchro-
nized between different devices. Recent research has high-

EXTRACTION PHASE

ANALYSIS PHASE REPORTING PHASE

ey T o >
‘ Vadroot ‘ ‘ ﬁlel .dmp ‘ a: Account c: Conversation
|§ Report data
/ \ N ‘ file,.dmp ‘ N ovg] ut: User ml:Message | . » D
Vadnode Vadnode /.
0x7££9270e£000 0x7££927070000 u2: User m2: Message
0x33000 0x1000 ‘ filey.dmp ‘

Virtual memory of process P Secondary storage

Figure 1: Memory artifact analysis methodology followed for IM applications.

lighted weaknesses in MTProto’s key exchange algorithm (Al-
brecht et al., 2022).

Telegram applications can be typically locked with a pass-
word so that the user must enter it when accessing the appli-
cation. This prevents an unauthorized person who physically
seizes a device from being able to access the app without know-
ing the unlock password.

4. Memory Artifact Analysis Methodology for IM Applica-
tions

In this section, we first describe the analysis methodology
that we followed and then we explain the software tools we
created to obtain and analyze memory artifacts from IM appli-
cations using this methodology.

4.1. Memory Artifact Analysis Methodology

The memory artifact analysis methodology that we followed
has three phases. Figure 1 outlines the analysis methodology.
The first phase (extraction phase) is dedicated to obtaining the
memory content of the virtual address space of any process
into appropriate files for analysis. The second phase (analysis
phase) deals with the analysis of the data extracted in the previ-
ous phase, obtaining representative objects from the dumped
files. Finally, the third phase (reporting phase) focuses on
generating a report containing relevant information on all an-
alyzed memory artifacts, such as the number of conversations,
the number of messages, and other statistics.

Each of these phases is supported by command line tools,
facilitating integration into broader analysis pipelines. In par-
ticular, we have developed a tool (dubbed Windows Memory
Extractor) for the extraction phase and another tool (dubbed
IM Artifact Finder) for the analysis and reporting phases.
Furthermore, this latest tool has been designed to support any
IM service following the best software engineering practices.
Below, we give more details about each of these tools.

4.2. Extraction Phase: Windows Memory Extractor

To analyze the memory of a process or an image, we must
first dump it to disk. Multiple tools can be used for this purpose,
with ProcDump (Microsoft Docs, 2020a) being one of the most
popular tools. However, navigating the virtual addresses of the
dumped module is only feasible through WinDbg (Microsoft

Docs, 2020b), as this tool works with a complete knowledge
of the internal structures of Windows contained in the dumped
data. A process dump can also be created with the Windows
Task Manager, but as with ProcDump, we were only able to
match an offset in the dump file to a virtual address using
WinDbg. The dependency of this tool complicates accessing
these addresses programmatically. In addition, it requires in-
stalling the symbols corresponding to the version of Windows
where the memory dump was acquired, which makes it very
difficult to generalize.

Likewise, Process Hacker (SourceForge, 2021) is another
popular tool for examining the memory contents of all pro-
cesses running on Windows systems. This tool allows the ex-
traction of individual memory regions of processes, generating
dump files with filenames that indicate the region of memory
dumped and its size. Obtaining these files for all the memory
space of the process allow us to navigate through the virtual
addresses of the dumped module, since we can pass from an
object A that points to an object B simply by calculating the
appropriate file that contains the virtual memory address of B
and accessing it with the appropriate offset to locate such ob-
ject. However, these dump files must be extracted manually
using the Process Hacker GUI. The inability to obtain these
files programatically makes this task time-consuming and to-
tally impossible in real scenarios.

After exploring other existing tools for dumping Windows
modules, we couldn’t find any tool that would facilitate pro-
grammatic navigation through virtual addresses of the dumped
modules. Likewise, other memory frameworks such as Volatil-
ity (Ligh et al., 2014), which is a widely used tool in memory
forensics, only provide us with partial content when extract-
ing processes from a full memory dump, as only resident pages
(i.e., not swapped pages) can be retrieved. To solve this prob-
lem, we developed our own tool, dubbed Windows Memory
Extractor, as a C++ command line tool to facilitate its de-
ployment in any analysis workflow.

By using Windows APIs that depend on VADs, the tool can
dump all memory regions of a process into files, simply by
specifying the process identifier of interest. By default, it only
considers memory regions that do not have execute permis-
sions. The tool accepts optional arguments to specify the pro-
tections of the memory regions to extract. In addition, it also
accepts another optional argument to specify the name of a pro-
cess module when it is only necessary to extract the memory

regions corresponding to that module.

Windows Memory Extractor saves memory regions in
separate files with the extension dmp in a directory named
«PID_Day-Month-Year_Hour-Minute-Second_UTC» to
clearly identify each dump. The nomenclature of these files
is similar to Process Hacker, indicating the starting virtual
address and the size of the memory region dumped, separated
by an underscore. In addition, it also creates the results.txt
file that contains a list of all generated dmp files, their SHA-256
hash, and their memory protection. Finally, our tool accepts
another optional argument to, given a module, generate a single
file containing all the entire virtual address space with the
necessary padding between memory regions, when applicable.
This file makes it easy to analyze a module as a whole.

