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Abstract

Worst-case execution time (WCET) analysis of sys-
tems with data caches is one of the key challenges
in real-time systems. Caches exploit the inherent
reuse properties of programs by temporarily storing
certain memory contents near the processor, in or-
der that further accesses to such contents do not re-
quire costly memory transfers. Current worst-case
data cache analysis methods focus on specific cache
organizations (set-associative LRU, locked, ACDC,
etc.), most of the times adapting techniques designed
to analyze instruction caches. On the other hand,
there are methodologies to analyze the data reuse of
a program, independently of the data cache. In this
paper we propose a generic WCET analysis frame-
work to analyze data caches taking profit of such
reuse information. It includes the categorization of
data references and their integration in an IPET
model. We apply it to a conventional LRU cache,
an ACDC, and other baseline systems, and compare
them using the TACLeBench benchmark suite. Our
results show that persistence-based LRU analyses dis-
miss essential information on data, and a reuse-based
analysis improves the WCET bound around 17% in
average. In general, the best WCET estimations
are obtained with with optimization level 2, where
the ACDC cache performs 39% better than a set-
associative LRU.

∗This work was supported by MINECO/AEI/ERDF (EU)
(grant PID2019-105660RB-C21), and Aragón Government
(T58 20R research group).
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world, for military purposes and for any other use which is
against human rights or the environment, is strictly prohibited
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work, or all the people in the world.

1 Introduction

Real-time systems are increasingly present in indus-
try and daily life. We can find examples in many
sectors including avionics, robotics, automotive pro-
cesses, manufacturing, and air-traffic control. A real-
time system consists of a number of tasks with a re-
quired functionality. These tasks have to be sched-
uled in a way that they meet their deadlines. To en-
sure that this occurs, and hence that the system op-
erates correctly, worst-case execution time (WCET)
and schedulability have to be analyzed.

Analyzing the interactions between the program
and the hardware is a complex part, since current
processors perform many operations with a variable
duration in order to improve performance. In par-
ticular, the memory subsystem services the processor
with variable latency and can be the greatest contri-
bution to the WCET. A memory hierarchy made up
of one or more cache levels exploits program reuse
and saves execution time and energy consumption by
delivering data and instructions with an average la-
tency of a few processor cycles instead of requiring
costly memory transfers. Although cache designs are
ubiquitous in contemporary processors, many details
regarding them are still ignored in the WCET anal-
ysis, and single-level LRU (Least Recently Used) in-
struction caches are still an open issue [32]. This situ-
ation is even worse for data caches, since writing poli-
cies must be also modeled. Most conventional data
caches are writeback (store instructions write just the
cached data, and memory is updated when the corre-
sponding dirty cache line is evicted), which in general
results in fewer memory transfers than writethrough
policy (store instructions write to the cache as well as
to the main memory) [19]. In turn, both writeback
and writethrough policies can be combined with dif-
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Figure 1: Context of our proposal. The compi-
lation may be performed by any compiler, with
any optimization options. The data cache descrip-
tion includes the cache organization (set-associative
LRU, ACDC, etc.), its policies (write-back, write-
through, write-allocate, fetch-on-write-miss, write-
around, etc.), and its configuration (number of sets,
ways, size, etc.).

ferent write-miss allocation policies. Also, the inter-
action between the code and the data cache is much
more complex than with the instruction cache. This
can be seen in common scenarios such as loops, func-
tion calls, and execution-time address computation.
In loops, a memory instruction may access different
data memory addresses depending on the loop iter-
ation. In functions, memory instructions accessing
local variables use stack frames, whose base address
depends, among other things, on the nesting level.
Regarding address computation, a memory instruc-
tion may access a data-dependent memory address
unknown at compilation/static analysis time. Such
complexity to bound data cache hits and misses is
hard enough so that, to the best of our knowledge,
there is no comprehensive comparison regarding the
impact of data caches to the WCET.

In this paper we propose a generic framework to an-
alyze data caches (see Figure 1). Unlike most meth-
ods focused on analyzing which contents are cached
at a given program point for a particular cache con-
figuration (e.g. [17, 32]), our approach is applied on
top of a reuse analysis of the compiled code [28]. We
let such analysis to explore the reuse as a property of
the binary code (i.e. how data are reused, indepen-

dently of being cached or not), and then we analyze
whether a particular cache organization is able to ex-
ploit the detected data reuse. Our proposal includes
basic categories to classify data references, similar to
those used for the instruction cache, and how such
categories are translated to the Implicit Path Enu-
meration Technique (IPET) to obtain the WCET
bound. We describe the implementation of a con-
ventional set-associative LRU data cache (writeback,
with write-allocate and fetch on write-miss), a pre-
dictable ACDC cache [29], an unlimited size LRU
cache, and a system without cache to compare to.
For the ACDC cache, we also detail a new method
to configure it heuristically. Since our proposals take
profit of the reuse information, our hit/miss bounds
are much more precise than current state of the art
approaches. Such precision allows us to perform a
detailed comparison of the impact of the considered
data cache organizations to the WCET. Our results
show that, with our framework, the estimated WCET
bound with LRU data caches is reduced 17.23% in
average with respect to existing methods. Also, the
WCET bound with the predictable cache ACDC is
reduced another 19.62% in average in respect of a
system with LRU data cache.

Our contributions can be summarized as follows:

• Generic framework for the analysis of data
caches in the worst case based on reuse informa-
tion, applicable to any data cache organization.

• Description of its application to a conventional
LRU cache, an ACDC cache, and an LRU cache
with unlimited size.

• Integration of the above WCET analysis into the
IPET technique.

• Heuristic method to obtain good ACDC config-
urations.

• Experimental comparison of data hit ratio and
WCET bound for different data cache organiza-
tions, analysis methods, and compiler optimiza-
tion levels performed on ARM v7 binaries.

The rest of the paper is organized as follows. Sec-
tion 2 describes related work, including a brief de-
scription of the ACDC cache. Section 3 details
our proposed generic framework for the data cache
WCET analysis. Its integration into IPET is de-
scribed in Section 4. Then, Section 5 discusses the
safety of our approach. In order to analyze the
ACDC, we propose a simple method to configure it in
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Figure 2: Schematics of set-associative LRU and
ACDC caches. The required hardware to hold the
LRU ordering of the ways in each set in the set-
associative cache is not represented.

Section 6. Next, Section 7 describes our experimen-
tal environment and our results. Finally, Section 8
presents our conclusions.

2 Related work

Most current set-associative LRU cache (Figure 2a)
analysis methods are based on the must/may anal-
ysis [13]. This method uses Abstract Interpreta-
tion [11] to determine the possible contents of the
cache without requiring explicit address sequences. A
recent improvement on this methodology achieves its
maximum possible precision [32]. Although it works
well on instructions, its application on data is limited
due to the fact that it is based on accesses to known
and constant addresses at compile time. For instance,
if a given memory instruction accesses a different data
memory address each time it is executed (e.g. an ar-
ray traversal), the accessed addresses must be tagged
as unknown. As a future work, authors suggest that,
with a preprocessing analysis, it might be possible
to bound the address space of a given memory in-
struction, e.g. to an array. If such unknown access
is repeated over time so that the amount of data ac-
cessed is larger than their address space, some hits
may be guaranteed. However, guaranteeing that a
memory access does not go out of bounds is not triv-
ial, and caches are not designed to hold large data
structures. Up to our knowledge, feasibility of such
preprocessing analysis has not been addressed yet.

Indeed, when whole data structures fit in cache,
scratchpad memories or locked data caches would be
preferable [34]. Locked data caches are not explored
in this work, since they are completely dependent on
the data size of the task and the cache size. That
is, their worst-case performance would be equal or

better than any other option if all data fit in cache,
and worse than any other option when the percentage
of cached data is below certain threshold.

Although most WCET studies on caches assume
a single level hierarchy, there are a few that ana-
lyze multi-level caches [9, 21]. Essentially, they ap-
ply the must/may analysis to each cache level. Our
paper does not consider multi-level caches, but a sim-
ilar level-by-level approach could be applied. Regard-
ing data cache write policies, most studies focus on
writethrough (e.g. [18]), but writeback caches provide
a better WCET bound [6,36].

Alternatively to set-associative LRU caches, there
are designs of predictable caches for real-time sys-
tems [15, 29]. Instead of conventional data-driven
caches, the ACDC (Address-Cache Data-Cache) is a
small instruction-driven data cache that effectively
exploits reuse [29]. It operates from a fixed prese-
lected subset of load/store instruction addresses held
in the AC part of the ACDC cache (see Figure 2b).
Such selected load/store instructions have data cache
replacement permission (DRP). Each permission is
associated with a particular data cache line in the
DC part of the ACDC. Thus, when executing a load-
/store instruction that misses in DC, the replacement
of the data line on DC will be only allowed if such an
instruction has DRP (i.e., the PC of this instruction
is kept in an AC entry). Since each selected mem-
ory instruction replaces its own data cache line, pol-
lution is prevented and performance is independent
of the size of the data structures in tasks. Figure 3
shows the flowchart of the ACDC behavior. For data
accesses, there is a fully-associative look-up, so that
any access may benefit from the cached content. On
miss, if the missing load/store has DRP (its PC is
in AC), the DC line assigned to this load/store is
replaced, as in a conventional writeback write-miss
allocate cache. However, misses triggered by instruc-
tions without DRP bypass DC. That is, loads bring
the specified data to the processor without modifying
DC, and stores write directly to main memory with-
out fetching the missing data, as in a write-around
cache [19]. There is a similar proposal, also based on
granting replacement permissions to specific memory
instructions, focused on temporal reuse for large data
structures [15]. However, it is not designed as a gen-
eral purpose predictable cache, but as an auxiliary
cache targeted to codes optimized by tiling/blocking
transformations.

