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ABSTRACT
FPGAs are an excellent platform to implement computer vision applications, since these applications
tend to offer a high level of parallelismwith many data-independent operations. However, the freedom
in the solution design space of FPGAs represents a problem because each solution must be individu-
ally designed, verified, and tuned. The emergence of High Level Synthesis (HLS) helps solving this
problem and has allowed the implementation of open programming standards as OpenVX for com-
puter vision applications on FPGAs, such as the HiFlipVX library developed exclusively for Xilinx
devices. Although with the HiFlipVX library, designers can develop solutions efficiently on Xilinx,
they do not have an approach to port and run their code on FPGAs from other manufacturers.

This work extends the HiFlipVX capabilities in two significant ways: supporting Intel FPGA
devices and enabling execution on discrete FPGA accelerators. To provide both without affecting
user-facing code, the new carried out implementation combines twoHLS programmingmodels: C++,
using Intel’s system of tasks, and OpenCL, which provides the CPU interoperability. Comparing with
pure OpenCL implementations, this work reduces kernel dispatch resources, saving up to 24% of
ALUT resources for each kernel in a graph, and improves performance 2.6 × and energy consumption
1.6 × on average for a set of representative applications, compared with state-of-the-art frameworks.

1. Introduction
FPGAs can increase performance and reduce energy con-

sumption of computer vision (CV) applications. Their pi-
peline parallelism and massive computing resources are a
perfect match to simultaneously process image pixels. For
example, Figure 1 shows the execution time and energy effi-
ciency of an OpenVX Canny Edge detector implementation
running on aCPU and on an FPGAwith the library presented
in this work. Compared with the CPU, the FPGA achieves a
5 × speed-up of and improves energy by 9 × (See Section 5
for details). However, the fine grain FPGAs reconfigurabil-
ity and the complexity of their workflow hinders the ability
to easily reach these results without an adequate software
programming language support.

Fortunately, programming frameworks, as OpenVX, are
designed with the aim of implementing portable CV appli-
cations by hiding the hardware complexity behind a simple
API. OpenVX presents an open, royalty-free standard for
cross-platform acceleration [5] where applications are ex-
pressed as graphs to maximize optimization potential be-
cause all dependencies are known before the graph is pro-
cessed. On FPGAs, the acceleration of OpenVX applica-
tions remains a challenge because their efficient implementa-
tion requires per-device specific optimizations on primitives
and communication. Some High-Level Synthesis (HLS) li-
braries address these requirements; e.g., HiFlipVX, an op-
timized library of OpenVX functions that exploits stream-
ing capabilities and parametrization for Xilinx FPGAs [15].
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Figure 1: OpenVX comparison with an Intel Xeon Bronce 3204
CPU and a Intel FPGA Stratix 10 GX for a Canny edge detector
with two different image sizes: HD(1920 x 1080 pixels) and
4K(3840 x 2160 pixels). a) Execution time. b) Energy on Intel
CPU implementation and the FPGA of this work.

However, HiFlipVX highly-tuned implementation is neither
portable nor efficient on other FPGA platforms such as In-
tel. Other OpenVX acceleration proposal, such as AFFIX,
suffers from the same issues, single-vendor support, but in
this case for Intel devices [24].

Implementing a portableOpenVXAPI for FPGA requires
to maintain a user-facing API as close as possible to the
OpenVX standard. The present paper builds on our previous
work [3] with a HiFlipVX implementation to support Intel
FPGA devices with different external memories as DDR4
and HBM. This work extension details the key changes re-
quired to maintain the library API unchanged, to guarantee
portability, and to keep performance.

The proposed implementation leverages Intel’s HLSSys-
tem of Tasks [10] asynchronous model for concurrent ex-
ecution of OpenVX nodes. Therefore, with this proposal
extension, the HiFlipVX graphs can be encapsulated as an
OpenCL or SYCL library. The inter-operation of HiFlipVX
graphs with OpenCL ensures the host communication with
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discrete devices and preserves the asynchronous properties
of OpenCL using a unique command queue per OpenVX
graph resulting in less runtime overhead.

In summary, the main contributions of this study are:
• A new portable implementation of OpenVX for FP-

GAs using HiFlipVX, originally designed for Xilinx
devices, providing compatibility with Intel devices. 1

• Interoperation of HiFlipVX applications as OpenCL/
SyCL libraries to support discrete FPGA devices with
either DRAM or HBM memories.