This tool allows us to create memory dumps with fine-
grained precision, which are necessary to extract memory ar-
tifacts from the modules. In our particular case, we have used
Windows Memory Extractor to generate memory dumps of
processes of IM applications running on a Windows system. In
such memory dumps, we are particularly interested in the mem-
ory regions that do not have execute permissions, because those
are the memory regions in which data such as messages, con-
tacts, or user account information is stored.

Windows Memory Extractor is open source and released
under the GNU/GPLv3 license to promote further memory
forensic research (Pedro Ferndndez-Alvarez and Ricardo J. Ro-
driguez, 2021b). We have also released a portable version of
this tool for use without installation. As a result, a forensic ana-
lyst can have the tool in their USB drive and run it from that lo-
cation, minimizing the potential contamination introduced into
the live systems under analysis.

4.3. Analysis Phase: IM Artifact Finder

IM Artifact Finder is a Python tool designed as a frame-
work for obtaining memory artifacts from a dump of an IM ap-
plication process. This tool can be used as a command line tool
or as a library, making it easy to use and integrate into other
forensic analysis pipelines. IM Artifact Finder is designed
to work independently of a specific IM platform, operating sys-
tem, or device. In this sense, the framework can be extended
to support any IM application available for different operating
systems and devices.

This tool requires two arguments: (1) the path of a direc-
tory generated with Windows Memory Extractor;and (2) the
name of the IM application to which the memory dump corre-
sponds. The second argument (the name of the IM application)
is required to let the tool know the structure of the memory ar-
tifacts contained in the dump and load the appropriate artifact
finder. For future work, we will investigate methods to detect
the IM application automatically (for instance, looking for sig-
natures) and eliminate the need for this argument. Logically,
these artifacts depend on each IM application and thus, when
extending the framework to a new IM application, a prior re-
verse engineering task is needed to understand how the appli-
cation stores its data in memory and when it is present. The
same effort is needed to check if the data storage has changed
when a new version of the IM application is released. This step

becomes mandatory to know how and when to obtain relevant
data for analysis, as well as to understand how to interpret it.

When the IM application is proprietary and there is no source
code available, the reverse engineering task is error prone and
time consuming, making analysis much more difficult. Fortu-
nately, when the IM application is open source, we can analyze
its source code and use software engineering best practices to
recreate the application design. For instance, we can recreate
the Unified Modeling Language (UML) (OMG, 2011) class di-
agram and UML sequence diagrams to represent the static and
dynamic behavior of the system, respectively, but mainly fo-
cused on the parts of interest from a forensic point of view.
Recall that UML is the de facto industry standard for soft-
ware modeling. Although there are automatic tools to obtain
UML diagrams from source code, our empirical tests show that,
in general, IM applications are complex software systems and
manual analysis is more suited to accurately identify the most
relevant elements from a forensic point of view.

We performed an initial automatic analysis to obtain a class
diagram of the Telegram Desktop source code using Visual
Paradigm (Visual Paradigm, 2021). This automated process
gave us a general idea of how the application is structured. Af-
ter obtaining the entire class diagram, we identified in it the
elements that we considered more relevant for a forensic in-
vestigation, and then we manually analyzed the source code of
those elements in detail.

The memory artifacts found by the tool are modeled as
classes without behavior, since we are only interested in their
attributes that will store the information found in memory. The
common elements that IM applications have, such as conver-
sations, messages, or user account information, are represented
by abstract classes that are concretized based on the specific IM
application being analyzed. In addition to storing data, each
concrete class is responsible for representing itself in each sup-
ported report format, as all of these classes must implement
an interface class that contains the definition of representation
methods.

Following the best software engineering practices, we have
designed our framework to make extension as easy as possi-
ble to any IM application. We used the Abstract Factory design
pattern (Gamma et al., 1995), which is useful for defining an in-
terface for creating sets of related objects. This pattern is used
to represent the specific details of the artifacts of each IM ap-
plication.

This design allows IM Artifact Finder to ignore the
knowledge of internal details of each application, since each
supported IM application requires its own factory to analyze a
memory dump properly. In summary, if we want to support a
new IM application in IM Artifact Finder, we must imple-
ment a set of interfaces and the concrete classes that represent
the memory artifacts of such IM application. More implementa-
tion details on how our framework should be extended are pro-
vided in its source code repository (Pedro Ferndndez-Alvarez
and Ricardo J. Rodriguez, 2021a).

This analysis phase is fully automated, so this methodology
is scalable as IM Artifact Finder will retrieve memory ar-
tifacts without manual intervention, regardless of the number of

conversations, users, or messages stored in RAM.

4.4. Reporting Phase: IM Artifact Finder

When IM Artifact Finder is used as a command line
tool, it will generate a report containing information about the
artifacts that were found. On the other hand, if it is used as
a library, the creation of the report is optional, depending on
whether the user wants to create it or not. By default, the
generated reports are in JSON format, a commonly used open
standard file format for data exchange (International Organi-
zation for Standardization, 2017). Currently, this is the only
supported format for the report data. We have also designed IM
Artifact Finder to make adding new report formats as easy
as possible. We will expand the support for the CSV format in
a future release.

