
Towards a GDPR-Compliant Cloud1

Architecture with Data Privacy Controlled2

through Sticky Policies*
3

M. Emilia Cambronero1, Miguel A. Martı́nez2, Luis Llana3, Ricardo J.4

Rodrı́guez4, and Alejandro Russo5
5

1Albacete Research Institute of Informatics, Albacete, Spain.6

memilia.cambronero@uclm.es7

2Albacete Research Institute of Informatics, Albacete, Spain.8

miguelangel.martinez18@alu.uclm.es9

3Department of Information Systems and Computing, Universidad Complutense de10

Madrid, Spain. llana@sip.ucm.es11

4Instituto de Investigación en Ingenierı́a de Aragón (I3A), Departamento de Informática e12

Ingenierı́a de Sistemas, Universidad de Zaragoza, Spain. rjrodriguez@unizar.es13

5Chalmers University of Technology, Göteborg, Sweden. russo@chalmers.se14

ABSTRACT15

Data privacy is one of the biggest challenges facing system architects at the system design stage.
Especially when certain laws, such as the General Data Protection Regulation (GDPR), must be complied
with by cloud environments. In this paper, we want to help cloud providers comply with the GDPR
by proposing a GDPR-compliant cloud architecture. To do this, we use Model-Driven Engineering
techniques to design cloud architecture and analyze cloud interactions. In particular, we develop a
complete framework, called MDCT, which includes a Unified Modeling Language profile that allows us
to define specific cloud scenarios and profile validation to ensure that certain required properties are
met. The validation process is implemented through the Object Constraint Language (OCL) rules, which
allow us to describe the constraints in these models. To comply with many GDPR articles, the proposed
cloud architecture considers data privacy and data tracking, enabling safe and secure data management
and tracking in the context of the cloud. For this purpose, sticky policies associated with the data are
incorporated to define permission for third parties to access the data and track instances of data access.
As a result, a cloud architecture designed with MDCT contains a set of OCL rules to validate it as a
GDPR-compliant cloud architecture. Our tool models key GDPR points such as user consent/withdrawal,
the purpose of access, and data transparency and auditing, and considers data privacy and data tracking
with the help of sticky policies.

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Keywords:General Data Protection Regulation, Data Privacy, Cloud Computing, Sticky Policies, Data
tracking, Unified Modeling Language, UML Profiling, Model Validation, Object Constraint Language

32

33

0This work was supported by the Spanish Ministry of Science and Innovation (co-financed by European
Union FEDER funds) projects “FAME (Metodologı́as Avanzadas para Arquitecturas, Diseño y Pruebas de
Sistemas Software)”, reference PID2021-122215NB-C31; and the Region of Madrid (grants FORTE-CM,
S2018/TCS-4314, and PR65/19-22452). The research of R. J. Rodrı́guez was supported in part by the grant
TED2021-131115A-I00 funded by MCIN/AEI/10.13039/501100011033 and by European Union NextGen-
erationEU/PRTR, and by the University, Industry and Innovation Department of the Aragonese Government
under Programa de Proyectos Estratégicos de Grupos de Investigación (DisCo research group, ref. T21-
23R).

memilia.cambronero@uclm.es
miguelangel.martinez18@alu.uclm.es
llana@sip.ucm.es
rjrodriguez@unizar.es
russo@chalmers.se

GDPR General Data Protection Regulation
EU European Union
DS Data Subject (physical person who owns the data)
SP Sticky Policy
TP Third Party
SLA Service Level Agreement
CP Cloud Provider
SSM Stateless Storage Machine
UML Unified Modeling Language
OMG Object Management Group
OCL Object Constraint Language
UML-SD UML Sequence Diagram
MDCT Modeling Data Cloud Tracking
GestF Third-Party Business Consultancy
SB Santander Bank
ING Internationale Nederlanden Groep
OCL Object Constraint Language
L- (as in L1, L2, etc.) Location (for data storage)
O Owner(s) of the data (grant permissions over it)
P (as in PList) Principals (entities that access or own data)
N- (as in NL, NSP, etc.) New (used as prefix to indicate a modification of a previously referenced variable)

Table 1. List of acronyms.

1 INTRODUCTION34

Data privacy was a major concern among scientists before the publication of the General Data Protection35

Regulation (GDPR) (Myers and Liskov, 2000; Priscakova and Rabova, 2013). In 2018, the legal text of36

the GDPR (GDPR, 2016) appeared, which is an extensive document with 99 articles. This regulation37

directly affects all member states of the European Union (EU), and one of the main novelties with respect38

to previous data privacy legislation is that it also affects any non-EU organization that handles the data of39

European citizens.40

In 2021, the European Commission identified cloud computing as a key vulnerability area (EURAC-41

TIV, 2021). Thus, two codes of conduct for the cloud industry were approved, and these were developed42

by industry leaders to provide a strategy for GDPR compliance in cloud environments. These codes are43

focused on increasing trust and transparency in the EU cloud computing market, increasing competition44

between cloud providers.45

The first code of conduct covers Software as a Service (SaaS), and some of its main providers include46

Alibaba Cloud, Cisco, Dropbox, Google Cloud, Microsoft, and IBM, among others. The second code of47

conduct covers Infrastructure as a Service (IaaS), and its predominant provider is Amazon Web Services48

(AWS). These large cloud players do business in a large European cloud market that continues to grow.49

Therefore, it is vital for cloud providers, both large and small, to update their procedures to comply with50

the GDPR and be more competitive in this new scenario. In essence, understanding how cloud providers51

comply with the GDPR represents a key challenge for established and newly emerging providers (Barati52

et al., 2019). According to a study by Statista (Statista, 2022), many countries have made significant53

changes to cloud governance after the introduction of the GDPR. For instance, around 63% of the French54

IT security practitioners estimate that their organization will need major changes in cloud governance55

after the introduction of the GDPR. This estimate is similar in other countries, such as Germany (57%) or56

the United Kingdom (56%).57

To help companies in this adaptation process, in this paper, we use Model-Driven Engineering58

(MDE) (Davies et al., 2005; Meliá et al., 2016) to define a Unified Modeling Language (UML) (OMG,59

2017) profile for a GDPR-compliant cloud architecture by defining specific stereotypes for this pur-60

pose. Our proposal is based on UML and UML profiling techniques, which are well-known software61

development methodologies in software engineering. These techniques rely heavily on stereotypes,62

which consist of defining domain-specific types of UML diagram elements. These domain-specific63

types allow a software designer to create and use UML objects relevant to the problem domain and its64

2/42

terminology (for instance, an actor in a use case diagram or a component in a component diagram that65

already contain certain attributes, functions, or names relevant to the problem domain). Examples of66

UML profiles are MARTE (OMG, 2011) (useful for analysis and modeling of embedded and real-time67

systems), DAM (Bernardi et al., 2011) (useful for analysis and modeling of dependability attributes), or68

SecAM (Rodrı́guez et al., 2010) (useful for analysis and modeling of security attributes).69

Our profile covers both IaaS and SaaS, that is, the cloud infrastructure and the interactions between70

the different GDPR roles in the cloud when a user stores their data in it. GDPR defines as roles the71

data subject or user (who owns the data), the third parties (who want access to the data), and the cloud72

provider (who oversees the user’s data). Thus, UML component and sequence diagrams are designed to73

model the cloud infrastructure and interactions, respectively. We have addressed the main features of the74

GDPR to ensure the security of user data in our proposed architecture. Some of these features are the75

purpose of accessing the data, transparency, audit processes (that is, where user data has been and where76

it was taken from), and withdrawal of consent to the processing of user data. The profile models are then77

validated by using Object Constraint Language (OCL) (Warmer and Kleppe, 2003) rules to ensure that78

they comply with certain defined features and constraints. In addition, the proposed cloud architecture79

allows data tracking and guarantees the privacy of user data. In this regard, data privacy and tracking are80

controlled using sticky policies (Pearson and Casassa-Mont, 2011) associated with the data. The sticky81

policy allows us to define specific permissions for the data and captures the path followed by data, among82

other parameters of interest for data tracking.83

The UML profile and the OCL rules have been integrated into a complete framework named Modeling84

Data Cloud Tracking (MDCT). In addition, we have also implemented a software tool that supports85

MDCT. This tool is publicly available, and its source code has been released under the GNU/GPLv386

license.87

In summary, our novel approach allows cloud architectures to track data and guarantee the privacy of88

user data, complying with many of the GDPR articles. To the best of our knowledge, we are the first to89

combine Model-Driven Engineering with sticky policies and GDPR in a tool that helps software engineers90

to adapt GDPR to cloud architectures. In particular, the contributions of this paper are the following:91

GDPR-Compliant Validated UML Profile: We present a GDPR-compliant validated UML profile92

for cloud architectures, incorporating UML-profiling techniques, UML sequence and component93

diagrams, and OCL rules for validation. This profile facilitates GDPR compliance to cloud providers.94

Our profile covers SaaS and IaaS by using UML sequence and component diagrams to model95

the cloud infrastructure and cloud interactions, respectively. Using the proposed models, cloud96

providers can provide a data management service that complies with GDPR, and track the data in97

their systems.98

Data Privacy Through Sticky Policies: Our proposal addresses data privacy by introducing sticky poli-99

cies, allowing third-party access control through precise data permissions.100

Comprehensive GDPR Coverage: We address the main aspects of the GDPR, including the purpose of101

data access, consent/withdrawal by the interested party, and transparency and auditing. Additionally,102

the purpose for which the data is accessed plays a very important role in its treatment. Therefore, in103

this work, we distinguish between accessing the data for statistical1 or other purposes.104

Robust Data Tracking Mechanism: We implement data tracking, monitoring the data’s journey and105

origins. A dedicated log in the controller (cloud provider) and a specific attribute in the sticky106

policy record information on third-party access.107

Strict OCL Rules for Validation: Additionally, we establish strict OCL rules to validate a UML profile108

targeting cloud service providers. This innovative approach serves as a cornerstone to ensure not109

only seamless functionality of cloud-based systems, but also critical aspects such as privacy and110

data tracking. By meticulously defining and applying these OCL rules, our framework sets a new111

standard for safeguarding sensitive information and enabling effective data tracking in the dynamic112

cloud computing landscape.113

1Note that “statistical” encompasses a broad range of possible data operations that controllers (cloud providers in this case)
themselves must specify. The reason for not distinguishing them is that, regardless of the sub-type of statistical access, no individual
can be identified from the resulting data. In GDPR terms, this process is called pseudonymization and is mandatory for any statistical
study of personal data.

3/42

In order to enhance readability, a list of acronyms is provided in Table 1. The structure of this paper is114

as follows: Related work is discussed in Section 1.1. Section 2 introduces the key concepts necessary115

to understand the rest of this paper, such as GDPR, sticky policies, and UML diagrams and profiling.116

A running example illustrating and motivating the paper is presented in Section 3. The methodology117

employed in our framework is detailed in Section 4, while Section 5 describes the UML profile within118

the MDCT framework. Some of the OCL rules needed to validate the UML models are presented in119

Section 6, and the tool supporting our framework is introduced in Section 7. Section 8 discusses interesting120

considerations and common threats to validity. Finally, Section 9 concludes the paper and outlines future121

lines of work.122

1.1 Literature review123

In this section, we delve into the existing literature. We categorize our discussion into three main areas:124

works focused on modeling and validation of the GDPR and data privacy, works dedicated to the GDPR125

and cloud computing, and works centered around data tracking and the GDPR. Each subsection provides126

insights into relevant studies, methodologies, and advancements in these specific domains, laying the127

foundations for our novel contributions.128

1.1.1 Modeling and Validation of GDPR and Data Privacy129

Regarding data privacy modeling, Basso et al. (2015) presents a UML profile for privacy-aware appli-130

cations to build UML models that specify privacy concepts and improve the definition and application131

of privacy. Alshammari and Simpson (2018) also proposes a profile (called APDL) for privacy-aware132

data to serve as an abstract model for personal data life cycles. In particular, they distinguish between133

the operations that can be performed on personal data during their lifecycle. While they suggest that the134

APDL profile could be represented in terms of UML, it does not currently adhere to the UML standard.135

Notably, these privacy data models do not explicitly consider the GDPR.136

Some other works only focus on some specific aspects of the GDPR. For instance, Mougiakou137

and Virvou (2017) propose a model that uses UML use case diagrams, a combination of the GDPR,138

information privacy, and best practices to examine GDPR requirements using an educational e-platform139

paradigm, called Law Courses. Matulevičius et al. (2020) present a GDPR model and its supporting140

methods for managing regulatory compliance in business processes. They use component diagrams to141

model the different aspects of the GDPR, such as consent and data processing. However, they do not142

model interactions between system roles or consider data tracking.143

Likewise, Politou et al. (2018) assess the impact on personal data protection and privacy of the right144

to withdraw consent and the right to be forgotten in the GDPR. They consider some existing architectures145

and technologies to establish whether it is feasible to implement technical practicalities and effectively146

integrate these new GDPR requirements into current IT infrastructures.147

Torre et al. (2019) share their experience in creating a UML representation of the GDPR. In particular,148

they provide several tables with excerpts of the GDPR that are helpful for developers and provide149

guidelines for creating automated methods to ensure GDPR compliance. However, the authors only use150

UML package diagrams to design the UML Class Model.151

One of the main problems of the application of the GDPR in the field of Information Technology is152

that it is defined by legal experts, not software or information engineers (Tamburri, 2020). Therefore,153

many works in the literature are devoted to trying to help software engineers in the implementation of154

the GDPR. Many of these works use modeling techniques, which help with data management and allow155

software developers to have a global vision of systems.156

Tamburri (2020) offer a systematic synthesis and discussion of the GDPR by using a mathematical157

analysis method known as Formal Concept Analysis. Likewise, Barati et al. (2020b) have also formalized158

the rules and obligations of the GDPR by using timed automata. They check whether the data flow in159

a business process follows the GDPR guidelines. To do this, they use the UPPAAL tool (Larsen et al.,160

2023). Kammüller et al. (2019) propose a data label model for GDPR-compliant IoT systems. They apply161

this model to ensure the protection of patient data in a health-care system, labeling the data to cover the162

requirements of the GDPR and presenting several use cases with the labeled data that can be transformed163

into a formal specification of Object Z. While their label model shares some ideas with sticky policies, it164

lacks expressive power and focuses on a more restricted problem, maintaining only the owner and a list of165

authorized actors.166

4/42

Vanezi et al. (2020) only focus on the purpose of data processing. They encode a formal language167

syntax in a UML-based domain model and present a tool that takes a graphical model definition and168

then translates it into formal language definitions. Kaneen and Petrakis (2020) justify the advisability169

of GDPR compliance, which is verified in the system design phase by analyzing dependencies between170

system entities and processes. The authors suggest a series of questions that reflect the GDPR compliance171

requirements and design class diagrams for these questions. They further generate a series of data reports172

intended for regulators to evaluate system GDPR compliance during inspections.173

In terms of the main differences between these related works and ours, we can highlight the following.174