• An analysis of the performance and energy efficiency
of different graph applications. Compared with pre-
vious OpenVX for Intel FPGA implementations, this
work improves the performance 2.6 × and saves 1.6 ×
of energy on average.

The rest of the paper is organized as follows. Section 2
presents related work in this area. Section 3 presents the
HLS flow alternatives to implement OpenVX on FPGAs.
Section 4 introduces theHiFlipVX library. Section 5 presents
themethodology. Section 6 describes the changes to port Hi-
FlipVX to Intel FPGAs. Section 7 discusses the results, and
Section 8 sets out our conclusions.

2. Related Work
Computer vision and image processing algorithms re-

quire high performance and energy efficiency that can be
achieved with FPGAs [6]. Unluckily, the big effort required
for programming FPGA is a huge drawback that makes its
adoption difficult.

Image processing on a FPGA can be implemented with
Domain Specific Languages (DSL). For example, the newly
HeteroHalide [16] extends the Halide DSL, formerly used on
CPU and GPU, to support Intel and Xilinx devices. Hipacc
[22] developed another DSL to support multiple back-ends
from different vendors and devices such as FPGA, GPU, and
CPU.Also, aHipacc extension provides support for theOpen-
VXAPI [19], but they do not include results for whole appli-
cation graphs, as this work does. PoliMage [2] and Pu’s [21]
are two proposals that support Xilinx FPGAs. Despite DSLs
are facilitating FPGAs adoption, the steep learning process
and the difficulties to enlarge their functionalities remain a
challenge.

A more suitable option to ease FPGA implementation is
the adoption of a library approach or standard based library.
For example, implementing functions from the OpenCV li-
brary, Xilinx provides the xfOpenCV library [28]. Other
libraries target specific FPGAs vendors, e.g., HiFlipVX and
AFFIX are OpenVX libraries for Xilinx and Intel, respec-
tively [15, 24, 25].

Standard libraries together with the adoption of vision
standards such asOpenVX could ensure adequate cross-plat-
form portability and performance. Moreover, applications
require intensive tuning for each FPGA vendor, even with

1https://github.com/angelicadavila/HiFlipVX-for-Intel-FPGAs

HDLs. In the case of computer vision applications, as other
ones, each type of FPGA requires specific coding style to
achieve optimal performance [6, 26]. Among the available
options, HiFlipVX and AFFIX are the ones that could offer
a more general computer vision library.

Nevertheless, AFFIX is based on OpenCL, which lim-
its the OpenVX functions and graphs implementation. On
the other hand, HiFlipVX, through the use of standard C++
language simplifies the graph’s implementation, and it fo-
cused on portability including explicit data type manage-
ment to generate optimized hardware. Moreover, HiFlipVX
was validated out in numerous embedded applications for
Xilinx [23, 20, 1]. This previous analysis recommends to
extend HiFlipVX as an standard OpenVX based library to
be compatible also with Intel FPGAs.

3. OpenVX Programming Flow Alternatives
on FPGA
HLS programming languages enable to directlywrite hard-

ware applications using high-level languages such as C/C++,
OpenCL, and SyCL instead of using hardware description
languages, reducing the programming entry barrier of FP-
GAs. HLS have favored the flourishing of a new ecosystem
of high level toolkits and programming strategies to reach
optimized FPGApipeline implementations, similarly towhat
CUDA and OpenCL did to GPUs a decade ago.

One of the most successful approaches in heterogeneous
systems is OpenCL, because it unifies the programming lan-
guage across devices such as CPU and GPU. As an HLS lan-
guage for FPGA, OpenCL still suffers from a limitation: op-
timization strategies differ from those from other devices and
require choosing the appropriate OpenCL execution model
[12, 30]. Furthermore, code written with only the OpenCL
standard does not performwell on FPGAs as it requires man-
ufacturer defined extensions.

Programming the OpenVX standard using OpenCL for
FPGAs is a challenge sinceOpenVX applications use a graph-
based programming model where nodes, instances of ker-
nels, contain the function code; and edges represent the data
movements [5]. This data flow programming model has two
main design alternatives in OpenCL:

• Standard OpenCL: each OpenVX node is an OpenCL
kernel, as shown in Figure 2a. This alternative is por-
table between manufacturers; but the main disadvan-
tage is the lack of guarantees to generate a deep pipe-
line connecting the function nodes, because each ker-
nel requires control and communication with the host.
Outside of the standard, Xilinx defined their own prag-
mas and streaming interfaces to generate deep pipelines.

