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Abstract—In Computer Vision, open programming standards
such as OpenVX have emerged to bring together portability
and acceleration across devices. Unfortunately, achieving both
goals on FPGAs remains a challenge because FPGAs still require
to adapt the code with proprietary extensions. Exclusively for
Xilinx devices, the HiFlipVX open source library partially solves
this problem by offering a clean C++ OpenVX API that offers
the performance of proprietary extensions without exposing its
complexity to programmer.

While HiFlipVX enables portability within Xilinx devices,
portability between FPGA manufacturers remains an open cha-
llenge. This work extends the HiFlipVX’s capabilities with a
twofold goal: i) to support Intel FPGA devices with different
memory configurations, and ii) to enable execution on FPGAs
as discrete accelerators. To accomplish these goals, the proposed
implementation combines two HLS programming models: C++,
using Intel’s system of tasks that enables to coalesce nodes and
reduce control overhead, and OpenCL, which provides efficient
compute kernel nodes. On Intel FPGAs, compared with pure
OpenCL implementations, the proposed implementation reduces
kernel dispatch resources, saving up to 24% of ALUT resources
for each kernel in a graph, and improves performance. Gains are
2.6× on average for representative applications, such as Canny
edge detector, or Census transform, compared with state-of-the-
art frameworks.

Index Terms—FPGA, HiFlipVX, HLS, OpenVX, OpenCL.

I. INTRODUCTION

The introduction of High-Level Synthesis (HLS) is attracting
software programmers towards FPGAs. HLS tools enable to
directly write software applications using high-level languages
such as C/C++, OpenCL, and SyCL instead of using hardware
description languages. Although the HLS tools abstract the
programmers from the hardware, they still require an expert
domain knowledge that most programmers still lack.

While HLS helps to improve programmer’s productivity,
standards and frameworks targeting specific domains aims
to provide performance portability. In the field of computer
vision, OpenVX is presented as an open, royalty-free standard
for cross-platform acceleration [1] where applications can be
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expressed as graphs to maximize optimization potential because
all dependencies are known before the graph is processed.

In the FPGA domain, the acceleration of computer vision
primitives is well understood, but the acceleration of OpenVX
applications still remains as a challenge. Their efficient
implementation requires specific optimizations on primitives
and communication. Some HLS programming models address
these requirements; e.g., HiFlipVX, an optimized library
of OpenVX functions, exploits streaming capabilities and
parametrization for Xilinx FPGAs [2]. However, its highly-
tuned implementation is neither portable nor efficient on other
FPGA platforms such as Intel.

Cross-platform acceleration is one of the main OpenVX
features. But, since the required implementation differences
between the main FPGA manufactures: Xilinx and Intel are
large, to date, proposals for accelerating OpenVX on FPGAs
only target one of them. To cope with this issue, the present
paper extends HiFlipVX implementation to support Intel FPGA
devices with different external memories as DDR4 and HBM.
This work details the key changes required to guarantee
portability and to keep performance.

The proposed implementation leverages Intel’s HLS System
of Tasks [3] asynchronous model for parallel execution of
OpenVX functions. Therefore, with the required software
support, any HiFlipVX graph can now be encapsulated as an
OpenCL or a SYCL library. This novel approach to program
OpenVX on Intel FPGAs raises traditional OpenCL workflow
on discrete devices attached to a host, providing less runtime
overhead since the entire graph representation is inside a single
kernel.

In summary, the main contributions of this paper are:

• A new portable implementation of HiFlipVX for Intel
FPGAs that keeps the compatibility with Xilinx devices.
Up to our knowledge, this is the first OpenVX portable
implementation between Xilinx and Intel devices.

• Support for Intel FPGAs devices with either DRAM or
HBM memories.

• The proposed implementation relies on Intel’s System of
Tasks which improves the performance on average 2.6×
in comparison to OpenCL implementation.



The rest of the paper is organized as follows. Section II
describes the motivations and HLS flow alternatives for the
OpenVX implementation on FPGAs. Section III provides
background on the related work. Section IV describes the
HiFlipVX library and the included changes to port it to
Intel FPGA. Section V presents the methodology. Section VII
discuses the results, and Section VIII set out our conclusions.

II. BACKGROUND AND MOTIVATION

HLS programming languages reduce the programming entry
barrier of FPGAs. They have favored the flourishing of a new
ecosystem of high level toolkits and programming strategies to
achieve optimized FPGA pipeline implementations, similarly
to what CUDA and OpenCL did to GPUs a decade ago.