Independently of the target data cache, the ef-
fects of context switches to the WCET are important.
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Figure 3: ACDC operation flow chart for a load/store
instruction (in PC ) to addr , which may evict a cache
line u. PC s in AC are those with DC replacement
permission. Notice that the first three decisions can
be evaluated in parallel.

There are many proposals to bound the WCET in-
crease related to context switches. Due to the small
size of the ACDC, the best option would probably be
to save and restore the cached data on every context
switch, as proposed for lockable instruction caches [3].
For larger caches, preemption costs are higher, and
other approaches may be preferable [20, 31]. Al-
though adding the constant bound of preemption
costs to the WCET estimation is trivial, it is not
included in this study, since this cost depends very
much on the tasks in the multitasking system.

As outlined above, the goal of caches is to keep lo-
cal copies of data that are likely to be used again.
Cache Miss Equations (CMEs) [14] are based on the
reuse theory [35], and have been used to test whether
it is worth caching whole data structures [34]. How-
ever CMEs are limited to perfectly nested loops. A
similar approach is able to also analyze imperfectly
nested loops by transforming them to perfectly nested
loops with guards [8]. Although such transformation
extends the analyzable loops, the analysis of other
constructs, and therefore of general programs, is not
possible with this approach. In order to analyze gen-
eral codes, symbolic names and a congruence anal-
ysis can be used to determine whether accesses are
mapped to the same LRU cache set/line [17]. In this

way hit/miss information may be obtained even for
accesses to unknown memory addresses. Such ap-
proach identifies certain group reuse cases (two differ-
ent instructions accessing to the same data address),
but does not perform a whole reuse analysis [35]. A
more recent work provides the theoretical foundations
to perform a safe reuse analysis on tasks [28]. It uses
polyhedra to track the content of registers and mem-
ory by means of Abstract Interpretation [11]. Then
the access patterns of data references are extracted,
along with its reuse information [35]. So, it is able
to analyze whole programs and generate their data
reuse facts with equal or more precision than previous
methods. However, it does not address its practical
application to any specific data cache, nor its integra-
tion in a WCET analysis [28]. We propose a generic
methodology for data cache analysis and its WCET
analysis (see Figure 1) that exploits these data reuse
facts similarly to the more common flow facts.

3 Generic data cache analysis

In order to evaluate the impact of caches in the
WCET, it is required to predict their behavior in the
worst case as accurately as possible. Typically, this
is performed through an analysis of memory refer-
ences that classifies them into a few categories, and
then integrates such references into the WCET anal-
ysis based on their category. So, from now on, we
call reference to a memory operation in the (static)
binary code, and we call access to an actual execution
(dynamic) of a memory reference. For instance, for a
typical array traversal in a loop, the load instruction
in the code contains a single memory reference for
traversing the array, which is translated into multiple
accesses to the specific address of each element in the
array for each loop iteration. This section describes
how we classify each data reference depending on the
target data cache by means of reuse information.

3.1 Intuitive example

To illustrate the hit/miss computation on data in the
worst case, let us consider the optimized matrix mul-
tiplication code in Figure 4. In this example, the four
existing references (three loads and one store) result
in accesses to different addresses, so an address-based
analysis would consider such accessed addresses as
unknown. For this code, Figure 5a shows the rep-
resentation of a typical persistence analysis [32]. In
the worst case, conflicts must be assumed between
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for ( i =0; i<n ; i++)
for ( k=0;k<n ; k++) {

t=B[ i ] [ k ] ;
for ( j =0; j<n ; j++)

A[ i ] [ j ] = A[ i ] [ j ] + t ∗C[ k ] [ j ] ; }

Figure 4: Optimized matrix multiplication code, A =
B×C, assuming matrix A initialized to zero. Induc-
tion variables i, j, k, and temporal variable t should
be allocated to registers.

all accesses, and with such assumption all cached
data lines must be safely considered as evicted be-
fore being reused, resulting in always miss / no per-
sistence in all references. Notice that, even consider-
ing address subspaces (in this case the rows of a ma-
trix), interleaving accesses raise uncertainty regard-
ing conflicts in the worst case. Moreover, if matrices
are parameters of functions or they are processed by
pointers (such as, for instance, matrix1 benchmark
in TACLeBench [12]), bounding the address space
of loads/stores may be impossible. So, except for
constant addresses (global scalar variables), address-
based analyses are not adequate to predict the hit-
s/misses on data caches.

Alternatively, Figure 5b shows a representation
considering the access patterns and reuse for the code
in Figure 4 [28]. It can be seen that each load/store is
associated with a linear access pattern that results in
accesses to sequential elements in each array (self spa-
tial reuse), and there is group temporal reuse between
the load and the store to A[i][j]. This informa-
tion is cache-independent, so the corresponding reuse
analysis must be performed just once. Then, it can
be used to obtain the hits/misses in the worst case
for any particular data cache. For instance, assuming
an LRU cache with just 2 ways, both A and C loads
will have a high hit ratio (depending on how many
array elements fit in each cache line) and the store to
A will always hit, since it reuses the data previously
loaded. Notice that this can be asserted even if the
base addresses of the matrices are unknown. Also,
group reuse can be set even on unknown addresses/-
patterns, as long as it can be guaranteed that two
references access to the same memory address. As
it can be seen, an accurate hit/miss analysis cannot
disregard data access patterns nor reuse information.

Table 1: Categories for data memory references.

Category Description

Always-hit (AH) All accesses hit
First-miss (FM) When iterating in its enclosing

loop, only the first access may
miss

k-miss (KM) When iterating in its enclosing
loop, only up to k accesses may
miss

First-hit (FH) All accesses but the first one
may miss

Not-classified (NC) All accesses may miss

3.2 Limitations of this work

As outlined in Section 1, our framework requires a
previous reuse analysis of the compiled code [28].
Currently, such analysis does not deal with recursive
functions. It cannot analyze non-natural loops (loops
with more than one entry point) either, which may
appear in particular uses of goto statements.

Although the data reuse facts provided by this pre-
vious analysis for a given binary code are safe, it is
important to notice that programs are sequences of
instructions to be executed in order, so this safety
may not hold if such an order is not respected. There-
fore, processors that may not access data in program
order are not analyzable with our proposal. Such
behavior might be found in out-of-order execution,
data prefetchers, or speculative execution of loads/s-
tores (e.g., performing memory accesses in a mistaken
branch).

3.3 Categories of data references

In order to calculate whether a given memory access
will result in a data hit or miss, most analysis meth-
ods first classify memory references into categories,
and then a hit/miss computation is performed based
on these categories. In this way, hits/misses are not
calculated per memory access (which would be in-
tractable), but per memory reference.

Table 1 shows our proposed categories for data ref-
erences. Except for the k-miss (KM) category, ex-
plained below, they are adaptations of the typical
hit/miss categories used in instruction cache anal-
ysis [13, 25, 33]. Also, Table 1 includes their de-
scription, since these categories have slightly differen-
t/ambiguous meanings in previous papers [5]. Since
data accesses present much uncertainty, our cate-
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Figure 5: Representation of different data access analyses for the code in Figure 4, with elements of 4 B.

gories bound the number of misses, but not the num-
ber of hits. This safe approach makes it possible
to dispense with an overlapping data analysis. An-
other important detail is that first-miss (FM) and
KM categories are associated with the deepest en-
closing loop containing the corresponding memory in-
struction (e.g., in Figure 4, loop k encloses the ref-
erence to B, and loop j encloses references to A and
C). For instance, a FM reference in the deepest loop
of a nested loop structure means that, at most, it will
miss as many times as the deepest loop is reached.

Apart from previous categories, we introduce the
KM category. It has an extra parameter k that spec-
ifies the calculated constant bound on the number
of misses for a given reference in its enclosing loop.
Having the access pattern of a self-reusing reference,
obtaining its bound k is trivial. For instance, let us
take A + 4n · i + 4 · j from Figure 5b, which sequen-
tially traverses a matrix row of 4 byte elements in
its enclosing loop (j). Let us assume cache lines of
4L bytes (L elements per cache line). Also, let us
assume aligned n× n matrices, with n multiple of L.
In such case, each row would need 4n/4L cache lines,
that is, k = n/L misses at most in loop j. This cal-
culation may be trickier if the array base address is
unaligned or unknown, and may include overestima-
tion if part of the array is already cached.

3.4 Classification of references into
categories

The classification of references into categories de-
pends on the target data cache, since not all cache
organizations exploit the data reuse in the same way.
Essentially, we rely on the minimal cache life-span
metric (mls() function in algorithms below), which
determines the minimum number of accesses nec-
essary to evict an element that has just been ac-
cessed [27]. Apart from the cache organizations de-
tailed below, other caches can be analyzed in a similar
way by means of this metric.

