
1

Analytical Model for Memory-Centric High Level
Synthesis-Generated Applications

Maria Angélica Dávila-Guzmán∗, Rubén Gran Tejero†, Marı́a Villarroya-Gaudó‡ and Darı́o Suárez Gracia§

gaZ-DIIS-I3A, Universidad de Zaragoza — HiPEAC Network of Excellence
e-mail: ∗angelicadg@unizar.es, †rgran@unizar.es, ‡mvg@unizar.es, §dario@unizar.es

Abstract—High performance computing (HPC) demands huge memory bandwidth and computing resources to achieve maximum
performance and energy efficiency. FPGAs can provide both, and with the help of High Level Synthesis, those HPC applications can be
easily written in high level languages. However, the optimization process remains time-consuming, especially when based on
trial-and-error bitstream generation. Model-based performance prediction is a practical and fast approach for kernel optimization, specially
if done with information from pre-synthesis reports. This article presents an analytical model focused on memory intensive applications
that captures the memory behavior and accurately predicts the kernel execution time within seconds rather than hours, as bitstream
generation requires. The model has been validated with two DRAM technologies: DDR4 and HBM2, with a set of microbenchmarks and
high performance computing applications showing an average error of 11% for DDR4 and 10% for HBM2. Compared with previous
studies, our predictions at least halve the estimation error.

Index Terms—Analytical model, FPGA, HLS, DRAM, HBM2, OpenCL.

F

1 INTRODUCTION

IN the race to improve computer performance and energy
efficiency beyond Moores’s law in high performance com-

puting (HPC) applications, there are new opportunities for
field-programmable gate arrays (FPGAs) in a heterogeneous
system. The main advantage of FPGAs comes from dedicated
hardware that provides high pipeline parallelism at low
power consumption.

Besides using parallelism, many HPC applications exceed
the available memory bandwidth. Although external memory
on FPGAs is evolving from external DRAM to 3D-stacked
high bandwidth memory (HBM) increasing bandwidth from
25 to 409 GB/s, the performance of memory individual bank
has a slow growth data rate of 7% per year. Comparing this
with FPGA resources that grow capacity at 48% per year [1],
the memory wall problem in FPGA applications is evident.

Exploiting the potential benefits of FPGA technology is a
challenge for programmers, even with the development of
high level design with languages such as C, C++, or OpenCL
[2]–[4]. Generating highly tuned code is time consuming,
and CPU or GPU optimization techniques are not always
suitable for FPGAs. Programmers have two options for
easy coding. Either they write well-known code patterns
from previous explorations [5], [6], or they rely on pre-
synthesis analytical models for estimating performance [4],
[7]–[9]. These models analyze the RTL code from High-level
synthesis (HLS) compiler tools, the high-level code, or both.

Model-based optimization seeking to better exploit FPGA
resources and simplify hardware generation focuses mainly
on the compute part, or kernel pipeline. Previous studies
have oversimplified the organization of global memory in-
terconnect (GMI), which manages memory request between
the kernel-pipeline and the off-chip DRAM memory. The
lack of detail in the models results in the error seen in two
state-of-the-art analytical models [8], [9]. It multiplies by 3
when the DRAM specification changes and can be larger

than 50% for accesses with data dependencies since those
models ignore the differences in memory access and DRAM
technologies. Such errors could become more common in
future systems because of technological advances to high-
memory bandwidth devices.

This paper analyzes the GMI and their interaction with
the external memory compiled with HLS tools, which affect
the effective memory bandwidth and can significantly impact
execution time. Combining information from the analysis of
the GMI an their main components, such as load-store units
(LSUs), plus the DRAM organizations, enables us to build
an analytical model to accurately estimate the execution
time. The model mainly requires static information from pre-
synthesis reports, Verilog hardware instances, and DRAM
memory timing parameters.

The contributions of this study are: a) a detailed descrip-
tion of the GMI for HLS, b) the first, to the best of our
knowledge, analytical model that estimates the execution
time of HLS-compiled memory intensive applications, c) a
novel classification of the FPGA kernel-pipeline state based
on memory bandwidth use, and d) a set of hints derived from
observations of the analytical model to identify bottlenecks
and guide programmers for optimizing kernels.

The rest of the paper is organized as follows. Section 2
presents a motivation example, Section 3 discusses state-of-
the-art, Section 4 presents the HLS flow, GMI architecture
and performance estimation in FPGAs. Section 5 introduces
the model. Section 6 summarizes the methodology. Section 7
validates the model, and Section 8 sets out our conclusions.

2 MOTIVATION

Optimizing HLS code often faces the challenges of estab-
lishing the kernel performance limits and determining how
close to these limits an implementation is. For example, the

2

padding (PAD) is an algorithm that fills a matrix with an extra
column of zeros; it was intensively explored in Chai [10] and
optimized in Boyi [11] with 37 OpenCL design combinations
where the best possible kernel achieves a 198 × speedup
relative to the worst implementation.

PAD is an example of why centering the optimizations
only in the OpenCL execution model can give under-
optimized results. For example, our model is able to to
find a memory performance bottleneck in the best Boyi’s
implementation. The bottleneck is the two continuous access,
both with a LSU request memory width (ls width) of 4
bytes that do not saturate memory-bandwidth and limit
performance. That is to say, PAD is bounded by the low
memory width, which under-uses the memory burst length.
In fact, the kernel mainly performs conditional memory
accesses.

With the hints from the analysis, a programmer can
restructure the kernel, as Listing 1 shows, by (1) zeroing
the output buffer to remove conditionals of line 4 and (2)
unrolling loops to increase coalescence and the memory
width to a value of 64 bytes (line 14). These modifications
doubles performance running on a Stratix 10 GX FPGA.
Besides, the model predicts this improvement with an
estimation error of 4.6%. As a result, the memory bandwidth
used in the two LSUs of the baseline and optimized PAD
algorithm reaches a gain of 2.7× in this work.
1 /** Baseline padding matrix(m x n) **/
2 int size =(m * (n + pad))
3 for(int i = size-1; i >= 0;--i){
4 if((i % (n + pad)) < n)
5 matrix[i]=read_channel_intel(channel);
6 else matrix[i] = 0.0f; }
7

8 /** Optimized Version **/
9 float16 tempch;//increase coalescence

10 float *pch = &tempch;
11 for(int i = 0; i < m ; i++) {
12 for(int j = 0; j < n ; j+=V) {
13 tempch = read_channel_intel(channel);
14 #pragma unroll 16 //Unpack
15 for (int k = 0; k < 16 ; k++)
16 matrix[i*n + j*16 + k + pad_ind]=pch[k];
17 }pad_ind+=pad; //adds pad to index
18 }

Listing 1. Code snippets of the baseline (lines 1-6) and optimized (lines
8-18) versions of PAD.

The model helps to infer the main kernel limitations and
suggests approaches for continuing the optimization process
as in this case, potentially reducing the costly number of
compilations, as previous works do.

3 STATE OF THE ART

Performance modeling of FPGAs using HLS has attracted the
attention of many researchers to ease kernel optimizations.
The standard tools from the two main FPGA vendors, Xilinx
and Intel, help to address optimizations with analytical
reports. In Intel case, tools focus only on three performance
metrics: Initiation interval, latency, and frequency without
execution time estimations.

Existing performance models target one of two different
domains: embedded FPGAs [12]–[14], usually using C/C++
as the high-level language, or HPC discrete FPGAs with
external components such as DRAM memories and PCIe
ports. In the latter case, the models are mainly oriented to
OpenCL codes [4], [8], [11] and C/C++ [9]. While embedded

and HPC models have similarities in the pipeline model, the
key difference is the memory system, where the throughput
of an internal memory may be 380 × better than an external
one.

In HPC, the memory wall is one of the main limitations
of FPGAs for applications. The memory requires a controller
to reorder requests to minimize row conflicts, and as a
consequence the throughput depends on memory controller
implementation [15], [16]. The behaviour of memory con-
trollers is often overlooked [17], [18] or simplified as in
the performance model proposed by Wang et al. [8] for Intel
OpenCL SDK. It uses a coarse grain model which shows inac-
curacies in the memory estimation and requires the extraction
of LLVM-IR information that is not provided by the vendor’s
compiler. In a similar way, the Boyi framework [11] limits the
memory estimation to sequential or random accesses with
fixed weights, and although this framework is mainly based
on memory access optimization, it only evaluates how the
OpenCL execution model changes accesses.

Coarse-grained memory models reduce the optimization
capabilities on HLS for FPGAs, this problem being detected
by the FlexCL framework [4] for Xilinx FPGAs. FlexCL
improves models covering memory access patterns with
a short CPU/GPU execution, but it continues being the main
source of error of the model. As some comparisons show, the
memory controller makes differences in the access pattern
and hence performance [15], [19]–[21]; moreover, CPU/GPU
devices have a more sophisticated memory hierarchy that can
hide DRAM latency. As well as the memory controller, the
memory standard or technology changes the interaction with
the FPGA pipeline. For this reason, the inclusion of memory
parameters to cover these technology differences is necessary,
DRAM technology being the most widely used. Approaches
such as FlexCL obtain latency parameters from modeling the
memory latency [9] as HLSCope+ does [22]. Other perfor-
mance estimators for Xilinx FPGAs include physical DRAM
specifications, but these limit access patterns to sequential
and random, as a result of their platform experiments; also,
HLScope+ includes a correction factor given the lack of
knowledge about the Xilinx DRAM controller.

