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Abstract

Negative Bias Temperature Instability (NBTI) and Hot Carrier Injection (HCI) are two of the main reliability threats in current
technology nodes. These aging phenomena degrade the transistor’s threshold voltage (Vth) over the lifetime of a digital circuit,
resulting in slower transistors that eventually lead to a faulty operation when the critical paths become longer than the processor cycle
time. Among all the transistors on a chip, the most vulnerable transistors to such wearout effects are those used to implement SRAM
storage, since memory cells are continuously degrading. In particular, NBTI ages PMOS cell transistors when a given logic value is
stored for a long period (i.e., a long duty cycle), whereas HCI does the same in NMOS cell transistors not only when the stored value
flips but also when it is accessed. This work focuses on mitigating aging in the on-chip SRAM memories of Convolutional Neural
Network (CNN) accelerators storing activations. This paper makes two main contributions. At the software level, we quantify the
aging induced by current CNN benchmarks with a characterization study of duty cycle, flip, and access patterns in every activation
memory cell. Based on the insights from this study, this work proposes a novel microarchitectural technique, Gated-CNN, that
ensures a uniform aging degradation of every memory cell. To do so, Gated-CNN proposes power-gating and address rotation
techniques tailored to the memory demands and temporal/spatial localities exhibited by CNN applications, as well as the memory
organization and management of CNN accelerators. Experimental results show that, compared to a conventional design, the average
Vth degradation savings are at least as much as 49% depending on the type of transistor.

Keywords: Access patterns, bit flip patterns, duty cycle, Hot Carrier Injection, Negative Bias Temperature Instability, threshold
voltage degradation.

1. Introduction

The end of the Dennard scaling and the Moore’s Law era
are the major drivers of the computer architecture community to-
ward domain-specific accelerator chips. Unlike general-purpose
processors, accelerators are optimized to handle a specific appli-
cation domain, while delivering a higher performance-to-power
ratio under a limited chip budget. These domains include com-
puter vision, speech recognition, natural language processing,
autonomous driving, among others, whose applications are effi-
ciently run with machine learning algorithms like Deep Neural
Networks (DNNs).

DNN accelerators have consolidated as a commodity device
that complements computing platforms from high-performance
to embedded systems. Since the emergence of the DianNao
accelerator [1], both the academia and the industry have pro-
posed many architectural organizations to cope with the massive
convolution computation in the inference process of Convolu-
tional Neural Networks (CNNs) [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
However, like general-purpose processors, CNN accelerators
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are implemented using CMOS transistors and they usually de-
mand high on-chip Static Random-Access Memory (SRAM)
storage requirements to cache CNN parameters consisting of
weights (synapses) and activations (neurons) of the different
neural network layers.

Two of the main deleterious effects that speed up the CMOS
transistor wearout are known as Negative Bias Temperature In-
stability (NBTI) and Hot Carrier Injection (HCI) [13]. These
effects degrade the transistor’s threshold voltage (Vth) over the
lifetime of a digital circuit. Such a degradation causes an in-
crease in the transistor’s Vth, and therefore in the transistor’s
switching delay, resulting in permanent faults when the critical
paths become longer than the processor cycle time.

By design, SRAM cells are particularly sensitive to both
NBTI and HCI failure effects since they are continuously aging.
NBTI degrades PMOS transistors when a given logic value is
stored for a long period (i.e., a long duty cycle or on/off ratio),
whereas HCI deteriorates not only NMOS loop inverter tran-
sistors when the stored logic value flips but also NMOS pass
transistors when contents are accessed (i.e., on/off switching
frequency). In addition, HCI may also degrade the drain cur-
rent of both NMOS and PMOS transistors [14]. Overall, these
situations are strongly related to each other, meaning that com-
bating solely NBTI might aggravate HCI as a side effect, and
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Figure 1: Normalized accuracy after injecting permanent faults in either weights
or activations with respect to the original accuracy without faults. The number
of faulty bits is calculated as a percentage of the largest CNN layer and it is the
same for both weights and activations. The plotted results refer to the average
accuracy after 100 trials.

vice versa.
CNN parameters are usually represented with fixed-point

data types, as opposite to floating-point, with the aim to reduce
the computing and energy consumption requirements of CNN in-
ference accelerators [1, 2, 3, 4, 7, 9, 12]. Recent studies focusing
on weights have shown that fixed-point data types are inherently
more resilient to faults than floating-point counterparts [15].
Unlike weights, activations usually comprise a larger range of
values, which can severely compromise the CNN accuracy even
using fixed-point data types.

To check the previous claim, we conducted an experiment
in which permanent bit faults are randomly injected at different
rates in either weights or activations represented with 16-bit
fixed-point data. Figure 1 plots the normalized accuracy of three
different CNNs under faults with respect to the fault-free original
accuracy. Activations are more vulnerable to faults than weights,
even for a percentage of faulty bits as low as 0.001%. In contrast,
under faulty weights, accuracy does not degrade in ZFNet and
SqueezeNet regardless of the studied fault rate.

The state-of-the-art approach for aging mitigation in on-chip
SRAM storage of CNN accelerators solely focuses on NBTI in
memories storing weights [16]. In contrast, our work addresses
not only NBTI but also HCI in on-chip memories of CNN accel-
erators storing activations. To do so, this paper makes two main
contributions:

• We present a comprehensive characterization study of the
duty cycle, flip, and access patterns that current CNN
applications induce to every activation memory cell.

• Based on the previous study, we propose a novel aging-
aware microarchitectural mechanism, Gated-CNN, ex-
ploiting power-gating and address rotation techniques
tailored to the specific memory requirements and tem-
poral/spatial localities of CNN applications, in addition
to the memory organization and management of current
CNN accelerators.

Experimental results show that, compared to a conventional
design, Gated-CNN combats both NBTI and HCI aging effects
with an average reduction of the ‘0’ duty cycle, flip, and access
patterns for all the cells by 71, 88, and 96%, respectively. This
ensures average Vth degradation savings in all the cell transistors
at least as high as 49% depending on the type of transistor.
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Figure 2: Implementation of a 6T SRAM cell, distinguishing between inverter
loop PMOS (TPi) and NMOS (TNi) transistors, as well as NMOS (TWi) pass
transistors.

The rest of this paper is organized as follows. Section 2
provides a background for this work. Section 3 describes the
modeled framework. Section 4 introduces the aging characteriza-
tion study. Section 5 presents the proposed Gated-CNN design.
Section 6 refers to the experimental evaluation. Section 7 com-
ments on related work, and finally, Section 8 summarizes this
paper.

2. Background

This section discusses how NBTI and HCI affect the tran-
sistors used to implement SRAM memory cells. Then, it in-
troduces the state-of-the-art aging-aware mechanism for CNN
accelerators. The section concludes with a description of the
power-gating technique as a mean to mitigate aging.