For each Telegram account found, the generated report in-
cludes the contents of the retrieved conversations, information
about Telegram users related to the account, and details about
the account owner. Details about the artifacts that are included
in the generated reports are described in Section 5.3. Getting
a report in JSON format allows other applications to analyze it
and process the information to, for example, search for specific
words in conversations, or find all messages sent by a specific
user. These reports can also be analyzed by a person and are
formatted accordingly to improve readability.

As before, IM Artifact Finder is also open source and
is released under the GNU/GPLV3 license to facilitate memory
forensic research in IM applications (Pedro Ferndndez-Alvarez
and Ricardo J. Rodriguez, 2021a). In the next section we show a
particular example of using IM Artifact Finder to analyze
the Telegram Desktop application from a memory forensic
point of view.

5. Case Study: Telegram Desktop

This section is dedicated to the forensic analysis of the
Telegram Desktop application. We first describe how we ex-
tend IM Artifact Finder to find memory artifacts present
in a Telegram Desktop application memory dump. Next, we
introduce the experiments carried out and the obtained results.
Finally, we present a discussion about the results of the experi-
ments.

5.1. Extension of IM Artifact Finder to Analyze

Telegram Desktop Memory Artifacts

In this paper, we focus on the Telegram Desktop appli-
cation as a case study, which is the official Telegram client
for different desktop operating systems (see Section 3.3 for a
more detailed explanation of Telegram). In particular, we con-
sider version 2.7.1 of Telegram Desktop for Windows sys-
tems. Windows is chosen because it is the predominant oper-
ating system on the world market at the time of writing, with
almost a 75% share (GlobalStats, 2021). In the same way, we
choose Telegram Desktop as it is one of the 5 most popular
IM apps as of July 2021, according to the number of monthly

e

History

*

I

PeerData

i 1

ChatData ChannelData HistoryMessage
-_timeText : QString

Historyltem

UserData
-_phone : QString

Figure 2: Extract of the Telegram Desktop (version 2.7.1) UML class dia-
gram of interest for forensic analysis.

active users (Statista Research Department, 2021), and it has
not yet been analyzed from a memory forensics point of view.

First we study the source code of Telegram Desktop. Fig-
ure 2 shows an extract of the Telegram Desktop UML class
diagram of interest for forensic analysis. The PeerData class
represents a conversation. The UserData class represents both
a Telegram user and a one-on-one conversation. On the other
hand, ChatData models a group and ChannelData a channel.
The HistoryMessage class represents a message and the History
class relates each message to its corresponding conversation.

The UserData class has the _phone attribute, which is the
number of the mobile phone associated with the user’s ac-
count. Therefore, to find UserData objects in a memory dump
we look for patterns of phone numbers. We use a very gen-
eral phone number pattern to recognize phone numbers from as
many countries as possible. In particular, we look for groups of
digits, where each group must have at least 7 digits and no more
than 16. The _phone attribute is of type QString (Qt Documen-
tation, 2021), which is a class that belongs to Qt (Qt, 2021),
a framework for creating cross-platform applications that run
on computers, mobile devices, and embedded systems. Since
Telegram Desktop uses Qt, other relevant information (such
as user names or message contents, for instance) is stored in
attributes of type QString.

Therefore, we have studied in detail how objects of class
QOString are represented in memory to be able to find this infor-
mation in the analysis phase. In memory, a QString object has
the following format. The characters of a text follow the UTF-
16 format and start at offset 24. From the previous 24 bytes, we
have seen that the length of the string is stored at offset 4, occu-
pying 2 bytes and followed by two null bytes, and that the byte
at offset 16 is always 0x18 followed by 7 null bytes. We have
not been able to discover the meaning of the other 12 bytes.
A QOString string can therefore be retrieved by simply iterating
until the UTF-16 null byte that indicates the end of the string is
found, or by previously accessing its length at offset 4. There-
fore, we can check if the data within the content of an object
follows this pattern. If so, it corresponds to a QString object,
and we can retrieve its text appropriately.

In the particular case of UserData objects, we know the vir-
tual address where a phone number begins (VA;) when we find
a pattern of a phone number thanks to the output format pro-
vided by Windows Memory Extractor. Once we know VA,
we can subtract 24 bytes from it and get VA,, which is the
virtual address that points to the beginning of the associated

This is a message

Figure 3: Example of a message displayed in the Telegram Desktop GUIL

QOString object. Also, the value of VA, enables us to relate the
phone number to a specific user: looking for VA, inside the
memory dump and knowing how the _phone attribute is stored
within UserData objects can provide us the virtual address of
the UserData object associated with that phone number.

Now, exploring the data located around that virtual ad-
dress we can extract all the contents of that UserData object.
Then these contents are analyzed and other QString objects are
sought, as we already know about the analysis of the source
code. The UserData class has, among others, the following
QOString type attributes: firstName, lastName, and username, as
well as the name attribute inherited from PeerData. Therefore,
we look for these QString objects by looking at their locations
within the UserData object found.

In addition, as we have the raw memory data corresponding
to several objects of the same type, we continue to analyze how
they are structured in memory using the Telegram Desktop
source code as a reference. We observed that the attributes of
the objects are stored in memory in the same order that they are
defined in the classes and, if there are inherited attributes, they
are stored first. In this way, we distinguish the locations where
certain attributes (whose type is not QString) are stored within
an object, and what their values mean.