The most feasible source of memory controller behavior
is the analysis of Verilog units used by the compiler to
generate the hardware controller, as in this study, but often
this approach is rejected because of its tediousness [8]. A
more user-friendly source is the use of RTL reports, which
shows the type of LSUs to assemble a command request to
DRAM [6].

The knowledge of LSUs plus DRAM specifications is
combined in this proposal to achieve an accurate memory
model that can adjust to changes in memory technology from
DDR4 to HBM.

4 HLS FLOW FOR INTEL FPGAS

The next subsections present first, the HLS internal details
and compilation flow analyzed as part of this work, and
second, the performance estimation approach focused on
current memory technologies.

4.1 HLS Compilation Flow Internals
Traditionally, hardware description languages (HDLs) were
the preferred language for programming FPGA devices, but

3

User OpenCL host Application
HAL

OpenCL Lib

Kernel
Pipeline

Host
Interface

External
Memory

Controller

D
R
A
M

Global Memory
Interconnect

On Chip
Memory

Kernel
Pipeline

Local Memory Interconnect

FPGA

FPGA Driver MMD

Host SoftwareCPU

PCIe

Avalon Bus

3

21

OpenCL
Kernel

Intermediate
compilation

Performance
estimation

Compute Model
Memory Model

*This work

Full
deployment
bitstream

Is estimated
 performance is

acceptable?

[In minutes]

[In Hours]

YesNo Bitstream

Reports

Figure 1. Main elements of OpenCL for FPGAs. ¶ and · represent the
BSP, and ¸ the kernel logic.

the learning curve is steep for the average programmer,
hindering wider adoption. Recently, HLS has evolved to a
point where programming in languages such as C or OpenCL
for FPGA becomes an easier task. The explicit parallelism of
the OpenCL programming model offers many opportunities
to exploit the pipeline parallelism inherent in streaming
processing, making OpenCL a good alternative language for
FPGAs.

Figure 1 shows the compilation flow of an OpenCL
kernel for FPGAs, which consists of two main steps. First,
a translator generates HDL code and RTL reports, called
intermediate compilation; and second, a synthesis tool
generates the bitstream as flow diagram. Between these two
steps programmers can potentially optimize the kernels,
based on programming guides and estimation models.

Without loss of generality, the described flow applies to all
Intel HLS tools based on the aoc compiler (OpenCL, OneApi,
. . .). Figure 1 shows the main components of an OpenCL ap-
plication. On the host side, ¶, the application communicates
with the FPGA device through the board support package
1 (BSP, in blue on the figure). A BSP implements the lower
layers of the application stack performing the basic I/O with
the board, and the PCI express (PCIe) communications. On
the FPGA side, the BSP, ·, provides support to communicate
back with the host, and with the device memory, DRAM and
external devices.

The BSP on the FPGA side differs for each FPGA
model and each type of external memory, requiring specific
intellectual property (IP) controllers and interfaces. For
example, for a DDR4 memory with multiple banks, in Figure
2a, the BSP uses the Avalon-MM interface and it has a
memory bank divider which can support the interleaving of
memory banks for one variable, or uses each bank separately.
For HBM memory, Figure 2b, the interface with the BSP
is the Advanced extensible Interface (AXI), and the 32
HBM pseudo-channels have a separate GMI and controller
because each pseudo-channel works as independent memory
using the “heterogeneous memory” feature of the OpenCL
compiler although the technology is the same [23].

From a programmer’s perspective, the most important
component in a BSP is the kernel logic, ¸, which corresponds
mainly to the compiled OpenCL kernel. The generated
blocks which most critically affect performance are the kernel

1. Manufacturers often provide BSP, but advanced users can tune and
re-implement them.

DDR4DDR4 Memory
Controller

LSU

LSU
Arbiter

Global
Access

Memory Bank
Divider

GMI

Avalon

BSP

Kernel
Pipeline

(a) DDR4

HBM0HBM AXI
controller

Avalon to
AXI

Burst
Splitter

HBM AXI
controller

Avalon to
AXI

Burst
Splitter

HBM0HBMnBurst
Splitter

HBM AXI
controller

Avalon to
AXI

Avalon
Kernel

Pipeline

LSU

LSU
Arbiter

Global
Access

GMI BSP

AXI

HBM2

HBM0

HBMn

(b) HBM

Figure 2. FPGA block units for Intel OpenCL SDK with a) DDR4 and
b) HBM memory

pipeline and the Global Memory Interconnect, therefore, they
are described in detail bellow.

4.1.1 Kernel Pipeline
The kernel pipeline implements all data and control opera-
tions. The high-level OpenCL statements are translated into
a graph where each node performs an operation. To receive
and send data, there are nodes that interconnect the pipeline
with either the local or global memory. To exploit work-item
parallelism, HLS tools implement pipelines. Besides pipeline
length and initiation interval, splitting up the processing into
small pipeline stages also helps to reach higher frequencies,
improving kernel and memory performance [24].

4.1.2 Global Memory Interconnect
The GMI manages the kernel-pipeline request to the external
memory. In any OpenCL program, each access to a variable
in the external memory constitutes a global access. Since
global accesses are the main source of kernel stalls, the
GMI implements several strategies to maximize external
memory throughput and kernel pipeline flow. Architecturally,
like other hardware memory interfaces from Intel [25], the
GMI has two main components: LSUs, which track in-flight
memory operations, and arbiters, which decide on the order
of access. Specifically, there are two independent round-robin
arbiters one for read and one for write accesses.

Intel FPGA SDK [6], [26] has defined three LSU types
for the GMI: burst-coalesced LSU, prefetching, and atomic-
pipelined. To understand the access pattern of each LSU,
Listing 2 and Table 1 show the code that generates them and
their main features; namely, 1) Pipeline, when an LSU can
support multiple active requests at a time, 2) Burst, when
requests are grouped before being sent to external memory,
and 3) Atomic, which serializes the operation and guarantees
atomicity, this being omitted from this table to save space
because it is only supported by the atomic-pipelined LSU.
Note that each one of these LSU features requires greater
hardware complexity. Each global access in the source code
may translate to one or several LSUs, as Section 5 describes.
1 #define N 1024
2 int random_vector[N]={5,1023, 450, 100, ...}
3 __kernel void
4 test_patterns(global int *restrict x,
5 global int *restrict z,
6 constant int *cn)
7 { int i = get_global_id(0);
8 int k = random_vector[i];
9 int out = 0; local int lmem[1024];

10 //Code Snippet form Table I
11 z[0] = out; }

Listing 2. OpenCL Code for access patterns in Table 1

4

Table 1. LSU types and their modifiers in global memory interconnect. The code snippets are from Intel FPGA SDK [6].

LSU Type Description Pipelined Burst Code Snippetsa

Burst-Coalescedb Requests are grouped into a set of DRAM bursts
Aligned Index is contiguous and aligned to page size 4 4 out = x[i];
Non Aligned Index has a modifier not aligned to page size 4 4 out = x[3*i+1];
Write ACK Index to access has dependencies 4 4 out = x[k]; // k is random
Cache Index has repetitive dependencies 4 4 for (uint j=0; j<N; j++)

z[N*i+j] = x[j];
Prefetching Compiled as Aligned Burst-Coalesced 8 4 out = x[i];
Atomic-Pipelined Unique LSU for atomic operations 4 8 atomic_add(&x[0], 1);

a Each code snippet corresponds to line 10 in listing 2.
b The burst-coalesced type has four modifiers affecting its organization.

Each LSU type provides a different maximum bandwidth,
the burst-coalesced LSU with an aligned modifier being
the most efficient type on DRAM technology because it
maximizes effective bandwidth utilization. Figure 3 shows
a read operation generated by a burst-coalesced LSU. Each
LSU has a coalescer unit that tries to group continuous
memory addresses into a single burst DRAM operation.
Next, the read arbiter dispatches this operation to the Avalon
Interconnect FIFO in order to issue a DRAM access to the
Memory Controller IP through the Avalon Bus. The benefits
of bursting come from the DRAM organization [27] because
during a read operation at least three commands are required:
precharge (PRE), activate (ACT), and read out (RD). PRE
opens a row in every bank; ACT then opens a row in a
particular bank; and RD reads the burst out back to the
controller.

When an LSU receives a requested address, it attempts
to group consecutive addresses into a burst, the burst cnt
bus size defining the maximum number of burst requests
at compilation time, because contiguous access to memory
enables the overhead of PRE/ACT commands to be hidden.

In a burst-coalesced LSU, three counters trigger a request
to the DRAM: 1) the Burst cnt bus, that usually corresponds
to memory page size, 2) the maximum number of threads
allowed to be coalesced, and 3) the time out to minimize
stalls in the kernel pipeline when consecutive requests cannot
be coalesced. The compiler can modify this LSU depending
on the memory access pattern and other attributes [6]; e.g.,
in the case of data dependencies, the compiler infers a write-
acknowledge LSU (ACK) with a work-item level coalescer.