Firstly, we focus on GDPR compliance in cloud environments. Secondly, we define a full UML profile to175

model all interactions in the cloud system and its infrastructure, data tracking, and GDPR compliance,176

using UML-profile techniques. Thirdly, as modeling techniques, we focus on UML, specifically sequence177

diagrams and component diagrams, to model the interactions and infrastructure, respectively. Fourthly,178

the profile models are validated by OCL to ensure compliance with certain restrictions. Finally, we present179

a tool that supports the entire process.180

1.1.2 Cloud and GDPR181

Related works can be classified on whether it targets cloud users or providers. For cloud users or182

consumers, Rios et al. (2019) introduce the DevOps framework. It includes privacy and security controls183

to ensure transparency for users, third parties, and law enforcement authorities. The framework is based184

on the risk-driven specification at the design time of privacy and security objectives in the system’s service185

level agreement.186

Other works also consider cloud providers. For instance, Pandit et al. (2018) define an ontology to187

represent GDPR. Subsequently, Elluri and Joshi (2018) identify the GDPR articles that affect the providers188

and consumers of cloud services. Then, they develop a more detailed ontology for the obligations of189

cloud data providers and consumers. In contrast, we have focused on tracking user data to ensure the190

rights of the data subject. For this reason, we have also considered Chapter III of the GDPR (articles 12 to191

23), which was not contemplated in (Elluri and Joshi, 2018).192

Razavisousan and Joshi (2021) develop a methodology called Textual Fuzzy Interpretive Structural193

Modeling, which analyzes large textual data sets to identify driving and dependent factors in the dataset.194

They identify the critical factors in the GDPR and compare them with various Cloud Service privacy195

policies. Their results show different factors that stand out in the GDPR and other privacy policies of196

publicly available services. The authors state that this methodology can be used by both service providers197

and consumers to analyze how closely a service’s privacy policy aligns with the GDPR. The focus of their198

work is different from ours, as we propose a cloud architecture for cloud providers which ensures GDPR199

compliance and includes privacy policies via sticky policies associated with user data.200

As for those works that are more oriented towards cloud providers, Georgiopoulou et al. (2020) identify201

the requirements and appropriate countermeasures for GDPR compliance in cloud environments. They202

describe the GDPR-related features, requirements, and measures that follow the cloud architecture. Shastri203

et al. (2019) examine how the design, architecture, and operation of modern cloud-scale systems conflict204

with the GDPR. They illustrate these conflicts through what they call GDPR anti-patterns. They then205

present six system design and operation anti-patterns, which are effective in their context but violate the206

GDPR rights and receipts. They propose that cloud designers examine their systems for these anti-patterns207

and remove them. This work focuses on studying and avoiding these specific patterns, but they do not208

propose a GDPR-compliant cloud architecture for a cloud provider.209

Mohammadi et al. (2018) define a comprehensive architecture for runtime data protection in the cloud.210

They identify five important actors and entities in the GDPR: Data Subject, Data Controller, Sensitive211

Data, Application, and Infrastructure. They also derive nine requirements from the architecture and use212

UML to design and validate this architecture. This work is focused on data security rather than how data213

permissions are granted by verifying third-party access. Unlike their work, we detail the interaction of214

third-party software applications that want to access the data, and how their permissions are checked.215

Fan et al. (2019) and Chadwick et al. (2020) emphasize user-centered data sharing, addressing data216

sharing agreements and employing privacy-preserving methods. While these aspects are important in the217

context of GDPR, none of these works specifically addresses GDPR compliance as we do in this work.218

Instead, our focus is on cloud providers and GDPR, ensuring that data tracking and access are restricted219

to authorized entities.220

Zhou et al. (2023) propose a domain model of the accountability principle in the GDPR. The authors221

5/42

use a blockchain-based technique to provide data immutability and integrity for cloud providers’ data222

processing activities. In contrast, we provide a UML profile focused on data tracking that ensures GDPR223

compliance by design.224

In summary, none of the cited works model the cloud system using UML or incorporate data tracking225

as we do in our work. Moreover, our primary focus is on aiding cloud providers in designing GDPR-226

compliant cloud architectures.227

1.1.3 Data Tracking and GDPR228

Gjermundrød et al. (2016) present a GDPR-compliant tool that covers data transparency and treatability,229

called privacyTracker. They implement data portability and the right to erasure as contained in the GDPR230

rights. This framework empowers consumers with the appropriate controls to track the disclosure of data231

collected by companies and assess the integrity of these multi-handled data. In this paper, we not only232

consider data tracking and the rights of data portability and the right to erasure but many other GDPR233

rights too. All the GDPR articles considered in this work are summarized in Table 2.234

With regards to works that are more focused on data tracking and the GDPR, it is worth mentioning235

the following. Barati et al. (2019); Barati and Rana (2020) focus on the issue of GDPR compliance236

using Blockchain technology. The GDPR compliance of the operations performed is verified using237

smart contracts. Their work is based on a voting mechanism of the actors to reach a GDPR compliance238

verdict. If there is a violation, the actor who committed it is informed. In our case, the service provider239

is responsible for guaranteeing correct access to the data. Therefore, we have a log that saves all data240

accesses, and this log contains the actions on the user’s data. In this way, users can be informed about241

the use of their data (GDPR Articles 12, 13, and 14). Subsequently, Barati et al. (2020a) propose three242

smart contracts to support the automated verification of GDPR operations performed on user data on243

smart devices. They present a formal model to support GDPR compliance for these devices. The privacy244

requirements of such applications are related to the GDPR obligations of the device.245

1.1.4 GDPR-Compliance Assistant Tools246

Some tools help developers comply with the GDPR. GDPRValidator (Cambronero et al., 2022) helps247

small and medium-sized enterprises that have migrated their services to achieve GDPR compliance.248

PADRES (Pereira et al., 2022) is a tool aimed at web developers, which is organized by principles in the249

form of a checklist and questionnaire. They also integrate other open-source tools to scan the web project.250

RuleKeeper (Ferreira et al., 2023) is another tool to help web developers. In this tool, web developers251

specify a GDPR manifest that is automatically incorporated in the web application and is then enforced252

using static code analysis and runtime mechanisms. In contrast, our tool is a modeling tool aimed at cloud253

providers to develop systems that comply with GDPR by design.254

2 BACKGROUND255

This section covers some key concepts necessary to understand the rest of this paper. We first explain256

what the European General Data Protection Regulation is, and then we discuss sticky policies. Finally, we257

briefly describe the Unified Modeling Language and the Object Constraint Language.258

2.1 The General Data Protection Regulation (GDPR)259

The General Data Protection Regulation (GDPR) (GDPR, 2016) came into force on May 25, 2018, as260

a way to harmonize data protection rules within EU member states. The GDPR was adopted in 2016261

to replace the Data Protection Directive, which was born in 1995 out of a need to align data protection262

standards within its EU member states to facilitate internal and cross-border EU data transfer.263

The GDPR is a regulation, which means that it applies directly to its recipients, and no further264

transpositions are required, as in the case of the Data Protection Directive. In addition to equalizing the265

data protection rules, the GDPR was introduced to generate greater legal certainty and eliminate potential266

obstacles to the free flow of personal data, raising the bar for the privacy of the affected persons.267

The GDPR applies to any processing of personal data (or personal data sets), whether the processing268

is carried out, in whole or in part, by automated means (GDPR, 2016). Anyone who processes or controls269

the processing of personal data is subject to the GDPR. There are different actors in the GDPR: data270

subjects, who are the people whose data is processed (for example, customers or site visitors); controllers,271

which can be a natural or legal person, public authority, agency, or other body that determines the purposes272

and means of the processing of personal data; and processors, who are a natural or legal person, public273

6/42

authority, agency, or other body that processes personal data on behalf of the controller. The data can be274

processed within its organization (that is, the controller and the processor are the same) or delegated to an275

external organization.276

Any individual benefits from the GDPR, which also provides specific protection to minors. In contrast,277

legal entities do not benefit from protection under the GDPR, regardless of their legal form. The GDPR278

applies when the processing of personal data takes place within the EU or it involves data obtained form279

European citizens outside of the EU.280

There are various implications of the GDPR for organizations and entities (European Comission,281

2016). One of the most relevant implications is fair data processing, which means that organizations282

and entities must process personal data in a legal, fair, and transparent manner. In addition, they must283

demonstrate that they are GDPR-compliant (accountability) and put in place the necessary technical and284

organizational measures to guarantee the protection of personal data. The GDPR also establishes the285

purpose limitation, which means that personal data is collected for specified, explicit, and legitimate286

purposes and that no further processing is performed in a manner incompatible with those purposes.287

The GDPR incorporates a systems engineering approach called privacy by design. This approach is288

based on seven fundamental principles that aim to proactively integrate data protection into the design of289

new products and systems. These principles are as follows (Langheinrich, 2001; Cavoukian, 2009): (i)290

proactive not reactive; preventive, not remedial; (ii) privacy as the default setting; (iii) privacy embedded291

into the design; (iv) full functionality – positive-sum, not zero-sum; (v) end-to-end security – full life-292

cycle protection; (vi) visibility and transparency – keep it open; (vii) respect for user privacy – keep it293

user-centric.294

In the event of a data breach, organizations and entities under the GDPR must inform the data295

protection authorities within the next 72 hours after they become aware of the personal data breach,296

and inform their users promptly. Infractions of different types (less serious or serious) are applied to297

organizations and entities if the notification is not made on time or the data breach was caused by the298

negligence of the controller or the processor of personal data.299

Another important aspect of the GDPR is the empowerment of data subjects with certain rights to300

help data subjects in being assured of the protection and privacy of their personal data (GDPR, 2016).301

These data subject rights are as follows: right to information, right of access, right to rectification, right to302

erasure, right to restriction of processing, right to data portability, right to object, and the right to avoid303

automated decision-making.304

2.2 Sticky Policies305

A sticky policy defines a set of conditions and restrictions attached to data that describe how the data306

should be treated or, where applicable, transmitted between parties (Pearson and Casassa-Mont, 2011).307

The use of sticky policies facilitates compliance with, and the application of, data policy requirements,308

since it allows strict control of the data life-cycle in order to guarantee its privacy and the application of309

specific regulations on the use, access, and disclosure of personal data.310

Sticky policies enhance data owners’ control over their data. In particular, machine-readable policies311

are directly attached to the data, and they are called sticky since they travel along with the data as it travels312

across multiple administrative domains. These policies make it possible to regulate how data can be313

accessed and used throughout its life cycle, helping to ensure that access control decisions and policy314

applications can be carried out in a distributed manner.315

This paradigm was initially proposed by Karjoth, Schunter, and Waidner in 2002 (Karjoth et al.,316

2002) to formalize applicable regulations and associate them with collected data, thereby supporting317

the identification of applicable regulations and privacy expectations for all personal data in a company.318

Pearson and Mont were early adopters of sticky policies in the context of the EnCoRe project (Pearson319

and Casassa-Mont, 2011), which provided mechanisms for users to define and change consent policies, as320

well as to enforce these policies throughout the entire data life-cycle.321

Among other things, a sticky policy can define who owns the data, the content of the data (it may be322

encrypted), the use to be made of the data (e.g., for statistical analysis, transaction processing, targeted323

marketing), who can access the data, the maximum duration of the data, as well as other specific obligations324

and restrictions for the parties involved.325

7/42

2.3 Unified Modeling Language (UML) Sequence Diagrams and Combined Fragments,326

UML profiles, and the Object Constraint Language (OCL)327

The Unified Modeling Language (UML) (OMG, 2017) is a modeling graphical language commonly used328

in the industry for specification, design, visualization, and documentation of software systems. UML329

includes several diagram notations for modeling different aspects of software systems, addressing its330

structural, behavioral, and deployment aspects.331

A UML sequence diagram (UML-SD) is a behavioral diagram of the software system that illustrates332

the sequence of messages passed between system participants (users or system elements) in an interaction.333

Therefore, a sequence diagram consists of a group of entities or roles that interact in a system, represented334

by vertical lifelines, and horizontal arrows that represent the messages that they exchange during the335

interaction over time. In a UML sequence diagram, a lifeline represents an individual participant, object,336

or entity involved in an interaction or collaboration. It is depicted as a vertical dotted line, headed by a337

rectangle or cube with the name of the object it represents, and it is used to show the chronological order338

of interactions between objects in the system.339

In a UML-SD, a combined fragment reflects one or more aspects of interaction (called interaction340

operands) controlled by an interaction operator. The combined fragments are represented by a rectangle341

and contain the conditional structures that affect the flow of messages (the interaction operands). A342

combined fragment separates the contained interaction operands with a dashed horizontal line between343

each operator.344

The combined fragment type is determined by the interaction operator. For instance, the operator loop345

allows the software designers to express interaction loops, while the operator alt allows them to express346

alternative flows of messages. The operator opt allows the modeling of an if-then structure. Finally, a347

combined fragment can also contain nested combined fragments or interaction uses (operator ref), whose348

main goal is to reference other interactions in a UML sequence diagram, and they make it possible to349

simplify large and complex sequence diagrams.350

UML can be adapted for analysis purposes through profiles, by using a UML tool called UML profiling.351

A UML profile is an extension of the UML standard language with specific elements that correspond352

to the same domain. For instance, the MARTE (OMG, 2011) profile has enabled UML to specify and353

analyze embedded and real-time systems. Likewise, the performance and schedulability sub-profiles of354

MARTE have proved useful for the modeling and analysis of a wide range of application domains, apart355

from real-time systems.356

The Object Constraint Language (OCL) is part of the UML set of modeling notations (Warmer and357

Kleppe, 2003). OCL provides a precise textual language for model validation by expressing constraints358

that cannot be shown diagrammatically in UML. For instance, OCL constraints can be used to specify359

that a certain attribute must be unique within a class, or that a method must only be called if a particular360

precondition is met.361

By using OCL, software developers can describe constraints and expressions on UML models that362

must hold on to the UML model elements. In practice, OCL constraints are often used to complement the363

UML modeling process, as they can help identify potential bugs early in the development cycle. When364

validating a UML model using OCL, it is possible to catch errors or inconsistencies in the model and365

correct them before the implementation phase begins, thus improving the quality of the resulting software366

system. Hence, OCL is a powerful tool for validating UML models and ensuring their correctness and367

completeness (Oestereich, 2002; Völter et al., 2006).368

2.4 Stateless Machines369

Stateless Machines (Sbarski and Kroonenburg, 2017; Villamizar et al., 2016) are software components or370

systems that operate without maintaining session state information for individual users or clients. They371

rely on external sources to obtain necessary state information and comply with rigorous security measures372

to ensure data reliability and integrity. In short, when a state machine is launched, it loads data from a373

data store, and computes some results which are then stored or sent back to the data processing pipeline.374

Lambdas AWS2 is an example of such a computational model.375

Stateless machines play a crucial role in contemporary software design, providing several advantages376

in scalability, fault tolerance, performance, and streamlining system deployment and maintenance. In377

the context of GDPR compliance, they help improve security by mitigating the risks associated with378