One of the most successful HLS approaches in heterogeneous
systems is OpenCL, because it unifies the programming
language with CPU and GPU devices. However, OpenCL
still suffers from a limitation: the programming strategy to
achieve an optimal implementation for FPGAs differs from
other devices and requires to choose the appropriate OpenCL
execution model [4], [5]. Furthermore, code written with only
the OpenCL standard does not perform well on FPGAs and
requires manufacturer defined extensions.

On the contrary, implementing the OpenVX standard can
take advantage of FPGA pipeline-based implementations. In
OpenVX, applications use a graph-based programming model
where nodes, instances of kernels, contain the function code;
and edges represent the data movements [1]. This data flow
programming model has two main design alternatives with
FPGAs using OpenCL:

• Standard OpenCL: each OpenVX node is an OpenCL
kernel following the standard OpenCL API, as shown in
Fig. 1a. This alternative can be easily portable between
manufacturers; the main disadvantage is the lack of
guarantees to generate a deep pipeline connecting the
function nodes, because the compiler separates the pipeline
stages by control operations. Outside of the standard,
Xilinx defined their own pragmas and streaming interfaces
to generate deep pipelines.

• OpenCL channels: each node is an OpenCL kernel, and
channels/pipes connect them all. This option allows deep
pipelines thanks to the streaming communication between
kernels, as shown in Fig. 1b. In this case, the host should
launch every kernel in multiple command queues to
get a concurrent execution of the graph. This approach
is implemented and named differently by each FPGA
vendor; e.g., Intel and Xilinx adopt channels and pipes,
respectively.

These two approaches evidence the portability problem
between manufacturers and the limitations of standard OpenCL
API, whereby each FPGA manufacturer extensions help to
optimize and guide the compilers through bitstream generation.
Even, sometimes, these extensions are different per FPGA
device family dramatically reducing portability [6].

In terms of performance, the use of the aforementioned
channel approach allows higher throughput and lower latency,

but due to restrictions of the OpenCL standard, generating
portable and easy to use libraries is a challenge. For example,
AFFIX implements OpenVX graphs with single-input single-
output host pipes [7] curtailing the OpenVX specification,
which defines multiple-input multiple-output edges.

Besides OpenCL, a more flexible HLS language is C/C++.
Although C/C++ suffers the portability restrictions between
manufacturers, the programming details can be hidden to the
programmer under wrapper layers.

For Xilinx devices, HiFlipVX implements OpenVX using
C/C++, enabling a highly parameterizable library. However,
to complete an efficient and portable OpenVX specification is
necessary to port the library to Intel devices. The differences
between C/C++ standards and compiler, such as OpenCL,
are not trivial, generating performance differences between
manufacturers. Also, FPGA board design differences among
families show a heterogeneous FPGA environment, from simple
embedded devices to high-performance ones with external
memory and ports, specially oriented to HPC applications.

This work overcomes those limitations. Specifically,
HiFlipVX achieves both portability, supporting two of the
main FPGAs manufacturers, and performance, by coalescing
OpenVX nodes in a single OpenCL/RTL element maximizing
pipeline deep for Intel FPGAs as shown in Fig. 1c. With this
strategy, OpenVX applications overcome the pipeline depth
limitations in Standard OpenCL (Fig. 1a) and reduces the host
dependency on OpenCL Channels implementation (Fig. 1a).
This property is specially crucial for Intel FPGA devices as
Table I shows.

TABLE I. Programming flow alternatives to implement the OpenVX standard.

Programming Flow Manufacturer Deep Host
portable Pipeline Dependency

Standard OpenCL X 7a LOW
OpenCL Channels [7] 7 X HIGH
HiFlipVX [2] 7 X -
This Work X X LOW
a Xilinx can enable deep pipelines with streaming pragmas.

III. RELATED WORK

The suitability of FPGAs for accelerating computer vision
algorithms is clear, and previous results show high performance
and energy efficiency [8]. However, implementation complexity
and development time are still FPGA main adoption barriers.