In a Prefetching LSU, the behavior is similar to that of
a burst-coalesced LSU since it has a continuous access to
external memory, but loading data to a register or RAM
anticipating a large amount of data. For write operations, it
uses a burst-coalesced non-aligned LSU. In high-end FPGAs,
such as Stratix 10, the prefetching LSU is not available; then,
the compiler generates a burst-coalesced LSU even with
exactly the same code as that the Intel SDK provides for the
Prefetching LSU 2.

The last type of LSU is the Atomic-pipeline; Intel provides
limited support for 32-bit integers and it does not fully
conform with the OpenCL specification version 1.0. Atomic-
pipeline is considered one of the most expensive functions
which might reduce kernel performance and increase the
amount of hardware resources, but its usage can simplify a

2. Our assumption is that this behaviour likely depends on the
OpenCL SDK version

kernel design [28]. In FPGAs with “heterogeneous memo-
ries”, this LSU is not available.

4.2 Performance Estimation for FPGAs
The kernel pipeline and the external memory accesses
directly impact application performance. Kernel pipelines
have already been modeled to predict the execution time
aiming at the automatization of the compilation process [4],
[8], [9]. For pipelines, one key challenge is the selection of the
right execution model, choosing between task and ND-Range,
because an incorrect choice may increase the execution time
by as much as two orders of magnitude [7], [11].

Existing models have simplified the memory component,
especially the GMI, losing details that might provide good
opportunities for optimization of kernel implementation.
Substantial simplification may be valid for old FPGA devices
with simple memory organization but does not apply for
current models because kernel resources have grown faster
than external memory resources; e.g., an Intel Stratix 10
delivers 9 TFLOPS and the newer Intel Agilex delivers 20
TFLOPS, while DRAM has only improved from DDR4 @
1333 MHz / 2666 Mbps to DDR4 @ 1600 MHz / 3200 Mbps
or DDR5 @ 2100 MHz / 4400 Mbps. In terms of performance,
these traditional memory technologies are growing slowly
compared with FPGA compute resources, which double
every generation [29], [30].

Although external memory technologies are evolving,
compared with on-chip memory, the throughput of external
DRAM banks is still 380 × worse than on-chip, and it is 80 ×
larger in size [29]. Hence, the prediction of FPGA kernel exe-
cution time focuses on kernel pipeline and external memory,
ignoring the local memory because, in most situations, its
impact is negligible.

A novel memory such as HBM, composed of multi-
channel DRAM memory, increases the memory bandwidth
and concurrency to maintain sufficient parallelism to support
kernel requests. FPGA models such as Stratix 10 MX can
reach 450 Gbps with an HBM2 composed of 32 pseudo-
channels. The main challenge with HBM for FPGA pro-
grammers is application design because the Stratix 10 MX
was not designed with a hardware interconnect to enable
communication with HBM. That flexibility implies the HLD
programmers have to decide how to manage parallel requests
in each HBM pseudo-channel [31], [32].

In Intel FPGAs with HLS, as shown in Figure 1, the
external memory controller has independent units separate
from the kernel logic, where the LSUs have the same behavior
on all DRAM models, this making it possible to analyze
different memories with the same model.

5

Row hit!

P
R
E

Time Line Command

R
D

D
0

D
1

D
2

D
3

D
4

D
7

...

TRCDTRP

R
D

Row

Bank 0

Memory
Controller

IP

dq[0..63]

Clk
Cross

avm to read [..]
burst_cnt[..]Avalon Read FIFO

avm to write [..]
burst_cnt[..]Avalon Write FIFO

Kernel
Pipeline

A
C
T

A[0..15]

To
ke
n

GMI

...

ls_width

Bank 1

Burst
Coalesced Aligned

Burst
Coalesced Aligned

Burst
Coalesced LSU

Arbiter Write/Read

DRAM

AVALON INTERCONNECT

fmax f_dram

Avalon MM buses

Reconfigurable Kernel Logic BSP

Figure 3. Simplified model of a read operation in a single DRAM bank with an Burst-Coalesced Aligned LSU. The parameter names in blue are
used in the model in Table 2

5 ANALYTICAL MODEL

For programs limited by memory, especially bandwidth, the
execution time can be estimated accurately by modeling two
key components: the GMI, which is the interface between
the kernel pipeline and the DRAM memory; and the DRAM
memory timing models themselves. The latter has already
been modeled by Cho [22], while the modeling of the former,
GMI, can be broken down into models of the different LSUs.

Fortunately, the information available after the translation
phase, including datasheet and user input, provides enough
detail to estimate both GMI and DRAM delays, without
the long delays of the full compilation process. During the
translation from OpenCL to Verilog, each global access from
the kernel source code generates one or several LSUs in the
GMI. For each global access, the HLS compiler determines
the proper type of LSU according to a static analysis, as
described in Section 4.1.

Table 2 summarizes the model input parameters, which
are described below:

1) Report: html file which shows the kernel’s basic
blocks and the LSU types for each global access.

2) Verilog: These files contain the description of the
LSU IPs, including key thresholds such as max thi.

3) Code: High level source code provides static infor-
mation about the access and iteration space for loops
in order to estimate the number of memory accesses.

4) Datasheets: The DRAM datasheets provide the tim-
ing and the organization of DRAM memory chips.

The report and Verilog source files are available after the
intermediate compilation stages using aocl -rtl. Note that all
variables of each source are static and can be automatically
recovered. Except the ls acc which depends on loops, whose
iteration space could dynamically vary depending on an
input parameter. In such a case, the compiler could not
automatically retrieve ls acc value, and the model should
rely on user hints.

To begin with, let Test be the estimated execution time of
memory intensive applications. With multiple DRAM banks
accessed in parallel, the slowest bank time access Tbankn
determines the total execution time, such that:

Test = max
n=1,...,#banks

Tbankn (1)

where Tbankn represents the total delay of the n-th DRAM
bank estimated as the sum of the minimum time, T iideal,
plus the overhead time, T iovh, from every transaction from
every LSU, as shown in (2). While T iideal only depends on

Table 2. Description of model parameters. The param label for the
Verilog source refers to a variable name in a Verilog instance

Source Variable Definition

Report #lsu
Number of load-store units
units per bank

ls widthi Memory width of i LSU [bytes]
fmax Estimated kernel frequency [Hz]

Verilog

burst cnti Size of Avalon burst count port
param:BURSTCOUNT WIDTH

max thi Maximum threads in a burst
param:MAX THREADS

Code

δ Address stride of memory access
ls acci Number of access of i LSU
ls bytesi Bytes of a single ls acc
v Kernel vectorization

Datasheet

#banks Number of banks in parallel
dq Memory data width [bytes]
bl Memory burst length
f dram Memory frequency [Hz]
TRCD Row activation time [s]
TRP Precharge row miss time [s]
TWR Time to recovery from Write [s]

maximum memory data transfer capacity and hence is the
same for all LSU types, T iovh varies with the type of LSU, as
the next subsections describe.

Tbankn =

#lsu∑
i=1

δi · (T iideal + T iovh) (2)

where the δi factor represents the stride of an access.
Regardless of the stride, LSUs always request to DRAM a
whole burst of consecutive data, and upon reception, the
LSUs discard part of the data burst, increasing the number
of memory transactions; e.g., a stride of two discards half of
each data burst and doubles the number of accesses.

Assuming a minimum time for fetching all data for the i
LSU, T iideal, this time can be estimated as the size in bytes,
ls bytesi multiplied by the number of accesses, ls acci,
divided by the kernel memory bandwidth, bw memi, as
shown in (3).

T iideal =
ls bytesi · ls acci

bw memi
(3)

All these equations are valid for memory-intensive appli-
cations that can saturate the available memory bandwidth.
At this point, the addition of more compute resources does
not provide any benefit because execution time is already

6

dominated by the DRAM bank access delay. When the
kernel-pipeline clock frequency, fmax, is higher than the
required minimum frequency for each LSU, f imin, then the
memory bandwidth is saturated. In that case, the bw memi

reaches the maximum bandwidth. Otherwise, the memory
bandwidth is non-saturated bwinsat as (4) shows.

bw memi =

{
bw dram fmax ≥ f imin
bwinsat otherwise

(4)

To satisfy the memory bandwidth saturation condi-
tion, the kernel needs a minimum DRAM memory data
request size of ls widthi, for each i LSU, noting that
ls widthi cannot be greater than DRAM burst dq · bl. The
memory bandwidth saturation for double data rate DRAM
is bw dram = dq · 2 · f dram, where f dram is the DRAM
frequency. The ratio of bw dram to ls widthi describes
the relation between kernel-pipeline requests and external
memory capacity, defined as f imin, in (5).

f imin =
bw dram

ls widthi
· δi (5)

The modifier δi increases the memory burst requests,
and therefore, the kernel-pipeline requirements for memory
bandwidth.

Although fmax is estimated in the intermediate com-
pilation, it could be inaccurate as the wire delay is not
considered [2]. The increase in kernel-pipeline resource
usage and algorithm complexity could reduce the reported
fmax after synthesis.