2https://aws.amazon.com/lambda/

8/42

https://aws.amazon.com/lambda/

data leakage and unauthorized access that can arise from storing user session data. Its importance379

is particularly pronounced in distributed and cloud-based systems, where reliability and efficiency are380

paramount attributes. Maintaining meticulous design principles and implementing robust security practices381

is imperative to ensuring the trustworthiness of external state information. Stateless machines present382

compelling benefits particularly in industries where secure data management is of utmost importance,383

such as banking.384

3 RUNNING EXAMPLE385

In this section, a running example is presented to illustrate the usefulness of our proposed GDPR-compliant386

cloud architecture. It consists of a business consultancy that runs several applications in the cloud for387

which it must read and write a variety of sensitive data in the context of GDPR. Note that special attention388

is paid to the sticky policies associated with this data and how to set the corresponding sticky policy when389

new data is generated, as a result of combining or aggregating data, to ensure the privacy of the new data.390

We also address data tracking. For this purpose, a specific field of the sticky policy, called accessHistory,391

is defined to keep track of who is accessing the data and for what purpose.392

The roles that interact in the cloud system are the following: the owner of the data or user; the393

cloud provider, which acts as the data controller; the business consultancy (called GestF), which is a394

third party that wishes to access the user data to perform certain operations on them; and a processor395

(named SSMProcessor), which represents a stateless storage machine in the cloud, where the processing is396

performed on behalf of a controller. In this example, GestF can access the data for two different purposes:397

to provide customers with tax returns (tax purposes), or to calculate certain population statistics (statistical398

purposes).399

Figure 1 shows the interactions between roles in the cloud using a part of our UML profile, which400

is described in more detail in Section 5. The first two messages, namely SPDataSubject (SP refers401

to Sticky Policy) and SLA (Service Level Agreement), correspond to the contracts signed between the402

owner of the data (data subject (DS)) and the controller (cloud provider), and between the controller and403

the processor (SSMProcessor), respectively, according to GDPR, Article 28, Recitals 44 and 109. The404

message sendData models the sending of data from the user to the controller and from the controller405

to the processor. It also specifies the data retention period (in this case, 180 days). The message info406

models the fact that the data controller must inform the user about who is responsible for processing its407

data, and the retention time once the contracts are signed, according to the GDPR. Therefore, during408

these 180 days (time≤ 180 days condition), GestF can express its desire to access this data (alt[GestF409

wants to access Data]), but GestF needs the data owner’s consent for data access. The messages consent,410

askAuthentication, and GestF are used for this purpose. In the event that the interested party or user411

consents to data access (alt[User consents]), the message ok is sent, and GestF’s access to information412

is added in the controller log (AccessLog), via the adding access information in AccessLog action. The413

permission message is then sent.414

Once GestF has permission to access the data, it can access it for the two different purposes mentioned:415

statistical or tax. The main difference between these purposes focuses on the resulting privacy restrictions416

(sticky policy) for the new data obtained from the calculations performed, which generally involve a417

combination of different data. For tax purposes, the resulting data owners are all the owners of each418

combined set of data, while the permissions are limited to the most restrictive for each of them.419

Note that we use a special type of purpose called statistical. In this case, the results of computing the420

data with this purpose turn out to be new data where no individual can be identified. In order to enforce421

this type of computation, our architecture considers trusted stateless machines that guarantee that such422

statistics are generated using privacy-enhanced technology, such as Differential Privacy or k-anonymity.423

In other words, we call trusted stateless machines to those stateless machines that leak information in a424

controlled manner. In this architecture, we have considered that providers offer their services through425

stateless machines, which do not store user-session information. These kinds of machines are usually less426

costly than using a stateful one for a similar purpose as the maintaining entities do not have to manage the427

resident memory. This presents an interesting offer for providers as, in the case they want to store session428

information, they must do so through software cookies, which are regulated in the GDPR. In this case,429

GestF reads the data of the interested party and calculates the average of the salaries of the employees,430

which is aggregated data (we assume that the data about the other employees have been previously read).431

This calculation is performed on a trusted machine, which our cloud architecture provides specifically for432

9/42

this purpose. The sticky policy of the data obtained will be different from that obtained for non-statistical433

purposes since the person who generates the data is the data owner, as explained in Section 3.2.434

If the purpose is not statistical, unreliable cloud machines (regular machines) are used. If GestF435

accesses the cloud to calculate the user’s taxes (alt[purpose==taxes]), it reads its data and performs the436

tax calculation on a regular machine. To do this, it combines GestF data with the user data and writes the437

new data (taxes) to the storage machine for 30 days (readData and writeData messages). The resulting438

sticky policy for these newly obtained data is explained in Section 3.2.439

:CloudProvider
(ControllerCP):Data Subject :GestF

(Third Party)

sendData(DataSubject,180days)

sendData(DataSubject, 180days)

SPDataSubject SLA

info(180days,CloudProvider,SSMProcessor)

consent(DataSubject, [taxes, statistical], read)

askAuthentication

GestF

consent(GestF, [taxes, statistical], read)

permission([taxes, statistical], read)adding access
 information
in AccessLog

ok(GestF,[taxes,statistical], read)

writeData(DSTaxes, 30 days)

readData

accessinformation

calculating DSTaxes
&DSTaxesSP in not

reliable machine

:SSMProcessor

 [purpose==statistical]
readData

calculating
averageSalary in
trusted machine writeData(averageSalary, 30 days)

updating accessHistory of
SPDataSubject

 alt [purpose==taxes]

 alt [User consents]

alt [GestF wants to access Data]

time<=180days]

Figure 1. Running example: UML sequence diagram representing the interaction of GestF in the cloud.

3.1 Initial Sticky Policies440

We consider five main fields in the sticky policies: permission, owner, purpose, controller, and accessHis-441

tory. The permission field defines the access to the data. Permissions are defined as DC labels (Stefan442

et al., 2012), which are tuples ⟨S, I⟩ where S and I are conjunctive normal forms on entities without443

negative literals. S specifies the entities whose consent is required to access the data, while I specifies the444

entities that have created the data and may modify it. A more detailed explanation is given in Section 5.2.445

The owner field defines the owner of the data, while the purpose field defines a list of possible446

10/42

access purposes (in this running example, statistical or tax purposes, as explained above). The controller447

defines the data controller according to the GDPR, in this case it will be the cloud provider. Finally, the448

accessHistory field allows us to track this data, that is, save all the entities that have accessed the data and449

the purpose of the access.450

The sticky policies for the different data used in this example are as follows. For the data of the451

interested party, Data Subject (DS) or user:452

DS_SP = {453

{permission: ⟨DS,DS⟩},454

{owner: DS},455

{purpose: taxes, statistical},456

{controller: ControllerCP},457

{accessHistory:458

[(SB, statistical, read),459

(ING, statistical, read)]}460

}461

Therefore, DS is the only one that can grant access to the data and can also write the data. The owner462

of this data is the DS. The list of purposes has two types: statistical and tax. Finally, the accessHistory463

field allows us to track this data. We assume two new entities (SB and ING), representing banks. These464

entities are allowed to read the data for statistical purposes.465

As can be seen, GestF does not have permission to access the DS data in the initial sticky policy, so it466

needs to request consent from the controller, who in turn will ask the data subject (DS) for consent. As467

shown in Figure 1, consent is given to GestF to read the data from DS, who first reads the data. Therefore,468

the access history in the DS data must be updated to reflect this access:469

DS_SP = {470

{permission: ⟨DS,DS⟩},471

{owner: DS},472

{purpose: taxes, statistical},473

{controller: ControllerCP},474

{accessHistory:475

[(SB, statistical, read),476

(ING, statistical, read),477

(GestF, taxes, read),478

(GestF, statistical, read)]}479

}480

Likewise, GestF data has the following sticky policy:481

GestFDataSP = {482

{permission: ⟨GestF,GestF⟩},483

{owner: GestF},484

{purpose: taxes, statistical},485

{controller: ControllerCP},486

{accessHistory: []}487

}488

This sticky policy means that GestF must grant access to the data and can write its data, the owner489

is GestF, and the list of purposes has both types: statistical and tax purposes. Unlike before, the490

accessHistory field is empty, which means that no one has accessed GestF’s data yet. Eventually, GestF491

calculates the DS’ taxes and stores them for 30 days (writeData(DataSubjectTaxes, 30 days) message).492

This creates new data whose sticky policy is a combination of data from GestF and data from DS.493

3.2 Final Sticky Policies494

The final sticky policies obtained for the new data generated because of the behavior shown in Fig. 1495

depend on purpose of the access (note that the controller remains the same):496

• Statistical purpose. In this scenario, GestF executes a statistical application in the cloud to com-497

pute the average salary for its employees (in this example, DS and DS1). As GestF already498

possesses statistical access to DS’s data, the controller is not required to seek the user’s permis-499

sion for access. The application runs on a trusted machine, as detailed earlier. Following the500

11/42

computation, the anonymized aggregated data is generated and written to the storage machine501

(writeData(averageSalary, 30 days) message) with the ensuing sticky policy:502

averageSalarySP={503

{permission: ⟨GestF,GestF⟩},504

{owner: GestF},505

{purpose:statistical},506

{controller: ControllerCP},507

{accessHistory: []}508

As can be seen, the sticky policy of the new data is different since we consider that in the statistical509

case the owner of the new combined data is the one who generates this new data (in this case, GestF),510

and then decides on its permissions. Here, the purpose is statistical only, and the accessHistory511

only considers the access of GestF, since this data will be used solely in the interest of GestF.512

• Tax purpose. In this case, the GestF is running a tax application on a regular cloud machine513

and combining its data with the data from DS (SPGestF ⊔ DS SP) to calculate the DS’s taxes514

(DSTaxesSP), where the operator ⊔ is ∧ for the entities required to give consent for read operations,515

and ⊔ is ∨ for write operations. So, the new sticky policy for the new data (tax data) is as follows:516

DSTaxesSP=517

{permission: ⟨DS∧GestF,DS∨GestF⟩},518

{owner: DS∧GestF},519

{purpose:taxes, statistical},520

{controller: ControllerCP},521

{accessHistory: []}522

Note that, for tax purposes, each field is generated according to the following rules:523

– The permission field is obtained from the most restrictive combination of the permissions of524

GestF and DS. That is, the DS SP permissions are ⟨DS,DS⟩, while the Gest SP permissions525

are ⟨GestF,GestF⟩. Therefore, the resulting permission is: ⟨DS,DS⟩ ⊔ ⟨ GestF,GestF⟩ =526

⟨DS∧GestF,DS∨GestF⟩.527

– The owner field contains all the owners of the combined data; in this case, DS and GestF.528

– The accessHistory is empty because it is new data, and no one has requested access to it yet.529

4 METHODOLOGY530

This section presents the methodology followed by our proposed Modeling Data Cloud Tracking (MDCT)531

framework. The main objective of our framework is to define recommendations that allow cloud providers532

to create a stateless computing architecture in the cloud that complies with the GDPR and guarantees the533

privacy of cloud users. For this purpose, we focus on designing a GDPR-compliant cloud architecture that534

uses sticky policies to ensure data privacy. In addition, the use of sticky policies allows our framework to535

track user data throughout their entire life-cycle.536

Figure 2 describes the different phases of our framework, which are as follows:537

Phase 1.- Modeling phase. The UML profile, named Model4 DataCTrack, is modeled to design the538

proposed GDPR-compliant cloud stateless computing architecture. For this purpose, we539

have had the support of expert GDPR consultants. Model4 DataCTrack uses two types540

of UML diagrams, namely sequence and component diagrams, which allow us to define541

the interaction between the roles in the system and the cloud architecture infrastructure,542

respectively. We consider several parameterized sequence diagrams that define the behavior543

of GDPR roles and third parties when accessing and managing sensitive data in the cloud.544

Next, the specific configuration of the cloud infrastructure is established by setting the545

corresponding parameters in the component diagram. This infrastructure considers the546

sticky policies associated with the data to ensure data privacy. Then, UML profiling547

techniques (Malavolta et al., 2015) are also used to model the specific stereotypes needed.548

The GDPR articles considered are specifically indicated in the description of the models.549

More details on this matter are given in Section 5.550

12/42

Modeling phase

Profile for Data Management in
Stateless Machines to Ensure Data

Privacy

GDPR & Data Sticky Policies

Interactions in the Cloud

UML Sequence Diagram & Profile Techniques

Cloud Infrastructure to
Ensure Privacy

UML Component Diagram & Profile Techniques

GDPR-Compliant Cloud Architecture
for Data Management, Ensuring Data Privacy

for GDPR compliance & Data Tracking

Profile Validation

Design Restrictions & OCL Rules

1

Checking Models
Consistency

MDCT Tool

Recommendation phaseValidation phase2 3

Figure 2. Modeling Data Cloud Tracking (MDCT) framework proposal.

Phase 2.- Validation phase. The model generated must comply with certain properties that are vali-551

dated in this phase. In this regard, we define a set of OCL (OMG, 2014) rules, which allows552

us to detect errors and warnings in the model. For instance, if the action to perform on the553

data is not of the allowed action type, an error is detected. If errors are detected, they must554

be corrected, and we return to the previous phase (Phase 1.- Modeling phase) to correct555

them. After that, the model must be validated again. The validation of our profile model is556

described in detail in Section 6.557

Phase 3.- Recommendation phase. After model validation, this phase allows cloud providers to558

finalize a stateless computing architecture configuration in the cloud. This configuration is559

GDPR-compliant, ensures user privacy, and allows data tracking.560

5 MODELING DATA TRACKING IN CLOUD SYSTEMS561

This section resulting describes Model4 DataCTrack and its validation in detail. We first look at the562

interaction model, showing the UML sequence diagrams that allow us to model the interaction between563

the different roles in the system. We then introduce the rules for generating the new sticky policy for new564

data and for the aggregation or combination of this data, when data has been accessed for statistical or565

other purposes, respectively. Finally, we present the profile stereotypes and system infrastructure using566

UML component diagrams.567

In what follows, we adhere to terminology expressed in Article 4 GDPR “Definitions” (GDPR, 2016)568

for the main definitions and concepts used in our model. The specific articles and recitals of the GDPR569

considered for this work are summarized in Table 2. We explicitly mention them in the description of our570

profile.571

5.1 Interaction Model572

This section describes the UML sequence diagrams that model the interaction between the different573

roles in our proposed stateless cloud architecture. Regarding the roles, we have defined the following:574

the user (also called data subject), the ControllerCP3 (controller), the stateless computer applications575

(StatelessAppTP4), which want access to the data, and finally, the SSMProcessor5 (processor), which is576

the machine on which the data is stored.577

User data is considered sensitive information to be stored and processed in the system. Therefore,578

ControllerCP is responsible for implementing appropriate technical and organizational measures to579

guarantee and be able to demonstrate secure access to data (Art. 24 and 25 GDPR (GDPR, 2016)). It is580

3CP is the abbreviation for Cloud Provider.
4TP is the abbreviation for Third Party.
5SSM stands for Stateless Storage Machine.

13/42

Table 2. GDPR articles and recitals considered in this work.