DSL (Domain Specific Language) is one of the proposals for
image processing on FPGAs. For example, HeteroHalide [9]
uses Halide DSL and an external compiler back-end to support
Intel and Xilinx devices. Hipacc [10] developed a DSL
to support multiple back-ends from different vendors and
devices such as FPGA, GPU, and CPU. Other DSLs such
as PoliMage [11] and Pu’s [12] have evolved to support Xilinx
FPGAs. The two main disadvantages of DSLs are the learning
process for the programmer, and the difficulties for extending
their functionality.
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Fig. 1. Programming flow alternatives for OpenVX using HLS for FPGA devices. The yellow boxes show OpenVX functions as OpenCL functions and the
green ones the OpenVX functions as kernels. The bottom boxes show host command queues, Qn, that manage the kernels.

More general than DSL is the library approach or standard
based libraries; e.g., Xilinx provides the xfOpenCV library,
implementing functions from the OpenCV library [13]. Other
libraries targeting OpenVX are HiFlipVX and AFFIX for Xilinx
and Intel FPGAs, respectively [2], [7], [14].

Along with introducing computer vision standards as
OpenVX, another desirable characteristic is the performance
portability, but none of the available libraries support both
major FPGA vendors: Xilinx and Intel. In fact, transferring
codes between vendors is not straightforward, even with HDLs,
because each vendor requires a different coding style for
maximizing performance, and computer vision applications
are not an exception of this problem [6], [8].

The most viable options to provide a general computer vision
library seem HiFlipVX and AFFIX. However, AFFIX relies on
OpenCL limiting the implementation of OpenVX functions and
graphs, in some cases. However, HiFlipVX simplifies the usage
of graphs using the standard C++ language, and it is oriented
towards portability with explicit management of data types
to generate optimized hardware. Furthermore, HiFlipVX was
verified in multiple embedded applications for Xilinx [15]–[17].

IV. HIFLIPVX

HiFlipVX is an open source HLS FPGA library for image
processing applications [2]. It is a C++ based library, highly
optimized and parametrizable using templates. Most of its
functions, or object kernels, are based on the OpenVX standard.
They are implemented to be streaming capable with stream
data objects, on edges, to link kernel instances as nodes in a
graph.

The functions in HiFlipVX can be categorized in pixelwise,
filter, analysis, and conversion functions as Fig.2 shows.
Pixelwise functions process the input images pixel by pixel, like
adding two images together. Filter functions work in a window
on the input image, like in a Sobel filter. The conversion
functions change the image by scaling it or changing the
image format. The analysis functions usually have to perform
a complete analysis of the input image, such as creating a
histogram.

The library was designed to be as vendor independent
as possible. Since no external libraries are required, it can
also run on a CPU. Additionally, the library is extended
with pragmas and macros for acceleration on Xilinx FPGAs.

Operator

+
&

Pixel-wise Filter Conversion/analisisPixel-wise                        Filter               Conversion/analysisPixel-wise Filter

Fig. 2. Image functions categories implemented in HiFlipVX.

These directives are used for pipelining, partitioning arrays
and interfacing between functions. The functions of HiFlipVX
were used for various applications, such as in a toolchain [15],
or an operating system [16]. Akgün et al. show that the use
of vectorization increases not only performance but energy
efficiency as well [17].

V. METHODOLOGY

All experiments have run on two high-end FPGAs: an Intel
Stratix 10 GX Development Kit (1SG280LU2F50E2VG) with
2GB of HiLo DDR4 DRAM @1866MHz and an Intel Stratix
10 MX Development Kit (1SM21BHU2F53E2VGS1) with 32x
256MB HBM memory banks @12800MHz. Both boards uses
the PCIe Gen3 x8 to connect with the host CPU. Table II
summarizes FPGA resources specification.

TABLE II. FPGA Resources for Stratix 10 GX and Stratix 10 MX

FPGA model ALUTs FFs RAMs DSP

Stratix 10 GX 1866240 3732480 11721 5760
Stratix 10 MX 1405440 2810880 6847 3960

This work evaluates the performance portability of HiFlipVX
with parameters such as latency, initiation interval (II), and
resource estimation from RTL compilation using i++ HLS
compiler V. 19.4. The FPGA power measurements use the
Board Test System application provided by Intel, with a 1
second sampling rate. To ensure power accuracy, kernels run at
least 1 minute to obtain measurements. For most experiments,
the Stratix 10 GX was selected as the reference board, since
the only difference with the MX is the DRAM vs. HBM banks.