• OpenCL channels: each node is an OpenCL kernel,
and channels/pipes connect them all. This option al-
lows deep pipelines by the use of streaming commu-
nication among kernels, as shown in Figure 2b. In this
case, multiple command queues are required to launch
every kernel from host to get a concurrent execution of
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__kernel void exm1(){
     OVX1();
     OVX2();
     OVX3();
     OVX4();
}

OVX1()

OVX2()

OVX3()

pipeline1

pipeline2

pipeline3

OVX4() pipeline4

OpenVX as OpenCL Function for FPGAs

exm1()OpenCL Host
Command Queue  Q1

(a) Standard OpenCL

__kernel void OVX1(){
     Channel/Pipe R/W();
}
...
}__kernel void OVX4(){
     Channel/Pipe R/W();
}

OVX1() OVX2()

OVX3()

OVX4()

Channel/Pipe

OpenVX as OpenCL Kernel for FPGAs

OVX1OpenCL Host
Command Queue  Q1 OVX2Q2 OVX3Q3 OVX4Q4

(b) OpenCL Channels

__kernel void exm1(){
     OpenVXGraph();
 }

HiFlipVX pipeline1

exm1()OpenCL Host
Command Queue  Q1

OVX1()

OVX2() OVX3()

OVX4()

(c) HiFlipVX proposed flow
Figure 2: Programming flow alternatives for OpenVX using HLS for FPGA devices. The yellow boxes show OpenVX functions
implemented as OpenCL functions and the green ones the OpenVX functions implemented as kernels. The bottom boxes show
host command queues, Qn, that manage the kernels.

the graph. This approach is implemented and named
differently by each FPGA vendor; e.g., Intel and Xil-
inx adopt channels and pipes, respectively.

These two approaches evidence the portability problem
betweenmanufacturers and the limitations of standardOpen-
CL API, whereby each FPGA manufacturer extensions help
to optimize and guide the compilers through bitstream gen-
eration. Even, sometimes, these extensions are different per
FPGA device family limiting portability [26].

In terms of performance, the use of the aforementioned
channel approach allows higher throughput and lower la-
tency, but due to restrictions of the OpenCL standard, gen-
erating portable and easy to use libraries is a challenge. For
example, AFFIX implements OpenVX graphs with single-
input single-output host pipes [24] curtailing the OpenVX
specification, which defines multiple-input multiple-output
edges.

Besides OpenCL, a more flexible HLS language is C/
C++. Although C/C++ suffers the portability restrictions
between manufacturers, the programming details can be hid-
den to the programmer under wrapper layers.

Table 1
Programming flow alternatives to implement the
OpenVX standard.

Programming Manufacturer Deep Host
Flow portable Pipeline Dependency

Standard OpenCL ✓ 7 LOW
OpenCL Channels 7 ✓ HIGH
HiFlipVX 7 ✓ -
This Work ✓ ✓ LOW

For Xilinx devices, HiFlipVX implements OpenVX us-
ing C/C++, enabling a highly parameterizable library. How-
ever, to complete an efficient and portable OpenVX specifi-
cation, it is necessary to port the library to Intel devices. The
differences between C/C++ standards and compiler, such as
OpenCL, are not trivial, showing differences between manu-
facturers. Also, FPGA families present a wide variety of de-
signs, from simple embedded devices to high-performance
ones with external memory and ports, specially oriented to
HPC applications.

This work overcomes those limitations. Specifically, Hi-
FlipVX achieves both portability, supporting two of themain
FPGAsmanufacturers, and performance, by coalescingOpen-
VX nodes in a single OpenCL/RTL element maximizing pi-
peline deep for Intel FPGAs as shown in Figure 2c. With
this strategy, OpenVX applications overcome the pipeline
depth limitations in Standard OpenCL (Figure 2a) and re-
duces the host dependency on OpenCL Channels implemen-
tation (Figure 2a). This property is specially crucial for Intel
FPGA devices as Table 1 shows.