When f imin is less than fmax, the memory bandwidth is
non-saturated, and two cases are possible: first, the number
of LSUs, #lsu, per memory bank is equal to one, and
second, #lsu is greater than one, in this case, the kernel fully
exploiting the double rate memory frequency, multiplying
the f max by two. Finally, bwinsat is a portion of the relation
between fmax and f imin defined in (6).

bw nsati =

{
bw dram · fmax

fi
min

#lsu = 1

bw dram · 2 fmax

fi
min

#lsu > 1
(6)

The relation between fmax and f imin shows the “clock
crosser” influence on two different clock frequency domains
between kernel-pipeline and memory controller, as shown
in gray and white boxes on Figure 3. This is evidence that
the effective DRAM memory bandwidth in a FPGA could be
modified after the compilation process if the f imin condition
is not satisfied.

While this work is focused on bandwidth saturated
programs, the non-saturated memory bandwidth includes
compute cycles, and these have already been covered [8],
[9]. Given bw mem, the model can predict whether this new
model should be used to estimate the execution time or
previous compute-oriented models would be preferable, as
set out in (7).

Kernel
Bound

⇒

Memory
saturated

bw memi = bw dram

Memory
non-saturated

otherwise
(7)

Finally, once a kernel is defined as memory saturated,
Test can be calculated with (1).

5.1 Burst-Coalesced LSU

The burst-coalesced LSU is one of the main types of GMI, as
listed in Table 1 in Section 4.1. In this LSU type, in order to
saturate memory bandwidth, the Avalon FIFO needs to be
filled with requests. When the kernel pipeline does not make
enough requests to fill the memory burst before time out, the
memory bandwidth is non-saturated.

It is possible to achieve Tideal for contiguous memory
accesses, this type of access hiding PRE/ACT latencies,
as was shown in Figure 3. Furthermore, bank-interleaving
memory controllers can completely hide the opening of new
memory banks [33] while the #lsu remains below two. When
the #lsu increases, this forces the DRAM to open a new row,
adding Tovh.

The T iovh is proportional to DRAM latency of opening a
new page, given by row miss commands (Trow). These can
be calculated based on the number of times that an i LSU has
to open a new row, which depends of the number of burst
transactions, with a given burst size, required to request
the total number of bytes (ls acc · ls bytes), formulated as
in Equation (8). It should be noted that LSU latency and
the amount of data in the Avalon FIFO would hide the
kernel latency, and for this reason, only the DRAM latency is
considered.

T iovh =

{
0 #lsu ≤ 2
ls acci·ls bytesi
burst sizei · Trow otherwise

(8)

The estimation of burst size and Trow for each LSU
modifier are analyzed in Subsections 5.1.1 to 5.1.3.

5.1.1 Burst-Coalesced Aligned LSU
This modifier is generated when all the kernel requests are
memory addresses aligned to page size, buffering contiguous
memory requests until the largest possible burst, or DRAM
page size, can be made [26]. Where multiple load/store
requests are consecutive words to memory, the burst-
coalesced aligned LSU maximizes the memory throughput.
The complete architecture of this LSU for a load and store
request is shown in Figure 3

Here, to estimate Trow, the DRAM burst size is defined
as the size of burst transaction, which can overlap DRAM
commands. DRAM sets the minimum burst transaction size
to dq ·bl, but it can transfer multiple consecutive burst for the
same open row yielding (9), where burst cnti represents
the bus size of the transaction counter, as shown in Figure 3.

burst sizei = 2burst cnt
i

· dq · bl (9)

The estimation of Trow is not trivial because the controller
can overlap commands due to reordering strategies and the
page policy [34]. This model takes into account the inter-
command delay for row buffer misses [9] using ACT/PRE
latencies, as (10) shows. The command sequence PRE and
ACT, for read and write, is considered with the same
minimum timing as the FPGA profile shows a minimal
bandwidth difference between operations.

7

Trow = TRCD + TRP (10)

In a kernel, each global access variable reduces the
memory bandwidth with increases in Tovh. The overhead
is only zero if the accesses to DRAM banks are consecutive.
But if global accesses are to different addresses, as in the
case of a multiple global access pointer, the accesses are not
consecutive and therefore Tovh appears. Based on this model,
we can make a first observation:

Observation 1: Each variable in the same DRAM bank
adds an overhead of Trow. This time is null using one
bank per global access; for example, with multiple
DDR4 banks, manually distributing the data buffers
and disabling the interleaving with the compilation
flag -no-interleaving; and with HBM using one variable
per pseudo-channel.

5.1.2 Burst-Coalesced Non-Aligned LSU

Both aligned and non-aligned LSUs try to coalesce requests
from multiple threads in a single burst command; however,
the δ stride of non-aligned access adds a new trigger for a
memory request, the number of threads, max th, that have
been launched and coalesced in one memory request.

Equation (11) calculates this constraint, called max reqs,
representing the maximum size of a DRAM request. When
a coalescer assembles a request, either the request occurs
when the amount of data requested is equal to a DRAM
page or when the number of coalesced requests have reached
max th, defined as a constant in the LSU Verilog source
code. This limit is affected by δ, it reducing the effective
burst request. In the other case, the δ fraction of ls width
is the effective burst size, as (12) shows. Note that ls width
should be bounded by DRAM page size.

max reqsi =
max th · ls widthi

δ + 1
(11)

burst sizei =

{
max reqsi

δ max reqsi ≤ 2burst cnt
i · dq · bl

ls widthi

δ otherwise
(12)

Based on this model, we can make a second observation:

Observation 2: The stride value δ multiplies the
number of memory accesses required, it being able
to saturate DRAM bandwidth with discarded data.

5.1.3 Burst-Coalesced Write-Acknowledge LSU

When the global access includes data dependencies in its
indexation, the compiler generates a write acknowledgement
signal to guarantee the correct ordering of accesses [6]. There-
fore, the burst size equals the aligned case from Equation (9),
and most important, each burst only consumes ls bytes
increasing the total time by dq·bl

ls bytes . The write-ack signal
adds a write command to the DRAM access, increasing the
Trow delay as (13) shows. Based on the write-acknowledge
LSU model, we can make a third observation:

Trow = TRCD + TRP + TWR (13)

Observation 3: Although the compiler detects access
dependencies, the logic tries to generate a burst request
to DRAM, because each FPGA cycle at a minimum
frequency of 2×Fmem

bq is equivalent to 1 burst request
to DRAM.

5.2 Atomic-pipelined LSU

The atomic-pipelined LSU executes a read and a write DRAM
command. It only supports integer data types without
bursting (therefore, in (2), δ = 1). For example, atomic_add
from Listing 3 atomically sums val to p, which is atomically
read and written. When val is constant within a loop or for
multiple work items, then the compiler performs v operations
atomically.

Atomic operations cannot be used with multiple memory
interfaces as is the case of HBM2 because BSP does not
provide support for them.
1 int atomic_add(volatile __global int *p, int val);

Listing 3. Atomic-pipelined add prototype function

Equation (14) shows the resulting T irow, including the two
accesses, and T iovh, depending on the vectorization factor v.
Note that memory saturation in atomic should include the
LSU as a unique operation (sum of ls width) of two LSUs.
Based on atomic, we can make a fourth observation:

T irow = 2 · (TRCD + TRP) + TWR

T iovh =

{
T i
row

v val is constant
T irow otherwise.

(14)

Observation 4: The atomic LSU is the most time
expensive LSU because one FPGA cycle performs only
one atomic operation. Atomics are limited to int data
types.

6 METHODOLOGY

The experiments have been run on two FPGAs with different
memory technologies: an Intel Stratix 10 GX Development Kit
with 2 GB of DDR4 DRAM HiLo running at 1866 MHz [35]
and an Intel Stratix 10 MX Development kit with a HBM2
memory with 32 pseudo-channels, each one with 256 MB of
capacity running at 800 MHz [31], [36]. Table 3 shows the
parameters required for the model on each FPGA. The other
parameters come from the intermediate compilation of the
Intel FPGA SDK for OpenCL 18.1 for Stratix10 GX and 19.3
for Stratix 10 MX. The OpenCL versions are different because
the manufacturers designed the BSPs with different Quartus
IP versions.