2.1. Aging Effects

NBTI and HCI are two of the main detrimental effects that
gradually increase the transistor’s threshold voltage (Vth) over
the lifetime of a circuit. Figure 2 depicts the implementation of
a typical SRAM cell consisting of 6 transistors (6T cell). The
four transistors labeled as either TPi or TNi form an inverter
loop storing the logic value, whereas the remaining two TWi

transistors act as pass transistors, controlled by the wordline
(WL) signal, to access the cell contents through the bitline (BL)
and its complementary (BL).

The NBTI phenomenon mainly affects PMOS transistors
when a logic ‘0’ is applied to their gates. In a 6T cell, this takes
place in two ways. When the cell is under a ‘0’ duty cycle, that is,
when the cell is stable and stores a logic ‘0’, the transistor TP0 is
under stress and is affected by NBTI. On the contrary, under a ‘1’
duty cycle, the counterpart transistor TP1 suffers from NBTI. The
degradation caused by each type of duty cycle is complementary,
meaning that, for a given duty cycle, the PMOS transistor not
under stress is partially under recovery from the NBTI effect.
In other words, under a ‘0’ (‘1’) duty cycle, TP1 (TP0) is under
a partial recovery phase. Thus, if every bit cell of a memory
array experiences a balanced duty cycle ratio (50% for each
logic value), the wearout effect is evenly balanced between the
two PMOS transistors and minimized compared to other cells
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with a higher duty cycle distribution. However, a balanced duty
cycle ratio is unusual in a conventional design.

dVthNBTI = ANBTI × tox ×
√

Cox × (Vdd − Vt0 )×

(1 −
Vds

αNBTI × (Vdd − Vt0 )
) × e

Vdd
tox×ENBTI

− Ea
k×T ×

tstress
0.25 × (1 −

√
etha ×

trec

tstress + trec
)

(1)

Equation 1 shows the standard formula to compute the Vth

degradation (dVth) of a PMOS transistor due to the NBTI phe-
nomenon [17]. Parameters tstress and trec denote the amount of
time (in seconds) that the transistor is under stress and recovery
modes, respectively. In a 6T cell, TP0 and TP1 accumulate tstress

time when the cell stores a logic ‘0’ and ‘1’, respectively. Refer
to Section 6.1 for further details about the remaining parameters.

On the other hand, HCI mainly affects NMOS transistors
when there is a logic value transition at their gates. In a 6T cell,
TN0 and TN1 transistors are affected if the stored logic value
flips as a consequence of a write operation. On the other hand,
every cell access (read/write operation) induces HCI wearout
to the TW0 and TW1 transistors. Note that the impact of HCI is
proportional to the on/off switching frequency, and, contrary to
NBTI, there is no recovery phase. Therefore, HCI is minimized
when the number of accesses to a cell is reduced and writes do
not change the stored value.

dVthHCI = AHCI × αHCI × f × e
Vdd−Vt0

tox×EHCI ×
√

t (2)

The contribution of the HCI effect to the dVth of an NMOS
transistor is computed using the standard Equation 2 [18]. Pa-
rameter t refers to the amount of time (in seconds) that the gate
transitions from ‘0’ to ‘1’ and vice versa. In a 6T cell, transis-
tors TN0 and TN1 accumulate t time when the stored value flips,
whereas transistors TW0 and TW1 do the same when the wordline
is driven from high to low and vice versa. See Section 6.1 for
further details about the remaining parameters.

2.2. State-of-the-Art Aging-Aware Mechanism for CNN Accel-
erators: DNN-Life

The state-of-the-art DNN-Life technique has faced the NBTI
effect in the on-chip SRAM buffer of CNN accelerators storing
weights of neural networks [16]. DNN-Life proposes to periodi-
cally invert the weights buffer contents to balance the duty cycle
distribution. In particular, the technique encodes weights in such
a way that bits to be written in this buffer are randomized. After
a read operation, weights are decoded back to the original value
before feeding the processing elements. However, by periodi-
cally bit-flipping the cell contents, DNN-Life exacerbates the
HCI effect.

2.3. Power-Gating Opportunity
Power-gating is a well known technique to drastically re-

duce the power consumption of memory structures [27]. This
technique can be also leveraged to mitigate aging effects.

An aging-aware power-gating configuration consists of an
NMOS high-Vth sleep transistor connecting the 6T cell to ground.
In this way, the cell ground terminal is connected to a virtual
ground. When the sleep transistor drives current (active state),
the cell operates as usual, yet with a ground voltage equal to
the virtual ground. On the contrary, when the sleep transistor is
off (switch-off state), the cell is disconnected from the ground
and both TP0 and TP1 transistors remain partially under recovery
from NBTI at the same time, since both cell nodes hold a logic
‘1’ [28]. Of course, as long as the cell remains off, not only high
duty cycle distributions are reduced to combat NBTI, but also
cell contents are neither accessed nor flipped, preventing HCI
wearout. Notice too that, contrary to NMOS cell transistors, the
NMOS sleep transistor is resilient to HCI since it is implemented
using a high-Vth device [29, 30].

3. Framework Overview

This section introduces the framework for our proposed
aging-aware mechanism, which consists of a description of the
subset of studied CNN benchmarks, and an overview of the CNN
inference accelerator model used in this work as a baseline.

3.1. Benchmarks
We selected a variety of widely used CNNs focusing on

classification and regression tasks. Table 1 summarizes the main
characteristics of these benchmarks. We used colorectal histol-
ogy [31] and ImageNet [32] as datasets for the image classifi-
cation tasks, whereas IMDB reviews and Udacity’s self-driving
car simulator have been used as datasets for the sentimental
classification and regression tasks, respectively.

The number of layers of the studied benchmarks largely
differ among each other, from the narrowest CNN consisting
of 4 layers (SentimentalNet) to the deepest CNN including 126
layers (DenseNet). Benchmarks also present disparate memory
storage requirements. The smallest activation layer of every
CNN consists of a few tens of KB at most and refers to either
a pooling or a later convolutional layer (shown in parentheses).
On the other hand, for all the CNNs except SentimentalNet, the
size of the largest activation layer is in the order of MB and
corresponds to the first convolutional layer. Overall, the average
layer size ranges from 15 KB (SentimentalNet) to 1.32 MB
(VGG16).

Finally, this work assumes 16-bit fixed-point words to rep-
resent both activations and weights, which is a common choice
for most inference accelerators [1, 2, 4, 5, 6, 9]. The rightmost
column in the table shows the required number of integer and
fraction activation bits for each benchmark to avoid accuracy
losses with respect to the top-1 accuracy assuming a 32-bit
floating-point (IEEE-754) data type. Remark that the bit over-
provisioning with 16-bit words is extended to the fraction part.
Otherwise, devoting more than necessary bits for the integer part
would translate into integer most significant bits with a 100% ‘0’
duty cycle, thereby exacerbating NBTI in those bit cells. Notice
too that, similarly to previous works [3, 8, 10], this implies our
modeled baseline accelerator to dynamically adjust the number
of integer and fraction bits required by each benchmark.
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Table 1: Overview of the studied CNN benchmarks. Labels Conv, FC, and DWConv stand for convolution, fully-connected, and depth-wise convolution layers,
respectively. DWConv layers process a different weight filter on each channel of an input image.