3.4.1 Background on data reuse theory

Access patterns (e.g., A + 4n · i + 4 · j) are based on
loop nest data reuse theory [35]. For the sake of a
self-contained research, let us briefly introduce such
a theory, as it is outlined in previous papers [28, 29].
Each iteration in a loop nest corresponds to a node
in its iteration space. In a loop nest of depth n, this
node is identified by its induction variables vector
~i = (i1, i2, . . . , in), where ij is the iteration value of
the jth loop in the nest, counting from the outermost
to innermost loop. Let d be the number of dimensions
of an array A. The reference A[~f(~i)] is said to be

uniformly generated if ~f(~i) = H~i + ~c, where ~f is an
indexing function Zn → Zd, the d × n matrix H is
a linear transformation, and ~c is a constant vector.
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Row k in H represents the linear combination of the
induction variables corresponding to the kth array
index. Since any data structure is mapped to memory
and memory can be seen as a single dimension space,
~f can be transformed into an equivalent f(~i) = ~h·~i+c.
So, for reference A + 4n · i + 4 · j from Figure 5b,
~i = (i, k, j), ~h = (4n, 0, 4), and c = A. A given

reference is constant if all elements in ~h are 0, and it is
array otherwise. If the reference cannot be described
as ~h ·~i + c, then it is non-linear.

3.4.2 Conventional set-associative LRU
cache

Let us begin with the classification for conventional
LRU caches. In order to classify data references into
categories, multiple approaches can be used. For ref-
erences to constant addresses, a classification via Bi-
nary Decision Diagrams is probably the most effi-
cient [32]. In addition, references with group reuse
could be accurately analyzed if such information were
provided [28]. However, integrating linear patterns
might not be possible, due to the fact that the ac-
cessed address varies for each access. Since our goal
is to evaluate the impact of an LRU data cache in the
WCET bound with precision, we implement an anal-
ysis based on the reuse information (Algorithm 1).

For references without group-reuse (Algorithm 1,
line 36), hits are possible if the reference is inside
a loop (self-reuse, Algorithm 2). So, our implemen-
tation analyzes the cache lines accessed in the loop
by interleaving references (function conflictingAccess-
esInLoop) in order to see how many of them may
be mapped to the set (or sets) used by the self-
reuse reference. If the number of possible conflicting
cache lines is lower than the LRU minimal cache life-
span [27] (i.e., lower than the number of ways), a hit
is guaranteed (FM category for constant addresses,
and KM for sequential accesses). Otherwise, this ref-
erence is categorized as NC.

If a reference has group-reuse, reuse information
provides its last dominant reference with group reuse
(reference domref in Algorithm 1). domref domi-
nates ref if every path to ref goes through domref .
So, domref is the last previous reference that has
compulsorily accessed the same data. Hence, a cache
hit is guaranteed if the accesses between them do not
evict the content to be reused. Similarly as above, our
implementation explores the possible paths between
each pair of references with group-reuse, retrieving
the accessed cache lines that map to the analyzed
cache set (function conflictingAccessesBetween). If

the number of conflicting cache lines is lower than the
number of ways, a hit is guaranteed (AH category).

For references with self-reuse within a given loop
and group-reuse with respect to another reference
dominating this loop (Algorithm 1, line 17), if they
present hit on group-reuse (first iteration), this added
hit is taken into account in the self-reuse classification
performed above. That is, FM are translated to AH,
NC to FH, and the k misses in KM are decremented
in 1 miss. For simplicity, Algorithm 1 does not show
some details, for instance those regarding references
in unfeasible paths.

Both Algorithm 1 and 2 use conflictingAccessesBe-
tween() and conflictingAccessesInLoop() functions to
explore the CFG, respectively. Such functions recur-
sively explore the targeted paths in the CFG, either
between two references, or between the same refer-
ence in different iterations of a loop. Although this
targeted brute force exploration is not particularly
efficient, notice that both functions work with a per-
fectly delimited subset of the CFG, and compilers
place reusing accesses as close as possible. Also, if the
number of conflicting cache lines gets higher than the
number of ways (mls() function), our implementation
terminates the analysis (not show in algorithms 1 and
2). Based on our experiments, performance seems ac-
ceptable, as we show in Section 7.5.

3.4.3 ACDC

Classification for the ACDC (Algorithm 4) is much
easier, since the ACDC prevents undesired evictions
and its behavior depends on the preconfigured data
replacement permissions. For references with group-
reuse, hits are guaranteed (AH category) if any dom-
inant reference with group reuse has been granted
data replacement permission. For references with-
out exploitable group-reuse, hits are guaranteed if the
reference is inside a loop (self-reuse) and has been
granted data replacement permission (FM category
for constant addresses, and KM for sequential ac-
cesses). Otherwise, the reference is classified as NC.

3.4.4 Unlimited size data cache

For comparison purposes, we also analyze an un-
limited size data cache. Since no data overlapping
can be assumed in the worst case, we resort to the
reuse information. That is, accesses without self/-
group reuse are assumed to access non-cached mem-
ory lines. This would be equivalent to the previous
LRU analysis assuming that all reused data hit, or to
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Algorithm 1 Algorithm to classify data memory ref-
erences in a system with a LRU cache.

1: for all ref do # ∀ data references in the program
2: if ref has group reuse then # group reuse
3: domref ← lastDominantWithGroupReuse(ref )
4: if ref is not enclosed in any loop then
5: if conflictingAccessesBetween(domref , ref ) <

mls(LRU ,Ways) then
6: category[ref ] ← AH # single hit
7: else
8: category[ref ] ← NC # single unclassified
9: end if

10: else # ref inside loop
11: if loop(ref ) = loop(domref ) then # both in the

same loop
12: if conflictingAccessesBetween(domref, ref) <

mls(LRU,Ways) then
13: category[ref ] ← AH
14: else
15: category[ref ] ← NC
16: end if
17: else # reference (domref ) dominating a loop and

reused (ref ) within it
18: category[ref ] ← classifySelfReuse(ref )
19: if category[ref ] = KM then
20: maxMisses[ref ]← calcLoopMaxMisses(ref)
21: end if
22: if conflictingAccessesBetween(domref, ref) <

mls(LRU,Ways) then
23: if category[ref ] = FM then
24: category[ref ] ← AH
25: else if category[ref ] = KM then
26: maxMisses[ref ] ← maxMisses[ref ]− 1
27: if maxMisses[ref ] = 0 then
28: category[ref ] ← AH
29: end if
30: else if category[ref ] = NC then
31: category[ref ] ← FH
32: end if
33: end if
34: end if
35: end if
36: else # no group reuse
37: if ref is inside loop then # self reuse
38: category[ref ] ← classifySelfReuse(ref )
39: if category[ref ] = KM then
40: maxMisses[ref ] ← calcLoopMaxMisses(ref)
41: end if
42: else # no reuse
43: category[ref ] ← NC
44: end if
45: end if
46: end for

Function conflictingAccessesBetween(ref1 , ref2 ) returns the
maximum number of conflicting accesses between two refer-
ences with group reuse with a dominance relation. Function
mls(policy,ways) returns the minimal life-span metric in the
cache [27].

Algorithm 2 classifySelfReuse(ref ): Fuction to clas-
sify a data memory reference inside a loop considering
only its self reuse in a system with a LRU cache.

1: if conflictingAccessesInLoop(ref ) < mls(LRU ,ways)
then # not evicted between accesses of ref

2: if ref is constant then # self-temporal only
3: return FM
4: else if ref is array then # self-spatial reuse
5: return KM
6: else if ref is nonlinear then # reuse not guaranteed
7: return NC
8: end if
9: else # accessed line may be evicted

10: return NC
11: end if

Function conflictingAccessesInLoop(ref ) returns the maximum
number of conflicting accesses in the loop enclosing ref between
two accesses of ref in different iterations.

Algorithm 3 calcLoopMaxMisses(ref ): Function to
get the potential data misses for ref [29].

1: if en ∈ Ker(Hs) then # self-spat. (may have self-temp.)
2: if en ∈ Ker(H) then # self-temporal
3: return 1 # access to the same address always
4: else # self-spatial reuse
5: if lineSize ≤ |hn| then # cache line size ≤ stride
6: return loopIterations # always may miss
7: else # exploitable self-spatial reuse
8: if hn > 0 then # forward traversal

9: firstLineElems ← lineSize −
⌊
c mod lineSize

hn

⌋
10: else # backward traversal

11: firstLineElems ←
⌊
c mod lineSize

−hn

⌋
12: end if

13: return 1 +
⌈

loopIterations−firstLineElems
lineSize/|hn |

⌉
14: end if
15: end if
16: else # ref without reuse: may always miss
17: return loopIterations
18: end if

Function Ker(H ) performs the kernel operation on matrix H,
i.e., obtains the set of vectors that are mapped to the null
vector by H. Matrix H is the linear transformation of ref , hn

is its stride in the enclosing loop, and c is its base address (see
Section 3.4.1). ~ei is a vector with all elements equal to 0 except
the one in position i, matrix HS is H with all elements of its
last row replaced by 0, and n is the number of columns of H, i.e.
the depth of the nested loops in ref [29,35]. Constant lineSize
represents the size of the cache line, and loopIterations is the
number of iterations in loop n.

8



Algorithm 4 Algorithm to classify data memory ref-
erences in a system with an ACDC cache.

1: for all ref do # ∀ data references in the program
2: if ref has group reuse and any dominant reference has

DRP then # exploitable group reuse
3: category[ref ] ← AH
4: else if ref is inside loop and ref has DRP then #

exploitable self reuse
5: if ref is constant then # self-temporal reuse only
6: category[ref ] ← FM
7: else if ref is array then # self-spatial reuse
8: category[ref ] ← KM
9: maxMisses[ref ] ← calcLoopMaxMisses(ref)

10: else if ref is nonlinear then # reuse not guaranteed
11: category[ref ] ← NC
12: end if
13: else # no reuse
14: category[ref ] ← NC
15: end if
16: end for

the previous ACDC analysis assuming that all refer-
ences have data cache replacement permission. In any
case, there would be no replacements in an unlimited
size data cache, so writebacks are not considered.