To validate the model, two types of benchmarks are
analyzed: first, a set of microbenchmarks, targeting each LSU
type from Table 1 inside Listing 4, where user parameters
such as v and the number of global access (#ga) vary.
For DDR4 memory on Stratix 10 GX, only one bank is
available, and in the Stratix 10 MX with HBM memory, the
“heterogeneous memory” feature is used, this assigning each
global access to an HBM bank. For burst-coalesced aligned
and non-aligned LSUs, δ variations are validated scaling

8

Table 3. Fixed variable value to evaluate the LSU model
on Stratix 10 GX and Stratix 10 MX with a DDR4 1866 and
HBM2 memory respectively. All variables (Var.) are defined
in Table 2

Memory Var. Value Var. Value

DDR4-1866 [35]
f dram 933.3 MHz TRCD 13.5 ns
dq 8 B TRP 13.5 ns
bl 8 TWR 15.0 ns

HBM2 [31], [36]
f dram 800.0 MHz TRCD 14.0 ns
dq 8 B TRP 14.0 ns
bl 4 TWR 15.0 ns

the array accesses by δ. In the non-aligned case, an offset
argument is added to the scaled index forcing the compiler
to this LSU.
1 #ifdef HBM // for HBM with multiple banks
2 #define g_bank(global_mem_label) \
3 __attribute((buffer_location(global_mem_label)))
4 #else // for DDR4 memory
5 #define g_bank(global_mem_label)
6 #endif
7 __attribute((num_simd_work_items(SIMD)))
8 __kernel void test_coalesced(
9 __global g_bank(HBM1) const int *restrict x0,

10 ..
11 __global g_bank(HBMn) const int *restrict xn,
12 __global g_bank(HBM0) const int *restrict z)
13 {
14 int id = get_global_id(0);
15 #ifdef Burst_Coalesced_Aligned
16 z[id] = x1[id] + ... + xn[id];
17 #elif Burst_Coalesced_Non-Aligned
18 z[3*id+1] = x1[3*id+1] + ... + xn[3*id+1];
19 #elif Burst_Coalesced_Write-Acknowledge
20 int idr = rand[i]; //work item index
21 z[idr] = x1[idr] + ... + xn[idr];
22 #elif Atomic
23 atomic_add(&z[0], x[id]);
24 ...
25 atomic_add(&z[n], xn[id]);
26 #endif
27 }

Listing 4. OpenCL template microbenchmark to vary global access
number

A second validation is performed with 18 different HPC
benchmarks, all memory bound, selected from the following
sources: Intel FPGA SDK, Xilinx SDAccel, NVIDIA OpenCL,
Rodinia FPGA [7], Chai [10], and FBLAS [37], in which input
channels were modified to fit the DRAM inputs.

The execution time is measured with aocl -report enabled
with profiler compilation, this setting up the hardware
counter in the LSU. The atomic cases are measured with
OpenCL events since this type of LSU does not have dynamic
counters implemented.

7 MODEL VALIDATION

The model validation comprises two sets of experiments.
The first, microbenchmarks, includes small programs with
multiple configurations of kernel v, δ, and #lsu, enabling us
to understand how each parameters affects performance in
isolation. The second set is made of complete benchmarks to
test the model with well-known applications. A third set of
experiments are conducted to compare our proposals with
previous ones [8], [9].

The model assumes that in memory saturated applica-
tions, the execution time depends more on memory delay
than on kernel frequency; this is valid provided that the
kernel frequency is high enough for the memory controller

to fully exploit bandwidth, namely, fmin. To verify this
claim, Figure 4 shows the execution time for multiple vector
addition kernels with burst-coalesced aligned LSU (line
16 of Listing 4) varying #lsu and v in DDR4 and HBM2
memories3. For memory saturated kernels (points circled in
red), fmax does not affect execution time regardless of #lsu
and v, as the flat dashed curves clearly indicate, because the
memory delay dominates execution time as Equations (4) to
(7) show; e.g., in DDR4 with #lsu > 3, the flat trend reflects
only minor variations in execution time. In HBM, the trend
is less visible because the axis values are overlapped in cases
of bandwidth saturation, indicating the independence of
time from v. For non-saturated memory bandwidth kernels,
points not circled, ls widthi, set by v, affects performance
more than fmax since these cases do not satisfy the fmin
condition. Both results point out that programmers are able
to estimate how well the memory bandwidth is exploited
based on ls width and fmax from reports since the results
show the dependency on these parameters.

390 440
0

20
40
60
80

Ti
m

e
[m

s]

 D
DR

4-
18

66

#lsu =1

390 440

#lsu =2

390 440
fmax[MHz]

#lsu =3

390 440

#lsu =4

390 440

#lsu =5
v 2 4 8 16

440 450
0

10
20
30

Ti
m

e
[m

s]

 H
BM

2

#lsu =1

440 450

#lsu =2

440 450
fmax[MHz]

#lsu =3

440 450

#lsu =4

440 450

#lsu =5

Figure 4. Execution time vs. kernel frequency fmax after synthesis
with a burst-coalesced aligned LSU varying #lsu and the vectorization
factor (v) in DDR4 1866 and HBM2 memories. The points circled in red
correspond to saturated memory kernels and the dashed lines indicate
the flat trend of memory saturated kernels.

7.1 Microbenchmarks

For the sake of completeness, each LSU modifier is evaluated
separately. The evaluation comprises the microbenchmark
from Listing 4 with their body tuned to the LSU type and
modifier. Every loop body is based on vector addition to
easily change #ga.

Note that in HBM2 memory each global access has a
single pseudo-channel to parallelize bank access, while in
DDR4, multiple global accesses must be arbitrated by a
controller.

7.1.1 Burst-Coalesced Aligned LSU
Investigating each LSU type in more detail, Figure 5 com-
pares the measured, Tmeas, and analytically estimated, Test,
execution times for a burst-coalesced aligned LSU. For Test,
each bar corresponds to the sum of Tideal (dotted) and Tovh
(striped). For HBM2, the slowest bank from Equation (1) is
shown, while DDR4-1866 has only one bank. With this LSU
type, each global access generates one LSU (#ga is equal to
#lsu).

3. The other LSU types produce the same results and these are not
shown for clarity and brevity.

9

2 4 8 16
v

0

25

50

75
Ti

m
e

(m
s)

#ga=1

2 4 8 16
v

0

25

50

75 #ga=2

2 4 8 16
v

0

25

50

75 #ga=3

2 4 8 16
v

0

25

50

75 #ga=4

2 4 8 16
v

0

25

50

75 90.16 #ga=5
Tmeas

Tideal

Tovh

NS

(a) DDR4 1866

2 4 8 16
v

0

20

40

Ti
m

e
(m

s)

#ga=1

2 4 8 16
v

0

20

40 #ga=2

2 4 8 16
v

0

20

40 #ga=3

2 4 8 16
v

0

20

40 #ga=4

2 4 8 16
v

0

20

40 #ga=5
Tmeas

Tideal

Tovh

NS

(b) HBM2, one global access per pseudo-channel

Figure 5. Measured (Tmeas) and estimated (Tideal + Tovh) time for the burst-coalesced aligned LSU varying the vectorization factor (v) and
global access (#ga) in two types of external memory: a) DDR4 1866 and b) HBM2. The bars with dots and stripes represent Tideal and Tovh,
respectively. Kernels with non-saturated memory bandwidth (NS) are detected (empty bars) and not estimated.

1 2 3 4 6
0
2
4
6

No
rm

. T
im

e

(a) DDR4 1866

1 2 3 4 5 6 7
0

20
40

No
rm

. T
im

e

Tmeas

Test

(b) HBM2

Figure 6. Measured (Tmeas) and estimated (Test) time are normalized
to Tmeas for δ = 1. The experiment varies δ with #lsu = 3 and v = 16
for burst-coalesced aligned LSUs in two types of external memory: a)
DDR4 1866 and b) HBM2, adjusting for special cases.

1 2 3 4 5 6 7
Coalescing

0
50

100
150
200

Ti
m

e
[m

s] 4 × 4 × = 2 = 3 = 4

Figure 7. Measured time (Tmeas) varying δ values in the burst-
coalesced aligned LSU increasing the number of coalesced accesses.
The gray shading marks the special cases where the model needs to be
adjusted for HBM2 memory.

For all cases, errors remain below 15%, the simplification
of the DRAM commands in the model and the refresh time
being among the main sources of error, which can reduce
memory efficiency, e.g., the DDR4 IP controller reduces
efficiency by around 3.5% [33]. The experiment also evidences
that the higher the #lsu, the higher the Tovh; e.g., DDR4
bandwidth reduces by 26%, from 14.2 to 10.5 GB/s with five
LSUs. Hence, in this case, Struct of Array is a good option
for reducing #lsu. In the case of HBM2 memory, the time
remains the same with the increase in #lsu because they run
in parallel with one LSU per pseudo-channel.

Figure 6 shows the times, normalized to Tmeas with δ = 1,
for multiple stride values. Execution time shows a linear
dependency on δ because of the data discarded in each
DRAM burst.

Notice that burst-coalesced aligned LSU cannot be gener-
ated with all δ values because the compiler does not detect
DRAM page alignment. With HBM2 memory, strided write
operations need a correction factor of 4 because they do not
detect coalescing, and the burst splitter divides the request
into bl = 4 words inside a burst taking bl cycles to transfer it,
while a read request only needs one clock cycle for bl words.
The write stride HBM2 exception in Figure 7 shows a sweep

of δ values varying coalescing, which is added with more
contiguous memory access in the main loop in Listing 4. The
shading indicates the special cases where the execution time
is 4 × longer. Comparing stride access in DDR4 and HBM2,
the performance of HBM2 is lower, by 2 × in the worst case,
starting from δ = 2 due to bursts splitting in store for HBM,
in spite of parallels between the three LSUs used in this test.