Benchmark Task Depth Smallest Largest Average Activation
layer size layer size layer size representation

AlexNet [19] Image 5×Conv, 3×FC, 18 KB 0.58 MB 153 KB 4 integer bits &
classification 3×MaxPooling (MaxPooling3) (Conv 1) 4 fraction bits

ZFNet [20] Image 5×Conv, 3×FC, 18 KB 2.28 MB 324 KB 4 integer bits &
classification 3×MaxPooling (MaxPooling3) (Conv 1) 6 fraction bits

VGG16 [21] Image 13×Conv, 3×FC, 49 KB 6.4 MB 1.32 MB 3 integer bits &
classification 5×MaxPooling (MaxPooling 5) (Conv 1) 8 fraction bits

SqueezeNet [22] Image 26×Conv, 3×MaxPooling, 3 KB 2.4 MB 431 KB 6 integer bits &
classification 1×GblAvgPooling (Conv 26) (Conv 1) 4 fraction bits

MobileNet [23] Image 15×Conv, 13×DWConv, 49 KB 1.55 MB 340 KB 4 integer bits &
classification 1×GblAvgPooling (DWConv 12) (DWConv 1) 9 fraction bits

DenseNet [24] Image 120×Conv, 1×MaxPooling, 12 KB 1.6 MB 3 integer bits &
classification 3×AvgPooling, 1×FC, (Conv 120) (Conv 1) 254 KB 5 fraction bits

1×GblAvgPooling
SentimentalNet [25] Sentimental 1×Conv, 1×MaxPooling, 15 KB 30 KB 15 KB 0 integer bits &

classification 2×FC (MaxPooling 1) (Conv 1) 5 fraction bits
PilotNet [26] Turning 5×Conv, 5×FC 2 KB 0.13 MB 26 KB 0 integer bits &

angle regression (Conv 5) (Conv 1) 7 fraction bits

Processing
Elements  
Array (8x8) 

I/O  
Buffer2 
(2 MB) 

Off-Chip  
Memory
(DRAM)

I/O  
Buffer1 
(2 MB) 

Weights Buffer  
(2 MB)

 Dispatcher

Control Unit

CNN Accelerator

Dispatcher

Dispatcher

Figure 3: Overview of the baseline CNN accelerator.

3.2. Baseline CNN Accelerator Architecture

Our modeled baseline CNN architecture is based on state-
of-the-art accelerator models from both the academia and the
industry to speed up the inference process in CNNs, such as Da-
DianNao [2], Google’s TPU [5], Eyeriss [6], and Bit-Tactical [9].
Figure 3 depicts the hardware organization of the baseline ac-
celerator consisting of an 8×8 Processing Element (PE) array, a
couple of 2 MB Input/Output (I/O) buffers for activation storage,
a 2 MB weight buffer, dispatchers for every buffer, and a control
unit. The computational and storage resources have been sized
according to the domain of embedded systems [33].

The PE array is a systolic array processor conformed by 64
PEs interconnected through a two dimensional mesh. Each PE
independently computes 16-bit fixed-point dot-products through
partial sums with an input activation from one I/O buffer, acting
as input buffer, and a weight from the weight buffer. The dataflow

in the PE array corresponds to the output stationary approach
described in Eyeriss [6] and SCALE-Sim [34].

The memory buffers provide intermediate storage for both
activations and weights to reduce costly off-chip memory ac-
cesses. Since faulty weights have a much less impact on the
network accuracy than faulty activations (see Figure 1), this
work focuses on aging mitigation in the I/O buffers.

In the same way as EIE [4] and Alcolea et al. [11] inference
accelerators, the I/O buffers swap their roles on every inference
step. We define an inference step as the processing of the out-
put activations of a neural network layer given a set of input
activations from the previous layer and weights. In this way, a
given I/O buffer stores even layers and the counterpart buffer
stores odd layers. On the contrary, the weight buffer caches
weights to be issued in the proper order by the dispatcher to the
PE array. Subsequent inference steps replace old weights with
those required by the current step.

The relatively small I/O buffer size implies to spill the acti-
vations to off-chip memory when a layer does not fit in 2 MB.
According to Table 1, this issue only affects ZFNet, VGG16,
and SqueezeNet. More precisely, a single layer of ZFNet and
SqueezeNet exceed the I/O buffer size, whereas 4 out of 21
layers from VGG16 exceed this size.

Unlike CPU and GPU caches arranged in sets and ways,
the I/O buffers are arranged as scratchpad memories split into
banks and sub-banks to provide enough bandwidth to the parallel
processing in the PE array. In particular, each buffer consists of
eight 256 KB banks. In turn, each bank is composed of eight
32 KB sub-banks. Activations are sub-bank interleaved and
sequentially arranged bank after bank [3, 12]. This implies that
the first 256 KB activations of a layer are always stored in bank0.
Notice too that the three most significant bits of an I/O buffer
address denote the bank where the requested activation is to be
found.
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Figure 4: ‘0’ duty cycle distributions on each bit position of the 16-bit active words.
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Figure 5: Normalized bit flips on each bit position of the 16-bit active words with respect to the worst-case bit cell with the highest flip peak.

Finally, all the dispatchers are capable to transmit up to eight
16-bit activations or weights per cycle. Dispatchers are driven
by the control unit, which exploits control information of the
currently computed layer.

4. Characterization Study

Characterizing the duty cycle, bit flip, and access patterns
provides insights on the impact of both NBTI and HCI aging
effects in the cell transistors of the I/O buffers. The presented
results are restricted to one of the two I/O buffers. However,
they are very similar for the two buffers. This study refers to
the baseline approach, where neither NBTI nor HCI mitigation
mechanisms are employed.

4.1. Duty Cycle Distribution
Figure 4 depicts the ‘0’ duty cycle distributions (i.e., per-

centage of time storing a logic ‘0’ over the total execution time)
experienced in every 16-bit activation word, represented in little-
endian. The complementary distributions refer to the ‘1’ duty
cycle. The distributions include the ‘0’ duty cycles for every
active cell storing useful bits. That is, the figure does not include
the effect of duty cycles (either 100% ‘0’ or ‘1’ duty cycles)
causing the maximum NBTI degradation in idle memory cells2.

2For every box-and-whisker distribution plotted in this work, top and bottom
box edges specify the 75th and 25th percentiles, lines within the boxes represent
the median, and whiskers denote the maximum and minimum values.

Apart from AlexNet and ZFNet, a biased ‘0’ duty cycle can
be seen in the sign bit (15th bit) for every benchmark. In fact, for
VGG16, SqueezeNet, and MobileNet, no negative activations
are written in the I/O buffers, exacerbating NBTI in the sign bit.
Recall that the integer part varies in number of bits depending on
the benchmark, occupying until the 9th bit at most in SqueezeNet
(see the rightmost column of Table 1). The ‘0’ duty cycle is also
biased in most of these bits, and particularly the most significant
ones, highlighting that the majority of activations are close to
zero. On the other hand, a high ‘1’ duty cycle in a few bits can
be seen in benchmarks like MobileNet and DenseNet.

