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Abstract. Automatic Public Malware Analysis Services (PMAS, e.g.
VirusTotal, Jotti, or ClamAV, to name a few) provide controlled, iso-
lated, and virtual environments to analyse malicious software (malware)
samples. Unfortunately, malware is currently incorporating techniques
to recognize execution onto a virtual or sandbox environment; when an
analysis environment is detected, malware behaves as a benign applica-
tion or even shows no activity. In this work, we present an empirical study
and characterization of automatic public malware analysis services, con-
sidering 26 different services. We also show a set of features that allow to
easily fingerprint these services as analysis environments; the lower the
unlikeability of these features, the easier for us (and thus for malware)
to fingerprint the analysis service they belong to. Finally, we propose
a method for these analysis services to counter or at least mitigate our
proposal.

Keywords: malware analysis service, analysis-aware malware, sandbox, char-
acterization, unlikeability

1 Introduction

In the last few years, there has been a steady growth (around a 26% increase
a year [15]) in the number and complexity of applications with non-legitimate
intentions (known as malicious software, or malware).

To detect malicious behavior of a binary, we analyse its interactions with the
operating system (OS) and network. Since manual analysis is unfeasible (due
to the amount of malware), several methods have been historically developed
to automatize the process using isolation (using virtual environments and sand-
boxes).

An Automatic Public Malware Analysis Service (PMAS, e.g. VirusTotal,
Jotti, or ClamAV, to name a few) allows any user to upload files to be analysed,
returning a report indicating whether they are malicious or not. Note that we
indistinguishably use PMAS as singular and plural acronym.

Cybercriminals enhance malware by adding functions to detect when it is
being analysed (this kind of malware is called analysis-aware or split personality
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malware [1,9]) so that it starts behaving benignly when it thinks that is the case.
The longer the malware remains undetected, the more likely cybercriminals will
get better revenues from it.

In this work, we present an empirical study and characterization of PMAS.
We also show a set of features that allows (both us and analysis-aware malware)
for easily fingerprinting these services as analysis environments; the lower the
variability (unlikeability) of these features, the easier for us (and thus for mal-
ware) to fingerprint the analysis service they belong to. Finally, we propose a
method for PMAS to counter or at least mitigate our proposal.

The rest of the paper is organized as follows. Section 2 introduces our char-
acterization of PMAS. Then, in Section 3 we describe our methodology and
experiments to obtain data from a PMAS server. In section 4 we discuss our
preliminary results. In Section 5, we give some countermeasures for PMAS to be
able to partially mitigate our proposal. Section 6 reviews related work. Section 7
concludes the paper and states future work.

2 Characterization of Public Malware Analysis Services

In order to characterize each PMAS, we consider the following features:

– How the suspicious files are sent to the service. Specify the method used
(External application, web form, email, or others).

– Where the analysis is done. The service may perform the analysis on its own
infrastructure or use other infrastructures (metaservices).

– How analysis results are given to the user. Through a report file, a web page,
or by email.

– Price of the service. We distinguish between free, paid, or freemium.
– Accepted file types. Each service may accept different file types and from

different OSes.

Table 1 summarizes the characterization of the different services that we
have considered (for a given features, “N/A” means not available, i.e., we do not
have enough knowledge to state a conclusion). The Microsoft+ entry encompases
Microsoft Defender 10, Microsoft Defender 8, Microsoft Defender 7, Microsoft
Other, Microsoft Vista, XP, Essentials and Others.

We had initially considered 100 PMAS, although they were reduced to 26 for
different reasons. We have only considered free or freemium services. Further-
more, some well-know PMAS as Anubis have been discontinued and evolved to
provide service to just large companies or institutions.

