
peRISCVcope: A Tiny Teaching-Oriented
RISC-V Interpreter

Darı́o Suárez Gracia, Alejandro Valero, Rubén Gran Tejero, Marı́a Villarroya, and Vı́ctor Viñals
Department of Computer Science and Systems Engineering

Universidad de Zaragoza
Zaragoza, Spain

{dario,alvabre,rgran,mvg,victor}@unizar.es

Abstract—The fast advances of computer systems translate
into a growing demand of methodologies and tools to introduce
those novelties into classes. Among the plethora of those advances,
virtualization has become an essential technology in almost every
relevant system stack, from connected cars to hyperscaled cloud
servers. However, introducing those technologies into the classroom
remains a challenging task because of the huge complexity of their
software components that may hinder the learning process of
students. peRISCVcope aims to help in this area by proposing a
tiny yet powerful interpreter to dig into virtualization technologies,
such as the implementation of trap&emulate hypervisors.

With less than 2,000 lines of code, and thanks to the conciseness
of the RV32I base instruction set of RISC-V, peRISCVcope enables
students to make virtualization knowledge their own. This paper
presents our experiences developing and testing a virtualization
laboratory where students implement parts of an interpreter.
After the practical experience, peRISCVcope has been proved as
a useful pedagogical tool, and, most importantly, students have
positively rated the experience.

Index Terms—Education, interpreter, RISC-V, virtualization.

I. INTRODUCTION

Teaching everyday computing technologies requires the
combination of multiple class activities to ensure the learning
progress of the students. Laboratories are one key activity
where students implement theoretical concepts with adapted
tools. There exist a deluge of tools and frameworks for many
topics, including programming and digital design. However,
for certain advanced topics such as virtualization, the pool
of available tools is very scarce. As a result, students often
lack hands-on experiences on how binary interpreters and
hypervisors work.

This paper presents peRISCVcope, a work-in-progress RISC-
V pedagogical interpreter aimed at teaching virtualization and
computer architecture concepts. Its main goal is to provide a
simple yet powerful environment where teaching implications
take precedence over performance in all design decisions.

RISC-V is an open Instruction Set Architecture (ISA)
designed at the University of California, Berkeley [14]. While
originally designed for research and education, RISC-V is
currently evolving into a contender to the mayor players,
ARM and AMD64/x86-64, as a general-purpose ISA in almost
every application domain from embedded to high-performance

computing. RISC-V offers an extensible architecture with cus-
tomization capabilities that no other ISA provides. In addition,
public and private investments are fueling its advancement,
which, in turn, will soon require a large workforce for its
development.

For students, knowing RISC-V is a must-have skill, and, from
the pedagogical point of view, RISC-V offers an orthogonal and
small base set of instructions, RV32I, with an excellent trade-
off between capabilities and complexity. As a consequence,
RISC-V attracts the interest of students and can help making
assignments more appealing to them.

Virtualization has established itself as a key technology
in almost every computing segment; e.g., automotive or
cloud computing. However, from a teaching point of view,
virtualization presents many challenges because it requires
knowledge from operating systems, ISAs, and so forth. In
addition, it demands strong abstraction capabilities of students
to understand how a software layer presents a virtual device;
e.g., a processor to another software such as an operating
system [9].

This work presents a learning-by-doing experience focused
on specific laboratories that implement some of the key aspects
of hypervisors and interpreters. Designing these laboratories has
required to propose the peRISCVcope pedagogical interpreter,
which is powerful enough for students to experiment many
of the real issues of hypervisors and interpreters. In addition,
peRISCVcope streamlines all the side aspects of complex
software projects. To assist students, it also provides build
support and a set of compiled RISC-V binaries for testing.

Our initial experiences with peRISCVcope have been suc-
cessful, and, after three 2-hour laboratory sessions, students
were able to complete a RV32I interpreter.

The rest of this paper is organized as follows. Section II
introduces the academic environment of the project. Section III
surveys the related work. Section IV describes the proposed
peRISCVcope interpreter. Section V presents the proposed
laboratories and students feedback, and finally, Section VI
concludes the article and discusses future directions.