7.1.2 Burst-Coalesced Non-Aligned LSU
The burst-coalesced non-aligned LSU is depicted in line 17
of Listing 4 for a δ = 3. Similar to the aligned modifier, in
this case, the global access is also supported by just one
LSU. burst-coalesced non-aligned LSU, in Figure 8, shows
a 22% larger error than burst-coalesced aligned LSU, this
being attributable to the latency of the coalescer having
a large variance; e.g., the number of required address
comparisons depends on the coalescer state. The largest
errors, as with burst-coalesced aligned LSU, are related
to small vectorization factors; in the case of DDR4 with
v=4, the calculated fmin=349 MHz compared with fmax
after compilation which is in the range of 301 to 418 MHz
placing the kernel near to a non-saturated memory state and
increasing the minimum error by 13%. Also note that neither
v nor #ga correlates with the error.

Further, for v and #ga larger than 4 and 3, respectively,
the number of threads in a burst, max th of Equation (12),
significantly impacts execution time, which increases linearly
and not exponentially like v. This “max th effect” can also be
seen varying δ as Figure 9 shows for v = 16 and #lsu = 3,
with times normalized to δ = 1. For δ = 7, the max th
restriction appears optimizing the access that increases with
strides. Compared to an aligned LSU, the performance is 60%
lower on average due to address comparison increases and
the burst window being reduced to avoid long kernel stalls.

Unlike in DDR4, in HBM2, the execution time does not
have Tovh, as in the burst-coalesced aligned LSU case, due
to the use of just one LSU per pseudo-channel. It should be
noted that #ga does not vary the estimation results, showing
independence between HBM channels.

7.1.3 Burst-Coalesced Write-Acknowledge LSU
The evaluation of this LSU type uses the microbenchmark in
Listing 4, with the code snippet from lines 20 to 21 of.

An array of constant values is generated by software with
random values between 0 and 2048, reducing the probabil-

10

2 4 8 16
v

0
100
200
300

Ti
m

e
(m

s)
#ga=1

2 4 8 16
v

0
100
200
300

#ga=2

2 4 8 16
v

0
100
200
300

#ga=3

2 4 8 16
v

0
100
200
300

#ga=4

2 4 8 16
v

0
100
200
300

749.91 #ga=5
Tmeas

Tideal

Tovh

NS

(a) DDR4 1866

2 4 8 16
v

0

20

40

Ti
m

e
(m

s)

#ga=1

2 4 8 16
v

0

20

40

#ga=2

2 4 8 16
v

0

20

40

#ga=3

2 4 8 16
v

0

20

40

#ga=4

2 4 8 16
v

0

20

40

#ga=5
Tmeas

Tideal

Tovh

NS

(b) HBM2, one global access per pseudo-channel

Figure 8. Measured (TMeas) and Estimated (Tideal + Tovh) time for the burst-coalesced non-aligned LSU varying the vectorization factor v and
global access (#ga) in two types of external memory: a)DDR4 1866 and b) HBM2. Kernels with non-saturated memory bandwidth (NS) are
detected (empty bars) and not estimated.

1 3 5 6 7
0

5

10

No
rm

. T
im

e

(a) DDR4 1866

1 3
0

5

10

No
rm

. T
im

e

Tmeas

Test

(b) HBM2

Figure 9. Measured (Tmeas) and estimated (Test) time are normalized
to TMeas in δ = 1. The experiment varies δ with fixed values of #lsu =
3 and v = 16 for burst-coalesced non-aligned LSU in two types of
external memory: a) DDR4 1866 and b) HBM2.

ities of coalescing (2048 over 64 and 32 floats coalesced in
DDR4 and HBM2 respectively).

In the previously analyzed LSU types (burst-coalesced
aligned LSU and burst-coalesced non-aligned LSU), v af-
fected the lsu width; by contrast, with write-acknowledge
LSU, the lsu width remains constant. To increase the vec-
torization, the compiler generates as many LSUs as the
desired v for each global access. The assumption is that every
thread is accessing a different memory location, controlling
the memory consistency with the ACK signal. Figure 10
shows the comparison between the measured and estimated
execution times.

Among all burst-coalesced LSU modifiers, write-
acknowledge LSU is the one that penalizes performance the
most, growing 24 × more than with burst-coalesced aligned
LSU. The read operations show a stall on read until 98% with
two LSUs. To optimize these cases, the programmer should
evaluate a balance between the data dependency with writes
vs. the use of on-chip memory with a tiling strategy.

For HBM2, the assumption of this LSU type is replaced by
a burst-coalesced aligned LSU tree, but as write-acknowledge
LSU uses a signal to control pipeline flow. Here, the estima-
tion has a maximum error of 12% for all v = 2 values, as with
burst-coalesced non-aligned LSU, kernel-pipeline is near to
memory saturation with a fmin = 400 MHz and a minimum
kernel frequency after compilation of 367 MHz, compared
with expected value of 450 MHz.

7.1.4 Atomic-pipelined LSU
The evaluation of this LSU type uses the microbenchmark in
line 23 of Listing 4. In this code, to generate a single global
access (#ga = 1), the global access xn[id] is replaced by a
local variable id. Otherwise, each atomic operation generates
one global access per v to avoid coalescing. Only DRAM

results are shown, because the atomic LSU is not supported
with HBM2 memory.

In general, the atomic-pipelined LSU does not change the
lsu width, unlike the burst-coalesced LSU, making Tovh the
most significant component in the case of this LSU. Figure 11
shows that execution time increases linearly with #ga, the
maximum error of 16% corresponds to unaccounted 5 ns
per atomic operation. The hypothesis is that this delay is
close to the time between the beginning of the internal write
transaction and that of the following read command in the
same group and same bank (TWTR).

Overall, analyzing read stalls quantifies the impact of the
LSU on kernel performance. For burst-coalesced aligned and
non-aligned LSUs, the read stall percentages are under 20%
because the coalescer partially hides the δ-induced delay.
Meanwhile, write-acknowledge LSU has a stall percentage
of over 50% as the extra signalling serializes the requests.
The atomic-pipelined modifier cannot be measured because
profiling is unsupported, but it is safe to assume that stalls
will be high due to atomicity requirements.

7.2 Applications
To cover a large set of possible scenarios, this section
evaluates the model with 18 bandwidth bound applications,
mixing single task and NDRange kernels with and without
channels. Table 4 reports the measured and estimated times
with the corresponding errors for all of them.

For all the applications with a DDR4-1866, the relative
error remains below 9.2% with an average value of 7.6%.
With HBM2 memory, the error is higher, with a maximum of
55%.

The main source of error in HBM is the frequency
requirements from the controller, which needs fmin = 400
MHz to maximize bandwidth. Such an fmin is difficult to
achieve with high resource usage that increases the pressure
on the place-and-route compilation phase and reduces the
achievable target frequency fmax [24]. For example, in Ma-
trixMult with v = 128, the kernel requires the highest (53%)
DSP resource allocation among benchmarks, the compilation
time is around 9 h, and the kernel only achieves a fmax = 177
MHz, 55% lower than the expected fmin. Further, MatrixMult
with v = 64 uses 26% of DSP blocks, takes 5 h to compile,
and yields an fmax = 268 MHz, 33% lower than fmin.
If future HLS tools improved place-and-route capabilities,
errors would certainly decrease.

11

2 4 8 16
v

0
250
500
750

1000
Ti

m
e

(m
s)

#ga=1

2 4 8 16
v

0
250
500
750

1000
#ga=2

2 4 8 16
v

0
250
500
750

1000
#ga=3

2 4 8 16
v

0
250
500
750

1000
#ga=4

2 4 8 16
v

0
250
500
750

1000
1370.0 #ga=5

Tmeas

Tideal

Tovh

NS

(a) DDR4 1866

2 4 8 16
v

0

200

400

Ti
m

e
(m

s)

#ga=1

2 4 8 16
v

0

200

400

#ga=2

2 4 8 16
v

0

200

400

#ga=3

2 4 8 16
v

0

200

400

#ga=4

2 4 8 16
v

0

200

400

#ga=5
Tmeas

Tideal

Tovh

NS

(b) HBM2, one global access per pseudo-channel

Figure 10. Measured (Tmeas) and estimated (Tideal + Tovh) time for burst-coalesced write-acknowledge LSU varying the vectorization factor v
and global access (#ga) in two types of external memory: a) DDR4 1866 and b) HBM2. Kernels with non-saturated memory bandwidth (NS) are
detected (empty bars) and not estimated.

2 4 8 16
v

100

101

102

Ti
m

e
(s

)

#ga=1

2 4 8 16
v

100

101

102
#ga=2

2 4 8 16
v

100

101

102
#ga=3

2 4 8 16
v

100

101

102
#ga=4

2 4 8 16
v

100

101

102
#ga=5

Tmeas

Tideal

Tovh

NS

(a) DDR4 1866

Figure 11. Measured (Tmeas) and estimated (Tideal + Tovh) time for Atomic-pipelined LSU varying the vectorization factor (v) and global access
(#ga) in a DDR4 1866 memory. Non-saturated memory bandwidth (NS) are detected (empty bars) and not estimated. The time axis is in seconds
and logarithmic.