3 Experiments

We developed a probe–software specifically to obtain information about the
PMAS running it. The software is written in C# and compiled as a Windows
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Service App send form metaservice Report Report Data Price Document
Specified Accepted Url’s Operating System

Filetype Platform

360TotalSecurity Online form, Yes Email N/A Free EXE No N/A
Mail N/A

Jotti Online Form Yes WebPage Hash Information Free EXE, DMG No Desktop OS
JPG, PDF, APK, . . . Win, MacOSX, Linux

Mobile OS
UploadMalware Online Form Yes Webpage Hash Information Free JPG, PDF, APK, . . . No Win, MacOSX, Linux

Mobile OS
Virustotal Online Form Yes Webpage Depends of the file Free Executables Yes Desktop OS

Mail (platform) images,doc,flash Win, MacOSX, Linux
Public API Apk, ipa

External App office
BleepingComputer Online Form N/A No No Free N/A No N/A
Roboscan External app N/A Email Malware or not Free Several No N/A
Fortinet Online Form N/A Email N/A Free PEx No Windows
Microsoft+ Online Form N/A Webpage Malware or not Free PEs No Windows

PDF, flash, office
Bitdefender Online Form N/A Email N/A Free PEs, DMG Yes Multiplatform

APK, Flash, OFFICE
Sophos Online Form N/A Email N/A Free Several Yes Multiplatform
F-Secure Online Form No Email Malware or not Free PEs, DMG Yes Desktop OS
Avira Online Form No Email Malware or not Free EXE, DMG Yes Desktop OS

Webpage
PayloadSecurity Online Form No Webpage Created files paths Freemium PE, Office, PDF Yes Windows

Keychan, File Details APK files and more Android
Network details (e.g. EML)

McAfee External app No N/A N/A Free PEs No Windows
Email

Malwr Online Form No Webpage Created files paths Free PEs No Windows
Registry PDF, Office, ASCII

Network activity Flash, Java
ClamAv Online Form No Email N/A Free Several No N/A
Valkyrie Online Form No Webpage Created files paths Freemium PEs Yes Windows

Registry
PE Imports

Zoner Online Form No Email N/A Free N/A No Multiplatform
ThreatAnalyzer Online Form No WebPage Several Paid Several No Windows

File (Let you choose
versions)

SonicWall Online Form No N/A N/A Free N/A No N/A
AVG Online Form No N/A N/A Free Several No Multiplatform
Symantec Online Form No N/A N/A Free Several Yes Multiplatform

External app
Nanoav Online Form No Email Malware or not Free N/A No N/A

Table 1. Characterization of Public Malware Analysis Systems.
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Fig. 1. Workflow diagram to collect PMAS information.

executable file, so we discarded PMAS that focus on runnables from OS other
than Windows.

During execution, network packages are sent to a web server under our control
to collect the data. The workflow diagram to collect data is shown in Fig. 1. Its
steps are:

1. Our probe is specifically crafted for a given PMAS, to which it is sent.
2. The PMAS can either run the probe itself or send it to another external

service for analysis.
3. While the sample is being analysed in the PMAS (or in an external ser-

vice), it is sending network packages to our server. These packages contain
information gathered from the PMAS that is analyzing it.

4. Requests are collected in our server. We are continuously receiving network
packages sent from different PMAS, so they must be classified by their PMAS
of origin.

5. Finally, data is parsed and analysed.

We initially sent our probe to 70 services, but we only received responses
from 26 services. Response dataset dates from April 2016 to January 2017. Mul-
tiple responses were obtained from a reduced set of services, so some services
executed the probe multiple times. Fig. 2 shows the response ratio of received
over sent probes: Although in some cases it is uncertain whether the PMAS is
a metaservice (a service that uses external engines to analyse malware), we as-
sumed that it might be a metaservice when that response ratio is greater than
5.

Metaservices are shown on the left in Fig. 2 (red bars). Services which do not
clearly indicate whether they rely on external engines are shown in the middle
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(yellow bars). Finally, services using their own engines are shown on the right
(blue bars).

3.1 Machine Characterization

We characterize each PMAS considering both physical level (hardware) and log-
ical level (software). Specific features that we collected are depicted in Fig. 3.

Regarding software, we distinguish between static data (i.e., data that are
not modified at runtime) and dynamic data. As dynamic data, we distinguish
elements belonging to Internet connectivity, such asopen ports, Local IP address,
and external IP address. Data of interest as ISP or country can be extracted
from these elements. As static part, we consider different elements: environment
variable paths, paging file, and OS-related data (such as Product ID, i.e., the
Windows product identifier; Build Lab, i.e., the Windows version; or Build Lab
Ex, i.e., extended information of Windows version). Respecting the OS’s user
account, we collected the registered owner, user domain, logon server (that is,
network machine name), Profile Guid, and user name.