Our benchmark suite comprises three representative OpenVX
graphs, including all the categories of Fig 2, from the Intel
OpenVX samples:



• Canny edge detector: Popular multi-stage algorithm for
edge detection and suppressing noise.

• Census transform: A common algorithm for correspon-
dence problem used in stereo image processing for
disparity calculations [18].

• Auto-contrast: Algorithm to improve contrast in images,
adjusting the image intensity.

Finally, these benchmarks are also used to compare with
existing state-of-the-art approaches running them in the same
FPGA as this work.

VI. OPENVX WITH HIFLIPVX FOR INTEL FPGAS

The OpenVX specification defines: i) a high-level set of
abstractions so programmers can easily write computer vision
applications, and ii) a runtime that helps optimizing the
applications. In most cases, those optimizations are specific
for each hardware vendor.

On CPU and GPU devices, the runtime dynamically verifies
and processes the graphs on-the-fly, providing more flexibily
and opportunities for optimization, but, on the other hand, this
processing has to be statically performed before the costly
bitstream generation on FPGAs.

Thus, kernel node optimization depends on vendor specific
guidelines that are not part of OpenVX standard, yet very
helpful for FPGA compilers. In the case of HiFlipVX, we
implemented optimization support for programmers through
specialized versions for each vendor of its template-based API.
So, with minimal changes in the user-facing code, switching
the vendor, programmers can benefit from the performance
portability promised by OpenVX.

Providing such performance portability requires substantial
changes in the original HiFlipVX implementation of three key
OpenVX components: execution model, kernels, and edges.

The kernels nodes comprise the compute part of the graphs,
while the edges manage the memory layer, which includes
keeping data on-chip to save power and offer potential
speedups.

1) Execution model: The OpenVX execution model in
HiFlipVX for Intel FPGAS synthesizes every graph as a unique
kernel executed sequentially in a pipeline way using the system
of task which allows asynchronous nodes to create a DAG for
Intel FPGAs. Kernel nodes are called with a proprietary Intel
API. On the contrary, the Xilinx specialization only needs the
HLS INLINE pragma.

2) Kernels: HiFlipVX kernel nodes are implemented with
C++ functions, so the first step to maintain kernel performance
and properly guide the compilation process is to add specific
translations of Xilinx’s pragmas to their Intel counterparts.
Specifically, the next two pragmas and component attributes
are used:

• HLS array_partition/hls_register: forces
the compiler to generate variables as registers.

• Loop pragmas: the difference is the location in the code.
These pragmas are inserted after and before the loop, for
Xilinx and Intel, respectively.

The comparison of the HiFlipVX for Xilinx [2] and Intel
devices, shows that the ALUTs resource usage is similar, less
than 15% variation for 6 representative OpenVX functions
(all running at the same 100MHz frequency), except Sobel
Filter, 27% difference, as depicted in Fig. 3. These results
evidence the differences between architectures and HLS tools;
e.g., Xilinx ALUTs are capable of self-split to implement
two separated logic functions, unlike Intel that has dedicated
ALUTs to improve routing time in complex designs [19].
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Fig. 3. ALUTs resource comparison between Intel and Xilinx FPGA at
100MHz and vectorization equal to 1, for 6 sample OpenVX functions.

3) Edges: For Xilinx, HiFlipVX implements optimized
communications through streaming and uses pass-by-pointers
for parameter passing between functions. In general, these
choices guarantee an Initiation Interval, II, equal to 1 cycle
and low latency for filter-type kernels [2].

The lack of equivalent pragmas for streaming communica-
tions in Intel FPGAs and the poor performance of pass-by-
pointer parameters can result in components with up to 114
cycles II, because the HLS tool generates a single Avalon
Memory-Mapped (MM) Master interface with a single arbiter
for all variables [20].

To improve the pointer access, function parameters are
passed-by-reference, which are more suitable for Intel [21],
reducing the II to 1 with a simpler implementation. The two
first groups of bars of Fig. 4 show the 114× cycle difference
between the pass-by-pointer and pass-by-reference for a 3x3
filter.

Within the RTL generation, depending on function interface,
the functions parameters change from reference to stream to
support Intel’s System of Tasks, due to concurrency neces-
sities to implement graphs. With system of tasks, nodes run
asynchronously and communicate with streams among them.
Streams allow a II of 1 and, in practice, resulting in an Avalon
streaming interfaces.

