
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

111

OCamello: A Course and Summer School with Learn-OCaml
ROBERTO BLANCO,MPI-SP, Germany
RICARDO J. RODRÍGUEZ, University of Zaragoza, Spain

We report on an (at the time of this writing, forthcoming) week-long summer school on functional programming
and OCaml, entitled Advanced Programming Techniques: The Functional Paradigm, part of the 95th Annual
Edition of the interdisciplinary summer university of the University of Zaragoza. We develop new custom
learning materials using Learn-OCaml as an integrated learning platform and bring together academic and
industrial members of the OCaml community for an associated outreach event.

Additional Key Words and Phrases: OCaml, summer school, learning outcomes

ACM Reference Format:
Roberto Blanco and Ricardo J. Rodríguez. 2018. OCamello: A Course and Summer School with Learn-OCaml. J.
ACM 37, 4, Article 111 (August 2018), 3 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
There is agreement among experts, and some supporting empirical data, that modern functional
programming languages result in simpler and less buggy programs [7], whose correctness is easier
to assess and even guarantee. The influence of the functional paradigm has become widespread
in recent years, driving ongoing adoption of functional idioms by many conventional imperative
languages [2–5], whichmake it one of themost useful tools for anyone interested in the development
of quality software.

It is therefore unfortunate, in our opinion, that these techniques remain little known in certain
areas, as is the case of Spanish higher education, where computer science curricula recommendations
make no explicit mention of them [1]. The general trend in recent times has been to reduce
foundational exposure to strong and statically typed programming languages (such as Ada or Java)
in favor of more dynamic or unsafe languages (such as Python or C++). While the latter play an
important role in a balanced education, we also believe it is unwise to neglect the former.

With this in mind, we argue that OCaml is an ideal language to fill these gaps: on the one hand,
increasing exposure to a strongly-typed, static, memory-safe language; on the other, studying the
functional paradigm, its foundations and applications. To this end, and to address the scarcity of
related learning materials in the standard language of instruction, we have developed an introduc-
tory course to functional programming, which we hope will facilitate access to this knowledge
and serve as basis for future teaching efforts. We intend to release all materials under a permissive
open license.
The original run of the course is organized as a week-long summer school1, presented under

the name Advanced Programming Techniques: The Functional Paradigm. This course is part of the
1Note to reviewers: at the time this writing, the course is scheduled to be held between 4–8 July 2022.

Authors’ addresses: Roberto Blanco, MPI-SP, Bochum, Germany, roberto.blanco@mpi-sp.org; Ricardo J. Rodríguez, Univer-
sity of Zaragoza, Zaragoza, Spain, rjrodriguez@unizar.es.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0004-5411/2018/8-ART111 $15.00
https://doi.org/XXXXXXX.XXXXXXX

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

111:2 Roberto Blanco and Ricardo J. Rodríguez

95th annual edition of the interdisciplinary summer university of the University of Zaragoza, the
oldest of its kind in Spain. The initiative is sponsored by the OCaml Software Foundation and
according to university officials, this is the first time a course has been sponsored by an international
organization.

2 COURSE DESCRIPTION
The first edition of the course covers 30 hours of lectures, divided into 24 hours of standard lectures
and 6 hours dedicated to the outreach event (see Section 3). In addition to these, the course load
includes 10 hours of personal study and another 10 hours reserved for the development of a small
programming project outside the classroom, required for participants taking the class for 1.5
European Credit Transfer System credits. Enrollment is open to anyone with a basic understanding
of programming, from intermediate to advanced undergraduate or graduate students (particularly
in computer science, engineering, mathematics and related disciplines) to IT professionals.