In respect of hardware, we consider hard drive serial number, BIOS date,
RAM size, CPU processors number, processor model, and MAC address of the
machine.

3.2 Unlikebility

We want to classify PMAS according to the variability that they introduce in
the series of features we have analysed in isolated environments (read: machines)
they use for application analysis.

On the one hand, we consider “good services” those with “concealment”
capability, that is, the ones that have a lot of variability in those characteristics
for their different analysis machines. On the other hand, those PMAS with low
variability will be considered “Bad” given their poor capacity of “concealment”.

Consider for instance a PMAS where all the machines they use for analysis
have the same user name, or the same IP address (or address pattern), which at
the same time is different from the user name or IP of other PMAS: It would
be trivial for the malware to detect that it is being executed in a PMAS (the
PMAS would have low “concealment” capability, if any at all), so that we would
consider that service “bad”.

In order to measure the variability within the set of categorical variables,
relative frequencies were obtained for the different values obtained from the
PMAS of each variable. The full list of variables studied is: MAC, User Name,
IP Local, CPU, Profile Guid, Number of Processors, Total of paging file, Total of
physical memory, HardDrive Serial Number, Build Lab, Build Lab Ex, Product
ID, Registered Owner, System Bios Date, Logon Server, User Domain, User
Profile. Finally, variability was computed by the unlikeability index [7]:

u = 1 −
∑

p2i =
∑

pi(1 − pi) = 2
∑
i<j

pipj
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Fig. 2. Ratio of samples received for each probe sent.
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Fig. 3. Software (left-hand) and hardware (right-hand) characterization features.
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Fig. 4. Characterization of (a, b) Windows versions and (c) OS architecture width.
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Where pi = ni

n is the relative frequency for i-th level of the variable.

We analysed each PMAS individually, obtaining Unlikebility for each variable
for that specific PMAS.

We also calculated Unlikebility for each PMAS as a whole, considering the
median and mean of all the values obtained for their variables.

We make these calculation both considering and discarding the empty values
(NaN). Sometimes the Service does not return a value when queried for it; for
those cases, we labeled the query results as “NaN” (from “Not a number”).

An Unlikebility value close to 1 represents a high variability or “dissimilarity”
and a value close to 0 represents a low variability or “dissimilarity”, so the closer
to 0 a variable is for an specific PMAS, the worse it is (concealment–wise); the
same goes for the PMAS as a whole if we consider (the median and/or mean of)
all the values obtained for its variables.

4 Results

In this studio we have analysed responses from 26 different PMAS. The dataset
contains data from 7680 responses to 1500 requests sent. We got more responses
than requests due either to some PMAS analyzing the probes several times or
to metaservices receiving reports from the external service used.

Responses containing no value regarding features of interest were discarded
(see Section 3.1). This happened when: (i) the response was unable to reach our
server; (ii) the execution of the file was stopped prior to finishing its activity
(i.e., timeout or exception occurs); or (iii) the PMAS does not allow to access
to those values (or are unavailable for that particular OS version of the PMAS).
Finally, we normalized responses to have an equal response distribution among
PMAS.

We briefly discuss the most relevant results of our experiments.

Fig 4 shows results of OS-related data. Although 20.22% of responses were
obtained (BuildLabEx), we observe a prevalence of Windows 7 as OS. Let us re-
mark here that for certain OSes, as Windows XP, this value cannot be obtained.
In this regard, the field of BuildLab becomes more useful (46.22% of responses
obtained). Surprisingly, Windows XP is found in different flavors (with SP1 or
SP2 installed) in little more than half of responses, and Windows 7 SP1 is more
than 25%. Data coming from BuildLabEx was used to infer the OS architecture,
with 32-bit and 64-bit almost equally distributed.

Fig.5 plots the characterization of CPUs used by PMAS (we just received a
16.65% of responses), considering CPU model, family, and architecture width.
Results show a prevalence of QEMU-based virtualization systems. For instance,
Intel Core i7 9xx (Nehalem Class Core i7) (GenuineIntel) is one of the CPU
models that can be chosen when configuring a QEMU virtual machine. Regarding
CPU family, we observed a high ratio of Intel Xeon technology. In respect of
CPU architecture width, more that 95% are 64-bit CPUs, although the OS
architecture was just a half when considering data coming from software.
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Fig. 5. Characterization of CPUs of PMAS.
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Fig. 6. Characterization of IP addresses of PMAS.
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Fig. 7. Distribution of Username.