3.4.5 Example of classification

Let us illustrate how the code in Figure 4 would be-
have depending on the selected data cache and anal-
ysis method. For simplicity, let us consider potential
misses as misses.

Table 2 shows the category, number of misses,
and number of writebacks, for five different systems,
namely a system without data cache, two systems
with a conventional LRU data cache with at least two
ways assuming two different analysis for data refer-
ences (persistency/address-only and reuse/pattern),
a system with an ACDC with at least three entries,
and a system with a data cache of unlimited size.

Without cache (column “No cache”), all accesses go
to main memory, so there is no need of categorization.
Also it presents no writebacks. For an address-only
LRU analysis (Figure 5a), in column “LRU-addr”, all
accessed addresses are unknown, so they are classified
as NC. In addition, the data modified by the store in-
struction must be written to memory on every access.

If we consider a pattern-based LRU analysis (Fig-
ure 5b), in column “LRU-pattern”, categories are
much more accurate than those in the address-only
LRU analysis. The ld B is still categorized as NC
due to the interleaving accesses. On the other hand,
the reuse information allows an AH categorization
of st A, since the number of possible conflicting

data lines between this reference and ld A (just one,
brought by ld C ) is lower than the number of cache
ways (assuming a cache with 2 ways at least). Fur-
thermore, both ld A and ld C are classified as KM,
with k = n/L in its enclosing loop (j) as detailed
above. Since loop j is inside two nested loops, both
iterating n times, the maximum number of misses for
both KM references is bounded to n2 · k = n3/L.
Moreover, the store to A sets the dirty flag for the
data brought by the load of A, so it triggers as many
writebacks as misses by ld A. We associate writebacks
with the reference that brings the data from memory,
but they could be associated with the reference that
sets the dirty flag, or the reference that evicts the
cache line.

Let us now consider an ACDC with at least
3 entries for data replacement permissions (column
“ACDC”). We assume that all references but the
store are granted DRP, that is, they have an ex-
clusively assigned data cache line to replace, and
no other instruction can evict it. The store to A
reuses the data cached by ld A, so it always hits. For
ld A and ld C, ACDC performs as the LRU-pattern
case, that is, KM categories with no more than n3/L
misses. For the ld B reference, since it has an associ-
ated cache line, interleaving accesses cannot evict it,
so it is also classified as KM with k = n/L. Since its
enclosing loop is reached n times in loop i, ld B is
bounded to n2/L misses.

Finally, let us discuss our estimation for an un-
limited size data cache (column “Unlimited size”).
Reused content (st A) always hits and, given the un-
limited size, there would be no replacements/write-
backs. Also, all sequential accesses miss as many
times as cache lines the data structures occupy, that
is, KM with k = n/L per matrix row traversal. As
above, our analysis multiplies those misses by the
number of times they occur (n for ld B, and n2 for
ld A and ld C ). However, notice that this may in-
volve overestimations, as can be seen for ld A and
ld C. Since matrices A and C occupy n2/L cache
lines, ideally there cannot be more than n2/L misses,
but our analysis estimates n3/L misses. To try to
avoid such overestimation, an address space analysis
of data structures plus an out-of-bounds analysis on
references would be required. However, notice that
such overestimation for the unlimited size cache does
not affect its value as a baseline, since it is still a lower
bound for our analyzed caches. As stated above, such
lower bound corresponds to an LRU-pattern that al-
ways takes profit of the existing reuse, or an ACDC
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Table 2: Estimated number of misses and writebacks in the worst case for different data caches for the
matrix multiplication code in Figure 4, assuming aligned non-overlapping matrices. The considered LRU
data cache has 2 ways at least, and the ACDC may hold 3 data replacement permissions at least.

No cache LRU-addr LRU-pattern ACDC Unlimited size

Ref. Access Cat Miss WB Cat Miss WB DRP Cat Miss WB Cat Miss WB

ld B n2 NC n2 0 NC n2 0 Yes KM n2/L 0 KM n2/L 0
ld A n3 NC n3 0 KM n3/L n3/L Yes KM n3/L n3/L KM n3/L 0
ld C n3 NC n3 0 KM n3/L 0 Yes KM n3/L 0 KM n3/L 0
st A n3 NC n3 n3 AH 0 0 No AH 0 0 AH 0 0

Total 3n3 + n2 4n3 + n2 3
Ln

3 + n2 3
Ln

3 + 1
Ln

2 2
Ln

3 + 1
Ln

2

with unlimited DRPs, in both cases without write-
backs.

In this example, the pattern-based LRU analysis
gives the highest estimate of the number of memory
accesses in the worst case, even worse than a system
without cache. ACDC performs less memory accesses
than LRU-pattern in the worst case, but note that
it has a limited amount of DRPs to grant. If such
number is not enough, references that would benefit
from DRP will be categorized as NC. These details
are considered in the IPET model.

4 IPET integration

The last part of the WCET analysis commonly
involves generating an integer linear programming
(ILP) model to obtain the WCET bound. The Im-
plicit Path Enumeration Technique (IPET) defines
a flow-based ILP model of the control-flow graph
(CFG) by means of a variable xi for each basic block i
in the CFG, and variables de for the CFG edges e be-
tween basic blocks, both representing the number of
times that they are traversed [23]. Two virtual ba-
sic blocks start and end are also linked to the CFG,
with their corresponding x variables set to 1. The
execution time is defined as:

ET =
∑
i

ci · xi (1)

where ci is the constant cost of traversing basic block i
a single time. Then, the WCET bound is obtained by
maximizing eq. 1. In order to consider a LRU data
cache, the data memory latency cost is removed from
ci, and other variables and constraints are added [23].
In our case, the data cache is not modeled as defined
by previous studies, but based on our previous cat-
egories, as we detail below. Table 3 describes the

Table 3: Variables and constants of our IPET pro-
posal.

Variable Description

de Times that edge e is traversed (original
IPET)

dac Cumulative data access cost in the pro-
gram

dhref Times that data reference ref hits
dmref Times that data reference ref misses
wbref Times that data cached by reference ref

are written back
xi Times that basic block i is traversed

(original IPET)

Constant Description

ci Cost of traversing basic block i (original
IPET), without including data memory
access costs

k Constant associated with a given ref
classified as KM

hc Data hit cost
mc Data miss cost
wbc Writeback cost

original IPET variables and constants, and also the
new ones used in our approach.

In order to integrate our proposal, we represent
the total data access costs in the program as a new
variable dac, to be added to eq. 1:

ET = dac +
∑
i

ci · xi

This variable is the sum of the number of possible oc-
currences (data hits dh, data misses dm, and write-
backs wb) times their constant cost (hit cost hc, miss
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cost mc, and writeback cost wbc) for each reference
ref in the program:

dac =
∑
ref

hc · dhref + mc · dmref + wbc · wbref

Then, such occurrences (dhref , dmref , and wbref )
are constrained using the original IPET variables x
and d as described below. For a clearer notation, let
us define the following functions: BB(ref ) returns the
basic block i where reference ref is located, loop(ref )
returns the loop l enclosing reference ref , and EE (l)
returns the set of entry edges of loop l, that is, the set
of edges reaching loop l that are not back-edges (given
two basic block nodes a, b from a control-flow graph,
a back-edge is an edge a→ b whose head b dominates
its tail a [2], i.e., all edges that enter the loop header b
from the loop body are back-edges). In general, the
sum of data hits and misses of a given reference equals
the number of times its corresponding basic block is
traversed:

dhref + dmref = xBB(ref ) (2)

However, some instruction sets (e.g. ARM) provide
predicated load/store instructions. That is, load/-
store operations together with a condition so that,
when the instruction is executed, the memory access
is performed only if the condition is true. In such
case eq. 2 must be set as an ≤ inequality.

For each reference, we bound its number of misses
depending on its category, as follows.

0 ≤ dmref ≤


0 if ref is AH,∑

d∈EE(loop(ref )) d if ref is FM,∑
d∈EE(loop(ref )) k · d if ref is KM,

xBB(ref ) − 1 if ref is FH,
xBB(ref ) if ref is NC.

As it can be seen, such constraints are a straightfor-
ward translation of the categories in Table 1. For AH,
no misses are possible. For NC, all accesses (xBB(ref ))
may miss. For FH, all but one access (xBB(ref ) − 1)
may miss. Notice that in FH cases with xBB(ref ) = 0
the model is infeasible. If this happens, FH cases can
be safely modeled as NC. For FM and KM, the ac-
tual misses must be equal or lower than the maximum
possible number of misses (1 for FM and k for KM) in
the corresponding enclosing loop (reached

∑
d times,

∀ d ∈ EE (loop(ref ))). The accesses to scalar vari-
ables with group reuse in the ACDC are simpler than
our generic FM category, since they can present a sin-
gle miss at most. So, its precision in the IPET repre-
sentation can be improved by 0 ≤ dmref ≤ 1, which
also simplifies the analysis.