GDPR Article Description
Article 4 Definitions
Article 5 Principles relating to processing of personal data
Article 6 Lawfulness of processing
Article 7 Conditions for consent
Article 8 Conditions applicable to child’s consent in relation to information society services
Article 9 Processing of special categories of personal data
Article 12 Transparent information, communication, and modalities for the exercise of the rights of the

data subject
Article 13 Information to be provided where personal data are collected from the data subject
Article 14 Information to be provided where personal data have not been obtained from the data subject
Article 15 Right of access by the data subject
Article 16 Right to rectification
Article 17 Right to erasure (“right to be forgotten”)
Article 21 Right to object
Article 22 Automated individual decision-making, including profiling
Article 24 Responsibility of the controller
Article 25 Data protection by design and by default
Article 28 Processor
Article 29 Processing under the authority of the controller or processor
Article 33 Notification of a personal data breach to the supervisory authority
Article 34 Communication of a personal data breach to the data subject
Article 55 Competence
Recital 44 Performance of a Contract
Recital 109 Standard Data Protection Clauses

then responsible for monitoring the application of GDPR to protect the fundamental rights and freedoms581

of natural users with respect to data processing, and for facilitating the free flow of sensitive data within582

the EU. The SSMProcessor is responsible for data processing (Article 28 GDPR (GDPR, 2016)). In this583

cloud environment, the stateless storage machine acts as the data processor, as it stores the data and is584

responsible for data processing. In accordance with Article 29 GDPR (GDPR, 2016), the processor and585

any person acting under the authority of the controller or the processor, who has access to personal data,586

shall not process this data except on the instructions of the controller, unless required by the law of the587

Union or Member State.588

Figure 3, 4, 5, and 6 show the interaction between the different roles using UML sequence diagrams.589

Figure 3 shows the main sequence diagram, in which we capture the interactions of the different roles590

when a user interacts with the cloud system and sends personal data to it. As personal data, we also591

consider data of special categories (Article 9 GDPR (GDPR, 2016)) or children’s data6. However, in592

the proposed architecture we do not consider personal data relating to criminal convictions and offenses593

(Article 10 GDPR (GDPR, 2016)). Initially, the user signs a contract (represented by the SP7 message)594

with the controller to establish it as the controller of data processing and guarantee the principles relating595

to the processing of personal data (Article 5 GDPR (GDPR, 2016)). This contract defines the fields of596

the sticky policy for the data, that is, the permissions, the owner, the purpose, the controller, and the597

accessHistory, with this last field being empty at the beginning.598

The controller and the processor then also sign a Service Level Agreement (SLA message), which599

allows the specific storage machine to be set as the data processor and thus process personal data on behalf600

of the controller. This contract defines the maximum time during which data is stored on a machine and601

the third parties that can access data using the processingDuration, and recipients, respectively (see the602

class diagram in Appendix A). Hence, data will be stored and processed on that machine. These contracts603

are defined according to Article 13.2 GDPR (GDPR, 2016). The GDPR specifies that the processing of604

6It is important to remark that the treatment of data belonging to minors only differs from other categories of data in the collection
process. In these cases, controllers must make the information about the processing more accessible and clear, and require the
consent of the certified legal guardians of the individual. This is specified in Article 8 and recital 38 GDPR (GDPR, 2016)

7SP is the abbreviation for Sticky Policy.

14/42

:ControllerCP:User :StatelessAppCTP :SSMProcessor

sendData(Data,maxTime)

:StatelessAppCTP

the TP wants to access Data]

the ControllerCP wants to subscribe to notification of breaches]

the User wants to remove Data]

the User wants information about the data management]

the User wants to rectify Data]

ref

ref

ref

accessing_Data

subscription

infoDataUser

newRestrictions(Data, newSP)

saving new SP in log
update(Data,machines,newSP)

rectifyData(Data, newData) newData(Data,machines,newData)

removeData(Data))

break
eraseData(Data,machines)

removeSPinLogsearching
Data

Ubication

sendData(Data,maxTime)

SP SLA

info(maxTime,ControllerCP,recipients)

removing Data & Copies

eraseData(Data, machines)

the User wants to add new restrictions]

saving controller
in SP

removing SP in Log

alt [MessageType

loop time<=maxTime]

sd main

Figure 3. main SD: Main interaction diagram in the cloud

data by a processor shall be governed by a contract (Article 28.3, Recital 44 and 109 GDPR (GDPR,605

2016)), where the processing period (maxTime parameter) is established, which is based on the defined606

processingDuration. After that, the user can transfer its data to the controller (sendData message).607

Note that the associated sticky policy is a property of the data (see the class diagram in Appendix A),608

and from that moment on, the controller oversees and is responsible for controlling the processing of609

the data. The saving controller in SP action allows the controller to save its identity in the sticky policy610

by using the controller property. Then, considering Article 13.1 GDPR (GDPR, 2016) (“the controller611

shall provide the data subject with some information”), the controller informs the user (info message)612

about the period for which data will be stored (maxTime), the third parties recipients, the identity, and613

the contact details of the controller (ControllerCP). Article 14 GDPR (GDPR, 2016) defines what the614

controller must do when personal data has not been obtained from the data subject (for instance, from615

15/42

:ControllerCP

accessinformation
updating SP in log

 alt [User consents]

:SSMProcessor
:User

ok(tp, purpose, ActionType)

:StatelessAppCTP

consent(Data, purpose, action)

askAuthentication
tp

readData

writeData(content, 0)

TP wants to combine and has
permission for reading and writing]

writeData(newData, maxTime)

main

permission(purpose,ActionType)

consent(tp, purpose, action)

adding access information
in AccessLog

calculating aggregated newData
and newSP in trustedM

updating
accessHistory of SP

writeData(newData, maxTime)combining Data and calculating
newData and newSP

TP wants to write and has
permission for writing]

readData

readData

checking tp
permissions

ref

alt[purpose==statistical]

alt [TP wants to read and
has permission for reading]

loop [tp has permission or User consents]

 alt [tp has not permission for data accessing]

Figure 4. accessing Data SD: Third parties accessing data.

16/42

:SSMProcessor:User :ControllerCP :StatelessAppCTP

subscribe(Data,machines,breaches,MaxSubscriptionTime=maxTime)

notify(Data, machines, breaches)

InformBreaches, <72 hours

informBreaches

timeoutSuscription

check
changes

alt [breaches]

opt [controller wants to know the breaches]

Figure 5. subscription SD: Controller subscription to be notified when data changes.

:ControllerCP

counterUser++
& checkUserId

counterUser==0

askDataInformation(User)

:SSMProcessor:User :StatelessAppCTP

reportDataManagement generateReport,
<30days

informationNotForFree(price)

wantToAccess

 counterUser ==1]

reportDataManagementforFree generateReport, <30days

 opt [User wantToAccess]

 alt [User verified and counterUser >1]

loop

Figure 6. infoDataUser SD: User asks about the management of its data.

a different company). In this scenario, the data controller must inform the user and provide the same616

guarantees as before. Therefore, once the user is informed, the controller can store the user data on the617

storage machine (sendData message).618

Subsequently, the controller enters a loop to handle the messages received in the system until the time619

to store the data expires (time≤maxTime condition) or the user orders the deletion of its data. For this620

purpose, a loop combined fragment is used to model the repetition of the interactions within it. Note that621

this combined fragment is inside a sequence diagram fragment called sd main. This is an interaction use622

in UML and allows us to reference it from other diagrams by simply using the label ref together with the623

name of the fragment (e.g., ref main in this case). Therefore, note that the sd main combined fragment624

can also end when the deletion of the data is ordered by the user, after which the data controller orders the625

17/42

processor to erase the data subject data and any of its copies (message eraseData), in accordance with626

Article 28.3.g GDPR (GDPR, 2016). If this happens, the processor acts by removing Data & copies (at627

the bottom of this main SD-diagram) and the controller acts by removing SP in Log and removing the628

corresponding data from the log (self-message removeDatainLog).629

The alt combined fragment inside the loop allows us to model the occurrence of different events that630

can occur in the system. The first event (first part of the alt combined fragment) occurs when the user631

wants to add new restrictions to its data policy (the user wants to add new restrictions condition). This632

event allows the user (data subject), for instance, to withdraw consent to third parties at any moment, that633

is, to change their access permissions in accordance with Article 7.3 GDPR (GDPR, 2016). The message634

newRestrictions containing its data (Data) and the new restrictions (newSP) is set. The newSP parameter635

is of type StickyPolicy, and describes a list of third parties with their associated permissions (permission636

field) as an array of elements of type PermissionPerTP, which are (S, I) pairs, where both S and I are a637

list of lists of TPs (Third Parties, defined by StatelessAppCTP), and S defines who is authorized to grant638

permissions for data access, and I the third parties with writing permission over the data (see Section 5.2639

and Appendix A). The controller then saves these new constraints to the log (saving new SP in log action).640

Therefore, these new data restrictions must be updated on all the machines that store the data. To do this,641

the update message is sent to the SSMProcessor roles with the Data, machines, and newSP parameters, to642

specify the data, the machines where these are stored, and the new sticky policy, respectively.643

The second event (second part of the alt combined fragment) corresponds to the user’s right to rectify644

inaccurate personal data via the data controller without undue delay, Article 16 GDPR (GDPR, 2016)645

(the User wants to rectify Data condition). The user sends the message rectifyData to the ControllerCP,646

with two parameters, namely Data and newData, corresponding to the old and new data, respectively.647

The data must be updated on all the machines where it is stored. To do this, a new message is sent to all648

the storage machines (SSMProcessor) that contain the data to inform them about the data rectification649

(message newData), with these three parameters: Data, machines, and newData.650

Article 17 GDPR (GDPR, 2016) regulates the user’s right to delete its data (the User wants to remove651

Data condition of the alt). Therefore, the third event (third part of the alt combined fragment) occurs when652

the user orders the removal of its data, sending the message removeData, which contains the data (Data)653

to be removed. After that, the controller searches for all the possible machines in the log that store the654

data to erase them (Seaching Data Ubications action) and updates the log by deleting all entries with the655

deleted information (represented by the recursive self-message removeSPinLog). After that, an eraseData656

message is sent to the corresponding processors, with the Data and machines parameters, to indicate657

the data to be deleted and the SSMProcessors that store it, respectively. Note that these interactions are658

within a break combined fragment, which allows us to model that once the data has been eliminated, the659

execution leaves the loop8. Let us remark that the user is the only entity authorized to eliminate its data,660

so we do not consider a special type of permission for this purpose.661

Another possible event occurs when a StatelessAppCTP, that is, a third-party (TP), wants to access662

the user’s data (the TP wants to access Data condition; fourth part of the alt combined fragment). As663

Figure 3 shows, the interaction use called accessing Data is executed. This interaction use shows the664

implementation of the interactions between the roles from the system to access the user’s data (see665

Figure 4). As can be seen in this figure, the TP that wanted to access the data must request the user’s666

consent by sending a consent message to the controller, as per Article 6 GDPR (GDPR, 2016). The667

parameters of the consent message are the data to be accessed (Data), the purpose for which the TP668

wants to access the user’s data (purpose), and the action to be performed on them (action, of ActionType669

type, see Figure 4). In response to this message, the controller requests the TP to identify itself with670

the askAuthentification message. Then, the TP sends its identity in the tp message. Once the controller671

receives the identification of the TP, it verifies its permissions in the SP associated with this data. If the TP672

has no permission to access the data, the controller sends a consent message to the user. Now, the user has673

the right to object (Article 21 GDPR (GDPR, 2016)). This behavior is represented in the second part of674

the alt [User consents] and equates to doing nothing. This situation also covers Article 22 GDPR (GDPR,675

2016) (that is, the user has the right not to be subject to decisions coming only from automatization –676

including profiling). Otherwise, the condition [User consents] is fulfilled, and the ok message is sent677

with three parameters: tp, purpose and ActionType, corresponding to the identification of the TP, the678

8As explained above, the execution of the loop can end for two reasons: the time for storing the data has elapsed or the user’s
data has been deleted at the request of the user.

18/42

purpose for which the data is accessed, and the type of permission to access, respectively. Then, the679

controller updates its log, adding the information about this new access (adding access information in680

AccessLog action), including a new record on it, and sends the permission to the TP (permission message),681

in accordance with Article 7 GDPR (GDPR, 2016). Therefore, the loop combined fragment is executed if682

the condition [tp has permission or User consents] is fulfilled, that is, the TP had permission or the user683

has accepted. This structure is used to model the repetition of TP operations (read, write, and combine)684

on the specified data.685

TP operations are of ActionType type (see the figures in Appendix A), i.e., the TP can read data686

(readData message) or write data (writeData message) (see Figure 4). However, the TP can also combine687

several sets of read data. Then, the corresponding part of the alt combined fragment will be executed,688

depending on the action that the TP wishes to perform:689

• If the TP wants to read, the first part of alt ([TP wants to read and has permission for reading]690

condition) is executed. If the TP wants to read, and since it has obtained consent, then the readData691

message is sent to the SSMProcessor to read the data.692

• If the TP wants to write, the second part of alt is executed ([TP wants to write and has permission693

for writing] condition). In this case, the writeData message, which has the new data content as694

parameter (content parameter), is sent from the TP to the SSMProcessor to write the data and it695

allows the TP to overwrite the data with that content. The maxTime is 0 since the storage time is696

unchanged.697

• Finally, if TP wants to combine several data, the third part of alt is executed ([TP wants to combine698

and has permission for reading and writing] condition). In this case, the alt[purpose==statistical]699

allows us to model the two different behaviors depending on the purpose of access.700

1. If the purpose contributes to statistics on customers or the population (statistical purpose),701

the first part of alt (condition [purpose==statistical]) is executed. In this case, a readData702

message is used to read the data. Then, the TP acts by calculating aggregated newData and703

newSP in trustedM. This action allows the TP to perform a statistical operation on the data 9,704

which are being held on a trusted machine dedicated to this purpose in our cloud architecture.705

Later, a writeData message allows the TP to write the new data in the storage (newData706

parameter for maxTime period, which is aggregated data). In this case, the new data is owned707

by the TP, which makes decisions on it.708

2. If the purpose is not statistical (for instance, tax returns), once the TP has read the data709

(readData message), it acts by combining Data and calculating newData and newSP. This710

action is run on a non-reliable cloud machine. Later, a writeData message allows the TP to711

write the new data (newData parameter for maxTime period of time). Finally, the interaction712

use main is executed to manage the newly generated data.713

Section 5.2 explains in detail how the new SP is generated (calculating newSP) when data aggrega-714

tion or combination of the data is performed.715

Then, the accessHistory field of the new SP is adapted to include the data access information (updating716

accessHistory of SP action). The controller acts by updating SP in log to modify the corresponding SP in717

the log, in the accessHistory field. Finally, in accordance with Article 12 GDPR, the user is informed of718

the data accessed through the message accessinformation.719

The following event in Figure 3 occurs when the controller (ControlerCP) wants to know about720

changes to the user’s data, modeled by the fifth part of the alt structure (the ControllerCP wants to721

subscribe to notification of breaches condition; Article 34 GDPR). Thus, the controller subscribes to722

receive notifications when data breaches occur. For this purpose, the interaction use (subscription ref723

frame) is executed.724

Figure 5 shows this interaction use. The controller can subscribe to notification of any changes725

detected by the processor through the use of the subscribe message, which allows control of data changes726

9We assume that the TP has previously read the other data.