18.73%

16.33%

13.71%
6.45%

6.33%

38.46%

00000000000000000001
QM00001
9VS21J20

BEEF54H
VB6572ccd4-b4d8ea2e
Others
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Fig. 9. Proposed countermeasures: Theoretical model to evade PMAS fingerprinting.



On Fingerprinting of Public Malware Analysis Services 9

Regarding Internet connectivity, we had 86.49% responses. Results of char-
acterization of local IP addresses are shown in Fig. 6. The three most common
IP addresses accounted for more than a 25%. If we consider IP address classes,
class A (usual in business or non-domestic environments) is the most common.

In respect of username, we obtained 49.33% valid responses. Fig. 7 shows the
distribution of these values. Note that Administrator, abby, and Admin represents
more than 50% of collected usernames.

In regard to HardDrive serial number, we obtained 57.06% valid responses.
Results are plotted in Fig. 8. Note that 00000000000000000001, QM00001, and
9VS21J20 represent almost 50% of collected values.

4.1 Unlikeability results

Variable Unlikebility NaN Unlikebility No NaN

MAC 0.848 0.848
User Name 0.076 0.000
IP Local 0.026 0.000
CPU 0.373 0.339
Profile Guid 0.026 0.000
Number of Processors 0.026 0.000
Total of paging file 0.373 0.339
Total of physical memory 0.373 0.339
HardDrive Serial Number 0.963 0.963
Build Lab 0.051 0.000
Build Lab Ex 0.051 0.000
Product ID 0.000 1.000
Registered Owner 0.051 0.000
System Bios Date 0.051 0.000
Logon Server 0.026 0.000
User Domain 0.026 0.000
User Profile 0.026 0.000

Table 2. Unlikebility for variable at Valkyrie PMAS

First, we obtained results for individual analysis of each PMAS. We would
like to point out Valkyrie PMAS values (see table 2). This is one of the most
relevant cases because it is a not-so-good at concealment Service.

Then, we calculated unlikeability for each PMAS as a whole (see table 3).
Despite having yet to establish a threshold for unlikeability in order to classify
PMAS as either good and bad, it follows that PMAS like Valkyrie are not good
at hiding themselves (its unlikeability is close to zero).

Upon further inspection of the raw data we obtained for Valkyrie, we real-
ized its low unlikeability was due to it having all its hard drives starting with
VB. . . which suggests that they only use Virtual Box. Also, at the time of this
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Service Median (NaN) Median (no NaN) Mean (NaN) Mean (no NaN)

Valkyrie 0.051 0.000 0.199 0.225
Emsisoft 0.000 1.000 0.221 0.659
ClamAv 0.420 0.420 0.442 0.507
MicrosoftDefender 0.361 0.000 0.454 0.197
McAfee 0.402 0.624 0.501 0.536
Bitdefender 0.524 0.463 0.527 0.416
F-Secure 0.538 0.565 0.530 0.423
Malwr 0.681 0.611 0.586 0.620
PayloadSecurity 0.519 0.411 0.591 0.500
Fortinet 0.670 0.548 0.594 0.578
Symantec 0.564 0.891 0.633 0.847
Nanoav 0.613 0.883 0.640 0.843
MicrosoftOther 0.614 0.855 0.648 0.783
Avira 0.680 0.816 0.666 0.783
MicrosoftDefender10 0.659 0.858 0.681 0.776
Roboscan 0.684 0.904 0.682 0.836
360TotalSecurityr 0.669 0.905 0.684 0.865
MicrosoftEssentials 0.719 0.871 0.692 0.809
BleepingComputer 0.683 0.912 0.697 0.878
Microsoft 0.684 0.852 0.701 0.787
AVG 0.680 0.904 0.701 0.856
MicrosoftDefender8 0.687 0.839 0.702 0.765
SonicWall 0.740 0.893 0.712 0.857
UploadMalware 0.733 0.906 0.720 0.863
Virustotal 0.723 0.900 0.722 0.858
Jotti 0.718 0.893 0.723 0.855
Sophos 0.771 0.869 0.770 0.842

Table 3. Median and Mean of Unlikebility of each PMAS as a whole (considering and
ignoring NaN values)
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analysis, they always use a certain specific model of CPU, RAM, or size of the
paging file, among others.