This analysis to discover the location of a certain attribute
within an object must be done manually the first time to know
its location precisely. Once this location is known, the process
can be automated since the attribute will always be in the same
place within the found objects of the same class.

In Telegram Desktop, we can see the time each message
was sent, as shown in Figure 3. This information is stored in the
_timeText attribute of the HistoryMessage class. Considering
this, we look for time patterns to be able to find HistoryMessage
objects present in a memory dump. In the case of HistoryMes-
sage objects, we follow the same approach to analyze them as
described for UserData objects, since the _timeText attribute of
HistoryMessage is also a QString object.

Once we find UserData and HistoryMessage objects in a
memory dump, pointers to other objects can be identified within
them. Since it is possible to navigate through RAM from one
object to another, additional related objects can be obtained. As
we analyze the source code of Telegram Desktop, we know
which pointers we have to follow to get objects that are rele-
vant from a forensic point of view. As a result, we identify the
sender of each message, the conversation to which each mes-
sage belongs, and the account to which each conversation be-
longs, among other things.

When we reach the object B from a pointer that is in object
A, we have the beginning of object B. However, when we reach
the UserData or HistoryMessage objects as described above,
we are in some part within the object. This is a small difference
when it comes to identifying new objects. Using the source

code of Telegram Desktop, we know the location in which
we are within an object, and we can analyze what information
is around it. Likewise, having source code also helps us analyze
objects when we are at the beginning of the object.

All this information allow us to create new classes by im-
plementing the appropriate IM Artifact Finder interfaces.
These new classes allow us to use IM Artifact Finder
to automatically analyze memory dumps from the Telegram
Desktop application, since the classes contain the source code
needed to obtain the artifacts without manual intervention. Be-
low, we explain the experiments that we conducted and discuss
our findings.

5.2. Description of Experiments

We define 17 experiments grouped into 7 different categories,
whose objective is to evaluate the memory artifacts that we can
obtain from the Telegram Desktop application. These cat-
egories are general categories that can be applied to any IM
application. In particular, these categories and the related ex-
periments in each category are:

Accounts. This category encompasses experiments performed
to see what memory artifacts can be extracted that are re-
lated to user accounts. We define two experiments:

Experiment A, «Single account». Get information
about the account owner, when there is only one
account.

Experiment A, «Multiple accounts». Find information
about the owners of the accounts added to the IM
application, when there is more than one account.

Conversations. This category includes experiments performed
to see what memory artifacts can be extracted that are re-
lated to conversations, such as identifying conversations
and reconstructing them. Here, we define five experi-
ments:

Experiment C; «All conversations». Identify existing
conversations. Note that the goal of this experiment
is not to get the content of those conversations, but
simply the conversations and their participants.

Experiment C, «Recently accessed conversations».
Identify the conversations that the user has recently
accessed, whether to send content or simply to read
messages.

Experiment C3; «Reconstruction of conversations».
Find in RAM the information necessary to recon-
struct conversations. This experiment focuses only
on text messages, not on multimedia messages.

Experiment C4 «Deleted messages». Delete received
and sent messages, which will disappear from the
conversations in the IM application GUI, and then
check if they are still stored in RAM.

Experiment C5 «Deleted conversations». Check if it is
possible to retrieve the content of a conversation
from RAM after deleting it.

Users. This category encompasses experiments performed to
see what memory artifacts can be extracted that are related
to users, such as contact lists or blocked users. We define
three experiments:

Experiment U, «Contact list». Get the contact list for
each user account.

Experiment U, «Deleted contacts». Delete a contact
and then check if their information is still present in
RAM.

Experiment U;: «Blocked users». Identify if a certain
user is blocked.

Privacy. This category only includes one experiment, which is
dedicated to verifying the privacy of the phone number of
the IM application users. IM applications can have differ-
ent privacy policies, allowing a user to choose that every-
one, only their contacts, or that no one can see their phone
number.

Experiment P, «Phone number privacy». In case user
A does not share their phone number with user B,
check if the phone number of A is present in the con-
tent of RAM extracted from the IM application used
by B

Multimedia. This category encompasses three experiments,
which are dedicated to verifying what information can be
extracted from messages other than text messages sent or
received by a user.

Experiment M, «Files». Get information about the files
received or sent.

Experiment M, «Shared contacts». Find
shared with other users.

contacts

Experiment M; «Geographic locations». Get the geo-
graphic locations received.

Locking. This category includes two experiments dedicated to
verifying what information can be retrieved when the ap-
plication is locked or password protected.

Experiment L; «Locked application». Check the infor-
mation available in the memory after locking the ap-
plication.

Experiment L, «Unlock password». Search in the mem-
ory the password required to unlock the IM applica-
tion.

Session. This last category includes an experiment, which is
dedicated to verifying what information remains in mem-
ory once the user logs out from their IM application ac-
count.

Experiment S| «Log out». Check the contents present in
the memory after logging out of the IM application.