In a similar way, the number of writebacks can
be bounded. As outlined in Table 2, the number of
writebacks, if any, is equal to the number of misses
in the updated data structure. So, we associate
the writebacks to the reference that brings the con-
tent that will be eventually evicted. The number of
writebacks depends on the type of cache. For LRU,
writebacks will eventually occur for store misses, and
also for load misses that are modified before being
evicted. This second situation occurs for loads with
both a dominance relation and a group reuse relation
to stores, without misses to the reused data between
them. In any case, a single writeback per data line oc-
curs, even if the same line is rewritten multiple times.

wbref =



dmref if ref is store NC/FH/KM/FM,
dmref if ref is load NC/KM/FM

followed (dominating group
reuse) by zero or more loads
AH, followed by a store AH,

1 + dmref if ref is load FH followed
(dominating group reuse) by
zero or more loads AH, fol-
lowed by a store AH,

0 otherwise.

For the ACDC, only the instructions with data re-
placement permission may replace content in cache,
so only them can cause writebacks. Notice that the
FH category is not possible for the ACDC.

wbref =



dmref if ref is store NC/KM/FM with
DRP,

dmref if ref is load NC/KM/FM with
DRP followed (dominating group
reuse) by zero or more loads AH,
followed by a store AH,

0 otherwise.

5 Safety of our approach

Our approach is essentially a series of transforma-
tions, from the data reuse facts of the references in
the CFG, to an ILP model to be solved. Safety of
the data reuse facts is guaranteed by its own analysis
based on Abstract Interpretation [11, 28]. Our pro-
posed algorithms classify these reuse facts into cate-
gories (Section 3.4). These algorithms are based on
the algebraic foundations of the well known reuse the-
ory [35], briefly introduced in Section 3.4.1. For each
situation, these algorithms always assume the most
loose category (that with less guaranteed informa-
tion). Such behavior guarantees their safety.
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IPET is the most widely used method to model
the CFG for a static WCET analysis. It declares the
relation between basic blocks, and lets the solver to
maximize the objective function of the model, i.e.,
to obtain the WCET. Our proposal to integrate our
categories in the IPET model also follows this ap-
proach: For each reference, we declare its possible
outcomes (hits plus misses, and writebacks), bound
them to the number of times that each reference is
executed, and bound the misses and writebacks ac-
cording to its corresponding category. With such re-
lations and bounds, the solver explores the integer
variables (number of hits, misses, etc.) and maxi-
mizes the WCET function.

As it can be seen, all parts of our proposal follow
the standard safety guidelines in the field. Addition-
ally, below we evaluate two baselines (always hit, and
unlimited size data cache) to further validate our re-
sults.

6 ACDC configuration

The ACDC is a configurable component [29]. As
such, it requires an adequate configuration, depen-
dent on the task to be run. This configuration con-
sists of the set of program counters (PCs) of load-
/store instructions with granted data cache replace-
ment permission (DRP). As detailed in Section 3.4,
classification of data references into categories is
based on DRPs. However, selecting a set of PCs that
effectively minimizes the WCET bound when granted
DRPs is hard. An existing proposal generates the op-
timal ACDC configuration for single-path tasks [29].
Since our tested benchmarks are not single-path, we
propose a feasible heuristic method to generate the
ACDC configuration. Essentially, we perform an al-
ways miss WCET analysis without writebacks (equiv-
alent to having an ACDC with no DRPs) and, for
each instruction (PC ) suitable to be granted DRP,
we estimate the benefit bPC that the DRP would
provide. Instructions suitable to be granted DRP are
those which do not reuse data from other loads/s-
tores, and their data are reused by itself or others.
As shown in the following equation, to estimate the
benefit of granting DRP to one of these candidate in-
structions, we must add a cost (positive number of cy-
cles) with a benefit estimate (negative numbers). The
cost corresponds to writing once (preload) the PC of
the selected instruction in the AC part. The benefits
can be estimated by adding the savings with respect
to the always-miss model due to: a) the access to

the data of the selected instruction itself (accessref ),
b) the access of other load/store instructions that
reuse the same data (reuseref ), and c) the writebacks
(writeback ref ).

bPC = preload +
∑

ref in PC

accessref +reuseref +writeback ref

The benefit in the access cost of the reference
(accessref ) can be calculated depending on the access
type. A reference outside loops is forcefully scalar,
and if it is being considered for DRP means that it
does not reuse the data of other loads/stores. In such
case, it will miss, as already considered for the always-
miss model, so the benefit is 0. For references inside
loops, the benefit in the access cost of the load/store
can be calculated depending on whether it is a scalar
reference (self-temporal reuse) or an array reference
(self-spatial reuse). In both cases we calculate always
a hit cost instead of the original miss cost for all ac-
cesses (dmref ) of this instruction, and then revert to
miss cost the potential misses, that is, one miss for
scalars and, for arrays, k misses each time its enclos-
ing loop is reached. Other cases are not suitable to
be granted DRP. Summarizing:

accessref =



0 if ref is (scalar) outside loop,

(hc −mc) · dmref + (mc − hc)

if ref is scalar inside loop,

(hc −mc) · dmref + (mc − hc) ·
∑

d∈EE(loop(ref ))

k · d

if ref is array inside loop.

For the references r reusing the data brought by
ref (group reuse relation and dominance relation),
the benefit implies considering cache hit costs instead
of miss costs for all their accesses (dmr).

reuseref = (hc −mc) ·
∑

r reusing ref

dmr

The costs of writebacks, not present in always-miss,
can be calculated as above, depending on whether the
working data set is modified or not.

writeback ref =

 wbc ·
∑

d∈EE(loop(ref ))

k · d if ref has group
reuse stores,

0 otherwise.

Previous constraints do not affect the maximiza-
tion objective for the always-miss system, but just
calculate a bPC value for each load/store instruction.
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Once the model is solved, we select as many candi-
dates as entries in the target ACDC, ordered by their
calculated bPC (the lower the better, considering neg-
ative values only). It is important to notice that such
a selection is not necessarily optimal, since DRPs may
affect the worst path, and their effect may depend on
the other DRPs. Nevertheless, such estimations pro-
vide good results with a simple analysis.

7 Evaluation

In this section we describe the considered target hard-
ware architecture and the benchmarks, and also dis-
cuss our experiments and results.

7.1 Target hardware

The target instruction set architecture considered
in our experiments is ARMv7 with instructions of
4 bytes. We assume a memory architecture consist-
ing of separated L1 instruction and data caches, both
below RAM modules as main memory. At present,
a common general purpose L1 cache configuration
might be 8-way set-associative, with 64 sets, lines of
64 bytes, and PLRU replacement [1]. In this study
we assume LRU instruction and data caches with the
same configuration, keeping the number of sets to
64 and varying the number of ways between 4 and 32
(each cache stores between 16 and 128 KiB of instruc-
tions/data). This includes configurations with less
ways than current general purpose processors, which
may be currently dominant in the embedded domain,
and also configurations with more ways, to provide
an insight of future trends. Notice that PLRU is not
adequate for real-time systems, so any PLRU cache
would imply larger WCETs than LRU. As an alter-
native to the data cache, we also test the ACDC
cache [29]. As described in Section 2, it works by
associating specific data cache lines to preconfigured
load/store instructions. The selection of such associ-
ations is detailed in Section 6. So, these instructions
perform replacements in a controlled way (no other
instruction can evict the content in the associated
cache line), and other instructions are forced to by-
pass the cache in case of miss. We assume the same
number of entries for the AC (storing PCs with data
cache replacement permission) and DC (holding the
data), varying from 4 to 32, as the number of ways in
the LRU cache. This means 4 to 32 instructions with
data replacement permission to their associated data
cache line. So, the ACDC may store between 256 and

2048 bytes of data, that is, 64 times less data than its
LRU counterpart, since it has no sets (see Figure 2).

In order to focus on data, we model an instruc-
tion cache with unlimited size. This is done by
limiting the number of misses of each instruction
memory line to 1, although previous LRU size suf-
fices to completely hold any of the tested bench-
marks. We assume a memory latency of 13 cycles
both for instructions and data, which is a realis-
tic value for main memories such as the Automotive
DRAM MT46V16M16 [24] clocked at 100 MHz, and
has been used in previous studies [32].

We assume a typical 5-stage pipeline (fetch FE, de-
code DE, execute EX, memory MEM, writeback WB)
performing ideally (ideal branch prediction and 1 cy-
cle/stage), except for memory operations (instruction
fetch and data memory transfers). FE stage takes
1 cycle for an instruction cache hit, and 14 for a
miss (look-up plus memory transfer). Regarding data
memory accesses, the address computation is per-
formed in the EX stage (1 cycle), and the data cache
look-up/hit for loads is performed in the MEM stage
(1 cycle). If the target address is not cached, a mem-
ory transfer is triggered, forcing the pipeline to halt
until the memory transfer is completed. For stores,
we assume the same procedure (although located in
the WB stage): 1 cycle to reach the data cache, and
13 additional cycles if the line to write to must be
brought from memory (fetch on write-miss policy).
For stores with write-around (ACDC only), in the
WB stage, we also assume 1+13 cycles, even though
a cycle could be saved by performing the AC look-up
in the MEM stage. So, for an instruction performing
a single memory access, given that the pipeline hides
the address computation and the data cache look-up,
only accesses that require a memory transfer suffer a
penalty of 13 cycles (memory latency). If any missing
access evicts a dirty cache line, a writeback is trig-
gered, and its corresponding memory latency is also
added to the completion time of the instruction. Fi-
nally, in case of push/pop instructions with multiple
data memory accesses, the corresponding stage is re-
peated as many times as requested accesses, and the
cost of each access is computed independently, i.e., no
burst memory transfers are considered. Table 4 sum-
marizes these costs. It is important to notice that, on
data misses, a system with data cache performs worse
than without it, specially if the missed data replaces
a dirty cache line.