In contrast to sign and integer bits, fraction bits show a
broaden duty cycle distribution, pushing the median toward the
ideal 50% duty cycle. However, in benchmarks like VGG16
and SqueezeNet, the median ‘0’ duty cycle exceeds 90% for all
the bit positions. Moreover, long ‘0’ and ‘1’ duty cycles can
be seen in many bit positions for applications such as AlexNet,
SqueezeNet, and SentimentalNet.

Overall, NBTI wearout, from either ‘0’ or ‘1’ duty cycles,
is appreciated not only in the sign and integer bit cells, but also
in many cells storing fraction bits. That is, prior aging-aware
techniques for CPU architectures working at a word granularity
like [35, 36, 37] would be ineffective in CNN accelerators.

4.2. Flip and Access Distributions

Figure 5 illustrates the normalized number of flips on every
active bit cell with respect to the worst-case cell accumulating
the highest flip peak for each benchmark. As expected from
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Figure 6: Normalized number of accesses (reads and writes) of DenseNet across
the entire addressing space with respect to the memory address with the highest
number of accesses.

the previous analysis, the sign and integer bits, where the duty
cycle is generally highly biased, show a lower number of flips
compared to the fraction bits, where the duty cycle is generally
less biased and a higher amount of flips are observed.

The flip pattern shows that few cells suffer from a high
number of flips close to the highest flip peak, since all the boxes
stay below 50% of the flip distribution. However, those cells are
spread across all the fraction bits for all the studied benchmarks.

Note that unpredictable CNN workload input values may
cause different duty cycle and flip patterns. However, since the
proposed approach combats wearout in all the cell transistors
(see the next section), unpredictable workloads would benefit
from the proposed technique in the same way as predictable
workloads.

Figure 6 plots the normalized number of read/write accesses
to every byte of an I/O buffer with respect to the byte with the
highest access peak. Results are restricted to DenseNet. The
remaining CNNs show similar access patterns. X axis is shown
in logarithmic scale for illustrative purposes.

Most accesses are skewed toward low-order words, since
every layer of a network is stored from address 0x0 onward. In
addition, considering all the studied benchmarks, the average
number of read operations is 201× higher than writes due to the
activation reuse exhibited in convolutions. Therefore, TWi pass
transistors are far more exposed to HCI degradation than TNi

inverter loop transistors.

5. Proposed Approach: Gated-CNN

This section introduces the proposed Gated-CNN design.
First, we show a general overview of the approach, which con-
sists of four main modules. Then, these modules are described
in detail. Finally, timing, power, energy, and area overheads are
also discussed.

5.1. General Overview

Based on the previous characterization study, Gated-CNN is
aimed at minimizing both NBTI and HCI aging effects in every
cell transistor of the I/O buffers of CNN accelerators. To do
so, the key idea of Gated-CNN is to combine a bank address
rotation scheme with a bank power-gating mechanism to spread
out not only flip and access patterns but also switch-off cycles to
balance duty cycle distributions across all the banks.

Gated-CNN leverages the following properties of CNN ap-
plications and specific-domain accelerators:

• The memory size of activation layers largely differ not
only among different CNN applications but also among
layers of a given CNN (see Table 1), leading to a dynamic
under-utilization of the I/O buffers.

• CNN applications expose both temporal and spatial local-
ities in a predictable manner. Once the activations of a
layer have been read in order to compute the activations
of the next layer, the former activations are not reused
anymore.

• CNN accelerators include two I/O buffers that alterna-
tively exchange input and output roles forcing a given
buffer to store even or odd layers (see Section 3.2).

Consequently, the dynamic under-utilization is exploited to
propose a cyclic storage of activation layers in successive banks,
ensuring an homogeneous bank usage. Moreover, after using an
activation layer to compute the next one, those banks storing the
former stale layer are powered off. Notice too that exchanging
buffer roles maximizes the period of time in which these banks
are powered off.

The Gated-CNN component is coupled to one I/O buffer.
That is, two Gated-CNN components are required for the base-
line CNN accelerator. In addition, the proposed approach is
designed for an I/O buffer with 8 banks. However, it could be
redesigned to support a different number of banks with minor
changes.

Figure 7 depicts the architecture of the four main modules
of Gated-CNN. The effective bank module calculates the effec-
tive bank id where a requested activation is to be found in the
I/O buffer. In addition, it forwards the starting bank id of the
currently stored layer to the inter-bank rotation module. This
module identifies the starting and ending banks required by the
next inference step (next layer to be stored in the buffer), and
forwards this information to the power-gating bitmap generator
module. According to such banks, the power-gating bitmap gen-
erator computes a bitmap array that states which banks should
be powered on/off in the next inference step. This bitmap is
forwarded to the bitmap update module. This module updates
the on/off state of the bank power-gating sleep transistors at
runtime, masking the bank wake-up latency penalty.

5.2. Effective Bank Module
To request a given activation to the I/O buffer, the control

logic of the accelerator refers to a logical address computed
as an offset (in bytes) from the first activation of the currently
stored layer in the buffer (i-th layer). Such a first activation
is stored at address 0x0 (physical base bank0) by default. The
input reqBnkLyr i refers to the three most significant bits of the
logical address, identifying the logical bank storing the requested
activation (see Section 3.2).

The effective bank module translates from a logical to an ef-
fective physical bank. To do so, the 3-bit register labeled as sBnk
contains the physical base bank id (from bank0 to bank7) where
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d

bnksLyr_i+2 = 1                                                                                                                   bnksLyr_i+2 = 3
end = 4                                                                                                                                end = 0

outEnc outEnc2 2= '00011111' = '00000001'
Cout = '0'                                                                                                                            Cout = '1'

d

ftMap ftMap = '11100001'= '00011000'
(outEnc & outEnc )                                                                                                             (outEnc | outEnc )1 2 1 2

d

currBitmap = '00000111'      currBitmap = currBitmap = currBitmap ='00011111' '00011000' '00011000'
(ftMap | currBitmap)               (ftMap)

d

cmd_pwrOnNxtBnks = 0' '    cmd_pwrOnNxtBnks = '1'       cmd_pwrOnNxtBnks = '0'        cmd_pwrOnNxtBnks = '0'
cmd_useNxtBnks = '0'         cmd_useNxtBnks = '0'            cmd_useNxtBnks = '1'            cmd_useNxtBnks = '0'

t0 t1 t2 = t1 + 10 t3 = t2 + 1Cycle

Description

Inputs,
registers, and
intermediate

signals

Commands

Figure 8: Driving example of the CNN-Gated component, including the state of the inputs, registers, and intermediate signals at specific cycles of the inference
process. Signals not appearing in a given cycle means that the state is preserved with respect to the previous cycle on the left.

the first activation of the i-th layer can be found in the buffer.
This register is implemented with resilient 8T cells to address
aging at the cost of a slight area increase [38, 39]. The adder
outputs the current physical bank of the requested activation
with the addition of the sBnk and reqBnkLyr i bits.