II. ACADEMIC CONTEXT AND RATIONALE

This section describes the contents of the two main courses
where the proposed peRISCVcope interpreter is expected to
be used.978-1-6654-5950-1/22/$31.00 ©2022 European Union



The University of Zaragoza offers all levels of computer
science and engineering studies, from a common 4-year
bachelor’s degree in Computer Science and Engineering (CSE)
to a specific master’s degree in Robotics, Graphics, and
Computer Vision (RGCV) together with PhD training.

During the last semester of the CSE program, students take
a mandatory course on resilience and security, which consists
of six ECTS1. These credits correspond to an average of 150
student working hours, and, in the University of Zaragoza, to
60 face-to-face class hours, including lectures, problems, and
laboratory work. In this course, students dive into the details on
the internals of a virtual machine. The syllabus includes topics
from the implementation of the required software to virtualize a
machine, to the hardware extensions that enhance virtualization.
While Smith and Nair’s book on virtual machines covers most
of the theoretical course contents [11], there is a lack of a
simple tool that assists students in hands-on labs. Therefore,
using a tool with a shallow learning curve is an appealing
methodology to strengthen virtualization concepts.

The RGCV Master is a completely different program that
aims to provide specific education in research, innovation, and
development on robotics, graphics, and computer vision. During
the first semester of the degree, students take a mandatory
course on programming and architecture of computing systems,
organized in the same way as the previous CSE course with
six ECTS credits. In this course, students learn advanced
concepts on computer architecture and gain some parallel
programming skills with the C++ programming language.
From the teaching perspective, the main challenge of this
course is to accommodate students with diverse backgrounds,
including Computer Science, Mathematics, Telecommunica-
tions Engineering, Physics, or Electrical Engineering. Since
the schedule of the course is very tight, activities that combine
learning of different topics such as programming and computer
architectures are very appealing. One of these activities that
could combine multiple topics could be crafting an interpreter.
Students would be exposed to the details of an instruction
set while they write code, establishing a relationship between
computer architecture and programming skills.

III. RELATED WORK

There are plenty of tools to interpret, simulate, and/or virtual-
ize the RISC-V architecture. For example, rv8 provides a suite
of tools, including a RISC-V to x86-64 binary translator, a user-
mode simulator, and a full-system emulator [2]. The eXtensible
Versatile hypervISOR, XVISOR, provides a pure monolithic
hypervisor oriented toward embedded virtualization [7, 6]. For
some years, the standard Linux virtualization software stack
of QEMU/KVM provides RISC-V support [3].

However, none of the above tools are teaching oriented
teaching. They include a large base of source code, usually with
complex patterns, and tend to prioritize performance over code
readability when required. Therefore, they are not suited for

1ECTS refers to European Credit Transfer and accumula-
tion System: http://ec.europa.eu/education/resources-and-tools/
european-credit-transfer-and-accumulation-system-ects en.

an academic laboratory. On the contrary, Palicherla et al. offer
an excellent tool to learn how to build a hypervisor following
a hands-on approach with several labs. They propose HOSS,
a small OS that can virtualize itself [5]. HOSS is based on
MIT’s JOS teaching-oriented OS2 and runs on x86 and AMD64
architectures. Ideally, to strengthen learning, students should
use JOS during their studies on operating systems, and, later
on in advanced courses, HOSS to learn virtual machines and
interpreters, imposing a strong requirement between courses.
peRISCVcope aims to avoid having any previous requirement
at the cost of providing less architectural details than HOSS.
In addition, HOSS does not provide support for the RISC-V
architecture.

Other authors have focused on providing sources to present a
vertical approach into systems, from binary data to parallelism,
but excluding virtualization [8, 4]. Often, virtualization concepts
only appear as short chapters or appendices in many traditional
operating system books [10, 12, 1].

IV. PROPOSED PERISCVCOPE ARCHITECTURE AND
IMPLEMENTATION

This section describes the internals and taken implementation
decisions during the development of the current version
of peRISCVcope.

RISC-V is a highly modular architecture. Originally designed
for research and education, it is currently evolving toward
becoming a competitor to the dominant ARM and x86/x86-
64 architectures. The original education goal facilitates its
adoption as a reference ISA for developing interpreters and
virtual machines oriented to teaching. In addition, the fact that
the ISA is fully virtualizable also helped in its choice for this
project.

