Escuela de Ingeniería y Arquitectura Universidad de Zaragoza

Defensa proactiva y reactiva ante ataques DDoS en un entorno simulado de redes definidas por software

Trabajo Fin de Grado

Autor Jorge Paracuellos Cortés

Director Ricardo J. Rodriguez

Abril 2016

- 1. Introducción
- 2. Conceptos SDN
- 3. Ataques DDoS
- 4. Arquitectura del sistema
- 5. Evaluación y resultados
- 6. Trabajo relacionado
- 7. Conclusiones y líneas futuras

- 1. Introducción
- 2. Conceptos SDN
- 3. Ataques DDoS
- 4. Arquitectura del sistema
- Evaluación y resultados
- 6. Trabajo relacionado
- 7. Conclusiones y líneas futuras

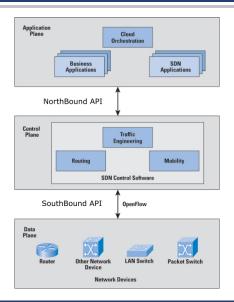
Introducción

Motivación

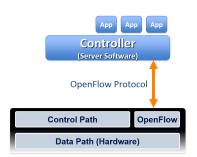
- Incremento de amenazas debido a ataques
- Nueva arquitectura de red en desarrollo
- Adaptación de las empresas tecnológicas

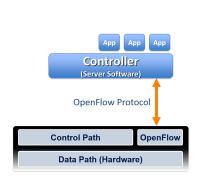
Introducción

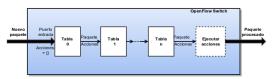
Objetivos TFG


- Familiarización con la tecnología Software Defined Network (SDN)
- ► Estudio controladores SDN
- ► Estudio tipos de ataques Distributed Denial of Service (DDoS)
- Diseño e implementación de un mecanismo de defensa proactivo y reactivo
- ► Evaluación en diferentes escenarios y configuraciones

- 1. Introducción
- 2. Conceptos SDN
- 3. Ataques DDoS
- 4. Arquitectura del sistema
- Evaluación y resultados
- 6. Trabajo relacionado
- 7. Conclusiones y líneas futuras


Conceptos SDN Arquitectura SDN


Conceptos SDN Protocolo OpenFlow





Conceptos SDN Protocolo OpenFlow

- Encontrar la entrada de flujo de mayor prioridad
- Aplicar instrucciones

 i. Modificar paquete y actualizar campos de matching
 - campos de matching ii. Actualizar conjunto de acciones
 - iii. Actualizar metadatos
 - Enviar paquete y acciones a la siguiente tabla

Conceptos SDN Comparativa controladores SDN de código abierto

	Pox	FloodLight	OpenDayLight
Interfaces	SB	SB & NB	SB & NB
Virtualización	Mininet & Openv Switch	Mininet & Openv Switch	Mininet & Openv Switch
GUI	Sí	Web UI	Sí
REST API	No	Sí	Sí
Documentación	Escasa	Media	Media
Lenguaje Programación	Python	Java + cualquier lenguaje que utilice REST	Java
Modularidad	Media	Alta	Alta
S.O. Soportado	Linux, Mac Os and Windows	Linux, Mac Os and Windows	Linux
Edad	3 años	4 años	2 años
Soporte OpenFlow	OF v1.0	OF v1.3	OF v1.3
OpenStack Networking	No	Medio	Medio

Características

- ► Apoyo de la industria (Intel, Cisco, Nec ...)
- ► Proyecto de código abierto
- Desarrollo en Java
- Extensa documentación y comunidad activa en constante movimiento
- ► Arquitectura modular

- 1. Introducción
- 2. Conceptos SDN
- 3. Ataques DDoS
- 4. Arquitectura del sistema
- Evaluación y resultados
- 6. Trabajo relacionado
- 7. Conclusiones y líneas futuras

Ataques DDoS

Clasificación

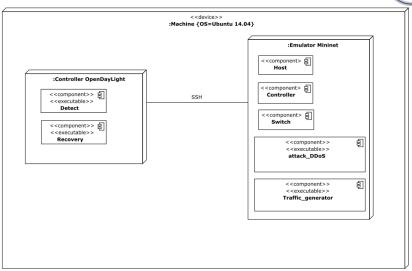
- ► Inundación
- ► Reflexión
- Amplificación

Ataques DDoS

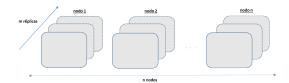
Clasificación

- Inundación
- ▶ Reflexión
- Amplificación

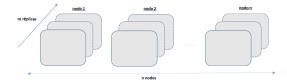
Mecanismos de defensa ante DDoS

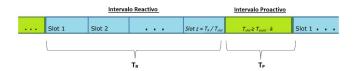

- ▶ Prevención
- Detección
 - Patrones
 - Anomalías
- Identificación del origen
- ► Mitigación

- 1. Introducción
- 2. Conceptos SDN
- 3. Ataques DDoS
- 4. Arquitectura del sistema
- 5. Evaluación y resultados
- 6. Trabajo relacionado
- 7. Conclusiones y líneas futuras

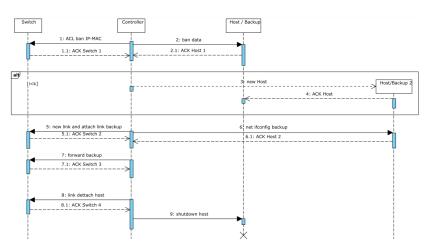

Arquitectura del sistema Diagrama de despliegue

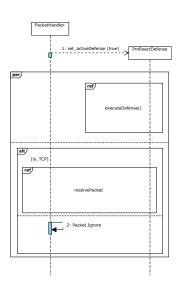
Arquitectura del sistema Explicación formal