Note that a layer might wrap around the I/O buffer (adder
overflow or carry out bit set to ‘1’). That is, a layer occupying
high-order and low-order banks, leaving free banks in the middle.
Notice too that the adder output is concatenated with the 18 least
significant bits of the logical address to properly index the 2 MB
buffer with a 21-bit address (not shown in the figure).

Finally, the write enable (en) of the sBnk register is driven by
the cmd useNxtBnks signal. This signal is set when the physical
base bank changes as a consequence of the next inference step
storing activations of the new incoming layer. The subsequent
section describes how the sBnk contents are updated.

5.3. Inter-Bank Rotation Module
The inter-bank rotation module cyclically changes the value

in sBnk in a round-robin fashion throughout the banks. The next
incoming layer, that is, the (i+2)-th layer3, starts occupying the
successive available bank with respect to the last bank used by
the previous i-th layer. To do so, the upper adder outputs that suc-
cessive bank id (st bits) with the addition of sBnk, the bnksLyr i

3Remember that the I/O buffers exchange roles in every inference step, mean-
ing that one buffer stores even layers and the other odd layers (see Section 3.2).

input, and the carry in bit set to logic ‘1’. The bnksLyr i input
stands for the number of banks used by the i-th layer, which
is computed as i-th layer size % bank size. The i-th layer size
parameter is derived from the software profiling of the CNN.
Note that bnksLyr i ranges from 0 (a single bank) to 7 (all the
banks). The st bits will be stored in the sBnk register when
cmd useNxtBnks =‘1’ to properly compute an effective bank of
the (i+2)-th layer.

The bottom adder outputs the last bank that will occupy the
(i+2)-th layer (end bits). In contrast to the upper adder, this adder
includes a carry out (Cout) bit, which flags a bank-wrapping
situation for the (i+2)-th layer. The st, end, and Cout bits act as
inputs for the power-gating bitmap generation module described
in the next section.

5.4. Power-Gating Bitmap Generation Module

The power-gating bitmap generator module dynamically
distinguishes between active and idle banks of the incoming
(i+2)-th layer on every inference step. To do so, two binary-
to-thermometer 3:8 encoders are required to generate a power-
gating 8-bit map.

To help understand how this module works, Figure 8 shows
a driving example including the state of the inputs, registers, and
intermediate signals at specific cycles. At cycle t0, the i-th layer
occupies bank0, bank1, and bank2 (sBnk = 0 and bnksLyr i =
2), whereas the (i+2)-th layer will occupy bank3 and bank4
(bnksLyr i+2 = 1). The upper inverse encoder, referred to as

7



Enc1, is fed with the st bits and outputs an 8-bit map in which
bits are set to ‘0’ except those from the st-th bit up to the most
significant bit. In the example, st = 3 generates the output
outEnc1 = ‘11111000’.

On the other hand, the bottom encoder, namely Enc2, is fed
with the end bits. In contrast to Enc1, all the output bits of this
encoder are set to ‘0’ except those from the end-th bit down to
the least significant bit. In the example, end = 4 generates the
output outEnc2 = ‘00011111’.

In order to generate a future power-gating bitmap for the
(i+2)-th layer (ftMap), both encoding outputs are merged as fol-
lows. When Cout = ‘0’, i.e., when st ≤ end, the encoder outputs
are bit-wise ANDed. In the example, outMX1 = ‘00011000’,
meaning that bank3 and bank4 will remain powered on and the
rest powered off in the next inference step at cycle t3. Otherwise,
st > end, the required banks wrap around the I/O buffer. In such
a case, the encoder outputs are bit-wise ORed. This is the case
of the example at cycle t3, where Cout = ‘1’ (st = 5 > end = 0).
Finally, note that Cout determines the appropriate bit-wise oper-
ation by driving the MX1 multiplexer.

5.5. Bitmap Update Module

The purpose of the bitmap update module is to establish
the appropriate bitmap to the power-gating mechanism cycle
by cycle. This module takes as inputs ftMap from the previous
module, and two command signals, cmd pwrOnNxtBnks and
cmd useNxtBnks, specifying, respectively, when the banks re-
quired by the (i+2)-th layer should be powered on and when the
next inference step starts.

The 8-bit currBitmap register, implemented with 8T cells,
stores the current power-gating bitmap applied to the banks, that
is, it refers to the i-th layer. Using the example in Figure 8, this
register stores the bitmap ‘00000111’ at cycle t0. At cycle t1,
those banks required by the (i+2)-th layer start to be woken up
in advance. To do so, cmd pwrOnNxtBnks and cmd useNxtBnks
are set to ‘1’ and ‘0’, respectively. This allows ftMap and cur-
rBitmap to be bitwise ORed, resulting in a new currBitmap =
‘00011111’ (MX1 selection bit = ‘0’ and en = ‘1’), specifying
not only the required banks of the i-th layer but also those of
the (i+2)-th layer set to ON. Like previous works [40, 41], we
assume the wake up latency of a bank to be 10 cycles. That is,
the requested banks are powered on 10 cycles ahead of starting
the next inference step, which ensures the wake-up latency to be
out of the critical path.

At cycle t2, cmd pwrOnNxtBnks and cmd useNxtBnks are
set to ‘0’ and ‘1’, respectively, establishing the proper bitmap
for the next inference step (currBitmap = ftMap = ‘00011000’).
That is, at this cycle, those banks no longer required are powered
off. Notice too that, at the same time, the sBnk contents are
updated accordingly. Finally, at cycle t3, a new ftMap is obtained
according to the size of the subsequent (i+2)-th layer.

5.6. Timing, Energy, Power, and Area Estimations

To measure timing, energy, power, and area numbers, the
proposed Gated-CNN design has been synthesized with Syn-
opsys Design Compiler and simulated with Mentor Graphics

Table 2: Timing, energy, power, and area values for the proposed Gated-CNN
approach and an I/O buffer using a 32 nm technology node.

Gated-CNN I/O buffer Overhead (%)

Access time (ns) 0.19 1.88 10.11
Dyn. energy (pJ) 0.29 162.19 0.18

Leak. power (mW) 1.39 178.14 0.78
Area (mm2) 0.003 3.378 0.09

Modelsim. The technology library corresponds to a low-power
32 nm technology available to European universities. Table 2
summarizes the results. For comparison purposes, results in-
clude the estimations for an I/O buffer and the overheads of
Gated-CNN with respect to the buffer. The I/O buffer has been
modeled with the CACTI-P simulation framework [42].