Comparing the streams with reference, streams increase the
latency up to 2× because system of task adds hardware to
control kernel pipeline for achieving concurrency. Fig. 4 shows
the impact on both II and latency of all the interface changes:
passing arguments by reference and stream communication
among kernels.

With the proper FPGA interfaces validated, another important
part of the standard is the OpenVX data objects, which
allow the access to memory to users or only connect various
nodes within a graph via data references without access to
intermediate data [1]. Virtual objects are implemented with
streams which are limited to access by references, this means
the implementation of array of streams are not allowed.
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Linking more than two nodes with the same Virtual Objects
requires duplication of the number of buses in an FPGA. For
this, the stream signals are multiplied with a custom internal
kernel: vxSplit. It enables to feed concurrently multiple
kernels with the same data-stream.

Contrary to Virtual Objects, Images objects allow user access.
This creates an opaque reference to an image buffer [1]. In Intel
FPGA, the user access data through external ports connected
with Avalon MM buses.

In embedded FPGAs, stream objects with input and output
qualifiers are enough, but discrete devices have external
memory as DRAM to increase the memory capacity, and
all these external memories require to generate and manage
their IP controllers. To manage external DRAM memories
with discrete devices, HiFlipVX leverages existing host drivers
for OpenCL/SYCL to perform the required transactions. And,
internally, those transfers are instantiated with two custom
kernels.

Image objects for DRAM connection allow optimizations for
contiguous and aligned memory accesses, and modifications
of the burst size with the coalescence parameter, accordingly.
Furthermore, parameters allow to adjust technologies difference
between FPGA boards and maximizes DRAM bandwidth.
Fig. 5 plots performance of a Canny edge graph as an example.
It shows that increasing the coalescing factor to reach a load
unit larger than 512 bits reduces the performance 7×, because
the compiler heuristic infers a non-aligned access. If a load
unit width smaller than 512 bits, the maximum DRAM burst
is underused, except in 64 bits that correspond to dq, which is
the DRAM bus size.

Once OpenVX graphs are programmed in C/C++ with
HiFlipVX, the next step is to evaluate the target FPGA. For
an embedded FPGA, the bitstream should be generated after
the RTL generation, and for an Intel discrete FPGA, which
needs communication with a host, it should be coupled to a
BSP (Board Support Package).

Intel has tools to generate OpenCL and SyCL libraries from

Cpp
HiFlipVX

OpenCL lib sycl lib

FPGA Discrete Bitstream

Xilinx Intel

Tool
extension

Kernel
FPGA Embeded

RTLRTL

board_spec
xml

AOC
 library

AOC

Vendor

Fig. 6. HiFlipVX programming and compilation flow for Xilinx and Intel
FPGAs.

HLS. However, the system of tasks is not supported yet, which
is necessary to implement OpenVX graphs. To circumvent this
problem, the proposed compilation flow requires an extra tool
that takes two inputs: an XML file with the DRAM memory
port description, through an Avalon Master interface, and the
RTL from HiFlipVX, both of them compatible with the target
BSP. The generated output file enables the library generation
with Intel standard aoc tools. As result, the output libraries
are ready to be used in OpenCL/SyCL kernels. Fig. 6 shows
the new programming flow to couple the HiFlipVX graph
to a heterogeneous system. Please note that the Xilinx paths
remain unaffected, and how the RTL from the HiFlipVX library
combines with the BSP on the Intel path.

VII. RESULTS

This section analyzes the main characteristics and the
performance of HiFlipVX running on Intel FPGA devices. First,
it covers the scalability of the implementation, then continues
with the evaluation of the library running representative
OpenVX graphs, and finally presents the comparison one state-
of-the-art proposal.

A. HiFlipVX Scalability Analysis

To evaluate how deep pipelines and system of tasks affect
graph scalability, a synthetic graph derived from the first stage
of the SIFT feature detector is used. This multi-Gaussian graph
applies multiple times a Gaussian filter to an image stream [22].
Specifically, the pipeline depth increases by adding Gaussian
filtering steps, one after the other.

Fig. 7a shows how execution time and FPGA frequency
scale with the number of filter nodes for the multi-Gaussian
graph. From 2 to 16 filters, memory access time dominates,
flattening the execution time. After that point, 16, execution
time increases almost linearly with the number of filters,
showing good scalability. Please note the slight frequency
reduction for large number of filters also contributes to the
larger execution time.