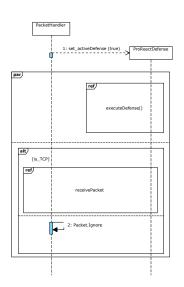

Arquitectura del sistema

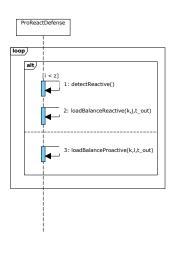

Explicación formal

Parámetros

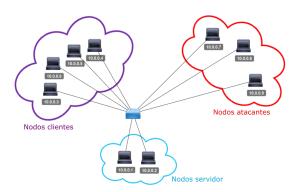

- T_{coste}: tiempo que tarda en recuperarse un nodo
- ► T_{slot}: tiempo que tarda en recuperar k < n réplicas en paralelo


Arquitectura del sistema Funcionamiento: Rejuvenecimiento


Arquitectura del sistema Implementación



Arquitectura del sistema Implementación



- 1. Introducción
- 2. Conceptos SDN
- 3. Ataques DDoS
- 4. Arquitectura del sistema
- 5. Evaluación y resultados
- 6. Trabajo relacionado
- 7. Conclusiones y líneas futuras

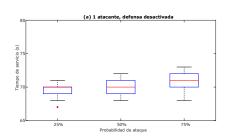
Evaluación y resultados

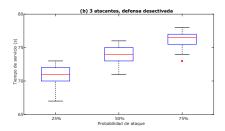
Topología de los escenarios

Archivo de 105MBytes servido a 1,46MBytes/s

Tiempo de servicio entre 66 y 68 segundos

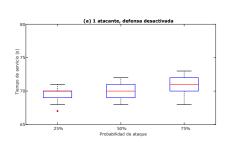
Escenarios

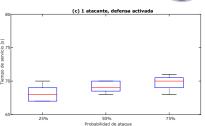

- ▶ 1 atacante
- 2 atacantes
- 3 atacantes

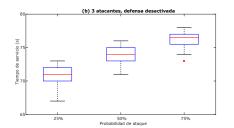

Probabilidad de ataque

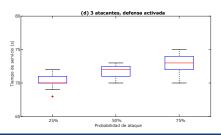
- ▶ 25%
- ▶ 50%
- **▶** 75%

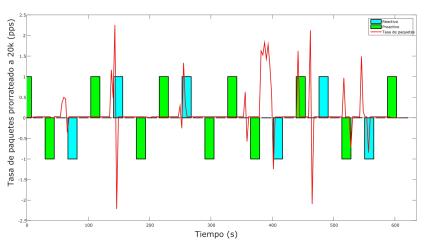
Evaluación y resultados Comparativa tiempos de servicio








Evaluación y resultados Comparativa tiempos de servicio



Evaluación y resultados Funcionamiento del sistema ante ataques DDoS

- 1. Introducción
- 2. Conceptos SDN
- 3. Ataques DDoS
- 4. Arquitectura del sistema
- 5. Evaluación y resultados
- 6. Trabajo relacionado
- 7. Conclusiones y líneas futuras

Trabajo relacionado

Áreas de estudio

- Vulnerabilidades de SDN
 - Estudio de amenazas y posibles soluciones
- Mecanismos proactivos
 - Aplicados sobre SDN en un ámbito distinto
- Mecanismos reactivos
 - Implementan sistemas de defensa sobre SDN
- Mecanismos proactivos y reactivos
 - Desarrollados en otras áreas

Trabajo relacionado

Áreas de estudio

- Vulnerabilidades de SDN
 - Estudio de amenazas y posibles soluciones
- ▶ Mecanismos proactivos
 - Aplicados sobre SDN en un ámbito distinto
- ▶ Mecanismos reactivos
 - Implementan sistemas de defensa sobre SDN
- ► Mecanismos proactivos y reactivos
 - Desarrollados en otras áreas

Contribución

Mecanismo proactivo y reactivo para mitigar ataques DDoS siendo capaz de gestionar y modificar la arquitectura de red SDN

- 1. Introducción
- 2. Conceptos SDN
- 3. Ataques DDoS
- 4. Arquitectura del sistema
- 5. Evaluación y resultados
- 6. Trabajo relacionado
- 7. Conclusiones y líneas futuras

Conclusiones y líneas futuras

Conclusiones

- Estudio y comprensión de la arquitectura de red SDN
- ► Estudio y comprensión de los distintos ataques DDoS
- Implementación del mecanismo de defensa proactivo y reactivo en OpenDayLight
- Corroboración de la viabilidad y funcionamiento de la defensa

Conclusiones y líneas futuras

Conclusiones

- ► Estudio y comprensión de la arquitectura de red SDN
- ► Estudio y comprensión de los distintos ataques DDoS
- Implementación del mecanismo de defensa proactivo y reactivo en OpenDayLight
- ► Corroboración de la viabilidad y funcionamiento de la defensa

Líneas futuras

- ► Formalizar el proyecto mediante modelos de Markov
- Actualizar la versión Beryllium de OpenDayLight
- Añadir mecanismos de detección
- ► Complementar con un honeypot

Muchas gracias por su atención

Universidad Zaragoza