Within RISC-V modules, and, for the sake of simplicity,
peRISCVcope only targets the version 2.1 of the RV32I
Base Integer Instruction Set, which was ratified in 2019.
Since RV32I has only 40 unique instructions, which were
selected as a minimum base to support a modern operating
system, we found this reduced set the perfect substrate for
implementing a teaching oriented interpreter. Furthermore, there
is a strong RISC-V tool-chain support for both bare-metal and
Linux systems, ensuring the ability to create binaries and the
availability of tools like readelf or objdump to assist the
programmer during the development process.

While the choice of RISC-V was clear since the very
beginning of this project, selecting the proper programming
language took several iterations. C, C++, and Rust made
the short list of candidates. The safe memory guarantees of
Rust were very appealing, but the fact that students have
not been previously exposed to such a language removed
Rust from the list of candidates. Between C and C++, the
latter was chosen for several reasons. First, in the master
course (see Section II), students already use C++ for many
labs because this programming language has been embracing
concurrency and parallelism since its C++11 version. Second,

2https://pdos.csail.mit.edu/6.828/2018/overview.html



main
interpreter

loop 

memory

instructions

processor

Fig. 1. Principal peRISCVcope software modules. The arrows represents
the dependencies among them. The right modules correspond to the virtual
machine state and interpretation routines, while on the left side, the interpreter
loop fetches, decodes, and executes the instructions with the help from other
modules.

undergraduate students experience with C during many courses
of the computer engineering program, so having more practice
with C++ would strengthen their object-oriented programming
skills and help learning how to perform low-level programming
with a high-level language. Last but not least, object-oriented
programming offers a straightforward mapping between the
virtualized elements and their code.

peRISCVcope design is based on simplicity to support
student learning. One of the first design decisions was excluding
input/output virtualization to simplify the implementation, since
it eliminated many asynchronous operations. We think Virtual
I/O, although important in any system, can be left out for a
first contact with virtual machine development.

Figure 1 presents the main software modules, which corre-
spond to the main virtualized resources: processor and memory.
First, the processor module stores the main architectural state
of the processor, including all the registers of the system.
Second, the memory module provides two main capabilities:
i) supporting binary load into the virtualized memory, and ii)
accessing the virtualized memory, which requires the translation
from the binary physical to the interpreter virtual address spaces.
Third, the instructions module deals with instruction decoding
and semantics. This division would facilitate the interpretation
of other architectures, if required, because the memory module
could remain almost unchanged. Finally, the main module
contains the main function of the executable and the main
interpreter loop.

Listing 1. Main interpreter loop.
1 size_t exec_instrs{0};
2 address_t pc{0x0}, next_pc{0x0};
3 do {
4 // fetch
5 pc = proc.read_pc();
6
7 // decode
8 uint32_t raw_instr{mem.read<uint32_t>(pc)};
9 instruction instr{raw_instr};
10
11 // dispatch & execute
12 next_pc = dispatch[instr.opcode()]
13 (mem, proc, raw_instr);
14 exec_instrs++;
15 // look for while(1) in the code
16 } while (next_pc != pc);

Listing 1 shows a code snippet of the main interpreter loop
with the fetch, decode, and dispatch & execute stages in just a
few lines. This conciseness was a goal to help students from
non computer engineering degrees, in the master course, to
understand how a processor operates and match the function
blocks from theory classes with the hands-on labs. For example,
the mem and proc objects correspond to the memory and
processor modules from Figure 1, and the dispatch table, line 12,
calls the corresponding interpreter function of each instruction
from the instruction module. In this particular implementation,
a std::map associative container with the opcode of the
instruction as the key and std::function target as the
values perform the actual dispatch. This implementation avoids
the use of a virtual table in the base instruction class.

The tiny footprint of peRISCVcope, around 2,000 lines
of code, has some important limitations; e.g., the current
version does not provide memory protection mechanisms, or
proper support for system calls. However, since the software
architecture is easily extensible, we plan to add these features
in the future.