19/42

at any time. This message has four parameters: Data, the machines the controller wants to control727

(machines parameter), the violations detected (breaches parameter), and the maximum subscription time728

(MaxSubscriptionTime parameter). This maximum time is set by the GDPR at 72 hours, in accordance729

with Article 33, in which the data controller must notify the violation of personal data to the competent730

supervisory authority in accordance with Article 55, unless it is unlikely that the violation of personal731

data poses a risk to rights and freedoms of data subjects. The breaches parameter is an array of (Data, TP,732

actionType, newData, newlocation). In the event of a breach (alt [breaches]), the controller receives a733

notification message (notify message). This message has three parameters: Data, machines and breaches.734

Subsequently, the controller checks whether changes to the data have been logged in the log (check735

changes action), and has 72 hours to inform the user, represented by the informBreaches message. If736

during the maximum subscription time (MaxSubscriptionTime) any changes or breaches are not detected,737

the timeoutSuscription message is sent to the controller from the processor. This process allows the738

controller to audit any changes that occur by verifying the information included in its log.739

The last event occurs when the user requests information about the handling of its data, in accordance740

with Article 15 GDPR. This corresponds to the last part of the alt in Figure 3 (the User wants information741

about the data management condition). In this case, the interaction use called infoDataUser is executed742

(see Figure 6). According to the GDPR, the first time the user requests information about the processing743

of its data, it will be provided free of charge. However, if further copies are requested, a reasonable744

fee reflecting administrative costs should be required. We model this behavior as follows. First, a745

counter named counterUser is defined and initialized to zero. Then, a loop structure is included to746

model the possible repetitive behavior of the user when requesting this information. The message747

askDataInformation from the user to the controller models this request. The controller then performs748

the counterUser++ & checkUserId action to increase the value of counterUser and search for this user’s749

information. Subsequently, the alt combined fragment with the User verified and counterUser > 1750

condition allows the execution of the first part to inform the user that they have to pay a fee, represented751

by the informationNotForFree message with the parameter price. Therefore, the user can decide whether752

to pay and receive the information (wantToAccess message). In this case, the opt[User wantToAccess] is753

executed and the controller generates the report in less than 30 days (generateReport, < 30days action),754

and sends the reportDataManagement message to the user. However, if this is the first time the user has755

requested the information (counterUser == 1 condition), the controller generates the report within those756

30 days and sends the information for free, with the reportDataManagementforFree message to the user.757

5.2 Combination and Data Aggregation758

At this point, we provide details about the rules applied in the data combination operation, which are759

inspired by the ideas presented in (Stefan et al., 2012). Permissions are DC labels: tuples of the form760

⟨S, I⟩, where S and I are conjunctive normal forms on entities without negative literals. S represents761

entities whose permission is required to grant access to the data, while I represents the entities that have762

full access to the data. DC labels have a can-flow-to relation ⊑ defined as:763

S1 → S2, I1 → I2

⟨S1, I1⟩ ⊑ ⟨S2, I2⟩
There are two operations defined on DC labels:764

• ⟨S1, I1⟩⊔ ⟨S2, I2⟩= ⟨S1 ∧S2, I1 ∨ I2⟩765

• ⟨S1, I1⟩⊓ ⟨S2, I2⟩= ⟨S1 ∨S2, I1 ∧ I2⟩766

If we consider D to be the set of DC labels, then the pair (D ,⊑) forms a lattice:

DC1 ⊔DC2
⊑

⊑
DC1

⊑
DC2

⊑
DC1 ⊓DC2

When combining two DC labels, for instance DC1 and DC2, we must keep the less restrictive DC767

label stronger than both: SP1 ⊔ SP2. For the sake of simplicity, we consider the combination of only768

20/42

two different data. However, it can easily be extended to combine more data. Then, we can define the769

combination operator of two DC labels c : D ×D 7→ D , defined as c(DC1,DC2) = SP1 ⊔SP2. We obtain770

DC1 ⊑ c(DC1,DC2) and DC2 ⊑ c(DC1,DC2). Let us illustrate this with an example.771

Example 5.1. Suppose DS1 has all the data to complete her tax form. DS1’s data has also included the772

data for her husband, DS2. Hence, the sticky policy for the data is the following:773

SPtax={774

{permission: ⟨DS1∧DS2,DS1∨DS2⟩},775

{owner: DS1∧DS2},776

{purpose: taxes},777

{controller: cloud provider},778

{accessHistory: H}779

}780

DS1 has a tax agent GestF who prepares the tax form. Since GestF needs to access DS1’s data, this781

agent must request access to read the data and then create a new document combining DS1’s data and its782

own data. The resulting sticky policy is:783

SPtax={784

{permission: ⟨DS1∧DS2,DS1∨DS2⟩},785

{owner: DS1∧DS2},786

{purpose: taxes},787

{controller: cloud provider},788

{accessHistory: H ∪ [(GestF, taxes,read)]}789

}790

The resulting tax form has the following sticky policy791

SPtaxform = {792

{permission: ⟨DS1∧DS2∧GestF,793

DS1∨DS2∨GestF⟩},794

{owner: DS1∧DS2∧GestF},795

{purpose: taxes},796

{controller: cloud provider},797

{accessHistory: []}798

}799

However, when aggregating data, the aggregating entity must request permission from all the entities800

required by the DC label of each aggregated set of data. The entity then creates new data owned by the801

entity, aggregating the data. The historical field of the aggregated data should reflect this access. For802

instance:803

Example 5.2. Suppose that SB (Santander Bank) wants to average the taxes paid by their clients. There804

are two clients, DS1 and DS2, whose tax data have the following sticky policy:805

SPDS1 = {806

{permission: ⟨DS1∧GestF,DS1∨GestF⟩},807

{owner: DS1∧GestF},808

{purpose: taxes},809

{controller: cloud provider},810

{accessHistory: H1}811

}812

SPDS2 = {813

{permission: ⟨DS2,DS2⟩},814

{owner: DS2},815

{purpose: taxes},816

{controller: cloud provider},817

{accessHistory: H2}818

}819

Thus SB needs to ask DS1 and GestF for permission to access DS1’s tax form and only DS2 for DS2’s tax820

form. The resulting sticky policies are:821

21/42

SPDS1 = {822

{permission: ⟨DS1∧GestF,DS1∨GestF⟩},823

{owner: DS1∧GestF},824

{purpose: taxes, satistical}, \825

{controller: cloud provider},826

{accessHistory: H1 ∪ [(SB,statistical,read)]}827

}828

SPDS2 = {829

{permission: ⟨DS2,DS2⟩},830

{owner: DS2},831

{purpose: taxes, statistical},832

{controller: cloud provider},833

{accessHistory: H2 ∪ [(SB,statistical,read)]}834

}835

We can observe that SB has read DS1’s and DS2’s data for statistical purposes. The sticky policy of the836

aggregated data (the average) is:837

SPavg = {838

{permission: ⟨SB,SB⟩},839

{owner: SB},840

{purposes: statistical},841

{controller: cloud provider},842

{accessHistory: []}843

}844

Figure 7. Model4 DataCTrack profile: Cloud-GDPR infrastructure stereotypes.

5.3 Architectural Model845

For simplicity, in this section, we only present a summary of the model that defines the proposed cloud846

infrastructure. The complete detailed description is available in Appendix A. In previous works (Bernal847

et al., 2019; Cambronero et al., 2021), we have presented some aspects of the cloud infrastructure, but848

without considering data storage and management. In contrast, in this work, we focus on this aspect of849

the cloud, defining a GDPR-compliant architecture to manage the data of users who access the cloud.850

Hence, our architecture provides data privacy management, GDPR compliance, and data tracking. In851

particular, data privacy management and data tracking are provided through the use of sticky policies (see852

Section 2.2). Similarly, GDPR compliance is validated using OCL rules (see Section 6.1).853

Figure 7 shows the stereotypes defined to model the main components of the cloud infrastructure. First,854

by extending the Component metaclass, the Infrastructure stereotype represents the cloud infrastructure855

22/42

Figure 8. Model4 DataCTrack profile: Interaction stereotypes.

together with the complementary services offered by the cloud provider. The stereotypes DataCenter,856

Rack, Machine, Hardware, and StatelessAppCTP also extend the Component metaclass. In this way, the857

cloud infrastructure consists of a set of data centers, which in turn are composed of a collection of racks858

(Rack). A rack belongs to two subtypes (StorageRack or ComputingRack), depending on the type of859

machine (Machine stereotype) it contains. In particular, the machine can be a stateless storage machine860

(SSMProcessor stereotype) or a stateless computing machine (StatelessComputationMachine stereotype),861

respectively. Therefore, a storage rack will be made up of several (storage) machines, and a computing862

rack by one or more computing machines. Note that a computing machine has two subtypes: it can863

either be a TrustedSCM or an UntrustedSCM. Trusted machines are served by controllers in our cloud864

architecture with the special purpose of statistical use (defined in Section 3) and store read-only data,865

whereas untrusted machines are accessible to anyone and can be used for other purposes, such as taxes or866

insurance calculation. The Hardware stereotype represents the components that any machine will have,867

and has three sub-stereotypes: CPU, Memory, and Storage. Finally, the StatelessAppCTP stereotype868

represents third-party applications seeking to access the data.869

As mentioned, the cloud infrastructure is made up of several data centers, many of which have similar870

23/42

or identical configurations, as they are typically purchased in bulk. For this reason, the relationships871

between components are defined as associations between stereotypes. In Appendix A, these associations872

are illustrated graphically; they are also discussed in detail.873

The definition of the stereotypes used for the interaction (Section 5.1) appears in Figure 8. The User,874

ControllerCP, StatelessAppCTP, and SSMProcessor stereotypes extend the Lifeline metaclass. Also,875

there are the roles that interact in the cloud architecture (see Figure 3, 4, 5, and 6). The stereotype User876

represents the data subject or user. The cloud service provider (ControllerCP) represents the user’s data877

controller, as explained earlier. The different third-party applications that access the data make up the878

StatelessAppCTP stereotype. And finally, the machines (SSMProcessor stereotype) represent the entities879

which will storage and process of the data, thereby becoming the data processors. Next, the StickyPolicy,880

Data, SLA, and AccessLog stereotypes extend the metaclass Component. These stereotypes represent the881

system components used for data representation and control. Finally, all the messages exchanged in the882

interaction extend the Message metaclass.883

Appendix A shows the attributes and relationships between interaction stereotypes as associations of884

stereotypes. In this appendix, these attributes and relationships are fully described.885

We should point out that the controller uses the log (AccessLog stereotype) to store information about886

all the data accesses and changes to the SP associated with the data, which is made up of several fields of887

different types, as described in Appendix A. Table 3 summarizes this controller log structure. As can be888

seen, for each data access the following information is stored in a log record: TP, the third party accessing889

the data, of type StatelessAppCTP, tp for short; L1, the initial data Location (storage machine) of type890

Storage; SP1, the initial data Sticky Policy, of type Sticky Policy; O, the list of entities (third parties or891

users) granting permission to access the data, of type PList; Action, the action performed on the data, of892

type ActionType; NL, the New Location of the data, of type Storage; and finally, NSP, of Sticky Policy893

type, which stores the New Sticky Policy, in case of changes to the initial sticky policy.894

Table 3. Controller log Accesslog structure.

TP L1 SP1 O Action NL NSP
tp Storage SP PList[1..*] ActionType Storage SP

6 VALIDATION AND THREAT MODEL895

This section first outlines the procedure for validating the models generated using our tool and then896

describes the threat model of our approach.897

6.1 Validation of the Model4 DataCTrack Models898

To facilitate the validation process, we have established a set of OCL rules (OMG, 2014), which can be899

found in the Appendix B, encompassing the complete collection of OCL rules.900

These rules have been categorized into two distinct groups. The first group, known as the structural901

rules, primarily focuses on the conventional relationships between stereotypes and their corresponding902

properties. The Appendix A provides a comprehensive description of these constraints. Table 4 presents903

the most noteworthy examples.904

Rule STR-1 validates that the set of data included in an instance of the upDate message (self.data) is905

present in all machines to which the message is destined. This is accomplished by verifying that906

the list of data sets stored in each machine (m.storage.data) includes the data from the message, for907

all machines in the destination machines list of this message (self.machines).908

Rule STR-2 checks whether the new processor mentioned in any AccessLog of the controller, where the909

data has been copied to, is also under the Service Level Agreement (SLA) with the controller of this910

data. To achieve this, the controller’s log list (self.accesslog) is examined to validate the existence911

of an SLA in the controller’s SLA list (self.sla) that is included in the SLA list of the newLocation912

machine in the log (log.newLocation.sla).913

Rule STR-3 ensures that the data introduced in any instance of a rectify message does not violate the data914

accuracy principle of the General Data Protection Regulation (GDPR) by containing empty fields.915

24/42

Table 4. Subset of OCL Rules defined for structural consistency.

Attributes Value
Rule STR-1 all machines must contain data to update
Severity ERROR
Context upDate
Specification

self.machines->forAll(m | m.storage.data->
includes(self.data))

Rule STR-2 newLocation machine must be under sla with controller
Severity ERROR
Context ControllerCP
Specification

self.accesslog ->
forAll(log | self.sla->

exists(sla | log.newLocation.sla
-> includes(sla)))

Rule STR-3 no empty rectify fields
Severity ERROR
Context rectifyData
Specification

self.newData->forAll(f | f.value.size() > 0)

For this purpose, it is verified that all fields in the newData attribute of the message (self.newData)916

have a size (number of characters in the string) greater than 0.917

The second group comprises rules that pertain to the specific restrictions imposed by the GDPR. Given918

the significance of these rules in the context of this paper, we will now give a more detailed explanation919

of the rules that we consider most relevant. Refer to Table 5 for a summary of these rules.920

Rule GDPR-1 verifies that every machine in the list of machines to which an update message is intended921

has been assessed as compliant with GDPR standards by an authoritative GDPR entity. In other922

words, it ensures that the GDPRCompliance attribute for all these machines is set to true.923

Rule GDPR-2 validates that within the accessHistory list of a given StickyPolicy, none of the recorded924

accesses have an associated purpose that is not included in the allowed set of purposes specified by925

the purpose attribute of that policy.926

Rule GDPR-3 ensures that all third parties listed in the accessHistory field of a StickyPolicy possess the927

appropriate permissions defined for them within the permission list of that policy. Specifically, it928

examines the I field of the sticky policy’s permission field.929

Rule GDPR-4 raises an error if a specific data access recorded in the controller’s log (AccessLog) does930

not have the corresponding access included in the accessHistory of the associated StickyPolicy.931

This rule examines the accessHistory list of the StickyPolicy to verify whether the access has been932

included.933

Rule GDPR-5 checks that a third party cannot obtain permission to access the data without obtaining934

prior consent from the corresponding data subjects. This implies that the preceding consentInfo and935

ok messages have been sent with the same purpose and permission.936

25/42

Table 5. Subset of OCL rules derived from GDPR.