4. HiFlipVX
HiFlipVX is an open source HLS FPGA library for im-

age processing applications [15]. It has been extended for
object recognition, which involves feature detection [14] and
neural networks [13]. HiFlipVX is a C++ based library con-
taining 53 functions, which are highly optimized and parame-
trizable using templates. Most of its functions, or object
kernels, are based on the OpenVX standard. They are im-
plemented to be streaming capable with stream data objects,
on edges, to link kernel instances as nodes in a graph. It ex-
tends the OpenVX based functions by additional parameters,
such as vectorization, or more options, such as additional
data types.

The functions in HiFlipVX can be categorized in pixel-
wise, filter, analysis, and conversion functions as Figure 3
shows. Pixelwise functions process the input images pixel
by pixel, like adding two images together. Filter functions
work in a window on the input image, like in a Gaussian fil-
ter. The conversion functions change the image by scaling it
or changing the image format. The analysis functions usu-
ally have to perform a complete analysis of the input image,
such as creating a histogram. Other functions that operate,
for example, on feature vectors [14] or on tensors [13] can
be classified into the mentioned categories.

The library was designed to be as vendor independent
as possible. Since no external libraries are required, it can
also run on a normal CPU. Nevertheless, it performs better
in terms of resources and execution time than the vendor-
specific library, xfOpenCV, on Xilinx FPGAs [15]. Addi-
tionally, the library is extended with pragmas and macros for
acceleration on Xilinx FPGAs. These directives are used for
pipelining, partitioning arrays, selecting specific resources

MA Dávila-Guzmán et al.: Preprint submitted to Elsevier Page 3 of 12
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Figure 3: Image functions categories implemented in Hi-
FlipVX.

and interfacing between functions. The functions of HiFlip-
VXwere used for various applications, such as in a toolchain.
[23], or an operating system [20]. Akgün et al. show that the
use of vectorization increases not only performance but en-
ergy efficiency as well [1].

5. Evaluation Methodology
All experiments have been run on two high-end FPGAs:

an Intel Stratix 10 GXDevelopment Kit (1SG280LU2F50E-
2VG) with 2GB of HiLo DDR4DRAM@933.3MHz and an
Intel Stratix 10MXDevelopment Kit (1SM21BHU2F53E2-
VGS1) with 32x 256MB HBM memory banks @800MHz.
Both boards use the PCIe Gen3 x8 to connect with the host
CPU. Table 2 summarizes FPGA resources specification.

Table 2
FPGA Resources for Stratix 10 GX and MX.

FPGA model ALUTs FFs RAMs DSP

Stratix 10 GX 1866240 3732480 11721 5760
Stratix 10 MX 1405440 2810880 6847 3960

This work evaluates the performance portability of Hi-
FlipVX with parameters such as latency, initiation interval
(II), and resource estimation from RTL compilation using
i++ HLS compiler V. 19.4. The FPGA core power mea-
surements use the Board Test System application provided
by Intel, with a 1 second sampling rate. To ensure power ac-
curacy, kernels run at least 1 minute to obtainmeasurements.
For most experiments, the Stratix 10 GX was selected as the
reference board, since the only difference with the MX is the
DRAM vs. HBM banks.

Our benchmark suite comprises four representativeOpen-
VX graphs, including all the categories of Figure 3, from the
Intel OpenVX and Khronos samples:

• Canny edge detector: Popular multi-stage algorithm
for edge detection and suppressing noise.

• Auto-contrast: Algorithm to improve contrast in im-
ages, adjusting the image intensity.

• Census transform: A common algorithm for corre-
spondence problem used in stereo image processing
for disparity calculations [29].

• Skin tone detection: Algorithm to detect human white
skin tone.

Finally, these benchmarks are also used to compare with
existing state-of-the-art approaches running them on the same
FPGA, except the skin tone which is not implemented by
other works.

6. Tuning HiFlipVX for Intel FPGAs
The OpenVX specification provides a high level abstrac-

tion to easily implement computer vision applications on
multiple devices. The OpenVX objects are designed for dy-
namic applications, so the runtime provides support to man-
age objects during execution. However, since bitstream gen-
eration takes a long time, on FPGAs, the verification and op-
timization of OpenVX graphs has to be statically performed
at compile time.