Lastly, working with peRISCVcope only requires the cmake
building tool, so students can build the interpreter on many
operating systems, assuming the system includes the elf.h
header. Also, there are no dependencies on external libraries.
To compile the tool, the only requirement is the support of
C++14 that includes binary literals, simplifying the decoding
programming. Finally, peRISCVcope accepts RV32I binary
programs compiled with the standard GNU gcc compilation
tool-chain in bare-metal mode. The source code is available
upon request, and to ease adoption, peRISCVcope has adopted
a non-restrictive MIT license.

V. EXAMPLE OF A VIRTUALIZATION LABORATORY

For the sake of brevity, we only describe a single proposed
laboratory using peRISCVcope for the resilience and security
course and do not include the ongoing materials for the RGCV
master course.

The proposed virtualization laboratory comprises three 2-
hour sessions. In lectures, students learn how a trap&emulate
hypervisor works, without digging into the emulation details,
which are covered in this laboratory.

The first session deals with the loading of an Executable
and Linkable Format (ELF) binary into memory. The second
session describes how to decode instructions, whereas the third
session completes the implementation of the interpreter. Besides
the description of the lab, in all three sessions, students receive
a skeleton of the code with the missing parts that they have to
implement.

The following subsections summarize each laboratory ses-
sion. Finally, this section concludes with a qualitative assess-
ment of the proposed laboratory.

A. Session 1: Loading a Binary

In many Spanish CSE curricula, ELF binaries are often
overlooked, and students do not experience how a loader and
a linker operate. Fortunately, crafting an interpreter requires to



ELF
header 

Entry point
Program header table
Section header table

Program header table 

Section header table 

.text

...

fe010113  addi sp,sp,-32 
00812e23  sw   s0,28(sp)

��� 

.data
0�00001058     00000000 
               01000000 
               02000000 
               03000000

Fig. 2. Simplified ELF binary layout for the array reduction program example.

load a binary into the interpreter memory, so this experience
provides an excellent opportunity to introduce students to the
process of loading a binary.

Figure 2 shows a simplified view of an ELF binary. Namely,
the content inside the .text and .data sections corresponds
to the array reduction code of Listing 2. The first bytes of an
ELF binary, top of the figure, correspond to the ELF header
that, among others, contains pointers to the following elements:
the entry point (first instruction to execute), the program header
table, which is an array storing all the information required
by the loader, and the section header table, storing all the
information required by the linker. In other words, Program
and Section header tables provide all the metadata required
by the loader and the linker, respectively. In our example, the
loader will copy into memory two binary sections: i) .text,
which contains all the instructions of the program3, and ii)
.data, which contains all the global variables not initialized
to zero; i.e., the 4-element array vector with values 0, 1, 2,
and 3.

Understanding the meta-information encoded in a binary for
both the loader and the linker can be challenging for many
students. In this way, before starting the implementation of
this part, reading the ELF man page4, which contains all the
required information, should be a mandatory prerequisite. To
reduce the effort of this laboratory session, students focus on the
loader meta-information, leaving aside the linker, and receive
the code that reads the binary from the file system and stores
the content into an array of bytes. Therefore, students only have

3The real binary encoding is shown in the left side of the .text box in
Figure 2, whereas the assembly code is shown in the right side.

4https://man7.org/linux/man-pages/man5/elf.5.html

Listing 2. Example of a test program: array reduction.
1 enum { N = 4 };
2 int array[N] = {0, 1, 2, 3};
3
4 int main()
5 {
6 int res = 0;
7
8 for(size_t i = 0; i < N; ++i) {
9 res+=array[i];
10 }
11 // signaling perRISCVcope termination
12 while(1);
13 }

to traverse the program header table and write into memory
the loadable segments. Internally, the virtualized memory also
stores the initial virtual address where the segment should
reside in memory, which will be different from the actual
position in the system where the interpreter runs. In addition,
students experience that the ELF binary entry point corresponds
to the first executed instruction.

To validate this activity, students also have to write a
hexadecimal dump method that prints the content of a segment
(e.g., .text) and verify that is the same as in the original
binary obtained with the objdump utility.

B. Session 2: Decoding Instructions

Decoding instructions is a challenging task for the students.
Programmatically, decoding requires to study the RISC-V ISA
manual and understand the format of the six instruction types (r,
i, s, b, u, and j). To simplify this lab, students receive code with
a base class representing any instruction and a derived class of
the r-type. Thus, students have some reference code to minimize
the chances of proposing an instruction representation that later
on hinders the interpretation. In addition, this implementation
helps strengthen object-oriented programming concepts because
of the use of inheritance. Notice too that this representation
assumes an indirect threaded interpreter [13], but advanced
students can extend the code to support more sophisticated
versions such as predecoding.