Fig. 7b shows how the resource usage increases linearly,
as expected, with a growing rate of 0.33, 0.17, and 0.13 for
ALUTs, FFs, and RAMs resources, respectively. With the rise
of resources usage, FPGA power presents a similar tendency
with a growing rate of 74 mW per additional Gaussian filter
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stage, as Fig. 7c shows. In summary, HiFlipVX with the system
of task scales well without adding any extra overhead increasing
the graph complexity.

B. OpenVX Applications

This section analyzes resource usage (per-kernel) and exe-
cution time of three representative applications: Canny edge,
Census transform, and Autocontrast, as depicted in Fig. 8.

The Canny edge detector, Fig. 8a, is a multi-node graph
algorithm that extracts the edge information from images. In
HiFlipVX, its implementation consists of 8 nodes, including the
extensions which enables DRAM as User objects and Virtual
extension to support more than two connected nodes (vxSplit),
as described in Sec. VI. Table III shows the estimated resource
usage from the i++ report for all Canny edge nodes. Since all
FPGAs used in this work are from the same family, Stratix
10, the resource estimation on HiFlipVX graph are equal, and
from here on, all results corresponds to the Stratix 10 GX
FPGA, except when noted.

Census transform, like Canny, uses filter functions, but since
Census is not part of the OpenVX standard, we added it as
a kernel extension. Table IV shows the estimated resource
usage for Census transform functions, while Table III shows
the usage for shared functions between Census and, above
explained, Canny.

The last evaluated graph is Autocontrast, requiring to extend
HiFlipVX to support the graph from Fig. 8c with two new
kernels for color conversions: NV12 to RGB and RGB to
NV12, and EqualizeHist.

vxSobel()vxGauss
Filter()

vxMagnitud
()

vx
Sp

lit
()

vxPhase()

VxNonMax
Suppression

()

(a) Canny Edge

vxSobel() vxMagnitud
()

vxHistogram
()vxCensus()

(b) Census Transform

vxColor
Convert()

NV12

vxChannel
Extract()

Y
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vxChannel
Extract()

U
vxChannel
Extract()

V

vxChannel
Combine()

Vx
Sp

lit
() vxColor

Convert()
RGB

(c) Autocontrast

Fig. 8. OpenVX application graph diagrams. a) Canny edge detector, b)Census
transform and d) autocontrast image

TABLE III. Estimated resource usage for each OpenVX function in
Canny edge graph using HiFlipVX with a 4k Image and vectorization
factor of 8 on a Stratix 10 GX.

Function ALUTs FFs RAMs DSP

Image Object 10553 39508 17 0
vxGauss 3627 5620 18 0
vxSobel 5907 8854 19 0
vxSplit 221 117 2 0
vxMagnitud 5907 8966 4 8
vxPhasea 165 133 1 0
vxNonMaxSuppression 4605 5842 18 0
Image Object 4177 11949 18 0
a Reduce orientation for 4 gradient directions.

Autocontrast requires more RAM resources than other graphs
because intensity channel (Y) is stored in RAM memory until
histogram is calculated. This strategy avoids stalls in streams
at expense of higher resource usage and dependence on the
input image size; e.g., if the image size changes from HD
to 4k, RAM usage increases by 4×. To save resources, the
coalescence of DRAM access is reduced with a LSU width of
64. The Table V shows the resource for each function in the
Autocontrast graph.

The execution time is evaluated on both FPGAs devices:
Stratix 10 GX and Stratix 10 MX, from here on, S10GX
and S10MX, respectively. The main differences between the
implementations for both FPGA are in the global memory.
While the S10GX has one DRAM bank with a data port width
of 512 bits, the S10MX has a heterogeneous memory composed
by 32 DRAM banks and a data port width of 256 bits. To
switch between both, a programmer has only to change the
DRAM port declaration.