Table 4. Kernel applications and estimated time in two memories: DDR4 1866 and HBM2.GMI- global memory
interconnect BCA- burst-coalesced aligned LSU. BCNA- burst-coalesced non-aligned LSU. ACK- burst-coalesced write-
acknowledge LSU. M- Measured. E- Estimated

DDR4 1866 HBM2

Kernel GMI #lsu
BW M.Time E.Time Error BW M.Time E.Time Error

[GB/s] [ms] [ms] [%]. [GB/s] [ms] [ms] [%]

axpy [37] BCA 3 11.8 31.9 31.5 1.2 34.5 11.2 10.2 8.6
Dot [38] BCA 3 13.3 29.4 31.5 7.3 23.4 11.2 10.2 8.5
FFT-1D Direct [6] BCA 2 13.8 9.5 8.8 7.3 19.8 6.6 5.1 22.4
FFT-1D Inverse [6] BCA 2 13.8 9.5 8.8 7.4 19.6 6.6 5.1 23.4
iamax [37] BCA 2 14.3 9.2 8.8 4.6 11.7 11.2 10.2 8.6
nn [7] BCA 2 13.9 11.0 10.3 6.5 17.6 8.7 8.0 8.8
PrefixSum [11] BCA 2 12.7 10.0 9.0 10.1 23.1 5.2 5.8 9.6
ROT [37] BCA 4 11.6 35.7 39.5 10.6 47.9 11.5 10.5 8.7
Sobel Filter HD [39] BCA 3 13.2 1.9 2.0 6.2 14.1 1.7 CB -
VectorAdd [6] BCA 3 12.1 33.3 33.2 5.1 35.9 11.2 10.2 8.6
VectorAddδ = 2 BCA 3 5.9 67.9 63.0 6.5 4.7 82.6 81.9 0.8
Histogram [10] BCA 2 14.3 8.9 8.4 5.8 9.2 13.4 9.8 26.6
Hotspot [7] BCNA 3 7.5 9.7 8.8 8.7 16.9 12.8 CB -
MatrixMult (v=64) [6] BCNA 3 8.9 31.2 27.9 10.3 17.6 15.7 10.4 33.3
MatrixMult (v=128) [6] BCNA 3 9.1 121.2 107.8 11.0 11.6 94.4 41.9 55.6
Pathfinder [7] BCNA 3 7.6 27.6 25.4 7.9 11.6 13.8 16.5 20.2
WM [40] BCNA 2 13.9 59.8 55.8 6.6 12.6 0.2 0.2 6.2
NW [7] BCNA/ACK 4 0.3 1.4 1.4 4.0 0.3 0.2 0.2 25.7

To illustrate the frequency differences in DDR4 and HBM2
between applications, the histogram in Figure 12 shows the
applications distribution in terms of frequency and marks
the minimum frequency required to maximize memory
bandwidth. On HBM2, 8 applications are critically bounded
by the frequency after place-and-route because they do not
reach the pre-synthesis reported fmax. Figure 13 analyzes
these 8 applications and shows the post-synthesis time and
frequency error compared to the estimated pre-synthesis
values. There is a strong correlation between time and fre-
quency error, suggesting that compiler accuracy estimating
the frequency can limits the model’s accuracy. As a especial
case, the Stratix 10 MX with HBM2 memory requires higher
frequency to saturate memory. In this device, the frequency
estimation worsens compared to that of the GX because

the MX BSP uses 32 separate global memory interfaces
connecting to the physical pseudo-channels with 256-bits
buses. In fact, the worst estimation time and the worst
frequency estimation from the tool comes from MatrixMult
in where the routing tool reports routing congestion warning.

7.3 Comparison with other models
This subsection compares the proposed model with two state-
of-the-art models: Wang and HLScope+ [8], [9], reproducing
the mathematical models for the microbenchmarks, with
f = 16, and for the vectorAdd application. Unfortunately,
comparison with other applications is unfeasible because the
dynamic profiling tools feeding Wang and HLScope+ are not
available. The tests are run with two BSPs for Stratix 10 GX
with different DRAM frequencies, 1866 and 2666 MHz.

12

150 200 250 300 350 400 450 500
fmax DDR4 1866 [MHz]

0
2
4
6
8

Ke
rn

el

 A
pp

lic
at

io
ns

150 200 250 300 350 400 450 500
fmax HBM2 [MHz]

bw_dram
dq. bl

Figure 12. Frequencies Histogram for 18 kernel applications; the red
dotted line shows the required minimum frequency for maximizing
bw dram.

FFT1D FFT1I Pathfinder Histogram MatMult64MatMult128 WM NW
HBM

0

25

50

Er
ro

r [
%

] Time Frequency

Figure 13. Estimation error of the execution time and frequency error
from pre-synthesis report and after place-and-route in kernels that are
limited by a frequency under 400MHz after synthesis in HBM cases.

In all but one case, µb burst-coalesced aligned LSU, the
error found in this study is lower than that of Wang and
HLScope+ as Table 5 shows. Comparing the maximum error
of each model, this proposal is up to 400 and 5 × more
accurate than Wang and HLScope+, respectively.

Table 5. Execution time estimated error; µb, BCA,
BCNA, and ACK refer to microbenchmark, burst-
coalesced aligned, burst-coalesced non-aligned, and
burst-coalesced write-acknowledge LSUs, respectively.

Benchmark #lsu Wang HLScope+ This work
[%] [%] [%]

DDR4-1866

µb BCA 1 17.3 12.7 5.6
µb BCA 4 0.3 10.6 4.4
µb BCNA 3 - 71.1 4.0
µb ACK 32 8049.9 63.2 27.9
VectorAdd 3 19.3 21.0 5.1

DDR4-2666

µb BCA 1 69.6 57.8 4.7
µb BCA 4 37.8 19.6 5.8
µb BCNA 3 - 137.9 8.7
µb ACK 32 11 279.4 47.6 8.8
VectorAdd 3 67.9 63.3 1.0

HBM2

µb BCA 1 145.5 83.7 8.4
µb BCA 4 151.2 83.7 8.6
µb BCNA 3 - 118.8 13.9
µb ACK 32 4910.8 78.1 14.7
VectorAdd 3 9.8 83.7 8.7

In Wang’s case, the errors come from an incomplete
support of all LSU modifiers and not fully including the
memory features (bandwidth, frequency, row misses, . . .),
unlike in this study.

On the other hand, the HLScope+ model for Xilinx
devices considers memory bound applications where the esti-
mation is primary affected by DRAM bandwidth. HLScope+
requires a board characterization to compute the controller
overhead (Tco) [41]; this parameter is different for each
benchmark because Tco varies with access type; this study
uses Tco =2.5 ns for #lsu > 3, and Tco =0 ns in other
cases.

The two state-of-art models compared only support
aligned and random access, but as this study shows, the

memory strategies go one step further using HLS tools
combining and modeling GMI and DRAM behavior.

In addition, note that Wang and HLScope+ do not adapt
well to memory changes and only cover DRAM, unlike the
proposal in this study that supports both.

8 CONCLUSIONS

As in other HPC processors, memory in FPGAs is one of the
most critical aspects of system performance. This paper pro-
poses an analytical model that identifies the main parameters
that control the total execution time when the kernel-pipeline
saturates memory bandwidth, a common situation for HPC
applications. Specifically, the model determines the memory
saturation through the relationship with memory occupation
and kernel frequency and accurately estimates the kernel
execution time without a time-consuming synthesis process,
helping programmers and HLS tools to design and anticipate
performance without extensive exploration processes, as
used in other studies.

The model stems from a detailed study of the generated
RTL code, instantiated IPs, and FPGA architecture without
loss in flexibility that is demonstrated with two DRAM
technologies: DDR4-1866 and 3D-stacked HBM2.

The results show the model has an average error of
11.4% for DDR4 and 10.4% for HBM2. Errors above average
are directly associated with kernel frequency limitations in
the compilation process. Compared with two state-of-the-
art models, mainly focused on computing, the proposed
model at least halves the error and shows adaptability to
two technologies and memory frequency variations, unlike
other proposals. Our future work aims to integrate this type
of model into scheduling policies of heterogeneous systems,
where predicting performance before launching a kernel can
make a difference, helping to achieve higher performance
and energy efficiency.

ACKNOWLEDGMENT

This work was supported by MINECO/AEI/ERDF
(EU) (grant PID2019-105660RB-C21 / AEI /
10.13039/501100011033), Aragón Government (T58 20R
research group), ERDF 2014-2020 ”Construyendo Europa
desde Aragón”, and Santander-UZ grants program.

REFERENCES

[1] S. M. Trimberger, “Three ages of fpgas: A retrospective on the first
thirty years of fpga technology,” Proceedings of the IEEE, 2015.

[2] B. C. Schafer and Z. Wang, “High-level synthesis design space ex-
ploration: Past, present, and future,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, 2020.

[3] Q. Gautier, A. Althoff, Pingfan Meng, and R. Kastner, “Spector: An
opencl fpga benchmark suite,” in 2016 International Conference on
Field-Programmable Technology (FPT), 2016, pp. 141–148.

[4] Y. Liang, S. Wang, and W. Zhang, “Flexcl: A model of performance
and power for opencl workloads on fpgas,” IEEE Transactions on
Computers, vol. 67, no. 12, pp. 1750–1764, 2018.