Note that the experiments C,, Cy4, Cs, U, L, and L, cover
information that generally cannot be found by simply clicking
through the running application. The experiments were car-
ried out on two Windows 10 64-bit virtual machines, one of
them with the Education edition (version 20H2) and the other
with the Enterprise Evaluation edition (version 1809). As for
Telegram Desktop, we installed on both virtual machines the
version 2.7.1 for 64-bit systems. Also, we use two Telegram
accounts to do all the tests.

For each experiment, we interact manually with the
Telegram Desktop application, performing the actions cor-
responding to the experiment. Then we follow the analysis
methodology explained in Section 4: first, we use Windows
Memory Extractor to get a memory dump of the Telegram
Desktop process; and then, we run IM Artifact Finder to
analyze these dumps and get the report of the extracted results.
Regarding the results obtained, we found no differences be-
tween the two versions of Windows 10 used in the experiments.

5.3. Experimental Results

We describe the results for each experiment below.

Experiment A, «Single account». In this scenario, we have
retrieved the following information about the account owner:
their identifier number (unique for each user), full name, phone
number, and username.

Experiment A, «Multiple accounts». In this case, we have
correctly identified the number of accounts added to the appli-
cation. For each account, we have obtained the same informa-
tion as in the previous experiment (their identifier number, full
name, phone number, and username).

Experiment C| «All conversations». We have successfully
identified the conversations that the user has accessed. How-
ever, we were unable to find in RAM those that were not ac-
cessed. In each conversation found we can distinguish the type
of text conversation. In addition, we can obtain the two users
participating in a one-on-one conversation and a subset of the
participants in the case of groups. The name of the identified
groups and channels can also be obtained. Finally, we can know
the account to which each conversation belongs in case of mul-
tiple accounts.

Experiment C, «Recently accessed conversations». We can
successfully retrieve the conversations that the user has recently
accessed, since they are the only ones loaded in RAM.

Experiment C; «Reconstruction of conversations». We were
able to reconstruct the conversations that the user accessed,
whether they were one-on-one conversations, groups, or chan-
nels. In particular, we have successfully retrieved text mes-
sages, message replies, and forwarded messages. However, we
have not been able to find the edited messages in any way. Re-
garding multimedia messages, we have successfully identified
the fact that they were sent and their associated text (if any).
Multimedia content is outside the scope of this experiment as it

is considered in the Multimedia category below. When a user
accesses a conversation, only the latest messages are loaded into
RAM. Afterwards, if the user wants to see the past messages,
they will be loaded into RAM on demand (that is, as the user
consults the conversation). As a result, the number of retriev-
able messages is highly dependent on how the user interacts
with the application.

Experiment C4 «Deleted messages». With our current meth-
ods implemented to analyze memory dumps of a Telegram
Desktop application, we were unable to retrieve sent or re-
ceived messages after deleting them. This may be because once
they are deleted, the objects that represent these messages are
freed and are then no longer associated with other objects.

Experiment Cs «Deleted conversations». Surprisingly, after
deleting a conversation, we can get parts of it back. However,
the information retrieved is not entirely reliable, as it is not al-
ways correct and is sometimes incomplete. For instance, al-
though it happened very rarely in our experiments, we found
that messages of different conversations were retrieved and as-
sembled together in the same conversation. As before, this
may be because once they are deleted, the objects that repre-
sent these messages are freed and are then no longer associated
with other objects, but they are not zeroed.

Experiment U; «Contact list». We can successfully retrieve
those users who share their phone number with the account
owner and some users who do not. In case of multiple accounts,
we can identify the account to which each user belongs. We
have found that to find this information in RAM it is not neces-
sary to interact with the Telegram Desktop application after
opening it. We can also distinguish whether or not a user is a
contact with the account owner. Finally, for each retrieved user
we can obtain the following information: identifier, full name,
phone number (if shared), username, and if the user is a bot or
not.

Experiment U, «Deleted contacts». In all the tests we did we
were able to retrieve contacts after deleting them. Additionally,
after being retrieved, the information about them reflects that
they are not the user’s contacts.

Experiment Us «Blocked users». The information retrieved
from the contacts allows us to determine if a user is blocked or
not. However, the user must be involved in a one-on-one con-
versation previously loaded into RAM in order to detect this.

Experiment P, «<Phone number privacy». We cannot find the
phone number of a user if the user does not share their phone
number. After conducting this experiment we conclude that
Telegram only sends phone number information of users to
whom it has permission to view it. For a more detailed ap-
proach, we would also need to study the code that runs on the
Telegram servers, which is not open source.

Experiment M, «Files». When a file is attached to a message,
we can determine its name and type. Also, we can retrieve the
name and type of each transmitted file if multiple files are sent
in the same message. We have not managed to retrieve the con-
tents of the file from memory though.

Experiment M, «Shared contacts». Based on our experi-
ments, we can successfully retrieve the name and phone number
of shared contacts.

Experiment M; «Geographic locations». Although
Telegram Desktop does not allow sending geographic
locations, we focus on reception as a user can receive locations
from other users using another different Telegram client. Our
experiments show that we can successfully retrieve the latitude
and longitude of each transmitted geographic location. In
addition, we can also retrieve additional information, such as
the name of the place or its address, since they can appear as
text accompanying the location.