The OpenVX standard leaves the optimization process
to vendors. In the case of HiFlipVX, the new implementa-
tion supports programmer’s optimizations through special-
ized versions of its template-based API for each vendor. So,
programmers can tune the OpenVX applications according
to the FPGA platform with minimal changes in the user-
facing code. Such portability fromXilinx to Intel implemen-
tation has required changes in the implementation of three
OpenVX components: execution model, kernels, and edges.
Kernel nodes are the compute part of the graphs, while edges
have the memory management with virtual and image ob-
jects which potentially improves speed up.
6.1. Execution model

For Intel FPGAs, HiFlipVX synthesizes every graph as
a single kernel (Figure 2c). The system of task, a propri-
etary Intel API, enables task-level pipelining, allowing asyn-
chronous nodes to create a graph for Intel FPGAs. On the
contrary, theXilinx specialization uses the HLS dataflow prag-
ma for function or loop level parallelism.
6.2. Kernels

HiFlipVXkernel nodes are implementedwith C++ func-
tions, so the first step to maintain kernel performance and
properly guide the compilation process is to add specific trans-
lations ofXilinx’s pragmas to their Intel counterparts. Specif-
ically, the next two pragmas and component attributes are
used:

• HLS array_partition/hls_register: forces the compiler
to generate variables as registers.

• Loop pragmas: the difference is the location in the
code. These pragmas are inserted after and before the
loop, for Xilinx and Intel, respectively.

The resource utilization comparison of the HiFlipVX for
Xilinx [15] and Intel devices shows that the ALUTs resource
usage is similar, less than 15% variation for 6 representa-
tive OpenVX functions (all running at the same 100MHz
frequency), except Sobel Filter, 27% difference, as depicted
in Figure 4a.

Since the core programmable unit in Intel Stratix archi-
tecture packs four-input LUTs and registers (FFs), the FFs
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usage in Figure 4b shows a similar tendency as ALUTs. The
RAM usage in Figure 4c, shows the same number of blocks
although the RAM sizes are different, 18K inXilinx and 20K
in Intel; the similarities are attributed to SIMD vectoriza-
tion of 1 which synthesizes arrays and variables as registers.
These results evidence the differences between architectures
and HLS tools; e.g., Xilinx LUTs are capable of self-split
to implement two separated logic functions, unlike Intel that
has dedicated ALUTs to improve routing time in complex
designs [7].
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Figure 4: Resource comparison between Intel and Xilinx [15]
FPGA at 100MHz and vectorization equal to 1, for 6 sample
OpenVX functions.

6.3. Edges
For Xilinx, HiFlipVX implements optimized communi-

cations through streaming with HLS STREAM pragma. The
pragma creates FIFOs or double buffers to transfer data be-
tween functions or loops in a data flow area and it uses pass-
by-pointers for kernel node parameters. In general, these
choices guarantee an Initiation Interval, II, equal to 1 cycle
and low latency for filter-type kernels [15].

The lack of equivalent pragmas for streaming commu-
nications in Intel API and the pass-by-pointer as parameters
can result in kernels with poor performance, constraining the
II up to 114 cycles, because the HLS tool generates a single
Avalon Memory-Mapped (MM)Master interface with a sin-
gle arbiter for all variables [4].

When function parameters are passed-by-reference, which
are more suitable for Intel [11], the II reduces to 1 cycle, sub-
stantially improving the pipeline performance. The first two
groups of bars in Figure 5 show a 114× cycle difference be-
tween the pass-by-pointer and pass-by-reference for a 3x3
filter.

Reference parameters do not support concurrency require-
ments of nodes in OpenVX graphs. To support them, the In-
tel system of task with stream as function parameters allows
nodes to run asynchronously. Streams reach an II of 1 cy-
cle and, in practice, resulting in Avalon streaming interfaces
which provides high-bandwidth and low latency communi-
cation.

Comparing the streams with reference, streams latency
is up to 2 × higher because system of task adds control logic
in kernel pipeline to communicate among graph nodes. Fig-
ure 5 shows the impact on both II and latency of all the in-
terface changes: passing arguments by reference and stream
communication among kernels.

C
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0
40
80
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160

Pointer Reference Stream

107
53

158

11

114

II Latency

Figure 5: Latency and Initiation Interval for interface opti-
mizations on edges in a 3x3 filter function (lower is better).