Attributes Value
Rule GDPR-1 upDate destinantion machines comply with GDPR
Severity ERROR
Context upDate
Specification

self.machines -> forAll(m | m.GDPRCompliance=true)

Rule GDPR-2 allowed access purpose
Severity ERROR
Context StickyPolicy
Specification

self.accessHistory->
forAll(his | his.purpose->
forAll(p | self.purpose->includes(p)))

Rule GDPR-3 tp in history given permissions
Severity ERROR
Context AccessLog
Specification

self.accessHistory ->
forAll(his | AccessLog.allInstances ->

exists(log | log.tp = his.tp
and log.action = his.actionPerformed))

Rule GDPR-4 log access match sp access
Severity ERROR
Context AccessLog
Specification

AccessLog.allInstances() ->
forAll(log | log.sp.accessHistory ->
exists(access | access.tp = log.tp and

access.actionPerformed=log.action))

Rule GDPR-5 no access permission given without user consent
Severity ERROR
Context permission
Specification

permission.allInstances() ->
forAll(ok.allInstances() ->
exists(okmsg|self.purpose ->

forAll(p | okmsg.purpose -> includes(p)) and
okmsg.permissionType = self.permissionType) and
consentInfo.allInstances() ->
exists(consentmsg | self.purpose ->
forAll(p | consentmsg.purpose->includes(p)) and

consentmsg.action = self.permissionType and
consentmsg.tp = StatelessAppCTP.allInstances()->
select(tp | tp.base_Lifeline.coveredBy ->
includes(self.base_Message.receiveEvent))))

26/42

6.2 Threat Model937

In this section, we describe the threat model of a system to which our profile applies to provide a basis for938

understanding the potential risks and the corresponding safeguards to ensure the security of the described939

system.940

Adversaries may attempt to gain illicit access to user data stored in the cloud. In this sense, strong941

authentication mechanisms must be employed, along with the need to obtain explicit consent from942

data subjects each time access is requested. Another critical threat involves data manipulation, where943

adversaries seek to manipulate user data within cloud infrastructure. Implementing strict controls and944

obtaining consent from data subjects whenever data is subject to modification can help overcome this945

threat.946

Unauthorized disclosure of sensitive user information to third parties caused by privacy breaches is947

another possible threat. Mitigation strategies include strict compliance with GDPR guidelines, implement-948

ing sticky policies for fine-grained access control, and encrypting sensitive data to safeguard privacy. In949

this regard, policy abuse is another privacy threat, requiring regular policy reviews, enforcement of access950

control, and continuous monitoring of policy violations. Likewise, inadequate logging and monitoring951

practices make it difficult to detect and respond to security incidents. Comprehensive logging mechanisms,952

real-time monitoring tools, and the establishment of incident response procedures are needed to adequately953

address security incidents.954

Unauthorized access through compromised third parties is another concern. This can be overcome by955

regularly auditing third-party entities and their permissions, along with enforcing strict access controls.956

Finally, inadequate management of user consent can lead to unauthorized data processing. Implementing957

robust consent mechanisms, regular updates to consent preferences, and ensuring compliance with GDPR958

guidelines can help overcome this issue.959

7 THE MDCT TOOL960

This section presents the computer-aided design tool that supports our framework, making it easy to use961

our modeling framework. The tool, which has the same name as the framework, focuses on the modeling962

of cloud systems and supports Model4 DataCTrack for the management of sensitive data in the context963

of GDPR. MDCT has been developed by extending Papyrus UML (Lanusse et al., 2009), which is an964

Eclipse-based graphical editing tool for UML2. MDCT contains a modeling part, in which the UML965

profile can be used to define a specific GDPR-compliant cloud architecture, as defined in Section 5. For966

this purpose, the graphical interface provides all of the stereotypes and data types used for the proposed967

infrastructure and interaction (as shown in Figure 7, 8, and the figures in Appendix A), allowing the968

tool user (cloud providers) to provide different values for some of its parameters. All these elements are969

available through custom palettes to make it easy to design MDCT models with just drag and drop. MDCT970

also implements the validation of the model restrictions set using OCL rules, as detailed in Section 6.971

Finally, our tool includes an example, in which the infrastructure and the interaction of a basic cloud972

architecture are modeled. This example can be loaded and extended to avoid starting from scratch. It is973

available at https://zenodo.org/doi/10.5281/zenodo.10380128.974

27/42

https://zenodo.org/doi/10.5281/zenodo.10380128

28/42

1 Example select wizard

4 MDCTinfrastructure
diagram custom palette

2 Base infrastructure diagram

3 Profile properties view

Figure 9. Tool interface and base MDCT example opening wizard.

28/42

29/42

Figure 10. A brief example of how traceability is portrayed in MDCT.

29/42

Figure 9 displays a screenshot of the graphical interface of the MDCT tool, featuring four highlighted975

sections. The first section is dedicated to the selection of a wizard, allowing users to choose from example976

models of a GDPR-compliant architecture. Users can also access these examples through the main menu977

by selecting File New Example . This wizard enables users to load predefined profile models instead978

of designing them from scratch. Once the models are loaded, they are presented in the diagram editor979

(box 2 in Figure 9), showcasing the cloud infrastructure diagram. In this diagram, users can select any980

element and modify its attributes using the profile tab in the Properties view (box 3). Additionally, users981

can easily add new elements by dragging them into the diagram through the customized M4DCT diagram982

palette (box 4). This process can also be executed by incorporating the appropriate component, lifeline, or983

message and applying the desired stereotype in the profile tab of the Properties view .984

In addition, Figure 10 displays a screenshot illustrating how data tracking is managed in the MDCT985

tool. This example is derived from the running example presented in Section 3. In this instance, the986

initial sticky policy (accessHistory: [(SB, statistical, read), (ING, statistical, read), (GestF, taxes, read),987

(GestF, statistical, read)]) indicates that SB and ING read the data for statistical purposes, followed by988

GestF performing read access for both tax and statistical purposes. This entire process is recorded in the989

accessHistory field, enabling the tracking of data as it contains comprehensive information about all data990

access instances.991

The accessHistory field of the sticky policy allows tracking of all data accesses. In this case, all these992

read accesses have been saved to it, as depicted in the DataSubjectSP accessHistory field at the bottom of993

Figure 10. Notably, these third parties must have permission to execute these accesses, a requirement994

checked by using Rule 6 (see Table 5). The accessHistory field of data in the sticky policy provides995

information about the third party’s read permission. In this case, the permission field has the same value996

for S and I, specifically ⟨DS,DS⟩, signifying that only DS (the data subject) can give consent to access the997

data and has permission to write.998

8 DISCUSSION999

In this section, we discuss the main considerations in our framework and the threats to its validity.1000

8.1 Considerations1001

Below is a list of some important considerations concerning our framework that we would like to highlight:1002

1. Support. The support of two experts in the GDPR has allowed us to design and develop our1003

modeling framework.1004

2. Types of machines according to the purpose of data access. In our cloud architecture, we1005

consider that the cloud provider offers two types of machines to process the data, depending on1006

the purpose for which the data is accessed. The two types of purposes we consider are statistical1007

and non-statistical. When the access is for statistical purposes, the processing is carried out on1008

trusted machines, and the processor in charge of the treatment will be the owner of the new data.1009

In this case, only third parties to whom the owner authorizes access to the data may access the1010

data. These trusted machines are read-only, and when several of these data are combined for that1011

statistical purpose, the new data will be aggregated data. However, when the purpose of access is1012

not statistical, the processing is carried out on unreliable machines, and if several data sources are1013

combined, the owners of the combined data will be the owners of the original data while the access1014

permissions will be the most restrictive (see Section 5.2).1015

3. EU or non-EU members. We propose a controlled cloud architecture in which the cloud provider1016

works with machines that may or may not be in members of the EU, but all of them ensure an1017

adequate level of protection according to the GDPR, Article 45. For this purpose, we have included1018

the GDPRCompliance field in the SSMProcessor stereotype (see Appendix A). The value of this1019

field is checked by OCL to ensure that machines acting as processors are GDPR compliant.1020

4. Consent. In our architecture, when a third party wants to access the data and does not have1021

permission to do so, the user’s consent must be requested to authorize such access, as can be seen1022

in Fig. 4. In this case, if the user consents to access, this third party will be included in the list of1023

permissions on that data (indicating the type of permission granted) and will thus have access to the1024

data.1025

30/42

5. Supervisory authorities. In this paper, we do not explicitly model the supervisory authority as1026

a role in the system as we consider it to be an element outside our cloud architecture. However,1027

interactions with this supervisory authority are easy to include.1028

8.2 Validity Threats1029

• Internal Validity. A potential threat to internal validity is that we have interpreted the text of the1030

GDPR provisions to create a cloud architecture. However, this is recommended for any company1031

that operates in the cloud, whether inside or outside the EU, when these are companies that offer1032

goods or services to people in the EU. In our case, this phase was carried out in collaboration with1033

people with a good knowledge of the field (the authors of this work, who are experts in the GDPR)1034

to minimize the threat posed by such a subjective interpretation. Of course, we cannot rule out1035

subjectivity, but we do provide our interpretation accurately and explicitly. Furthermore, our model1036

is publicly available.1037

• External Validity. Our framework focuses on defining and validating a GDPR-compliant cloud1038

architecture, which has been designed with input from legal experts in data protection. Therefore,1039

this allows us a certain degree of confidence in the generalization of our results. However, future1040

studies exemplifying our model in different cloud domains with their corresponding legal aspects1041

will be critical in deciding the completeness and applicability of our framework in real-world1042

scenarios.1043

The validation process allows us to verify inappropriate access or breaches of customer data confiden-1044

tiality. Thus, we can conclude that certain recommendations be given to the entity responsible for data1045

security (the controller) to define its architecture in the cloud. In this case, the data controller is the cloud1046

provider, who is responsible for the data of the cloud’s customers and for third party access.1047

9 CONCLUSIONS AND FUTURE WORK1048

This paper introduces the MDCT computer-aided design framework. This framework is made up of a UML1049

profile as a means to model and validate a GDPR-compliant cloud architecture (which is recommended for1050

cloud providers offering services in the EU), a set of OCL rules to validate the models, and a Papyrus-based1051

tool. The UML profile introduces the cloud infrastructure and the interactions between the different roles1052

in the context of the GDPR. The profile models key GDPR considerations such as user consent/withdrawal,1053

the purpose of access, and data transparency and auditing. In addition, it also considers data privacy and1054

data tracking. Data privacy is included through sticky policies associated with the data, allowing us to1055

define data permissions, the data owner, the controller, and the purpose.1056

In this work, we have considered the purpose of access to be statistical or non-statistical. The cloud1057

provider offers trusted machines to process the data in the case of statistical purposes. Thus, various data1058

can be added to a new set of data, whose owner will be the entity that performs the data aggregation,1059

and its permissions will be decided by the owner. For other purposes, the data processing takes place on1060

non-reliable machines, and the combination of data generates new data, whose owners are the owners of1061

all the individual data, and the permissions of the sticky policy are the most restrictive. Data tracking1062

is made possible by adding a new field to the sticky policy associated with the data, which allows us to1063

record which third parties access the data and for what purpose. Furthermore, our framework allows us to1064

model complex cloud scenarios, representing the underlying cloud infrastructure and the third parties1065

that access the data. It also incorporates OCL rules to validate important restrictions and features in1066

accordance with the GDPR, data privacy, and data tracking.1067

For future work, we have several lines of research planned. We intend to enrich the profile by including1068

other GDPR features, such as interaction with supervisory authorities. We also intend to translate our1069

models into real cloud infrastructures, such as Amazon Web Services or Microsoft Azure. For this1070

purpose, we pretend to use some novel technologies, such as Infrastructure as Code (Artac et al., 2017).1071

Furthermore, we plan to broaden the spectrum of possible cloud configurations by considering different1072

hardware configurations and not just using different types of physical machines, depending on the purpose1073

of data access.1074

31/42

REFERENCES1075

Alshammari, M. and Simpson, A. (2018). A uml profile for privacy-aware data lifecycle models. In1076

Katsikas, S. K., Cuppens, F., Cuppens, N., Lambrinoudakis, C., Kalloniatis, C., Mylopoulos, J.,1077

Antón, A., and Gritzalis, S., editors, Computer Security, pages 189–209, Cham. Springer International1078

Publishing.1079

Artac, M., Borovsak, T., Nitto, E. D., Guerriero, M., and Tamburri, D. A. (2017). Devops: introducing1080

infrastructure-as-code. In Uchitel, S., Orso, A., and Robillard, M. P., editors, Proceedings of the 39th1081

International Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28,1082

2017 - Companion Volume, pages 497–498. ACM.1083

Barati, M. and Rana, O. (2020). Tracking gdpr compliance in cloud-based service delivery. IEEE1084

Transactions on Services Computing, pages 1–1.1085

Barati, M., Rana, O., Petri, I., and Theodorakopoulos, G. (2020a). Gdpr compliance verification in1086

internet of things. IEEE Access, 8:119697–119709.1087

Barati, M., Rana, O., Theodorakopoulos, G., and Burnap, P. (2019). Privacy-aware cloud ecosystems1088

and gdpr compliance. In 2019 7th International Conference on Future Internet of Things and Cloud1089

(FiCloud), pages 117–124.1090

Barati, M., Theodorakopoulos, G., and Rana, O. (2020b). Automating GDPR compliance verification for1091

cloud-hosted services. In 2020 International Symposium on Networks, Computers and Communications1092

(ISNCC), pages 1–6.1093

Basso, T., Montecchi, L., Moraes, R., Jino, M., and Bondavalli, A. (2015). Towards a uml profile for1094

privacy-aware applications. In 2015 IEEE International Conference on Computer and Information Tech-1095

nology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing;1096

Pervasive Intelligence and Computing, pages 371–378.1097

Bernal, A., Cambronero, M. E., Valero, V., Nuñez, A., and Cañizares, P. C. (2019). A Framework for1098

Modeling Cloud Infrastructures and User Interactions. IEEE Access, 7:43269–43285.1099

Bernardi, S., Merseguer, J., and Petriu, D. (2011). A Dependability Profile within MARTE. Journal of1100

Software and Systems Modeling, 10(3):313–336.1101

Cambronero, M., Martı́nez, M. A., de la Vara, J. L., Cebrián, D., and Valero, V. (2022). GDPRValidator:1102

a tool to enable companies using cloud services to be GDPR compliant. PeerJ Comput. Sci., 8:e1171.1103

Cambronero, M. E., Bernal, A., Valero, V., Cañizares, P. C., and Núñez, A. (2021). Profiling slas for1104

cloud system infrastructures and user interactions. PeerJ Comput. Sci., 7:e513.1105

Cavoukian, A. (2009). Privacy by Design – The 7 Foundational Principles. techreport, Information and1106

privacy commissioner of Ontario, Canada.1107

Chadwick, D. W., Fan, W., Costantino, G., De Lemos, R., Di Cerbo, F., Herwono, I., Manea, M., Mori,1108