Although we assume a simple pipeline, more com-
plex pipelines can be integrated into IPET (e.g., [4]).
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In such case, our bounds on the number of misses
would be applied to the specific pipeline constraints
in the model.

7.2 Benchmarks

Table 5 shows the benchmarks used in our experi-
ments, compiled by gcc 9.2.1, from the TACLeBench
suite [12]. Recursion has not been addressed in this
work, so recursive benchmarks have been discarded.
We use angr version 9.0.4663 to extract and process
the CFGs [30]. Although our proposal has no re-
strictions regarding the CFG, it must be taken into
account that angr is in active development stage,
and it may decode some instructions incorrectly. In
the cases that such errors result in invalid CFGs,
the corresponding benchmarks have been discarded.
Also, benchmarks deg2rad and rijndael dec have been
discarded because their results are almost identical
to those of rad2deg and rijndael enc, respectively.
Benchmark cover has also been discarded due to the
fact that it has very few memory references and none
of them inside a loop. For each one of the binaries,
flow information (flow facts) has been manually set
based on the annotations in the source code, carefully
studying the effect of compiler optimizations. Never-
theless, existing loop bound analysis methods could
be used [7, 22]. Table 5 shows the considered bench-
marks, along with an estimation of the number of
data memory accesses in the estimated WCET case
for each compiler optimization level, discussed below.
Most of these benchmarks contain procedures, which
can be transformed in different ways, depending on
compiler optimizations, such as inlining, cloning, or
specialization for constant parameters.

In order to provide some insight into the data com-
plexity, Figure 6 shows the number of static load/s-
tore instructions for each benchmark and optimiza-
tion level. Benchmarks are ordered by the number of
such instructions when compiled without optimiza-
tions. As it can be seen, benchmarks on the left
side contain very few memory instructions, whereas
those on the right have up to two orders of mag-
nitude more load/store instructions. In general, bi-
nary codes compiled without optimizations have re-
dundant loads/stores, which are removed when op-
timizing. A few exceptions can be found with op-
timization level 3, which tries to unroll loops with
few iterations. If so, loads/stores inside these loops
are replicated, as can be seen for instance in com-
plex updates and cjpeg transupp. All figures in this
section follow this ordering for the benchmarks.

7.3 Data cache hit ratio

In this section we present the hit ratio for different
cache configurations. Data cache hit ratio is the per-
centage of data hits out of the total data accesses.
So, it is the most direct measure of the effectiveness
of the cache.

Since Figure 6 shows benchmarks with very few
memory instructions, it is important to verify that
the number of performed memory accesses is reason-
ably high. This is a complex problem on its own,
since the number of performed memory accesses de-
pends on the taken path, and the path associated
to the WCET bound may depend on factors such
as the tested data cache. In order to provide a
path-independent context, we define the number of
data memory accesses in the estimated WCET case
(NMAWC) as:

NMAWC =
WCET NC −WCET AH

MemoryLatency −HitCost

where WCET NC and WCET AH refer to the WCET
bounds of systems with no data cache and always
hit on data, respectively, and MemoryLatency and
HitCost are the costs of accessing data for the previ-
ous systems. That is, MemoryLatency = mc−hc, and
HitCost = hc. Specific data caches would present a
number of memory accesses between these two oppo-
site baselines, so the NMAWC provides an insight of
such value. Also, when changing parameters, there is
very little variation in the path associated to the esti-
mated WCET, since usually the task to perform does
not change. The obtained NMAWC values can be
seen in Table 5, as an absolute value for O0 and as a
percentage with respect to O0 for optimized binaries.
It can be seen that optimizations reduce very much
the number of data memory accesses. In a few cases,
the O3 versions of the binaries increase the number
of estimated accesses, which is especially noticeable
in g723 enc, ludcmp, and rijndael enc. The reason is
the aggressive code transformations carried out un-
der the O3 flag, such as vectorization, which usually
requires loop cloning to deal with remainders of the
iteration space. For all the cloned loops, we conser-
vatively keep the bounds specified by TACLeBench.
Hence, if they contain data references, the estimated
accesses in the worst case may increase.

In systems with one level of cache memory, the data
cache hit ratio is calculated by counting as hits all ac-
cesses (ld/st) that do not require communication with
the off-chip memory. Note, however, that writeback
caches, while preventing some memory transfers, can

14



Table 4: Timing (cycles) considered in data cache operations for the corresponding data access pipeline
stage, assuming 1 cycle for cache look-up and 13 cycles of memory latency.

Operation (cache type) Cost of stage

Cache hit (LRU/ACDC) 1
Load/store (no cache) 13
Cache miss with replacement (LRU/ACDC) 1+13
Cache miss without replacement (ACDC) 1+13
Cache write-around store (ACDC) 1+13
Cache miss with repl. and writeback (LRU/ACDC) 1+13+13
Multiple access (push/pop instructions) Sum of each access
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Table 5: Benchmarks, and estimation of their num-
ber of data memory accesses in the estimated WCET
case.

Name O0 O1 (%) O2 (%) O3 (%)

audiobeam 225681 31.55 29.38 29.49
binarysearch 568 49.35 24.19 24.51
bsort 4039 16.43 13.96 16.13
cjpeg transupp 32938 23.63 17.34 51.74
complex updates 1356 35.53 34.99 25.66
cosf 18576 20.50 19.00 13.54
countnegative 503 44.40 28.26 28.26
dijkstra 15482 101.32 42.79 26.33
fft 81591 51.19 32.70 34.94
filterbank 8172 53.61 23.82 29.45
fir2dim 3226 33.10 32.76 34.85
g723 enc 26136 43.54 53.11 177.76
gsm dec 14999 42.39 31.33 89.16
iir 1350 30.76 30.49 30.49
insertsort 620 35.42 34.08 77.38
isqrt 1309 68.08 59.13 23.75
jfdctint 3004 15.58 20.83 20.83
lms 4413 55.22 46.81 19.33
ludcmp 803 31.38 25.29 106.09
matrix1 2754 25.03 22.22 34.82
minver 663 44.78 44.37 66.34
petrinet 1615 99.71 72.74 72.63
powerwindow 1846228 49.47 48.34 47.70
rad2deg 7320 0.38 0.15 0.15
rijndael enc 511469 29.52 29.71 169.28
st 102432 23.56 12.72 12.70
statemate 101685 66.62 57.53 55.54

also add additional ones. This occurs when a dirty
line is evicted from the cache, which requires writing
the modified line to memory, usually without stalling
the processor, through a copyback buffer operating in
the background. However, notice that a write opera-
tion from the copyback buffer uses both the data bus
and the corresponding memory banks. So, if there
are other memory instructions nearby, such opera-
tion does stall the pipeline. Also, stalls occur if the
copyback buffer is full, which may depend on the pre-
viously taken paths. Since representing such details
as an ILP model may be unfeasible, a safe approach
is to assume a copyback buffer that always stalls the
pipeline. Thus, in order to have a metric that also
takes into account the copyback overhead, we pro-
pose the following. First, we consider the classical
data miss ratio, that is, number of misses out of num-

ber of explicit accesses (hits plus misses). Then, we
add the writeback ratio (number writebacks out of
number of hits plus misses) to previous value, in or-
der to get a memory transfer ratio (average number
of lines read or written to memory per memory ref-
erence). Finally, we use 1 minus the previous mem-
ory transfer ratio to obtain an effective data hit ratio
(EDHR), i.e., the average number of accesses being
serviced within cache time per reference, without ac-
cessing memory to read or write lines.

EDHR = 1−misses + writebacks

hits + misses
=

hits − writebacks

hits + misses

Notice that EDHR may result in negative values.
Positive values indicate that the cache is effectively
saving memory accesses. On the other hand, negative
values mean that the number of saved accesses does
not compensate the extra memory transfers for write-
backs. As a baseline, the EDHR of a system without
data cache would be 0. We estimate the EDHR of the
estimated WCET case from the solved IPET model:

EDHR =

∑
ref dhref − wbref∑
ref dhref + dmref

(3)

We test a system with the following data caches:
LRU data cache based on a persistence analysis
(LRU-addr) [32], LRU data cache based on a pat-
tern analysis (LRU-pattern), and ACDC. Remember
that the persistence analyses, which may be consid-
ered the state-of-the-art competitive baseline, con-
sider just known constant addresses in memory ref-
erences, whereas the reuse analysis (used in LRU-
pattern and ACDC) also provides information regard-
ing access patterns and reuse.

Figure 7 shows the effective data hit ratio in the
estimated WCET case (EDHR, eq. 3), in percent-
age, for ACDC and LRU caches with 4 to 32 ways.
That is, the ACDC has a data storage capacity of
256 to 2048 B, and the LRU (64 sets) can store from
16 to 128 KiB. Values of 100 represent the unreach-
able always-hit case, and values of 0 represent the
no-cache case (highlighted with dashed lines). This
is shown for each benchmark (top tags) and compiler
optimization level (right tags).