In terms of code implementation, Intel stream interface
has 3 specific data types: stream_in for inputs, stream_out,
for outputs, and stream for general interconnect between ker-
nel nodes. To achieve the portability, the Listing 1 shows the
data type redefinition of the vx_image based on templates
which allows to adapt the hardware with the vectorization
factor (V) and the capacity of stream buffers (buff_cap). This
implementation hides the hardware interface details to pro-
grammers.
Listing 1: vx_image for virtual image implementation with Intel streams
support

template <class T, const size_t V,

int stream_type , uint buff_cap =256>

using vx_image=

typename conditional <stream_type == vx_streamIn_e ,

ihc::stream_in <vx_image_t <T, V>>,

typename conditional <stream_type == vx_streamOut_e ,

ihc:: stream_out <vx_image_t <T,V>>,

typename conditional <stream_type == vx_stream_e ,

ihc::stream <vx_image_t <T,V>, ihc::buffer <buff_cap >>,

vx_image_t <T,V> > ::type >::type >:: type;

Virtual image objects implemented with streams are lim-
ited to access by reference, and the use of arrays of streams
are not allowed. Also, multiple reads from a stream by dif-
ferent nodes require to duplicate the number of edges in the
FPGA. For this reason, a custom internal kernel vxSplit is
needed to concurrently feed multiple kernels with a single
copy of the data-stream references.

Contrary to virtual image objects, images references al-
low direct user access, which creates an opaque reference to
an image buffer [5]. In Intel FPGA, the user can access data
through external ports using the Avalon MM buses.

In embedded FPGAs, stream interfaces with input and
output qualifiers are enough to control I/O ports. However,
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discrete devices with an external memory, as DRAM, re-
quire memory IP controllers. To manage external DRAM
memories, HiFlipVX takes advantages on existing host drivers
for OpenCL/SYCL to perform the required transactions. Also,
those transfers are transparently instantiated with two cus-
tom kernels.

TheDRAM interfaces are createdwith the ihc::mm_master
to specify the external Avalon MM data bus interconnection
to the OpenCL/SYCL drivers. Listing 2 shows the vx_image
to create images for FPGAs with DRAM support. The data
bus size (WIDTH_MEM) is parametrized with the specifi-
cation of DRAM memory controller from the BSP (Board
Support Package), and PORT enumerates the bus interface.
The last template parameter, emb_x, advises the compiler
whether the interface is embedded or not, for Xilinx devices
it is always true.
Listing 2: vx_image for image implementation with Intel DRAM support
template <class T, const uint WIDTH_MEM , uint V=1, uint

PORT=1, uint emb_x=1>

using vxCreateImage =

typename conditional < emb_x == 0,

ihc::mm_master <vx_image <T, V>,

ihc::aspace <PORT >, ihc::awidth <WIDTH_MEM >,

ihc::dwidth <32>, ihc::latency <0>,::maxburst <16>,

ihc::align <64>, ihc:: waitrequest <true >>,

vx_image <T, V>>::type;

Image objects for DRAM generates load/store units for
continuous and aligned memory accesses, user defined pa-
rameters as burst size with the coalescence parameter are
available for user optimizations. Furthermore, the load/store
controller allows to adjust technology differences between
FPGA boards and maximizes DRAM bandwidth. Figure 6
shows the interfaces and load/store units required to inter-
connect a DRAM memory to HiflipVX graph.

OpenCL
BSP

D
R

AM

Load Unit and
Coalescer

Store Unit and
Coalescer

Av
al

on
 M

M

Avalon Stream

HiFlipVX graph

OpenVX
Nodes

vxCreateimage + DRAM  control

Figure 6: DRAM memory interconnection to a HiFlipVX
graph.

To evaluate Load/Store units, Figure 7 plots the perfor-
mance of Canny edge detector as a representative graph. It
shows that high coalescence factors with very wide LSUs,
> 512 bits, can reduce performance up to 7 ×, because the
compiler heuristic generates a non-aligned controller access.
In load/store units with a bus width smaller than 512 bits,
the maximum DRAM burst is underused, except in 64 bits
which is the same bus width as DRAM (dq).