5 Proposed countermeasures

Even if achieving complete evasion of automatic malware analysis systems (and
thus never being recognized as malware) is probably an unachievable goal, the
aforementioned features have frequently repeated values, hence allowing malware
developers to easily fingerprint and evade a PMAS.

A theoretical countermeasure model for automatic malware analysis system
to use in order to prevent malware from evading detection using our PMAS
fingerprinting method can be seen in Fig. 9.

To collect PMAS features using our method, malware needs to execute certain
Windows APIs. Thus, we propose PMAS to monitor those APIs calls and return
random values (instead of the real ones) every time these APIs calls are executed.

If a registered API call (like Username or CPU Value) is detected during
execution, the system check if it has been executed before: It it hasn’t, it returns
a random value and stores it in a database; if it has, it retrieves the previously
stored value and returns it again.

The value returned (while initially random) has to remain the same for ev-
ery execution, since otherwise malware can easily detect its randomness and
associate this odd behavior with a PMAS – a regular machine wouldn’t return
random values for the same API call during different executions – which is ex-
actly what the PMAS wants to prevent.

In order for each malware application to always receive the same random
value, PMAS should fingerprint each binary file (e.g., using its MD5 hash) be-
fore analyzing it. PMAS can then keep track of results given to a specific app and
always return the same (and random for the first call) results to it. The regis-
tration of this random signature for the malware must be done before beginning
its analysis.

If the analysis system implements this model, our method efficacy to rec-
ognize a service would be impaired, since many data belonging to the malware
developer could not be obtained.

6 Related Work

There are several works in the literature regarding the presence (or absence)
of an analysis system. Numerous techniques for virtual machines and emula-
tors detection were provided and qualitatively compared in [6, 12]. Methods to
fingerprint anti-virus emulators were introduced in [2].

In [3], static analysis was used to detect anti-analysis techniques. Similarly,
dynamic analysis was used in [8] to detect anti-analysis signatures based on
sequences of system calls over malware samples.

Detection of anti-analysis malware was performed in [4] comparing the binary
execution between real and virtual environments. However, no insights about
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analysis-aware techniques used by the malware were provided. Different methods
to detect Cuckoo Sandbox, an open-source tool to create a sandbox environment
for statically and dynamically analyzing binaries, were provided in [5].

A taxonomy and non-exhaustive survey on techniques used for detecting
analysis environments were introduced in [13]. Besides, a tool was provided to
trick an anti-analysis malware sample running on a virtual environment as run-
ning on a real environment. A recent study on detection of anti-analysis malware
has been recently provided in [16], in which anti-analysis signals are divided into
weak signals, strong signals, and composite signals, depending on those signals
are normally used by a benign software or by a malware.

Other techniques for detecting execution on hypervisors using time informa-
tion were provided in [11, 17]. Detection based on unexpected semantics when
executing certain CPU instructions was also proposed in [14].

Recently, the FFRI malware dataset was used in [10] to evaluate the most
used analysis detection methods. Their approach was based on analyzing Win-
dows APIs calls and results were used to improve Cuckoo Sandbox system.

Regarding PMAS fingerprinting, it is worth mentioning [18]. They evaluated
15 PMAS, being able to fingerprint them using as feature the IP source address
of network responses. Our work is similar to theirs, but we perform a more
exhaustive analysis of features to fingerprint PMAS.

7 Conclusions and Future Work

Malware have increased in number and complexity during last decade. PMAS are
services that allow users to test for malicious behavior. To avoid being detected,
malware introduces techniques that recognize these analysis environments, hide
its malicious intention and behave as benign software

In this paper we have performed an empirical study to characterize 26 PMAS
with different features (file uploading method, analysis location, report proce-
dure, price, and accepted file types). Then, we have developed an application to
fingerprint the PMAS with just a few features (such as OS, CPU, or username).
Features having lower unlikeability index are easier to be fingerprinted for users
and thus for malware. Finally, we proposed a (theoretical) execution model to
evade PMAS fingerprintg.

As future work, we aim at identifying the relationships between different
PMAS, as well as fingerprinting each PMAS in detail. Furthermore, we aim at
implementing and evaluating our evasion model.
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