Let us first focus on the LRU results. Perhaps
the most important detail is that many times the
effective data hit ratio for the LRU cache is below
0, that is, the bound on the number of data mem-
ory accesses with a conventional cache is worse than
without cache. This may be surprising, given that it
is well known that caches have a high hit ratio in aver-
age, and the data workload of the tested benchmarks

16
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Figure 7: Effective data hit ratio in the estimated WCET case (EDHR, eq. 3) for different data cache ways
(4, 8, 16, 32) and optimization levels (-O0, -O1, -O2, -O3).

is not excessively large. Such negative values are due
to writebacks, which generate memory transfers that
do not occur without data cache (see eq. 3).

Focusing on LRU-addr, even though persistence
analysis guarantees an exact result, it is not ade-
quate for unknown or variable memory addresses [32].
Thus, in order to support them, the analysis must
assume that the cache line used by anyone of these
accesses may be in any set, resulting in the eviction,
in the worst case, of whole LRU ways (between 1/4
and 1/32 of the cached data in our experiments).

For LRU-pattern, results are always better than
LRU-addr, since it takes profit of the reuse informa-
tion [28]. With such information, much more hits are
guaranteed, even if the specific address of accesses is
unknown. However, the pollution they introduce may
severely harm the hit ratio, if data may be evicted be-
fore being reused. In most cases (and in the average
case) it can be seen that the hit ratio increases as

the number of ways grows. Notice that, the more
the ways in the cache, the more pollution it toler-
ates. That is, more interleaving accesses may occur
between a given access that brings data and another
reusing them. In order to confirm that the LRU prob-
lems come from accesses to unknown addresses/pat-
terns (which pollute all sets), we have performed the
same experiments with a fully-associative LRU with
4 to 32 ways (256 to 2048 B). The results (not shown)
are almost identical to having 64 sets. That is, given
a fully-associative LRU cache, increasing its capacity
by adding sets does not provide significant benefits
to the hit ratio in the estimated WCET case.

Regarding the ACDC, in most cases it provides
better results than LRU. This is done with a size
64 times smaller than the tested LRU, which effec-
tively confirms that the sets in the LRU are practi-
cally useless regarding the WCET bound. The ACDC
has several key features that explain its good results.

17



First, it has no pollution, which is the main drawback
of LRU. Since only the instructions with replacement
permission can evict contents, all evictions are con-
trolled, meaning that there are no unexpected/un-
desired evictions. Second, when correctly configured,
only worthy instructions are granted permission to re-
place cache contents, so that instructions with little
or no reuse in the worst case bypass the cache. This
is specially interesting when considering that cached
stores require at least two memory accesses, one for
bringing the cache line from memory and eventually
another to write it back to memory after its update,
so not caching them may be better than the blind
cache-anything policy of conventional caches. How-
ever, the ACDC also has drawbacks. The first one
is its limited size. It is important to notice that the
ACDC is preloaded similarly to a locked cache, al-
though the ACDC does not preload data but data
replacement permissions. So, it can only grant as
many replacement permissions as available entries,
that is, between 4 and 32 in our experiments. Such
permissions are fixed for the whole benchmark exe-
cution, so they may suffice for small benchmarks but
not so for large ones. When the size of the ACDC is
enough to completely accommodate the benchmark,
Figure 7 shows flat results. That is, adding more
ways/entries does not provide any improvement (e.g.,
leftmost benchmarks). On the other hand slopes in-
dicate that there is room for further improvements.

The configurable behavior of the ACDC can also be
seen as a drawback, since finding a good configuration
is not easy. Although our methodology for obtaining
such configuration makes the ACDC results better
than LRU in general, they are not optimal. This can
be clearly seen, for instance, in insertsort-O3, where
the ACDC hit ratio decreases as the ACDC capacity
grows. This cannot occur for optimal configurations,
which demonstrates that our heuristic configurations
for 8, 16, and 32 ways are not adequate for this binary.
Similar situations appear in some configurations for
dijkstra, ludcmp, and minver. Also, particularly bad
results such as those found for audiobeam-O0 and
rijndael enc-O0 seem to suggest that better configu-
rations are possible. Indeed, we have obtained better
results by manually setting the data replacement per-
missions in some benchmarks (not shown).

7.4 WCET

Although previous section analyzes the improvements
directly provided by the data cache, a significant part
of the WCET is related to the instruction flow. So,

it is required to study how previous results actually
impact the WCET. In this section we focus on the
results for data caches with 8 ways. Currently, such
configuration is broadly used by general purpose com-
mercial processors (i.e. Intel and AMD) in their L1
cache memories, so future embedded processors are
likely to use similar caches. Results for 4, 16, and
32 ways present similar trends.

Figure 8 shows the computed WCET bound with
respect to the no-cache WCET bound compiled with-
out optimizations, for each binary (both with and
without optimizations). Results are grouped by
benchmark (top tags) and cache type (right tags),
namely ACDC (512 B), LRU-pattern (32 KiB), and
LRU-addr (32 KiB). For each optimization level, it
also shows the no-cache WCET bound (diamond
mark), the unreachable always-hit WCET bound
(square mark), and the estimation of the WCET
bound for an unlimited size data cache (× mark).
This unlimited size baseline is computed as described
in Section 3.4, and provides a lower bound that might
be reachable (unlike the always-hit bound). Finally,
the fill color of bars represents the benefit of the ob-
tained WCET bound, that is, how close it is from
the no-cache WCET bound (0% benefit) to the un-
limited size baseline (100% benefit), or how much it
gets worse (negative benefits, truncated to -100%).

In order to prevent bad results from shrinking the
most interesting part of Figure 8, we let these val-
ues go beyond the represented area. The no-cache
WCET bounds for these cases are 177% for g723 enc-
O3, and 169% for rijndael enc-O3. Notice that these
are the benchmarks that, when optimized with O3,
show aggressive code transformations that increase
their number of memory accesses (see Table 5).

As it can be seen, the no-cache WCET bound for
non-optimized benchmarks is always 100%, since this
is the baseline WCET bound. Optimized benchmarks
present lower WCET bounds for the no-cache sys-
tem, except for dijkstra-O1, ludcmp-O3, g723 enc-
O3, and rijndael enc-O3. In average, compiling with
optimizations reduces the no-cache WCET bound to
41.7% (O1), 33.0% (O2), and 49.1% (O3) with re-
spect to not optimizing. Notice that these reductions
are due to both instruction and data optimizations.
Previous studies pointed out O3 as the best optimiza-
tion level for the WCET bound [26]. However, such
studies focused on instruction caches and assumed al-
ways hit on data. Figure 8 also shows the estimated
always-hit WCET baseline. Although such a WCET
value is unreachable, in general it is useful to know
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Figure 8: WCET bounds for different optimization levels, and benefit with respect to a system without data
cache. ACDC has 8 entries (512 B for data storage) and LRU is an 8-way set-associative cache (64 sets,
32 KiB for data storage).

that no lower WCET values are possible. For in-
stance, we can see that its distance to the no-cache
WCET bound is inappreciable in rad2deg for opti-
mized codes, due to that they perform just 30 mem-
ory accesses for O1, and 12 for O2 and O3. For some
other cases (e.g., cosf ) both ACDC and LRU reach a
WCET bound close enough to this unreachable base-
line so that it is not worth to look for further im-
provements.

Regarding the ACDC and LRU results, for non-
optimized codes most caches present improvements
with respect to no-cache. For optimized binaries,
LRU-addr bars are mostly reddish, LRU-pattern have
mixed colors (white in average), and ACDC bars are
bluish in all cases. This confirms the data cache
hit ratio results depicted in Figure 7, where in av-
erage the ACDC effective hit ratio is always better
than that of LRU, even with just 8 instructions with

data replacement permission. Remember that our
proposed method for the ACDC configuration is not
optimal, so the ACDC might provide results even bet-
ter than those in Figure 8. Nevertheless, in average
the WCET bound obtained with an ACDC is 39.04%
shorter than that of an LRU-pattern for the optimiza-
tion level that results in the shortest WCET bounds
(O2). For other optimization levels, the ACDC also
provides shorter WCET bounds than LRU-pattern,
namely 19.62% (O0), 36.35% (O1), and 25.79% (O3).

7.4.1 General discussion on WCET

Let us discuss our previous baselines and WCET es-
timations. All of them are generated by state-of-the-
art static analysis, so we assume that any introduced
overestimation is tight enough for our results to be
realistic. Otherwise, differences between them may
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look closer than they are. In any case, both the
baselines and the estimated WCETs are calculated
by the same methodology, so any possible overesti-
mation would deviate them in the same way.

Assuming a hard real-time system, our results
demonstrate that the ACDC is probably the most
adequate data cache. For soft or mixed-criticality
real-time systems, if there is a high volume of non-
critical tasks and the hardware is dimensioned consid-
ering them, LRU (or even PLRU) caches could prob-
ably provide better overall results than the ACDC.
Nevertheless, considering that the WCET bounds in
presence of an LRU cache would be longer, mixed-
criticality systems would be forced to overdimension
the hardware to accommodate the WCETs of just the
most important tasks. Using an ACDC the WCET
bounds would be shorter (notice also that the small
size of the ACDC allows context switches with a very
low penalty), and such a system could be able to
schedule all the tasks, not just the most important
ones.

In many cases, the cache hierarchy is partitioned in
order to isolate tasks and avoid interferences between
them [10, 16]. With our proposal, applying set/way
partitioning to L1 caches is straightforward, since it
would imply to simply assume a cache configuration
with less sets/ways. Also, there are studies that ex-
tend the may/must analysis to multilevel caches by
providing categorizations for each cache level [36].
Our approach could be extended in a similar way.
Considering multicore systems with tasks running in
parallel, the problem is harder. In such case, cache
partitioning would be the only option to avoid in-
terferences between tasks, so it would be required in
order to obtain reasonable WCET bounds.