//AFFIX Edges
CHANNEL(images_0, uchar , SIMD_SIZE, CH_DEPTH)    
CHANNEL(images_1, uchar , SIMD_SIZE, CH_DEPTH)

SRC_KERNEL(uchar, SIMD_SIZE, images_0) 
STENCIL_KERNEL(kernel_gblur3x3, TILE_DIM, SIMD_SIZE, 5, 
                                 uchar,  uchar, gaussian3x3, images_0, images_1)
SINK_KERNEL(uchar, SIMD_SIZE, images_1) 

#define INTEL
//#define XILINX
//HIFLIPVX edges
 vx_image<vx_uint8, SIMD_SIZE, vx_stream_e, CH_DEPHT> images_0; 
 vx_image<vx_uint8, SIMD_SIZE, vx_stream_e, CH_DEPTH> images_1; 
template<...>
void graph(){
    vxGaussian3x3Node<vx_uint8, SIMD_SIZE  WIDTH, HEIGHT, KERN_SIZE, 
                  BORDER_TYPE, SEPARABLE_FILTER, images_0, images_1>  
    vxGaussian3x3Node0;       
} 

CPP_HiFlipVX.h

#include OpenCl_model.h // CPP function definition for OpenCL
__kernel void vxProcessGraph(__global vx_image* restrict Img_in,
                                       __global vx_image* restrict Img_outx) {
    graph(Img_in, Img_outx);
}

OpenCL_with_HiFlipVX_graph.clNon-standard
OpenCL or OpenVX
definitions

Standard OpenCL

Macro definitions:
difficult to extend
library, error prone

Easy to duplicate
kernels to multiply
compute units

Based on OpenVX
data types 

Based on OpenVX
nodes 

Parametrization to be optimized on FPGA.
 Channel depth (CH_DEPTH) is optional on
HiFlipVX

FPGA Vendor

//Edges
vx_image images[]={
vxCreateImage(context, WIDTH, HEIGHT, VX_DF_IMAGE_U8),
vxCreateImage(context, WIDTH, HEIGHT, VX_DF_IMAGE_U8)};
//Nodes
vxGaussian3x3Node(graph, images[0], images[1]);
//Process
vxProcessGraph(&graph);

OpenVX  Reduced example

AFFIX.cl

Fig. 9. Code comparison between a reduce version of OpenVX, AFFIX, and HiFlipVX. OpenVX definitions and FPGA optimization parameters are marked
in orange and grey, respectively.

TABLE IV. Estimated resource usage for each function in Census
graph using HiFlipVX, with a 4k Image and vectorization factor of 8.

Function ALUTs FFs RAMs DSP

vxCensus 179 208 0 0
vxHistogram 960 16924 2 0

The execution time of the three graphs is shown in Table VI.
It should be noted that Canny edge and Census transform
have similar execution time. Although Canny edge has to
calculate one additional filter, the pipeline architecture hides
extra operations. On the S10MX the kernel frequency is lower
than S10GX, and, hence, its execution time is slower in spite
of the use of one memory bank per variable. A maximum
7% of execution time difference between FPGAs as well
evidence architecture and BSP differences, where S10MX has
an experimental support and the synthesis effort is arduous
due the amount of HBM banks.

All the evaluated applications are compute bound, e.g. in
Canny and Census the maximum memory bandwidth for
S10GX and S10MX it is 2.4GBs, so the extra HBM bandwidth
does not provide any advantage.

C. Comparison with Existing Approaches

One of the most relevant proposals that implement OpenVX
graphs is AFFIX [7]. It is inspired in OpenVX standard and

TABLE V. Estimated resource usage for each OpenVX function in
Autocontrast graph using HiFlipVX, with an HD image and vectorization
factor of 1.

Function ALUTs FFs RAMs DSP

Image Object 934 3025 16 0
vxColorConvert(NV12) 1273 1744 0 1
vxSplit 130 103 0 0
vxChannelExtract 143 119 0 0
vxEqualizeHist 2584 3874 1029 0
vxChannelCombine 173 143 0 0
vxColorConvert(RGB) 1037 1268 0 0
Image Object 1102 3605 18 0

TABLE VI. Execution time of HiFlipVX on a Intel Stratix 10 GX and Intel
Stratix 10 MX using a 4k image.

OpenVX Stratix 10 GX Stratix 10 MX
Application Time[ms] Frq.[MHz] Time[ms] Frq.[MHz]

Canny edge 6.8 310 7.3 293
Census 6.8 331 6.9 326
Autocontrast 23.1 301 23.9 294

implemented using OpenCL channels, as shown in Fig. 1b.
The use of OpenCL limits the programmability of AFFIX.
Comparing the graph codes from Fig. 9, AFFIX, lower left,
relies on OpenCL macros that are error-prone, difficult to
maintain, and moves away from the clarity of OpenVX, upper
left. In contrast, this work allows to use a well-formed C++
code, the same language as OpenVX API, to program graphs
using OpenVX standard with templates to optimize hardware
generation. Finally, to integrate HiFlipVX graphs to a host
CPU, HiFlipVX can have a simple OpenCL interface called
from a single queue command to execute the graph.