Experiment L, «Locked application». In all our tests per-
formed, we have observed that when the application is locked
we can retrieve the same information from the memory as when
it is not locked. Therefore, locking the application has no ef-
fect on the amount of information retrievable from the memory
dumps.

Experiment L, «Unlock password». After unlocking the app,
we were able to manually find the password located in the mem-
ory. However, we have not been able to find it programatically.
Also, we have empirically tested that the password is no longer
present in the memory after a short period of time. Hence, we
were unable to reliably retrieve the password from the memory
dumps. This may be motivated because the application stores
the password in memory encoded or encrypted in some way.
More research is needed to evaluate this in more depth.

Experiment S | «Log out». We have successfully retrieved in-
formation about accounts, conversations, and users after log-
ging out. However, the number of artifacts retrieved was al-
ways less than the number of artifacts retrieved before logging
out. This may be motivated because the application destroys the
objects (i.e., it frees the memory) as they are no longer needed.
Also, the retrieval of memory artifacts after logging out is not
completely reliable, as sometimes some of the information re-
trieved is incorrect or incomplete, in a manner similar to that
described in the experiment Cs.

5.4. Discussion and Final Remarks

The fact that the aforementioned information can be re-
trieved from the memory of the Telegram Desktop applica-
tion means that, although its local database is encrypted and
communications with the Telegram servers are also encrypted,
a forensic analyst will be able to obtain valuable artifacts from
the memory of a computer where Telegram Desktop is run-
ning.

A forensic analyst with access to a computer that is on, un-
locked and with the installed Telegram Desktop application

could open it and collect the necessary information. However,
this action would severely alter the RAM status compared to
its state when the computer was seized. If the forensic analyst
accesses the conversations to see their contents before dumping
the Telegram Desktop process, the information about which
conversations the suspect had recently accessed will be lost. In
addition, the fact of interacting with the application could cause
the loading of information on memory occupied by recently
deleted elements, which makes the recovery of these elements
not possible.

In the same way, if the forensic analyst interacts with the ap-
plication when the computer is connected to the Internet, mes-
sages could be read that the suspect had not read or received,
also notifying their respective senders of these events. This ac-
tion would also cause the account owner to appear online, mak-
ing it appear that the suspect is using the app at a given time.
The interaction with the Telegram Desktop application on a
seized computer must be done carefully in a forensically sound
manner.

Similarly, a forensic analyst can interact with a suspect’s
computer where the application is running and is locked or
logged out. In these cases, there will be valuable information
that cannot be seen in the application’s GUI and remains hid-
den. Memory forensics can also help in this case, as all this
information can be extracted from memory (if present).

Knowing the information about the account (or accounts)
owner can help identify the person to whom the seized com-
puter belongs. In addition, obtaining users related to a certain
account, and differentiating whether they are contacts or not,
can provide clues about the people related to a suspect, as well
as to identify new people of interest to investigate. On the other
hand, there usually must be a reason for one user to block an-
other user. Therefore, being aware of this fact can provide rele-
vant details about the personal relationship between both users.

The possibility of knowing the conversations that users have
recently accessed can be relevant to know what they were do-
ing or with whom they were communicating moments before a
certain event occurred. Similarly, the possibility of chronologi-
cally reconstructing a conversation, knowing for each message
the moment it was sent, who sent it, who received it and its
content, can be crucial in solving a case. In addition, knowing
in which groups and channels a suspect participates (actively
or passively) can reveal information about their interests. For
instance, finding that the suspect is in a group where illegal
material such as child pornography is shared is an important
discovery in an investigation.

Likewise, although retrieving conversations after deletion
and retrieving artifacts after logging out are not completely re-
liable processes, a substantial part of the information obtained
in our experiments was accurate. This can also be helpful to a
forensic analyst, as this information is not accessible through
the Telegram Desktop GUIL

As for messages where not only text is sent, knowing the con-
tacts that were shared in a conversation can be helpful, since
when a person receives a contact from another user it is nat-
ural to think that there is no direct connection between those
three individuals. Regarding geographical locations, having in-

10

formation about them is useful to know where the suspects or
the victims may have been or to know the places that are related
to them. On the other hand, files transmitted via Telegram
Desktop are not located in the memory as they are stored in
secondary storage (by default, in the user’s “Downloads” folder,
although this location may change). However, knowing the
transmitted file names and types is helpful as it guides a foren-
sic analysis of the disk to find those files and understand their
contents.

Finally, as shown by the results of experiment L; and ex-
periment S, we have retrieved memory artifacts after locking
or logging out of the Telegram Desktop application respec-
tively. As a consequence, valuable information can be retrieved
even if it cannot be viewed in the application’s GUI when the
application is locked or logged out.

6. Conclusions and Future Work

In this work, we have provided a forensic analysis environ-
ment to extract memory artifacts from IM applications. The
analysis methodology that we followed covers three phases: ex-
traction, analysis, and reporting. We have developed two tools
to achieve these phases. As current tools for process mem-
ory acquisition are insufficient for various reasons, our first
tool (dubbed Windows Memory Extractor) provides process
dumps that can be used for further analysis, including vir-
tual address lookup. Our second tool, dubbed IM Artifact
Finder, provides an extensible framework to analyze those
contents and obtain forensically relevant memory artifacts.
Both tools are freely and publicly available under the GNU/G-
PLv3 license, so forensic analysts and law enforcement agen-
cies can use them while the forensic community can contribute
by adding the support for different IM applications.

