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OCamello: A Course and Summer School with Learn-OCaml
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We report on an (at the time of this writing, forthcoming) week-long summer school on functional programming
and OCaml, entitled Advanced Programming Techniques: The Functional Paradigm, part of the 95th Annual
Edition of the interdisciplinary summer university of the University of Zaragoza. We develop new custom
learning materials using Learn-OCaml as an integrated learning platform and bring together academic and
industrial members of the OCaml community for an associated outreach event.
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1 INTRODUCTION
There is agreement among experts, and some supporting empirical data, that modern functional
programming languages result in simpler and less buggy programs [7], whose correctness is easier
to assess and even guarantee. The influence of the functional paradigm has become widespread
in recent years, driving ongoing adoption of functional idioms by many conventional imperative
languages [2–5], whichmake it one of themost useful tools for anyone interested in the development
of quality software.

It is therefore unfortunate, in our opinion, that these techniques remain little known in certain
areas, as is the case of Spanish higher education, where computer science curricula recommendations
make no explicit mention of them [1]. The general trend in recent times has been to reduce
foundational exposure to strong and statically typed programming languages (such as Ada or Java)
in favor of more dynamic or unsafe languages (such as Python or C++). While the latter play an
important role in a balanced education, we also believe it is unwise to neglect the former.

With this in mind, we argue that OCaml is an ideal language to fill these gaps: on the one hand,
increasing exposure to a strongly-typed, static, memory-safe language; on the other, studying the
functional paradigm, its foundations and applications. To this end, and to address the scarcity of
related learning materials in the standard language of instruction, we have developed an introduc-
tory course to functional programming, which we hope will facilitate access to this knowledge
and serve as basis for future teaching efforts. We intend to release all materials under a permissive
open license.
The original run of the course is organized as a week-long summer school1, presented under

the name Advanced Programming Techniques: The Functional Paradigm. This course is part of the
1Note to reviewers: at the time this writing, the course is scheduled to be held between 4–8 July 2022.
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95th annual edition of the interdisciplinary summer university of the University of Zaragoza, the
oldest of its kind in Spain. The initiative is sponsored by the OCaml Software Foundation and
according to university officials, this is the first time a course has been sponsored by an international
organization.

2 COURSE DESCRIPTION
The first edition of the course covers 30 hours of lectures, divided into 24 hours of standard lectures
and 6 hours dedicated to the outreach event (see Section 3). In addition to these, the course load
includes 10 hours of personal study and another 10 hours reserved for the development of a small
programming project outside the classroom, required for participants taking the class for 1.5
European Credit Transfer System credits. Enrollment is open to anyone with a basic understanding
of programming, from intermediate to advanced undergraduate or graduate students (particularly
in computer science, engineering, mathematics and related disciplines) to IT professionals.

The foundation of the project are the introductory lectures to the OCaml language and its software
ecosystem. Each lecture combines a tutorial-style unit and exercises, some solved interactively
and others individually by the participants. To these activities we add interactive questions (via
clickers) and discussions among participants. We use Learn-OCaml for all class materials. Inside
the Learn-OCaml framework, we favor the tutorial over the lesson environment, and supplement it
with the exercise environment for class exercises and homework. In particular, we seek to emulate
and adapt the highly interactive style of lectures based on [6]. We do some light pre-processing on
the original sources to improve formatting and introduce a gradual presentation of the contents, a
bit closer to a standard slide deck, while preserving the OCaml top-level view at all times.
The lectures introduce OCaml from scratch and cover the core of the language, with emphasis

on the various components of expressions and types, higher-order programming and the module
system. As the course is aimed at people with some programming experience, we also include the
imperative features of OCaml, its connection to systems programming and model of interaction
with other languages and tools, as well as brief introductions to software quality (aspects such as
secure programming, testing and verification) and theoretical foundations. We de-emphasize some
of more advanced features (particularly the object system) and topics (such as monads and effects).
The main goal is that at the end of the course the participants are able to use OCaml to solve their
programming problems in a clean and effective way.

3 A PUBLIC OUTREACH EVENT
One of our main goals is to help dispel ingrained misconceptions of functional programming as
primarily an academic endeavor, and to showcase the OCaml language as a project that is actively
used in both academia and industry. For this, we complete the course lectures with an outreach
event, open to the public and to remote participants, where we bring together members of the
OCaml community to offer a holistic view of its diversity and impact.
This event is organized in two parts. First, we invite members of the OCaml team to give an

account of the language, its history, development, and future prospects. Second, we invite companies
using OCaml as their primary language to present their work and explain how the language helps
them in their business operations. Each of these parts is followed by a round table discussion.
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