For performance comparison, AFFIX had to be modified
because it uses the Intel host pipe extension to directly
communicate between the host and FPGA kernels, instead of
going through the on-board DRAM. Host pipes reduce latency
overhead in communication but have two main limitations: Its
limited support on a few Arria 10 GX development kits [23],
and each pipe can only have one input and one output port.
This second fact limits graph implementations; e.g., the Census
transform was reduced to one output from benchmark, as shown
in Fig. 8b where the AFFIX implementation follows the dotted
line and ignores the solid one. To compare with this work,
it is mandatory to replace the pipes with equivalent DRAM
input/output to run benchmarks on Stratix10 GX and Stratix
10 MX boards.

As result, HiFlipVX reaches a speed-up of 3.4× and 3.6×
on the graphs using filters as Table VII shows. Autocontrast
is an implementation with large design differences between
the libraries. Although both approaches suffer from large



TABLE VII. Comparison between HiFlipVX and AFFIX on a Intel
Stratix 10 GX and Intel Stratix 10 MX usign a 4k image

OpenVX Application Stratix 10 GX Stratix 10 MX
speed-up speed-up

Canny edge 3.2 3.6
Census 3.6 3.4
Autocontrast 0.8 0.8

Fig. 10. Resource usage per logic unit relative the total units on Stratix 10
GX and Stratix 10 MX for AFFIX and HiFlipVX implementations.

pipeline stalls in the sequential processing, the eagerness for
RAMs resources of HiFlipVX penalizes circuit frequency, and
consequently, performance is degraded by 20%.

Regarding area usage, the Fig. 10 shows the resource
consumption of AFFIX and HiFlipVX. One of the main
differences is that OpenCL generates “kernel dispatch logic”
for each OpenVX kernel to communicate the kernel with the
host on AFFIX. This extra logic increases the resource usage
per node by 1463 ALUTs and 1467 FFs.

In HiFlipVX, the kernel nodes are compressed in a single
kernel that shares the same dispatch logic and saves 4 to 24%
of area resources per kernel in the evaluated graphs on the
Stratix 10 GX. On the Stratix 10 MX, the difference is less
than 5% between implementations.

Differences in ALUT and FFs in Autocontrast are bigger than
that of the other evaluated applications due to the increment of
the number of kernels in a graph. With the use of HiFlipVX,
Autocontrast saves a 1.4 and 0.9% of total ALUTs and FFs
resources, respectively. As expected, the amount of RAM
resources in HiFlipVX is 4× bigger, and it is sensitive to
image size. In contrast, AFFIX implementation prefers to split
the pipeline and read twice from external memory instead of
using RAM resources. Finally, in this work the color conversion
is implemented with a 8-bit approximation [24] that does not
require DSPs for float operations.

At last, we compare the traditional OpenCL model, depicted
in Fig. 1a, used by the Chai Benchmark [25] for Canny edge.
For the comparison, Chai’s code was compiled for a single
frame running exclusively on the FPGA. Chai’s communication
between nodes through external memory and limited deep of
pipeline per function makes HiFlipVX 9× faster than Chai for
Canny edge.

VIII. CONCLUSIONS

This paper presents a cross-platform OpenVX library for
FPGAs built by extending the former HiFlipVX implementa-
tion, an OpenVX library designed for Xilinx devices. This new
version supports Intel FPGAs with two different memory sub-
systems: DDR4 and HBM. To ensure performance portability
across Xilinx and Intel devices, the user-facing OpenVX API
has not be changed, but the new implementation exploits the
novel Intel’s System of Tasks to coalescing OpenVX nodes
into accelerated graphs on Intel FPGAs.

As a result, the new implementation saves around 1.5% of
ALUTs usage per node in graphs versus the standard approach
with a kernel per node in OpenCL. Additionally, the paper
show how the library provides performance portability, this is
less than 7% difference in execution time, on two different
FPGA models, one with DDR4 and other with HBM memories.

Compared with the state-of-art, HiFlipVX performs up to
3.6 and 9.6 × faster than AFFIX and Chai, respectively. And,
even more important, HiFlipVX does not modify the OpenVX
standard, ensuring better programmability and performance
portability properties.
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