The foundation of the project are the introductory lectures to the OCaml language and its software
ecosystem. Each lecture combines a tutorial-style unit and exercises, some solved interactively
and others individually by the participants. To these activities we add interactive questions (via
clickers) and discussions among participants. We use Learn-OCaml for all class materials. Inside
the Learn-OCaml framework, we favor the tutorial over the lesson environment, and supplement it
with the exercise environment for class exercises and homework. In particular, we seek to emulate
and adapt the highly interactive style of lectures based on [6]. We do some light pre-processing on
the original sources to improve formatting and introduce a gradual presentation of the contents, a
bit closer to a standard slide deck, while preserving the OCaml top-level view at all times.
The lectures introduce OCaml from scratch and cover the core of the language, with emphasis

on the various components of expressions and types, higher-order programming and the module
system. As the course is aimed at people with some programming experience, we also include the
imperative features of OCaml, its connection to systems programming and model of interaction
with other languages and tools, as well as brief introductions to software quality (aspects such as
secure programming, testing and verification) and theoretical foundations. We de-emphasize some
of more advanced features (particularly the object system) and topics (such as monads and effects).
The main goal is that at the end of the course the participants are able to use OCaml to solve their
programming problems in a clean and effective way.

3 A PUBLIC OUTREACH EVENT
One of our main goals is to help dispel ingrained misconceptions of functional programming as
primarily an academic endeavor, and to showcase the OCaml language as a project that is actively
used in both academia and industry. For this, we complete the course lectures with an outreach
event, open to the public and to remote participants, where we bring together members of the
OCaml community to offer a holistic view of its diversity and impact.
This event is organized in two parts. First, we invite members of the OCaml team to give an

account of the language, its history, development, and future prospects. Second, we invite companies
using OCaml as their primary language to present their work and explain how the language helps
them in their business operations. Each of these parts is followed by a round table discussion.

ACKNOWLEDGMENTS
We wish to thank the OCaml Software Foundation for their generous support, and to Gabriel
Scherer for his helpful advice.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

OCamello: A Course and Summer School with Learn-OCaml 111:3

REFERENCES
[1] ANECA. 2005. Libro Blanco del Título de Grado en Ingeniería Informática. http://www.aneca.es/var/media/150388/

libroblanco_jun05_informatica.pdf. In Spanish.
[2] Alex Gyori, Lyle Franklin, Danny Dig, and Jan Lahoda. 2013. Crossing the gap from imperative to functional program-

ming through refactoring. In Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26,
2013, Bertrand Meyer, Luciano Baresi, and Mira Mezini (Eds.). ACM, 543–553. https://doi.org/10.1145/2491411.2491461

[3] Jaakko Järvi and John Freeman. 2010. C++ lambda expressions and closures. Sci. Comput. Program. 75, 9 (2010), 762–772.
https://doi.org/10.1016/j.scico.2009.04.003

[4] Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2017. Understanding the use of lambda
expressions in Java. Proc. ACM Program. Lang. 1, OOPSLA (2017), 85:1–85:31. https://doi.org/10.1145/3133909

[5] Brian McNamara and Yannis Smaragdakis. 2000. Functional programming in C++. In Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000,
Martin Odersky and Philip Wadler (Eds.). ACM, 118–129. https://doi.org/10.1145/351240.351251

[6] Benjamin C. Pierce et al. 2013. Software Foundations. https://softwarefoundations.cis.upenn.edu/.
[7] Baishakhi Ray, Daryl Posnett, Premkumar T. Devanbu, and Vladimir Filkov. 2017. A large-scale study of programming

languages and code quality in GitHub. Commun. ACM 60, 10 (2017), 91–100. https://doi.org/10.1145/3126905

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

http://www.aneca.es/var/media/150388/libroblanco_jun05_informatica.pdf
http://www.aneca.es/var/media/150388/libroblanco_jun05_informatica.pdf
https://doi.org/10.1145/2491411.2491461
https://doi.org/10.1016/j.scico.2009.04.003
https://doi.org/10.1145/3133909
https://doi.org/10.1145/351240.351251
https://softwarefoundations.cis.upenn.edu/
https://doi.org/10.1145/3126905

	Abstract
	1 Introduction
	2 Course Description
	3 A Public Outreach Event
	Acknowledgments
	References