7.5 Analysis time

In this section we discuss the analysis time of our
experiments, measured on a 3.36 GHz AMD Ryzen
Threadripper 1920X processor.

Table 6 shows the reuse analysis time [28], required
to feed our proposal. Since the reuse information
it provides is independent of the cache, it must be
performed just once for each benchmark.

Figure 9 shows the required time for the WCET
analysis for our tested data cache architectures, and
also for the system without data cache as a base-
line, as boxplots, without including the reuse analy-
sis time (Table 6). Except the no-cache experiments,
each bloxplot includes 16 experiments (4 optimiza-
tion levels times 4 cache configurations). The WCET

Table 6: Data reuse analysis times [28] to generate
the data reuse facts required for our proposal, in sec-
onds.

Name O0 O1 O2 O3

audiobeam 1134 1124 742 40 345
binarysearch 3 2 1 93
bsort 1 1 1 1
cjpeg transupp 96 66 71 28 298
complex updates 13 7 7 377
cosf 49 24 29 47
countnegative 8 3 2 2
dijkstra 36 54 162 72
fft 26 62 61 49
filterbank 1 1 2 10
fir2dim 63 19 12 192
g723 enc 3250 1192 4026 3205
gsm dec 3543 4544 2189 13 757
iir 6 2 3 5
insertsort 39 41 29 29
isqrt 7 5 4 19
jfdctint 149 47 55 56
lms 146 26 45 38
ludcmp 28 49 49 344
matrix1 9 5 3 17
minver 66 200 134 1298
petrinet 138 87 48 50
powerwindow 23 712 4653 17 173 15 727
rad2deg 1 0 0 0
rijndael enc 14 606 1009 1632 2553
statemate 1157 3751 10 121 5330
st 191 27 15 35
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Figure 9: WCET analysis times for the systems without data cache, with ACDC, and with LRU data cache.
Horizontal lines mark 1 second, 1 minute, 1 hour, and 1 day.

analysis time includes the processing of the CFG, the
generation of the IPET model, and its solving time
by lp-solve 5.5.2.5. Both the processing of the CFG
and the generation of the IPET model run on python,
which may require an execution time around two or-
ders of magnitude longer than an equivalent compiled
analyzer. Nevertheless, it can be seen that all times
are below one minute, except for the LRU analysis
of 4 benchmarks, with only 5 experiments requir-
ing more than one hour. As detailed in Section 3.4,
our LRU analysis is implemented as a targeted brute
force analysis, i.e., it is not meant to be efficient but
to provide accurate results. On the other hand, the
analysis time of the system without cache and the
system with ACDC is very similar. In both cases,
building the IPET model is straightforward, and the
whole WCET analysis takes less than 10 seconds ex-
cept for some experiments for gsm dec and powerwin-
dow. Globally, the median of the WCET analyses is
under 1 second for all the tested architectures. In
most cases, reuse analysis (Table 6, required for our
approach) takes more time than our actual WCET
analysis.

8 Conclusions

In this paper we propose a generic framework for
analyzing the WCET of binary programs in a sys-
tem with data cache. This framework includes the
categories for data references, and how they can be
classified depending on the specific cache organiza-
tion and the reuse information of the task. We apply
it to analyze set-associative conventional LRU data
caches (writeback with fetch on write-miss and write
allocate), an ACDC, an unlimited size data cache, a
system without cache, and an ideal always-hit data
cache. For the LRU data cache we study both a
persistence-based analysis and a reuse-based analysis,
and for the ACDC we propose an heuristic method to
obtain a good configuration of its data replacement
permissions. We also detail how to integrate our data
cache categories into an IPET model to obtain the
WCET bound.

Our results show that a persistence-based LRU
analysis is not adequate for data caches, providing
worse hit ratio and WCET bounds than a system
without data cache. With a reuse-based analysis,
a conventional LRU cache provides a better worst-
case performance, but yet similar to a system with-

21



out cache. In general, the more the ways, the better
it performs, since it tolerates more pollution. On the
other hand, a high number of sets provides marginal
benefits only. Also, writebacks amplify the good/bad
results in LRU: writebacks reduce memory accesses
when there are few undesired evictions, whereas they
increase memory accesses when inconvenient evic-
tions must be assumed. The ACDC provides the
best results in general, even with its much smaller
size, since its predictable design avoids pollution. In
average, the WCET bound obtained with an ACDC
is 19.62%, 36.35%, 39.04%, and 25.79% shorter than
that of a set-associative conventional LRU data cache
for benchmarks compiled with optimization level 0, 1,
2, and 3, respectively. Globally, O2 is the optimiza-
tion level that results in the shortest WCET bound
in average for all our tested cache organizations.

Regarding the required analysis time of our pro-
posal, most of our analyses take less than 10 seconds
(below 1 second in median), and only 5 of those im-
plemented by means of targeted brute force take more
than one hour. In most cases, reuse analysis (required
for our approach) takes more time than our actual
WCET analysis.
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Sorensen, P. Wägemann, and S. Wegener.
Taclebench: A benchmark collection to sup-
port worst-case execution time research. In
M. Schoeberl, editor, 16th International Work-
shop on Worst-Case Execution Time Analysis,
WCET 2016, July 5, 2016, Toulouse, France,
volume 55 of OASICS, pages 2:1–2:10. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/OASIcs.WCET.2016.2.

[13] C. Ferdinand and R. Wilhelm. Efficient and pre-
cise cache behavior prediction for real-time sys-
tems. Real Time Syst., 17(2-3):131–181, 1999.
doi:10.1023/A:1008186323068.

[14] S. Ghosh, M. Martonosi, and S. Malik. Cache
miss equations: a compiler framework for an-
alyzing and tuning memory behavior. ACM
Trans. Program. Lang. Syst., 21(4):703–746,
1999. doi:10.1145/325478.325479.

[15] R. Gran, J. Segarra, A. Pedro-Zapater,
L. C. Aparicio, V. Viñals, and C. Rodŕıguez.
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and A. Bechini, editors, SAC ’20: The 35th
ACM/SIGAPP Symposium on Applied Comput-
ing, online event, [Brno, Czech Republic], March
30 - April 3, 2020, pages 218–226. ACM, 2020.
doi:10.1145/3341105.3374014.

[17] S. Hahn and D. Grund. Relational cache anal-
ysis for static timing analysis. In R. Davis, ed-
itor, 24th Euromicro Conference on Real-Time
Systems, ECRTS 2012, Pisa, Italy, July 11-13,
2012, pages 102–111. IEEE Computer Society,
2012. doi:10.1109/ECRTS.2012.14.

[18] B. K. Huynh, L. Ju, and A. Roychoudhury.
Scope-aware data cache analysis for WCET esti-
mation. In 17th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS
2011, Chicago, Illinois, USA, 11-14 April 2011,
pages 203–212. IEEE Computer Society, 2011.
doi:10.1109/RTAS.2011.27.

[19] N. P. Jouppi. Cache write policies and per-
formance. In A. J. Smith, editor, Proceed-
ings of the 20th Annual International Sympo-
sium on Computer Architecture, San Diego, CA,
USA, May 1993, pages 191–201. ACM, 1993.
doi:10.1145/165123.165154.

[20] C. Lee, K. Lee, J. Hahn, Y. Seo, S. L. Min,
R. Ha, S. Hong, C. Y. Park, M. Lee, and C. Kim.
Bounding cache-related preemption delay for
real-time systems. IEEE Trans. Software Eng.,
27(9):805–826, 2001. doi:10.1109/32.950317.

[21] B. Lesage, D. Hardy, and I. Puaut. WCET anal-
ysis of multi-level set-associative data caches. In
N. Holsti, editor, 9th Intl. Workshop on Worst-
Case Execution Time Analysis, WCET 2009,
Dublin, Ireland, July 1-3, 2009, volume 10 of
OASICS. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany, 2009.

[22] H. Li, I. Puaut, and E. Rohou. Traceability
of flow information: Reconciling compiler opti-
mizations and WCET estimation. In M. Jan,
B. B. Hedia, J. Goossens, and C. Maiza, ed-
itors, 22nd International Conference on Real-
Time Networks and Systems, RTNS ’14, Ver-
saille, France, October 8-10, 2014, page 97.
ACM, 2014. doi:10.1145/2659787.2659805.

[23] Y. S. Li, S. Malik, and A. Wolfe. Cache
modeling for real-time software: beyond direct
mapped instruction caches. In Proceedings of
the 17th IEEE Real-Time Systems Symposium
(RTSS ’96), December 4-6, 1996, Washington,
DC, USA, pages 254–263. IEEE Computer So-
ciety, 1996. doi:10.1109/REAL.1996.563722.

23



[24] I. Micron Technology. Automotive DDR
SDRAM MT46V32M8, MT46V16M16.
https://media-www.micron.com/-
/media/client/global/documents/products/data-
sheet/dram/mobile-dram/low-power-
dram/lpddr/256mb x8x16 at ddr t66a.pdf.

[25] F. Mueller. Timing analysis for instruction
caches. Real-Time Systems, 18(2-3):217–247,
May 2000.

[26] A. Pedro-Zapater, J. Segarra, R. Gran Tejero,
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