P., Sajjad, A., and Wang, X.-S. (2020). A cloud-edge based data security architecture for sharing and1109

analysing cyber threat information. Future generation computer systems, 102:710–722.1110

Davies, J., Crichton, C., Crichton, E., Neilson, D., and Sørensen, I. H. (2005). Formality, evolution, and1111

model-driven software engineering. Electronic Notes in Theoretical Computer Science, 130:39–55.1112

Elluri, L. and Joshi, K. P. (2018). A knowledge representation of cloud data controls for EU GDPR1113

compliance. In 2018 IEEE World Congress on Services (SERVICES), pages 45–46. IEEE.1114

EURACTIV (2021). Cloud development in Europe passes by GDPR compli-1115

ance. https://www.euractiv.com/section/data-protection/news/1116

cloud-development-in-europe-passes-by-gdpr-compliance/. Last access1117

on 26-03-2022.1118

European Comission (2016). Rules for business and organisations. [Online;1119

https://ec.europa.eu/info/law/law-topic/data-protection/reform/1120

rules-business-and-organisations_en]. Last access on 26-03-2022.1121

Fan, W., Ziembicka, J., de Lemos, R., Chadwick, D., Di Cerbo, F., Sajjad, A., Wang, X.-S., and Herwono,1122

I. (2019). Enabling privacy-preserving sharing of cyber threat information in the cloud. In 2019 6th1123

IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2019 5th IEEE1124

International Conference on Edge Computing and Scalable Cloud (EdgeCom), pages 74–80. IEEE.1125

Ferreira, M., Brito, T., Santos, J. F., and Santos, N. (2023). Rulekeeper: Gdpr-aware personal data1126

compliance for web frameworks. In 2023 IEEE Symposium on Security and Privacy (SP), pages1127

2817–2834. IEEE.1128

GDPR (2016). Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April1129

32/42

https://www.euractiv.com/section/data-protection/news/cloud-development-in-europe-passes-by-gdpr-compliance/
https://www.euractiv.com/section/data-protection/news/cloud-development-in-europe-passes-by-gdpr-compliance/
https://www.euractiv.com/section/data-protection/news/cloud-development-in-europe-passes-by-gdpr-compliance/
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations_en

2016 on the protection of natural persons with regard to the processing of personal data and on the1130

free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation).1131

https://eur-lex.europa.eu/eli/reg/2016/679/oj.1132

Georgiopoulou, Z., Makri, E.-L., and Lambrinoudakis, C. (2020). GDPRcompliance: Proposed technical1133

and organizational measures for cloud providers. In Computer Security, pages 181–194, Cham. Springer1134

International Publishing.1135

Gjermundrød, H., Dionysiou, I., and Costa, K. (2016). Privacytracker: A privacy-by-design gdpr-1136

compliant framework with verifiable data traceability controls. page 3–15, Berlin, Heidelberg. Springer-1137

Verlag.1138

Kammüller, F., Ogunyanwo, O. O., and Probst, C. W. (2019). Designing data protection for GDPR1139

compliance into iot healthcare systems. CoRR, abs/1901.02426.1140

Kaneen, C. K. and Petrakis, E. G. (2020). Towards evaluating GDPR compliance in iot applications.1141

Procedia Computer Science, 176:2989–2998.1142

Karjoth, G., Schunter, M., and Waidner, M. (2002). Privacy-enabled Services for Enterprises. In1143

Proceedings. 13th International Workshop on Database and Expert Systems Applications, pages1144

483–487.1145

Langheinrich, M. (2001). Privacy by Design — Principles of Privacy-Aware Ubiquitous Systems. In1146

Abowd, G. D., Brumitt, B., and Shafer, S., editors, Ubicomp 2001: Ubiquitous Computing, pages1147

273–291, Berlin, Heidelberg. Springer Berlin Heidelberg.1148

Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P., Schnekenburger, R., Dubois, H.,1149

and Terrier, F. (2009). Papyrus UML: an open source toolset for MDA. In Fifth European Conference1150

on Model-Driven Architecture Foundations and Applications (ECMDA-FA’09), pages 1–4.1151

Larsen, K. G., Petterson, P., and Yi, W. (2023). Uppaal. https://uppaal.org/. Last access on1152

17-07-2023.1153

Malavolta, I., Muccini, H., and Sebastiani, M. (2015). Automatically bridging uml profiles to mof1154

metamodels. In 2015 41st Euromicro Conference on Software Engineering and Advanced Applications,1155

pages 259–266.1156

Matulevičius, R., Tom, J., Kala, K., and Sing, E. (2020). A method for managing gdpr compliance1157

in business processes. In Herbaut, N. and La Rosa, M., editors, Advanced Information Systems1158

Engineering, pages 100–112, Cham. Springer International Publishing.1159

Meliá, S., Cachero, C., Hermida, J. M., and Aparicio, E. (2016). Comparison of a textual versus a1160

graphical notation for the maintainability of mde domain models: an empirical pilot study. Software1161

Quality Journal, 24(3):709–735.1162

Mohammadi, N. G., Mann, Z. Á., Metzger, A., Heisel, M., and Greig, J. (2018). Towards an end-to-end1163

architecture for run-time data protection in the cloud. In Bures, T. and Angelis, L., editors, 44th1164

Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2018, Prague,1165

Czech Republic, August 29-31, 2018, pages 514–518. IEEE Computer Society.1166

Mougiakou, E. and Virvou, M. (2017). Based on gdpr privacy in uml: Case of e-learning program. In1167

2017 8th International Conference on Information, Intelligence, Systems Applications (IISA), pages1168

1–8.1169

Myers, A. C. and Liskov, B. (2000). Protecting privacy using the decentralized label model. ACM1170

Transactions on Software Engineering and Methodology (TOSEM), 9(4):410–442.1171

Oestereich, B. (2002). Developing Software With UML: Object-Oriented Analysis and Design in Practice.1172

Addison-Wesley Professional.1173

OMG (2011). About the UML Profile for MARTE Specification Version 1.1. https://www.omg.1174

org/spec/MARTE/About-MARTE/. Last access on 26-03-2022.1175

OMG (2011). A UML profile for Modeling and Analysis of Real Time Embedded Systems (MARTE).1176

Object Management Group. Document formal/11-06-02.1177

OMG (2014). Object Constraint Language (OCL) v2.4. http://www.omg.org/spec/OCL/2.4. Last access1178

on 22-03-2022.1179

OMG (2017). UML Specification Version 2.5.1. [Online, http://www.omg.org/spec/UML/2.1180

5.1]. Last access on 26-03-2022.1181

Pandit, H. J., Fatema, K., O’Sullivan, D., and Lewis, D. (2018). GDPRtEXT-GDPR as a linked data1182

resource. In European Semantic Web Conference, pages 481–495. Springer.1183

Pearson, S. and Casassa-Mont, M. (2011). Sticky Policies: An Approach for Managing Privacy across1184

33/42

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://uppaal.org/
https://www.omg.org/spec/MARTE/About-MARTE/
https://www.omg.org/spec/MARTE/About-MARTE/
https://www.omg.org/spec/MARTE/About-MARTE/
http://www.omg.org/spec/UML/2.5.1
http://www.omg.org/spec/UML/2.5.1
http://www.omg.org/spec/UML/2.5.1

Multiple Parties. Computer, 44(9):60–68.1185

Pereira, F., Crocker, P., and Leithardt, V. R. (2022). Padres: Tool for privacy, data regulation and security.1186

SoftwareX, 17:100895.1187

Politou, E., Alepis, E., and Patsakis, C. (2018). Forgetting personal data and revoking consent under the1188

GDPR: Challenges and proposed solutions. Journal of Cybersecurity, 4(1).1189

Priscakova, Z. and Rabova, I. (2013). Model of solutions for data security in cloud computing. CoRR,1190

abs/1307.3766.1191

Razavisousan, R. and Joshi, K. P. (2021). Analyzing GDPR compliance in cloud services’ privacy policies1192

using textual fuzzy interpretive structural modeling (TFISM). In Carminati, B., Chang, C. K., Daminai,1193

E., Deng, S., Tan, W., Wang, Z., Ward, R., and Zhang, J., editors, IEEE International Conference on1194

Services Computing, SCC, Chicago, IL, USA, pages 89–98. IEEE.1195

Rios, E., Iturbe, E., Larrucea, X., Rak, M., Mallouli, W., Dominiak, J., Muntés-Mulero, V., Matthews, P.,1196

and Moctezuma, L. (2019). Service level agreement-based gdpr compliance and security assurance in1197

(multi)cloud-based systems. IET Software, 13.1198

Rodrı́guez, R. J., Merseguer, J., and Bernardi, S. (2010). Modelling and Analysing Resilience as a Security1199

Issue within UML. In Proceedings of the 2nd International Workshop on Software Engineering for1200

Resilient Systems (SERENE), pages 42–51, London, United Kingdom. ACM.1201

Sbarski, P. and Kroonenburg, S. (2017). Serverless architectures on AWS: with examples using Aws1202

Lambda. Simon and Schuster.1203

Shastri, S., Wasserman, M., and Chidambaram, V. (2019). GDPR anti-patterns: How design and operation1204

of modern cloud-scale systems conflict with GDPR. CoRR, abs/1911.00498.1205

Statista (2022). Share of organizations that will make significant changes in cloud governance1206

after the introduction of the GDPR as of 2019, by country. https://www.statista.com/1207

statistics/1063528/worldwide-cloud-governance-changes-due-to-gdpr/1208

#statisticContainer/. Last access on 26-03-2022.1209

Stefan, D., Russo, A., Mazières, D., and Mitchell, J. C. (2012). Disjunction category labels. In Laud, P.,1210

editor, Information Security Technology for Applications, pages 223–239, Berlin, Heidelberg. Springer1211

Berlin Heidelberg.1212

Tamburri, D. A. (2020). Design principles for the general data protection regulation (GDPR): A formal1213

concept analysis and its evaluation. Information Systems, 91:101469.1214

Torre, D., Soltana, G., Sabetzadeh, M., Briand, L. C., Auffinger, Y., and Goes, P. (2019). Using models1215

to enable compliance checking against the GDPR: An experience report. In 2019 ACM/IEEE 22nd1216

International Conference on Model Driven Engineering Languages and Systems (MODELS), pages1217

1–11.1218

Vanezi, E., Kapitsaki, G. M., Kouzapas, D., Philippou, A., and Papadopoulos, G. A. (2020). Diálogop - a1219

language and a graphical tool for formally defining gdpr purposes. In Dalpiaz, F., Zdravkovic, J., and1220

Loucopoulos, P., editors, Research Challenges in Information Science, pages 569–575, Cham. Springer1221

International Publishing.1222

Villamizar, M., Garcés, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M., Casallas, R., Gil, S.,1223

Valencia, C., Zambrano, A., and Lang, M. (2016). Infrastructure cost comparison of running web1224

applications in the cloud using aws lambda and monolithic and microservice architectures. In 20161225

16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages1226

179–182. IEEE.1227

Völter, M., Stahl, T., Bettin, J., Haase, A., and Helsen, S. (2006). Model-Driven Software Development:1228

Technology, Engineering, Management. John Wiley & Sons, Inc.,.1229

Warmer, J. and Kleppe, A. (2003). The Object Constraint Language: Getting Your Models Ready for1230

MDA. Addison Wesley.1231

Zhou, C., Barati, M., and Shafiq, O. (2023). A compliance-based architecture for supporting gdpr1232

accountability in cloud computing. Future Generation Computer Systems, 145:104–120.1233

34/42

https://www.statista.com/statistics/1063528/worldwide-cloud-governance-changes-due-to-gdpr/#statisticContainer/
https://www.statista.com/statistics/1063528/worldwide-cloud-governance-changes-due-to-gdpr/#statisticContainer/
https://www.statista.com/statistics/1063528/worldwide-cloud-governance-changes-due-to-gdpr/#statisticContainer/
https://www.statista.com/statistics/1063528/worldwide-cloud-governance-changes-due-to-gdpr/#statisticContainer/
https://www.statista.com/statistics/1063528/worldwide-cloud-governance-changes-due-to-gdpr/#statisticContainer/

A COMPLETE ARCHITECTURAL MODEL1234

Figure A.1 shows, the DataCenterElement data type is included to represent a set of data centers with the1235

same configuration. Likewise, the RackElement for racks. The profile definition includes the attributes1236

necessary for the component stereotypes to simulate different system component specifications, such as1237

the number of cores in a CPU or machines per board in a rack (machinesPerBoard). As can be seen, each1238

DataCenter is composed of a set of RackElements, which contains a set of racks. Each rack component is1239

defined by specifying the machines per board, the network, and the boards (see Rack component). The1240

rack can be dedicated to computing or storage, so two types of racks are defined, namely ComputingRack1241

and StorageRack, which contain stateless computation machines (StalessComputationMachine stereotype)1242

or stateless storage machines (SSMProcessor stereotype), respectively. Each machine is defined in terms1243

of CPU (CPU stereotype), memory (Memory), and storage (Storage). As can be seen in the bottom right1244

of Fig. A.1, the data is associated with the Storage stereotype which is an attribute of the machines where1245

it will be stored. Then, it is associated with storage and computation machines.1246

Figure A.1. Model4 DataCTrack profile: Associations and Properties of cloud-GDPR infrastructure
stereotypes.