In particular, our tools allowed us to obtain and analyze
memory artifacts related to the Windows Telegram Desktop
application that —if in use— definitely contains a lot of forensi-
cally relevant artifacts. Among others, we obtained informa-
tion about the users of the application and their contacts, re-
constructed conversations chronologically, and retrieved certain
artifacts even after they were deliberately deleted, after hav-
ing locked the application, or even after having logged out.
As shown, forensic analysis of volatile memory is essential
to retrieve valuable information in decrypted form in scenar-
ios where databases or communications are encrypted. In addi-
tion, it can also help guide other forensic analyses, such as disk
forensics.

An important limitation of this work is that we focus on ver-
sion 2.7.1 of Telegram Desktop. Therefore, IM Artifact
Finder must be properly maintained and updated to support
future versions of Telegram Desktop. As future work, our
goal is to adapt the tools that we built on top of IM Artifact
Finder to support the Telegram Desktop application on plat-
forms other than Windows, as well as to study other memory
artifacts of forensic interest that can be extracted.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Jan-
Niclas Hilgert, for their feedback. The research by Ricardo
J. Rodriguez was supported in part by the University, Indus-
try and Innovation Department of the Aragonese Government
under Programa de Proyectos Estratégicos de Grupos de In-
vestigacion (DisCo research group, ref. T21-20R) and by the
University of Zaragoza and the Fundacion Ibercaja under grant
JIUZ-2020-TIC-08.

References

Al-Rawashdeh, A.M., Al-Sharif, Z.A., Al-Saleh, M.1., Shatnawi, A.S., 2020.
A Post-Mortem Forensic Approach for the Kik Messenger on Android, in:
2020 11th International Conference on Information and Communication
Systems (ICICS), pp. 079-084.

Albrecht, M.R., Marekova, L., Paterson, K.G., Stepanovs, 1., 2022. Four At-
tacks and a Proof for Telegram, in: 2022 2022 IEEE Symposium on Security
and Privacy (SP) (SP), IEEE Computer Society, Los Alamitos, CA, USA.
pp. 223-242.

Barradas, D., Brito, T., Duarte, D., Santos, N., Rodrigues, L., 2019. Forensic
analysis of communication records of messaging applications from physical
memory. Computers & Security 86, 484-497.

Cichonski, P., Millar, T., Grance, T., Scarfone, K., 2012. Computer Security
Incident Handling Guide. techreport SP 800-61 Rev. 2. National Institute of
Standards and Technology (NIST). Special Publication (NIST SP).

Dolan-Gavitt, B., 2007. The VAD tree: A process-eye view of physical mem-
ory. Digital Investigation 4, 62—64.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley Longman
Publishing Co., Inc., USA.

GlobalStats, 2021. Desktop Operating System Market Share Worldwide. [On-
line, https://gs.statcounter.com/os-market-share/desktop/worldwide.]. Ac-
cessed on September 22, 2021.

Gregorio, J., Alarcos, B., Gardel, A., 2018. Forensic analysis of Telegram Mes-
senger Desktop on macOS. International Journal of Research in Engineering
and Science 6, 39-48.

International Organization for Standardization, 2017. ISO/IEC 21778:2017:
Information technology — The JSON data interchange syntax. Online; https:
//www.iso.org/standard/71616.html. Accessed on December 03, 2020.

Kazim, A., Almaeeni, F., Ali, S.A., Igbal, F., Al-Hussaeni, K., 2019. Memory
Forensics: Recovering Chat Messages and Encryption Master Key, in: 2019
10th International Conference on Information and Communication Systems
(ICICS), pp. 58-64.

Ligh, M.H., Case, A., Levy, J., Walter, A., 2014. The Art of Memory Forensics:
Detecting Malware and Threats in Windows, Linux, and Mac Memory. John
Wiley & Sons, Inc.

Martin-Pérez, M., Rodriguez, R.J., 2021. Quantifying Paging on Recoverable
Data from Windows User-Space Modules, in: Proceedings of the 12th EAI
International Conference on Digital Forensics & Cyber Crime, Springer.
p. 19.

Microsoft Corporation, 2021. PE Format. [online; https://docs.microsoft.com/
en-us/windows/win32/debug/pe-format]. Accessed on October 1, 2021.

11

Microsoft Docs, 2017. Modules. [Online; https://docs.microsoft.com/en-us/
windows-hardware/drivers/debugger/modules]. Accessed on February 15,
2020.

Microsoft Docs, 2018a. Memory Management. [Online; https://docs.microsoft.
com/en-us/windows/win32/memory/memory-management]. Accessed on
February 15, 2020.