The access time of Gated-CNN refers to its longest path de-
lay from sBnk to currBitmap registers, which is out of the critical
path. The dynamic energy of Gated-CNN refers to obtaining a
new power-gating bitmap given a set of inputs, whereas these
expenses for the I/O buffer are related to accessing the memory.
Compared to the numbers of the I/O buffer, the overheads of
Gated-CNN are minimal. In addition, both energy and power
overheads are largely compensated with the benefits brought by
power gating idle buffer banks.

Finally, CACTI-P has been also used to model the bank
power-gating in the I/O buffers, including all the sleep transis-
tors and interconnects. The area overhead of the power-gating
technique is by 1.39% with respect to the I/O buffer, which is a
similar overhead as those reported in other power-gating designs
from the industry [43, 44].

6. Experimental Evaluation

This section introduces the simulation framework and aging
model used to obtain the experimental results. Then, these
results are quantified and discussed, including the duty cycle,
bit flips, and accesses for the worst-case memory cell of the I/O
buffers under both the baseline and the proposed Gated-CNN
approach. Finally, a distribution of the Vth degradation for every
transistor is also analyzed.

6.1. Evaluation Setup

We have extended the TensorFlow 2.5.0 simulation frame-
work [45] to model the dataflow of the baseline CNN accelerator
and on-chip memories, including the proposed Gated-CNN de-
sign, and collect processor statistics required to estimate the duty
cycle, bit flip, and access distributions. The dataflow modeling
establishes a cycle-accurate simulation, where the latency of the
on-chip memories and Gated-CNN approach is obtained with
CACTI-P and Synopsys Design Compiler, respectively (see Sec-
tion 5.6). The latency of a partial sum and accumulation in a PE
is assumed to be one cycle.

The aging model presented in Section 2.1 is integrated in
TensorFlow to quantify the Vth degradation in every transistor
according to the experienced tstress and trec times (duty cycle
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Table 3: Main parameters of the NBTI and HCI aging model for a 32 nm
technology node. Values of all these parameters and remaining ones from
Equations 1 and 2 can be found in [17, 18, 46].

Parameter Description Value

tox Oxide thickness 1.65 nm
Cox Gate capacitance per unit area 4.6 × 10−20 F/nm2

Vdd Supply voltage 0.9 V
Vt0 Initial threshold voltage 0.2 V
Vds Drain-source voltage 0.7 V

ENBT I Technological constant 0.2 V/nm
Ea Activation energy 0.13 eV
k Boltzmann constant 8.6174 × 10−5 eV/K
T Temperature 353.15 K
αHCI Activity factor 1

f Clock frequency 1 GHz
EHCI Technological constant 0.8 V/nm
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Figure 9: Longest duty cycle distributions across all the studied benchmarks.
The cross symbol represents the average duty cycles for all the cells. BL and
GC refer to the baseline and Gated-CNN designs.

patterns) and t time (bit flip/access patterns) induced by each
CNN application. Table 3 shows a description and value of the
main parameters of the aging model for a 32 nm technology
node4.

Similarly to [16], experimental results have been obtained
after the inference of 150 images for every benchmark. Such a
number of inferences is enough to stabilize all the studied aging
patterns.

6.2. Duty Cycle Analysis
Figure 9a plots, for all the studied benchmarks, the ‘0’ duty

cycle distribution for the worst-case cell, that is, the longest

4Interested readers may refer to the following URL containing a repository of
the extended TensorFlow simulation framework with the Gated-CNN approach
and aging model: https://github.com/NicolasLanderos/Gated-CNN.

‘0’ duty cycle. Gated-CNN incorporates a switch-off state to
reflect the amount of time that the worst-case cell is powered
off. The cross symbol in every bar refers to the average ‘0’ duty
cycle for all the cells. BL and GC stand for baseline and Gated-
CNN. Like the previous characterization study in Section 4,
we conservatively assume that the baseline results only refer to
active cells storing useful contents. On the contrary, Gated-CNN
uses all the cells, and consequently all of them are included in
the results.

As expected, the maximum ‘0’ duty cycle distribution for
the baseline approach is 100% in every benchmark. In addition,
the average ‘0’ duty cycle is also highly biased, as mentioned
above. On the other hand, by powering off idle banks and
uniformly distributing switch-off cycles across them, Gated-
CNN largely reduces the longest ‘0’ duty cycle beyond 50% in
all the benchmarks apart from AlexNet.

The differences among benchmarks largely depend on the
power-off opportunities provided by the CNN layer dimensions.
In this sense, the highest ‘0’ duty cycle reductions are seen
in SentimentalNet and PilotNet due to these benchmarks have
the lowest average layer size requirements (15 KB and 26 KB,
respectively, see Table 1). Another factor that contributes to
obtain large reductions is the fact that some layers do not fit in the
I/O buffer and they are spilled to off-chip memory. Meanwhile,
all the I/O buffer banks are powered off. Such a number of
switch-off cycles mainly depends on the required processing
time of the layer. The high ‘0’ duty cycle reductions observed in
ZFNet and SqueezeNet are mainly due to both a relatively small
average layer size and a larger than 2 MB layer.

On the other hand, AlexNet does not reduce the ‘0’ duty
cycle as much as expected from the workload characteristics.
This is due to the combination of the sizes of both banks and
layers leading to some banks being more exercised than others
(less switch-off cycles than expected), since these banks recur-
rently store compute-intensive layers. Nevertheless, the obtained
reduction for the worst-case cell is as high as 44% in this CNN,
whereas the average duty cycle reduction reaches a 90%.

Overall, Gated-CNN reduces the average highest ‘0’ duty
cycle by 71%. Taking into account all the cells, the average ‘0’
duty cycle reduction is by 85%.

The counterpart, longest ‘1’ duty cycle distribution, should
be also considered for a complete analysis of the NBTI effect.
Figure 9b shows the results. Unlike the worst-case cells of the
baseline with a 100% ‘0’ duty cycle (Figure 9a), the longest
‘1’ duty cycle distribution for the baseline does not reach 100%
in all the benchmarks. In addition, the average ‘1’ duty cycle
greatly reduces in the baseline scheme. These observations
confirm the presence of more zeros than ones in the activations.
For the Gated-CNN design, the percentage of the switch-off
state in the distribution is the same as in the previous analysis.
Like the baseline, the maximum ‘1’ duty cycle is further reduced
with the presence of zeros. This can be clearly seen in VGG16,
MobileNet, and DenseNet.

In summary, Gated-CNN reduces the average longest ‘1’
duty cycle by 79%. Taking into account all the cells, the average
‘1’ duty cycle reduction is by 93%. Comparing the results of
both duty cycle distributions, transistors TP0 are more exposed
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Figure 10: Normalized highest bit flip and access peaks of Gated-CNN with
respect to the baseline design. The cross symbol refers to the normalized average
bit flips and accesses for all the cells.

to the NBTI effect than transistors TP1 (see Section 2.1).