[5] A. Verma, A. E. Helal, K. Krommydas, and W.-c. Feng, “Accel-
erating Workloads on FPGAs via OpenCL: A Case Study with
OpenDwarfs,” Computer Science Technical Reports, 2016.

[6] Intel, “Intel FPGA SDK for OpenCL Pro Edition: Getting Started
Guide 19.1,” 2019.

13

[7] H. R. Zohouri, N. Maruyamay, A. Smith, S. Matsuoka, and
M. Matsuda, “Evaluating and optimizing OpenCL kernels for high
performance computing with FPGAs,” International Conference for
High Performance Computing, Networking, Storage and Analysis, SC,
vol. 2016, no. November, p. 35, 2016.

[8] Z. Wang, B. He, W. Zhang, and S. Jiang, “A performance analysis
framework for optimizing opencl applications on fpgas,” in HPCA,
2016, pp. 114–125.

[9] Y. K. Choi, P. Zhang, P. Li, and J. Cong, “HLScope+,: Fast and
accurate performance estimation for FPGA HLS,” in ICCAD, 2017.

[10] J. Gómez-Luna, I. El Hajj, V. Chang, Li-Wen Garcia-Flores, S. Gar-
cia de Gonzalo, T. Jablin, A. J. Pena, and W.-m. Hwu, “Chai: Col-
laborative heterogeneous applications for integrated-architectures,”
in ISPASS. IEEE, 2017.

[11] J. Jiang, Z. Wang, X. Liu, J. Gómez-Luna, N. Guan, Q. Deng,
W. Zhang, and O. Mutlu, “Boyi: A systematic framework for
automatically deciding the right execution model of OpenCL
applications on FPGAs,” FPGA 2020, 2020.

[12] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-analyzer:
A high-level performance analysis tool for fpga-based accelerators,”
in DAC, 2016, pp. 1–6.

[13] J. Zhao., L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “Comba:
A comprehensive model-based analysis framework for high level
synthesis of real applications,” 2017 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), pp. 430–437, Nov 2017.

[14] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He,
“Performance Modeling and Directives Optimization for High-
Level Synthesis on FPGA,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 7, 2020.

[15] H. R. Zohouri and S. Matsuoka, “The Memory Controller Wall:
Benchmarking the Intel FPGA SDK for OpenCL Memory Interface,”
2019 IEEE/ACM International Workshop on Heterogeneous High-
performance Reconfigurable Computing (H2RC), pp. 11–18, 2019.

[16] G. Csordas, M. Asiatici, and P. Ienne, “In search of lost bandwidth:
Extensive reordering of DRAM accesses on FPGA,” 2019 Interna-
tional Conference on Field-Programmable Technology, ICFPT, 2019.

[17] S. W. Nabi and W. Vanderbauwhede, “FPGA design space explo-
ration for scientific HPC applications using a fast and accurate cost
model based on roofline analysis,” Journal of Parallel and Distributed
Computing, 2016.

[18] B. da Silva Gomes, A. Braeken, E. D’Hollander, and A. Touhafi,
“Performance and resource modeling for fpgas using high-level
synthesis tools,” in Symposium ParaFPGA 2013, Parallel Computing
with FPGAs, vol. 25. IOS Press, 2014, pp. 523–531.

[19] C. Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason
Cong, “Caffeine: Towards uniformed representation and accelera-
tion for deep convolutional neural networks,” in 2016 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2016.

[20] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang, “Under-
standing performance differences of fpgas and gpus,” in FCCM,
April 2018, pp. 93–96.

[21] S. W. Nabi and W. Vanderbauwhede, “Mp-stream: A memory
performance benchmark for design space exploration on heteroge-
neous hpc devices,” in IPDPSW, 5 2018.

[22] H. Choi, J. Lee, and W. Sung, “Memory access pattern-aware dram
performance model for multi-core systems,” in ISPASS, 4 2011.

[23] Intel, “Detecting Memory Bandwidth Saturation in Threaded
Applications,” 2010.

[24] J. Reinders, B. Ashbaugh, A. Bader, J. Brodman, J. Hammond,
M. Kinsner, J. Pennycook, R. Schulz, and J. Sewall, Data Parallel
C++: Mastering DPC++ for Programming of Heterogeneous Systems
using C++ and SYCL James. Apress open, 2020.

[25] Intel, “External Memory Interface Handbook Volume 3: Reference
Material,” 2017.

[26] Intel, “Intel High Level Synthesis Compiler Pro Edition: Reference
Manual,” 2019.

[27] H. Zheng and Z. Zhu, “Power and performance trade-offs in
contemporary dram system designs for multicore processors,” IEEE
Transactions on Computers, vol. 59, no. 8, pp. 1033–1046, 2010.

[28] Z. Jin and H. Finkel, “Optimizing an atomics-based reduction
kernel on opencl fpga platform,” in IPDPSW, 2018, pp. 532–539.

[29] Intel, “Intel® Stratix® 10 TX Product Table,” 2019.
[30] Intel, “Intel® Agilex® I-Series SoC FPGA Product Table,” 2019.
[31] S. Li, D. Reddy, and B. Jacob, “A performance and power compar-

ison of modern high-speed dram architectures,” in Proceedings of
the International Symposium on Memory Systems, ser. MEMSYS ’18.
Association for Computing Machinery, 2018, p. 341–353.

[32] K. Kara, C. Hagleitner, D. Diamantopoulos, D. Syrivelis, and
G. Alonso, “High Bandwidth Memory on FPGAs: A Data Analytics
Perspective,” FPL, 2020.

[33] Intel, “External Memory Interfaces Intel ® Stratix ® 10 FPGA IP
User Guide,” 2019.

[34] W. Wang, T. Dey, J. W. Davidson, and M. L. Soffa, “Dramon:
Predicting memory bandwidth usage of multi-threaded programs
with high accuracy and low overhead,” in HPCA, 2014, pp. 380–391.

[35] Micron-Technology, “DDRA SDRAM MT40A2G4,” 2015.
[36] ”Monitor Insider”, “HBM2 Deep Dive,” 2016. [Online]. Available:

http://monitorinsider.com/HBM.html
[37] T. D. Matteis, J. de Fine Licht, and T. Hoefler, “FBLAS: Streaming

Linear Algebra on FPGA,” CoRR, 2019.
[38] NVIDIA, “NVIDIA OpenCL SDK Code Samples,” 2020. [Online].

Available: https://developer.nvidia.com/opencl
[39] M. A. Dávila-Guzmán, R. G. Tejero, M. Villarroya-Gaudó, D. S.

Gracia, L. Kalms, and D. Göhringer, “A cross-platform openvx
library for fpga accelerators,” in 2021 29th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP),
2021, pp. 75–83.

[40] Xilinx Vivado, “Vivado Design Suite User Guide: High-Level
Synthesis,” pp. 1–120, 2017.

[41] K. O’Neal and P. Brisk, “Predictive modeling for cpu, gpu, and
fpga performance and power consumption: A survey,” in 2018
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2018.

Maria Angélica Dávila-Guzmán has been a PhD student in the Depart-
ment of Computer Science and System Engineering at the University
of Zaragoza, Spain, since 2017. She received her Master’s and Bach-
elor’s degrees in Electronic Engineering from the University of Valle,
Colombia, in 2010 and 2015, respectively. Her research interests lie in
heterogeneous systems, high-level syntheses, and load balancing.

Rubén Gran Tejero graduated in Computer Science from the University
of Zaragoza, Spain. He received his Ph.D. from the Polytechnic University
of Catalonia (UPC), Spain, in 2010. Since 2010, he has been an Asso-
ciate Professor at the Department of Computer Science and Systems
Engineering, University of Zaragoza. His research interests include hard
real-time systems, hardware for reducing worst-case execution time and
energy consumption, efficient processor microarchitecture, and effective
programming for parallel and heterogeneous systems. Dr. Gran Tejero is
member of the Aragon Institute of Engineering Research (I3A) and the
Spanish Society of Computer Architecture (SARTECO).

Marı́a Villarroya-Gaudó obtained her Ph.D. in 2005 at the Department
of Electronics Engineering at the Autonoma University of Barcelona. She
is an Associate Professor in Computer Architecture and Technology in the
Department of Computer and Systems Engineering at the Universidad
de Zaragoza. Her research interests include memory hierarchy and
heterogeneous systems. Dr. Vilarroya-Gaudó is member of the Aragon
Institute of Engineering Research (I3A), the Spanish Society of Computer
Architecture (SARTECO).

Darı́o Suárez Gracia (S’08–M’12) received his PhD degree in Com-
puter Engineering from the University of Zaragoza, Spain, in 2011.
From 2012 to 2015, he was at Qualcomm Research Silicon Valley.
Currently, he is an Associate Professor at the University of Zaragoza.
His research interests include parallel programming, heterogeneous
computing, memory hierarchy design, energy-efficient multiprocessors,
and fault-tolerance. Dr. Suárez Gracia is a member of the Aragon
Institute of Engineering Research (I3A),the Spanish Society of Computer
Architecture (SARTECO) the IEEE, the IEEE Computer Society, the ACM,
and the HiPEAC European NoE.