From the practical experience, many students have difficulties
handling immediate values, which in turn causes many bugs;
e.g., understanding the ISA rules for extending the precision
of a number by adding zeros or replicating the sign, depending
on whether it is unsigned or two’s complement integer. In this
session, the online RISC-V interpreter from the University of
Cornell can help debugging the content of the registers and
the memory [15].

Finally, in this activity, students begin to figure out the
importance of how to store the architectural processor state,
which is one of the main goals of the next laboratory session.

C. Session 3: Interpreting Instructions

Implementing the actual operations encoded in the instruc-
tions requires to perform the computations and correctly update
the processor and the memory state. At this stage, students
connect all the principal modules of peRISCVcope (memory,



instructions, and processor) with the main interpreter loop. Ba-
sically, they have to read one-by-one all the 4-byte instructions.
And, for each one, find out its type with the help of the code
from the previous lab, and call the suitable interpreting method
for the decoded instructions, which in turn will update the
processor and/or memory state. At this step, students grasp
how the function fields operate and identify, for example, the
different ALU operations. Also, they need to figure out how to
advance the pc register value, specially for branch and jump
instructions. Also, it is worth to mention that the last step in
this session consists on writing an equivalent code of Listing 1.

Since the session only lasts for two hours, the provided code
includes the implementation of load and store instructions.
Otherwise, students would have some difficulties completing
the task in time.

To test their implementation, the repository includes toy
RV32I compiled programs; e.g., reduce the elements of an
array into a scalar variable as shown in Listing 2. For the sake
of simplicity, and due to the lack of system calls and operating
system support, peRISCVcope assumes that a while(1)
statement at the end of the program represents the termination
condition and ends its execution.

D. Students Survey

Before and after the completion of the lab, students filled
an optional form with questions with the aim to evaluate the
quality of the proposed laboratory. The number of participants
was limited to 11 because there were only 12 students enrolled
in the course. Such a small population does not enable to
provide very general conclusions. Nevertheless, in general,
the response was very positive, and students appreciated the
lab. For example, more than 60% of the participants fully
agree that the laboratories helped them to understand how
interpreters and hypervisors operate. Also, students consider
that after completing the lab, their knowledge on the RISC-V
architecture has improved.

Most importantly, the forms have provided specific informa-
tion on aspects that could be improved:

• The use of modern C++ features like polymorphic function
wrappers was not clear, and the laboratory could offer
additional materials on C++ to ease the task. On the other
hand, more than 60% of the students considered that as
a side effect, the laboratory improved their C++ coding
skills.

• All but one student provided an affirmative answer when
asked if the interpreter run in a different architecture than
RISC-V, even implementing and running peRISCVcope on
AMD64 computers.

• Surprisingly, when asked how well they understand how a
hypervisor stores the state of the machine before and after
the lab, the responses were very similar with an average
score of 2.6 over 5.

According to the received feedback and the overall good
impression of the results, we plan to continue the development
of peRISCVcope to support learning about interpreters and
virtualization with the RISC-V architecture.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes peRISCVcope, a learning-by-doing
experience to study interpreters, hypervisors, and RISC-V
computer architecture. The presented approach is a student-
friendly tool that favors simplicity over performance and
has been validated in an advanced Computer Science and
Engineering undergraduate course on virtual machines.

For interpreters and virtual machines, peRISCVcope helped
students to understand several system key aspects such as
how a loader operates, how instruction decoding works, or
how modern C++ techniques simplify the implementation of
interpreters.

Currently, we are extending peRISCVcope for a program-
ming and architecture course belonging to a master study on
Robotics, Graphics, and Computer Vision. Our future work
directions include: i) providing some extra C++ exercises
before coding the interpreter in the virtual machine laboratories,
ii) integrating dual instructions into the standard compiler
work-flow, so students can implement its support within the
interpreter and implement the H virtualization extension, and
iii) provide a mature debugging environment to support the
learning of the RISC-V architecture, which is key for the master
course. All the assignments and the source code are available
at https://github.com/dariosg/periscvcope, and solutions are
available upon request.