6.3. Bit Flip and Access Analysis
Figure 10 shows the normalized highest number of bit flips

and accesses of the worst-case cells in the Gated-CNN design
with respect to those cells of the baseline. These results only
refer to active cells storing useful bits in both approaches. Oth-
erwise, the normalized average numbers (cross symbols) would
be skewed toward zero.

By rotating data across banks, Gated-CNN substantially
reduces both the maximum flip and access peaks compared to the
baseline. The largest peak reduction is seen in SentimentalNet.
This is mostly due to every layer fits in a single bank, preventing
flips in the remaining banks. The other benchmarks obtain higher
peaks mostly due to larger layers occupying multiple banks.
However, both the highest flip and access peaks are reduced at
least as much as 49% (VGG16 and ZFNet). In addition, the
average peaks do not exceed a 27% (VGG16) in any benchmark.

Overall, the highest flip and access peaks are reduced on
average by 74%. Taking into account all the cells, the average
reductions are as much as 88 and 96% for flips and accesses,
respectively.

6.4. Sensitivity Study to the I/O Buffer Size
The power-off and rotation capabilities of Gated-CNN not

only depend on the workload characteristics but also on the size
of the I/O buffer. In this work, we have assumed a generic accel-
erator with a total on-chip activation storage of 4 MB (2 MB × 2
I/O buffers) capable to speed up the inference of diverse CNNs
with disparate activation storage requirements. Such an overall
activation storage coincides with the assumed activation storage
for the DNN-Life’s baseline accelerator [16], and it is much less
than the storage capacity of other inference accelerators like the
Google’s TPU with 24 MB for activations [5].

This section evaluates the sensitivity of Gated-CNN to the
I/O buffer size in terms of both the power-off and rotation capa-
bilities. More precisely, the size of the I/O buffer is adjusted to
the largest layer size of each CNN application to quantify the
Gated-CNN benefits only from the workload characteristics (see
Table 1). Like the proposed original approach, a number of eight
same-sized banks is assumed regardless of the buffer size.

Plots in Figure 11 illustrate the previous duty cycle distribu-
tions (Fix) shown in Figure 9 and the new distributions adjusting
the I/O buffers to the largest layer size (Adj). Results only refer
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Figure 11: Longest duty cycle distributions for Gated-CNN. Results differentiate
between a fixed 2 MB I/O buffer size (Fix) and a buffer size adjusted to the
largest layer (Adj).

to the Gated-CNN design. For an adjusted size of the I/O buffer,
the opportunity to switch-off banks significantly decreases in
benchmarks with less than a 2 MB buffer size like Sentimental-
Net and PilotNet, but the longest duty cycle reductions are still
at least as high as 44%. On the contrary, other benchmarks also
with a smaller buffer size, like AlexNet and MobileNet, further
reduce the longest duty cycle with respect to the previous re-
sults. This is mainly due to layers occupying a greater number of
banks, which in turn changes the round-robin bank assignment
to every layer, preventing compute-intensive layers to always
remain in the same banks.

On the other hand, CNNs with more than a 2 MB buffer size
increase the longest duty cycle due to huge layers are not spilled
to off-chip memory anymore, reducing the number of switch-off
cycles. This is the case of ZFNet and SqueezeNet. For VGG16,
the reason for a duty cycle reduction is the same as explained
above for AlexNet and MobileNet.

Notice too that, similarly to the longest duty cycle, the lim-
itations of Adj in number of switch-off cycles due to either a
buffer size reduction or spilling prevention translate into a higher
average duty cycle over Fix in most benchmarks.

To sum up, despite adjusting the I/O buffer size to the largest
layer storage requirements, the average longest ‘0’ and ‘1’ duty
cycle reductions are as much as 63 and 76%, respectively.

Figure 12 depicts the normalized highest flip and access
peaks for fixed (Figure 10) and adjusted buffer sizes. Small
CNNs like SentimentalNet and PilotNet substantially increase
the normalized peaks, especially flip peaks. This is mainly due
to, with an adjusted buffer, layers of small CNNs occupy a larger
number of banks, increasing the likelihood of a higher number
of flips/accesses in a given cell. In spite of this, peak reductions
are at least by 50% with respect to the baseline scheme.

The remaining CNNs show minor peak increases due to
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Figure 12: Normalized highest bit flip and access peaks of the Gated-CNN
approach with respect to the baseline design. Results differentiate between a
fixed I/O buffer size (Fix) and a buffer size adjusted to the largest layer (Adj).
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(a) TPi transistors (NBTI-induced aging)
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(b) TNi transistors (flip HCI-induced aging)
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(c) TWi transistors (access HCI-induced aging)

Figure 13: Normalized dVth for every cell transistor with respect to the maximum
dVth after a 3-year lifetime, distinguishing among different types of transistors
(aging affects).

the same reason as stated above. On the contrary, AlexNet,
VGG16, and SqueezeNet show peak reductions. This is due to
the adjusted buffer size changes the bank rotation assignment in
such a way that reduces the flip and access peaks with respect to
the fixed 2MB buffer size.

Overall, the average maximum flip and access peak reduc-
tions are by 62 and 79%, respectively, compared to the baseline
design.

6.5. Threshold Voltage Degradation

This section analyzes the threshold voltage degradation (dVth)
caused by the studied aging phenomena in all the transistors. The
voltage degradation has been obtained for a 3-year lifetime [47].
The inference of the chosen subset of images is repeated over and
over until the established lifetime is reached [18]. Results differ-
entiate between the two types of aging effects: NBTI-induced
wearout in PMOS transistors (TPi) is derived from Equation 1,
whereas HCI-induced degradation in NMOS transistors is com-
puted from Equation 2. In turn, NMOS transistors are distin-
guished between inverter loop (TNi) and pass transistors (TWi).
Results have been obtained assuming a fixed 2 MB size for the
I/O buffer.

Figure 13a shows the normalized dVth distribution of the
baseline and Gated-CNN with respect to the maximum dVth

after 3 years. The plotted results refer to the NBTI degrada-
tion affecting the TPi transistors. As observed, the proposed
approach reduces the NBTI stress in all the transistors, since
boxes and whiskers are located below those of the baseline in all
the benchmarks. In addition, the heights of the boxes referring
to Gated-CNN are shorter than those of the baseline in most
benchmarks. That is, a more homogeneous NBTI degradation
across all the transistors is achieved by the proposed Gated-CNN
approach in at least a 50% of the cells.

The NBTI-induced dVth savings for the worst-case TPi tran-
sistors range from 20 (AlexNet) to 51% (SentimentalNet). The
average dVth reduction for all these transistors is by 49%.

Figure 13b plots the normalized dVth distribution caused by
the HCI effect in the TNi transistors. Unlike the NBTI effect,
some boxes of Gated-CNN stay above those of the baseline
approach as a consequence of spreading out flips across NMOS
transistors. In other words, HCI is more uniformly distributed
across transistors, which might imply distribution percentiles
above those of the baseline. Nevertheless, like the NBTI effect,
the HCI distribution helps Gated-CNN to obtain thinner boxes
and largely reduce the dVth in the worst-case transistors.