It has been necessary to define some new data and specific enumeration types. The data types created1247

are Time and Latency (see the left part of Figure A.1), and Size and Bandwidth (right part). Time, Size,1248

and Bandwidth consist of a value and a unit belonging to the TimeUnit enumerations, indicating that this1249

time can be measured in days, hours (h), minutes (min), seconds (s), milliseconds (ms), microseconds1250

(µs), or nanoseconds (ns) (left part of the figure). SizeUnit can be measured in Kilobytes, Megabytes,1251

35/42

Gigabytes, or Terabytes (right part). Latency requires a name of type string and an attribute of type Time.1252

Finally, the remaining attributes consist of primitive data types, mainly integer and string, except for the1253

cloudProvider attribute of the Infrastructure stereotype of type ControllerCP defined for the interaction.1254

All these must be parameterized when defining the model.1255

Figure A.2 shows the attributes and the relationships between the interaction stereotypes as associations1256

of stereotypes. Other than the relationships between User and Data, ControllerCP and Data, and1257

SSMProcessor and StatelessAppCTP, which are regular binary relationships, all other associations model1258

the ownership of the (opposite) end of the association. This association means that the stereotype1259

connected by the dotted arrow will become an attribute of the stereotype associated with it (the former is1260

owned by the latter). Therefore, most attributes are specified by another stereotype or user-defined data1261

types, as illustrated by the StickyPolicy stereotype. This stereotype is made up of the following attributes:1262

permission, owners, purpose, controller, and accesshistory. The permission attribute is required for1263

defining restrictions (permissions) on data usage. This attribute is of the PermissionPerTP data type,1264

which is used to define who is authorized to grant permissions for data access (S), and who has obtained1265

permission for writing the data (I), both being defined as a list of lists of tps or Users. For this purpose,1266

the Principal stereotype, which can be a User or a tp, is defined (see Section 5.2). Then, to create the list1267

of lists, it is necessary to create a data type that establishes the first list of principals, i.e., PList.Thus, we1268

can later define, in S and I, a list of this type to achieve it. The attribute owners, of PList type, establishes1269

the user (or users in the case of combined data sets), which are data owners of the data which pairs with1270

this policy.1271

Then, the controller attribute, of type ControllerCP, indicates the data controller of the data. Note that1272

no ad-hoc identification is required as data processors usually use segmentation techniques to separate1273

data from different data subjects. The purpose attribute has been extracted from point 1c of Article 131274

GDPR and contains the required information, detailing the purposes for which the controller of the data1275

allows the treatment of its data. Finally, the accessHistory attribute10 of the AccessPerTP data type is1276

defined to specify all the third parties that access the data, thus allowing us to track the data and obtain1277

information about who obtained permission for that access. The controller and owners attributes, of1278

ControllerCP and User types, respectively, indicate the data controller and the user (or users in case of1279

combined data sets) which are data owners.1280

The AccessPerTP stereotype is used in the SP in the accessHistory field to track data accesses and1281

purpose. It has three atributes: tp, actionPerformed, and purpose. Note that the purpose attribute of the1282

StickyPolicy stereotype must match its contents to model that a third party does not access the data for a1283

purpose other than the one stated by the controller.1284

Another important stereotype is the AccessLog stereotype, which represents the log used by the1285

controller to control where data is stored and to track data accesses. A new entry will be included in the1286

log for each access to the data to capture this. This log has the following attributes: tp, l1 (l for location),1287

sp, O (for Owners), action, newl, and newsp. The tp attribute, of StatelessAppCTP type (where AppCTP1288

stands for computing application developed by a third party), relates a data access to a third party and1289

allows us to know who is responsible for the data access. The l1 attibute is of Storage type and represents1290

the current location of the data being accessed. This attribute allows for more complete data tracking1291

as it links a data access to a machine. The sp attribute, of StickyPolicy type, records the initial sticky1292

policy for the data treated to detect possible alterations between the input and output data sets. The O1293

attribute of type list of Principals (PList) indicates who consents to the data access. The action attribute1294

is of ActionType type and records the operation performed on the data, which can be a read or a write.1295

The newl attribute, of Storage type, specifies the location where the data has been stored after the action1296

performed on it. Finally, the last property, namely newsp, of type StickyPolicy, contains the resulting1297

policy on the data after the action. The value of this attribute when data are combined over two sets of1298

data is shown in Section 5.2.1299

The SLA stereotype has five attributes that are modeled on the basis of Article 28 GDPR. This stereo-1300

type represents the contract that governs data processing, which the controller and processor are required1301

to sign, in accordance with point 3 of the above article. The attributes of this stereotype are subjectMatter,1302

processingDuration, recipients, processingNature, processingPurpose, and processingInstructions. The1303

first two attributes, defined as an array of strings and Time stereotype, respectively, set the theme and1304

duration of the processing. The recipients attribute is defined as a list of StatelessAppCTP and represents1305

10Note that we have added this property to track user data, but it is generally not considered in the definition of Sticky Policy.

36/42

Figure A.2. Model4 DataCTrack profile: Associations and properties of cloud-GDPR interaction
stereotypes.

the list of third parties who are allowed to access the data so far. The nature of the treatment and the1306

purpose are the following two attributes, where the latter must match the one indicated in the SP defined1307

by the user and are defined as string arrays. Finally, the attribute processingInstructions models the set of1308

directions given by the controller to regulate data processing.1309

The ControllerCP stereotype includes two attributes: resourceAllocationPolicy and idProvider. The1310

first models the type of policy that the controller uses to allocate its resources. The second attribute,1311

defined as a string type, models the information about the controller it must include in each contract1312

as spContact, which is the cloud service provider. The remaining attributes result from the use of end1313

classifiers in the associations of this stereotype. As stated above, these are represented by an arrow with1314

a dot at one end of an association and indicate that the marked stereotype will be an attribute of the1315

37/42

stereotype at the other end. It is also worth noting that the multiplicity of the end with the dot becomes1316

that of the resulting attribute. Thus, having a multiplicity of one-or-many in the marked stereotype implies1317

that the resulting attribute represents a set of elements of that type. Therefore, ControllerCP receives two1318

attributes named accessLog and sla of AccessLog and SLA types, respectively.1319

In contrast, the few primitive type attributes in this diagram are mostly strings, as represented by the1320

ControllerCP or SLA stereotypes.1321

The Data stereotype represents the data that belongs to a certain user or set of users (only in the1322

case of combined data). For this stereotype, it is necessary to include two specific data types, namely1323

DataArchive and DataField. DataArchive models the structure of a data file, being composed of an1324

identifier, idData, and its contents, contents. The content of an archive consists of a group of fields1325

(DataField type), and each one, in turn, contains a value, which is an attribute of string type. In addition,1326

the Data stereotype includes the sticky policy that is applied to it (appliedPolicy attribute). The Storage1327

attribute, in turn, is an attribute of Machine, which is abstract, so it will be inherited by the SSMProcessor1328

and StatelessComputationMachine stereotypes. The processors represent the machines that store and1329

maintain the data at all times, although the computing machines will only occasionally store data (provided1330

by a SSMProcessor) when processing it via the StatelessAppCTP that requested such data.1331

B OCL RULES1332

OCL rules
Name no empty racks
Severity ERROR
Context Rack
Description This rule validates that attributes machinesPerBoard and boards in stereotype Rack

(self.machinesPerBoard and self.boards) are both greater than 0 with a logical AND operation.
Specification self.machinesPerBoard>0 and self.boards>0
Name cpu cores and flops greater than 0
Severity ERROR
Context CPU
Description Similarly to the previous rule this one checks that the number of cores and FLOPs of a CPU are

both greater than 0.
Specification self.cores>0\ and\ self.FLOPs>0
Name latency name not empty
Severity ERROR
Context Latency
Description Validates that the latency’s name is not an empty string by checking its size (number of characters)

is greater than zero
Specification self.name.size()>0
Name size value greater than 0
Severity ERROR
Context Size
Description Assures that the value for any attribute of type Size is greater than 0
Specification self.value>0
Name time value greater than 0
Severity ERROR
Context Time
Description Checks that the value of any attribute of type Time (self.value) is greater than 0
Specification self.value>0
Name bandwidth value greater than 0
Severity ERROR
Context Bandwidth
Description Checks that the value of any attribute of type bandwidth (self.value) is greater than 0
Specification self.value>0

38/42

OCL rules
Name numberOfDrivers greater than ns
Severity Error
Context Storage
Description Validates that the value of attribute numberOfDrivers of type Storage (self.numberOfDrivers) is

greater than 0
Specification self.numberOfDrivers>0
Name sendData maxTine value greater than 0
Severity ERROR
Context sendData
Description This rule checks that the time value for the attribute maxTime of the sendData message is greater

than 0
Specification self.maxTime.value>0
Name paste maxTine value greater than 0
Severity ERROR
Context pasteData
Description This rule assures that the value of the maxTime attribute of pasteData stereotypes is a number

greater than zero
Specification self.maxTime.value>0
Name combine maxTine value greater than 0
Severity ERROR
Context combineData
Description This rule checks that the time value for the attribute maxTime of the combineData message is

greater than 0
Specification self.maxTime.value>0
Name maxSubTime greater than 0
Severity ERROR
Context Subscribe
Description This rule checks that the attribute maxSubscriptionTime in Subscribe type is greater than zero
Specification self.maxSubscriptionTime.value>0
Name machine contains data to rectify
Severity ERROR
Context newData
Description Validates that the set of data to rectify with the contents on the message newData is located in

all of the machines which the message is destined to. This is achieved by verifying that, for all
the machines in the list of the newData message (self.machines), the data included in the message
(self.data) is included in every list of data inside the machine (m.data)

Specification self.machines-->forAll(m | m.data-->includes(self.data))
Name machine contains data to erase
Severity ERROR
Context eraseData
Description Similarly to the previous rule, this one checks that the set of data to erase on the message eraseData

is located in all of the destination machines of the message.
Specification self.machines-->forAll(m | m.data-->includes(self.data))
Name machine contains data to subscribe to
Severity ERROR
Context subscribe
Description Alike the former two rules, this one checks that the set of data which the controller wants to

subscribe to is present in all of the destination machines of the message.
Specification self.machines-->forAll(m | m.data-->includes(self.data))

39/42

OCL rules
Name location1 machine not under sla with controller
Severity ERROR
Context ControllerCP
Description This rule checks that the processor contained in accesslog from which data has been obtained

for the operation is under SLA with the controller of said data. To do this it accesses the list of
accesslogs of the controller (self.accesslog) and checks, for all of them, that it exists at least one
SLA in the controller list which is included in the SLA list of the location1 machine of the log
(log.location1.sla)

Specification

self.accesslog-->
forAll(log | self.sla -->

exists(sla | log.location1.sla-->includes(sla)))

Name sourceMachine not under sla with controller
Severity ERROR
Context ControllerCP
Description This rule validates that the machine containing the source copy of data is under SLA with the

controller. First, it gets the list of SLAs for the controller included inside the sticky policy of the
log of the controller (self.accesslog.sp.controller.sla), then it checks that it exists (exists operation)
at least one sla in said list which is included (includes operation) in the list of SLAs in the source
machine contained in the same sticky policy of the log (self.accesslog.sp.sourceMachine.sla)

Specification

self.accesslog.sp.controller.sla -->
exists(sla | self.accesslog.sp.sourceMachine.sla-->

includes(sla))

Name duplicatesMachine not under sla with controller
Severity ERROR
Context ControllerCP
Description This rule validates that the machine containing the source copy of data is under SLA with the

controller. First it gets the list of SLAs for the
Specification

self.accesslog.sp.duplicates ->
forAll(m | self.accesslog.sp.controller.sla ->

exists(sla | m.sla->includes(sla)))

Name cpu cores and flops greater than 0
Severity ERROR
Context CPU
Description Similarly to the previous rule this one checks that the number of cores and FLOPs of a CPU are

both greater than 0.
Specification self.cores>0 and self.FLOPs>0
Name latency name not empty
Severity ERROR
Context Latency
Description Validates that the latency’s name is not an empty string by checking its size (number of characters)

is greater than zero
Specification self.name.size()>0
Name size value greater than 0
Severity ERROR
Context Size
Description Assures that the value for any attribute of type Size is greater than 0
Specification self.value>0

40/42

OCL rules
Name accessHistory tp not in recipients list
Severity ERROR
Context ControllerCP
Description In this rule the list of third parties who accessed the data is first accessed, this is done through

the sticky policy attribute (sp) of the controller’s accesslog (self.accesslog.sp.accessHistory).
Then, it is check for all them (forAll operation) that for all the users (second forAll opera-
tion) in the list of owners (self.accesslog.sp.owners) the list of recipients of their user contract
(ow.bindingContract.recipients) includes the third party in the accessHistory attribute (his.tp). In
this way it is ensured that data is not accessed by any tp that the users have not been informed of.
Note that this could have been done with StickyPolicy as starting point, but with the additional
navigation the error is thrown by the controller which is the entity that would manage this situation
in a real scenario.

Specification

self.accesslog.sp.accessHistory-->
forAll(his | self.accesslog.sp.owners-->

forAll(ow | ow.bindingContract.recipients-->
includes(his.tp)))

Name no empty newData fields
Severity ERROR
Context newData
Description This rule is meant to ensure that the data introduced in the newData messages does not infringe the

data accuracy RGPD principle by introducing empty fields. To do this, it is checked that for all the
fields in the newData attribute of the message (self.newData), the size (number of characters of the
string) is greater than 0

Specification self.newData-->forAll(f | f.value.size()>0)
Name no empty write fields
Severity ERROR
Context rectifyData
Description Similarly to the previous rule, this one validates that no empty fields are introduced in the write

message
Specification self.newContent-->forAll(f | f.value.size()>0)
Name sendData timeunit not hours or minutes
Severity WARNING
Context combineData
Description Notes that the units of time for the maximum storage time of data are smaller than usual. The way

this is check is the exact same as in the previous rule
Specification self.maxTime.unit=TimeUnit::h or self.maxTime.unit=TimeUnit::min
Name newData destinatnion machines comply with GDPR
Severity ERROR
Context newData
Description This rule ensures that all of the machines included as destinations of a newData message are

marked as compliant with the GDPR, just like rule 10 does for upDate.
Specification self.machines-->forAll(m | m.GDPRCompliance=true)
Name eraseData destinatnion machines comply with GDPR
Severity ERROR
Context eraseData
Description This rule checks that the destination machines of an eraseData message comply with the GDPR in

the same way that the previous rules.
Specification self.machines-->forAll(m | m.GDPRCompliance=true)
Name subscribe destinatnion machines comply with GDPR
Severity ERROR
Context subscribe
Description This rule ensures that all of the machines included as destinations of a subscribe message are

marked as compliant with the GDPR.
Specification self.machines-->forAll(m | m.GDPRCompliance=true)

41/42

OCL rules
Name notify destinatnion machines comply with GDPR
Severity ERROR
Context notify
Description in the same way that the previous rules do it, this rule checks that the destination machines of a

notify message comply with the GDPR.
Specification self.machines-->forAll(m | m.GDPRCompliance=true)
Name pasteData machine2 complies with GDPR
Severity ERROR
Context pasteData
Description This rule checks that the machine2 of the pasteData message, in which data is going to be copied,

complies with the GDPR standards.
Specification self.machine2.GDPRCompliance=true
Name combineData machine2 complies with GDPR
Severity ERROR
Context combineData
Description This rule checks that the machine2 of a combineData message, in which the data set resulting of a

combine operation is going to be stored, complies with the GDPR standards.
Specification self.machine2.GDPRCompliance=true
Name consent machine complies with GDPR
Severity ERROR
Context consent
Description This rule checks that the machine of a consent message, which will be accessed by a third party if

consent is given, complies with the GDPR standards.
Specification self.machine.GDPRCompliance=true

42/42

	Introduction
	Literature review
	Modeling and Validation of GDPR and Data Privacy
	Cloud and GDPR
	Data Tracking and GDPR
	GDPR-Compliance Assistant Tools

	Background
	The General Data Protection Regulation (GDPR)
	Sticky Policies
	Unified Modeling Language (UML) Sequence Diagrams and Combined Fragments, UML profiles, and the Object Constraint Language (OCL)
	Stateless Machines

	Running Example
	Initial Sticky Policies
	Final Sticky Policies

	Methodology
	Modeling Data Tracking in Cloud Systems
	Interaction Model
	Combination and Data Aggregation
	Architectural Model

	Validation and Threat Model
	Validation of the Model4_DataCTrack Models
	Threat Model

	The MDCT Tool
	Discussion
	Considerations
	Validity Threats

	Conclusions and Future Work
	References
	Complete Architectural Model
	OCL Rules