ACKNOWLEDGMENTS

All authors acknowledge support from grants (1) PID2019-
105660RB-C21/AEI/10.13039/501100011033 from Agencia
Estatal de Investigación (AEI), and (2) gaZ: T5820R research
group from Dept. of Science, University and Knowledge
Society, Government of Aragon. The funders had no role in
study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

REFERENCES

[1] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces. North
Charleston, SC, USA: CreateSpace Independent Publish-
ing Platform, 2018. ISBN: 198508659X.

[2] Michael J. Clark. RISC-V simulator for x86-64. URL:
https : / / github . com / michaeljclark / rv8. (accessed:
05.28.2022).

[3] Sagar Karandikar. “QEMU Support for the RISC-V
Instruction Set Architecture”. In: KVM Forum. 2016.

[4] Suzanne J. Matthews, Tia Newhall, and Kevin C. Webb.
“Dive into Systems: A Free, Online Textbook for Intro-
ducing Computer Systems”. In: Proceedings of the 52nd
ACM Technical Symposium on Computer Science Edu-
cation. SIGCSE ’21. Virtual Event, USA: Association
for Computing Machinery, 2021, pp. 1110–1116. ISBN:
9781450380621. DOI: 10.1145/3408877.3432514. URL:
https://doi.org/10.1145/3408877.3432514.



[5] Abhinand Palicherla, Tao Zhang, and Donald E. Porter.
“Teaching Virtualization by Building a Hypervisor”. In:
Proceedings of the 46th ACM Technical Symposium on
Computer Science Education. SIGCSE ’15. Kansas City,
Missouri, USA: Association for Computing Machinery,
2015, pp. 424–429. ISBN: 9781450329668. DOI: 10 .
1145/2676723.2677254. URL: https://doi.org/10.1145/
2676723.2677254.

[6] Anup Patel. “Xvisor: Embedded Hypervisor for RISC-
V”. In: Open Source Summit Europe. 2019.

[7] Anup Patel et al. “Embedded Hypervisor Xvisor: A
Comparative Analysis”. In: Proceedings of the 23rd
Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing. 2015, pp. 682–
691. DOI: 10.1109/PDP.2015.108.

[8] Yale N. Patt and Sanjay J. Patel. Introduction to Com-
puting Systems: From Bits and Gates to C and Beyond.
2nd. McGraw-Hill, 2004. ISBN: 978-0-07-246750-5.

[9] Gerald J. Popek and Robert P. Goldberg. “Formal
Requirements for Virtualizable Third Generation Ar-
chitectures”. In: Communications of the ACM 17.7 (July
1974), pp. 412–421. ISSN: 0001-0782. DOI: 10.1145/
361011.361073. URL: https://doi.org/10.1145/361011.
361073.

[10] Abraham Silberschatz, Peter Baer Galvin, and Greg
Gagne. Operating System Concepts. 10th. Wiley Pub-
lishing, 2018. ISBN: 9781119320913.

[11] James E. Smith and Ravi Nair. Virtual Machines:
Versatile Platforms for Systems and Processes. The
Morgan Kaufmann Series in Computer Architecture and
Design. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2005. ISBN: 1558609105.

[12] William Stallings. Operating Systems: Internals and
Design Principles. 9th. Person Education Limited, 2017.
ISBN: 978-0134670959.

[13] Nguyen T. Thanh and E. Walter Raschner. “Indirect
Threaded Code Used to Emulate a Virtual Machine”.
In: SIGPLAN Not. 17.5 (May 1982), pp. 80–89. ISSN:
0362-1340. DOI: 10.1145/947923.947932. URL: https:
//doi.org/10.1145/947923.947932.

[14] Andrew Waterman and Krste Asanović. The RISC-V
Instruction Set Manual. Volume I: Unprivileded ISA.
Tech. rep. University of California, Berkeley, 2019.

[15] Hakim Weatherspoon. RISC-V Interpreter. URL: https:
/ /www.cs.cornell .edu/courses/cs3410/2019sp/riscv/
interpreter/. (accessed: 05.28.2022).