The HCI-induced dVth reduction for the worst-case TNi tran-
sistors ranges from 28 (VGG) to 67% (SentimentalNet). The
average dVth savings for all these transistors is by 68%

Finally, Figure 13c focuses on the HCI effect in the TWi

transistors. Similarly to the previous results, Gated-CNN obtains
thinner boxes with respect to the baseline in most benchmarks,
whereas the worst-case dVth of the transistors is substantially
reduced.

The HCI-induced dVth savings for the worst-case TWi tran-
sistors vary between 29 (ZFNet) and 64% (PilotNet), whereas
the average dVth savings for all these transistors is by 85%.

7. Related Work

Prior related work focusing on aging-aware mechanisms for
on-chip memories can be classified into bit-flipping techniques,
modifying the design of 6T SRAM cells, data rotation schemes,
and power-gating approaches.
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7.1. Bit-Flipping Approaches

A significant amount of work has addressed the NBTI wearout
by periodically inverting the memory contents. The Penelope
processor complements the contents of idle CPU cache blocks
and registers [48]. Gebregiorgis et al. attack the same memory
structures by identifying bit positions with an optimal NBTI
signal probability and inverting the remaining bits according
to such signals [49]. The iRMW mechanism flips the CPU
cache contents depending on the type of write operation [50].
Similarly, recent FPGA designs have also relied on bit-flipping
techniques to address aging effects in both the combinational
and memory CMOS-based circuits [51]. In CNN accelerators,
the state-of-the-art DNN-Life approach periodically flips the
weight buffer contents using a random function. See Section 2.2
for more details.

Bit-flipping techniques effectively balance the cell duty cy-
cles. However, these mechanisms come at the cost of aggravating
the HCI effect.

7.2. SRAM Cell Circuit

Recovery Boosting focuses on NBTI mitigation in CPU
memories by modifying the memory cells in such a way that
both the ground voltage and the bitlines are raised to Vdd when
cell contents are invalid [52]. Kothawade et al. implement CPU
register files combining normally-sized transistors with NBTI-
resilient up-sized transistors in a manner that the latter store
the output of aging-inducing instructions [53]. Ricketts et al.
investigate the usage of robust 8T SRAM cells together with
power saving techniques to minimize the impact of NBTI [38].
Gong et al. employ 8T cells to implement the most significant
bits from CPU integer registers, since they present highly biased
‘0’ duty cycles, whereas 6T cells are used for the remaining
bits [39]. Dounavi et al. take advantage of a cell aging predic-
tion mechanism along with a repairing technique using spare
cells [54].

Unfortunately, either spare cells, up-sizing, or adding more
transistors to the 6T SRAM cell design imply high area and
power overheads, preventing the adoption of these techniques in
area and power-constrained designs like CNN accelerators.

7.3. Rotation Schemes

Dynamic Indexing identifies idle cache blocks where Vdd can
be reduced to alleviate NBTI degradation, and uniformly spread
out such idle blocks across the cache with different index update
functions [55]. Colt attacks both the HCI and NBTI effects in
CPU caches [56]. The former effect is minimized by applying
a cache set rotation using an LFSR, whereas the latter effect
is combated by periodically complementing the memory con-
tents. Proactive Recovery establishes a suspended NBTI wearout
mode on a rotating basis thanks to including spare cache mem-
ory arrays in the CPU design [57]. Other works focus on NBTI
mitigation in CPU registers, where both inter and intra-register
bit rotation mechanisms are performed, either splitting the reg-
ister in two halves [35], introducing a barrel-shifter between
the address decoder and the memory cells [36], or proposing
alternative physical-to-logical register mappings [58].

These techniques cannot be directly applied to domain-
specific CNN accelerators since: i) the memory organization
and management in general-purpose processors is different, and
ii) the memory demands and the temporal/spatial localities of
general-purpose applications largely differ with respect to those
of CNN applications.

7.4. Power-Gating

Power-gating has been previously exploited in CPU and GPU
architectures to alleviate transistor aging. Valero et al. focus on
CPU caches by power gating zero data bytes and rearranging
the bytes of the cache blocks to uniformly distribute power-off
cycles among all the bytes [37]. Such a rotation scheme is
ineffective in CNN accelerators according to the characteriza-
tion study shown in Section 4. In addition, the percentage of
null bytes in CNN activations can be rather low (e.g., 13% in
AlexNet). Finally, fine-grain power-gating schemes impose a
large area overhead, making such approaches impractical for
area-constrained embedded systems.

The ARGO approach exploits the observation that some
GPU registers are never used, and consequently power gates
such registers [40]. The RC+RAR technique also exploits this
observation, and increases the power-gating opportunities by
compressing entire GPU registers using a variation of the base-
delta-immediate compression algorithm [59]. In addition, both
ARGO and RC+RAR approaches modify the wavefront register
allocation to distribute switch-off cycles among all the registers.
The under-utilization of GPU register files is caused by badly
programmed applications where the underlying GPU hardware
is not taken into account. Contrary to such general-purpose
applications, the memory under-utilization of CNN applications
dynamically changes at runtime and is caused by the unique
memory demands of these applications, requiring specific solu-
tions for CNN accelerators.

8. Conclusions

Negative Bias Temperature Instability (NBTI) and Hot Car-
rier Injection (HCI) are two of the main aging phenomena that
compromise the system’s lifetime reliability. Both effects de-
grade the transistor’s threshold voltage (Vth) over time, making
transistors slower and eventually resulting in timing violations.
These effects are especially critical in those transistors used to
implement SRAM memories because they are permanently ag-
ing. In this sense, NBTI affects transistors when a cell stores
a given logic value for a long period (i.e., a long duty cycle),
whereas HCI manifests when the cell content is accessed and
flipped.

On the other hand, the slowdown of the transistor scaling
has become one of the major drivers toward domain-specific
accelerators, which deliver a higher performance-to-power ra-
tio with respect to general-purpose processors. Convolution
Neural Network (CNN) accelerators have consolidated as com-
modity devices that speed up the inference process required on
classification and regression tasks. These accelerators usually
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implement large on-chip SRAM memories to cache the neu-
ral network parameters consisting of weights and activations,
thereby minimizing costly off-chip memory accesses.

This paper has identified those cell transistors of on-chip
SRAM activation memories of CNN accelerators that age the
most from the perspective of both NBTI and HCI effects. Based
on this information, this work has presented Gated-CNN, a novel
microarchitectural technique that reduces the largest duty cycles
by power gating specific memory cells, and evenly distributes
the access and flip patterns across all the cells with an address
rotation mechanism.

Experimental results have shown that Gated-CNN extends
the lifetime of the cell transistors with average Vth degradation
savings at least as much as 49% depending on the type of tran-
sistor.

As for future work, we plan to characterize other aging phe-
nomena in CNN accelerators, like time dependent dielectric
breakdown and electromigration effects, and explore new mi-
croarchitectural techniques contributing to the device lifetime
extension.
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