Microsoft Docs, 2018b. Page State. [Online; https://docs.microsoft.com/en-
us/windows/win32/memory/page-state]. Accessed on February 15, 2020.
Microsoft Docs, 2020a. ProcDump. [Online; https://docs.microsoft.com/en-
us/sysinternals/downloads/procdump]. Accessed on September 17, 2021.
Microsoft Docs, 2020b. WinDbg. [Online; https://docs.microsoft.com/en-us/

windows-hardware/drivers/debugger/debugger-download-tools]. Accessed

on September 17, 2021.
Mohtasebi, S., Dehghantanha, A., 2011. A Mitigation Approach to the Privacy

and Malware Threats of Social Network Services, in: Snasel, V., Platos, J.,
El-Qawasmeh, E. (Eds.), Digital Information Processing and Communica-
tions, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 448—459.

Nisioti, A., Mylonas, A., Katos, V., Yoo, P.D., Chryssanthou, A., 2017. You
can run but you cannot hide from memory: Extracting IM evidence of An-
droid apps, in: 2017 IEEE Symposium on Computers and Communications
(ISCC), pp. 457-464.

OMG, 2011. Unified Modelling Language: Superstructure. Object Manage-
ment Group. Version 2.4, formal/11-08-05.

Pedro Ferndndez-Alvarez and Ricardo J. Rodriguez, 2021a. IM Artifact Finder
v1.0.0. [Online: https://github.com/reverseame/instant-messaging-artifact-
finder]. Accessed on November 29, 2021.

Pedro Ferndndez-Alvarez and Ricardo J. Rodriguez, 2021b. Windows Mem-
ory Extractor v1.0.8. [Online: https://github.com/reverseame/windows-
memory-extractor]. Accessed on November 29, 2021.

Qt, 2021. Qt Framework. [Online; https://www.qt.io/]. Accessed on September
23,2021.

Qt Documentation, 2021. QString Class. [Online; https://doc.qt.io/qt-5/qstring.
html]. Accessed on September 23, 2021.

SourceForge, 2021. Process Hacker. [Online;
sourceforge.io/]. Accessed on September 17, 2021.

Statista Research Department, 2020. Number of mobile phone messaging app
users worldwide from 2018 to 2025 . [Online; https://www.statista.com/
statistics/483255/number-of-mobile-messaging-users- worldwide/]. Ac-
cessed on September 22, 2021.

Statista Research Department, 2021. Most popular global mobile mes-
saging apps 2021 . [Online; https://www.statista.com/statistics/258749/
most-popular-global-mobile-messenger-apps/]. Accessed on September 22,
2021.

Thantilage, R.D., Le Khac, N.A., 2019. Framework for the Retrieval of Social
Media and Instant Messaging Evidence from Volatile Memory, in: 2019
18th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/13th IEEE International Conference On
Big Data Science And Engineering (TrustCom/BigDataSE), pp. 476-482.

Visual Paradigm, 2021. Visual Paradigm. [Online: https://www.visual-
paradigm.com/]. Accessed on November 23, 2021.

Yosifovich, P., Ionescu, A., Russinovich, M.E., Solomon, D.A., 2017. Windows
Internals, Part 1: System architecture, processes,threads, memory manage-
ment,and more. 7th ed., Microsoft Press, Redmond, WA, USA.

Yusoff, M., Dehghantanha, A., Mahmod, R., 2017. Forensic Investigation of
Social Media and Instant Messaging Services in Firefox OS: Facebook,
Twitter, Google+, Telegram, OpenWapp, and Line as Case Studies, in:
Choo, K.K.R., Dehghantanha, A. (Eds.), Contemporary Digital Forensic In-
vestigations of Cloud and Mobile Applications. Syngress. chapter 4, pp. 41—
62.

https://processhacker.

https://gs.statcounter.com/os-market-share/desktop/worldwide
https://www.iso.org/standard/71616.html
https://www.iso.org/standard/71616.html
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/modules
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/modules
https://docs.microsoft.com/en-us/windows/win32/memory/memory-management
https://docs.microsoft.com/en-us/windows/win32/memory/memory-management
https://docs.microsoft.com/en-us/windows/win32/memory/page-state
https://docs.microsoft.com/en-us/windows/win32/memory/page-state
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://github.com/reverseame/instant-messaging-artifact-finder
https://github.com/reverseame/instant-messaging-artifact-finder
https://github.com/reverseame/windows-memory-extractor
https://github.com/reverseame/windows-memory-extractor
https://www.qt.io/
https://doc.qt.io/qt-5/qstring.html
https://doc.qt.io/qt-5/qstring.html
https://processhacker.sourceforge.io/
https://processhacker.sourceforge.io/
https://www.statista.com/statistics/483255/number-of-mobile-messaging-users-worldwide/
https://www.statista.com/statistics/483255/number-of-mobile-messaging-users-worldwide/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.visual-paradigm.com/
https://www.visual-paradigm.com/

	Introduction
	Related Work
	Background
	Paging and the Virtual Memory Manager
	The Windows Process Memory Mapping
	Telegram

	Memory Artifact Analysis Methodology for IM Applications
	Memory Artifact Analysis Methodology
	Extraction Phase: Windows Memory Extractor
	Analysis Phase: IM Artifact Finder
	Reporting Phase: IM Artifact Finder

	Case Study: Telegram Desktop
	Extension of IM Artifact Finder to Analyze Telegram Desktop Memory Artifacts
	Description of Experiments
	Experimental Results
	Discussion and Final Remarks

	Conclusions and Future Work