Once anOpenVXgraph has been programmed inC/C++
with HiFlipVX, the compilation flow depends on the tar-
get FPGA. For an embedded FPGA, the FPGA IP can be

FP
S

0

40

80

120

160

LSU width

64 128 256 512 1024

20

146
110

74

134

Figure 7: Performance (Frames Per Second) of canny edge
detector with a HD image varying coalescing to read DRAM
memory (LSU width), higher is better.

generated after the RTL generation, and for an Intel dis-
crete FPGA, the IP is coupled to a BSP, which is part of the
OpenCL and SyCL drivers, to enable communication with a
host CPU.

OpenCL and SyCLLibrary feature allows includingRTL
modules into function kernels packaged into an library ob-
ject (.lib). However, the system of tasks used in HiFlipVX
is not supported yet. To overcome this problem, the compi-
lation flow has an additional step, supported with a tool ex-
tension in HiFlipVX that takes two inputs: 1) an XML file
with the BSP memory port descriptions, and the RTL from
HiFlipVX, both of them compatible with the target FPGA.

The tool extension output enables the library generation
with Intel standard aoc tools. As result, the HiFlipVX li-
braries objects are ready to be used in OpenCL/SyCL ker-
nels. Since OpenCL backend implementation is more ma-
ture than SyCL, it has been chosen to be evaluated in this
work. Figure 8 shows the compilation flow to couple the In-
tel HiFlipVX graph to a heterogeneous system (right path)
and how the Xilinx flow is unaffected (left path).

7. Results
This section starts analyzing how the new HiFlipVX im-

plementation behaves when the graph complexity changes.
Then, it evaluates HiFlipVX running 4 representative Open-
VX graphs and, finally, compares this work with two state-
of-the-art proposal.
7.1. HiFlipVX Scalability Analysis

To assert how system of tasks and deep pipelines im-
pact on graph scalability, the first stage of the SIFT feature
detector is used as a synthetic graph benchmark. This multi-
Gaussian graph applies multiple times a Gaussian filter to
an image stream [17]. The benchmarks allow us to tune the
depth of the resulting kernel pipeline by adding Gaussian
filtering steps, one after the other.

Figure 9a plots the impact of the number of filter nodes
for the multi-Gaussian graph (kernel pipeline depth) on exe-
cution time and FPGA frequency. From 2 to 16 filters, mem-
ory latency hides computation which flattens the execution
time. After that point, 16, execution time increases almost
linearly with the number of filters, showing good scalability.
Please note the slight frequency reduction for large number
of filters also contributes to the larger execution time.

Resource usage is shown in Figure 9b, which increases
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Figure 8: HiFlipVX programming and compilation flow for Xil-
inx and Intel FPGAs.
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Figure 9: Impact of node scalability on a) execution time; b)
frequency and resource utilization; and c) power consumption
for the Multi-Gaussian synthetic benchmark using the Stratix
10 GX.

linearly, with a growing rate of 0.33, 0.17, and 0.13 forALUTs,
FFs, and RAMs resources, respectively. As a consequence,
FPGA power raises with a growing rate of 74mW per addi-

tional Gaussian filter stage as is shown in Figure 9c. In sum-
mary, HiFlipVX with the system of task scales well without
adding any extra overhead increasing the graph complexity.
7.2. OpenVX Application Resource Utilization

This section analyzes resource usage (per-kernel) of four
representative applications: Canny edge, Autocontrast, Cen-
sus transform, and Skin tone detection. Figure 10 shows the
graph diagram for all of them. For the sake of clarity, the
custom internals kernels, enabling DRAM and splitting data
streams (vxSplit) described in Sec. 6, are not depicted in the
graphs.
7.2.1. Canny Edge

The Canny edge detector, Figure 10a, is a multi-node
graph algorithm that extracts the edge information from im-
ages. In HiFlipVX, its implementation consists of 5 nodes.
Table 3 shows the estimated resource usage from the Intel
HLS compiler report for all Canny edge nodes2.

Table 3
Estimated resource usage for each OpenVX function in
Canny edge graph using HiFlipVX with a 4K image and
vectorization factor of 8 on a Stratix 10 GX.

Function ALUTs FFs RAMs DSP

Load Image Object 10553 39508 17 0
vxGauss 3627 5620 18 0
vxSobel 5907 8854 19 0
vxSplit 221 117 2 0
vxMagnitud 5907 8966 4 8
vxPhase3 165 133 1 0
vxNonMaxSuppression 4605 5842 18 0
Store Image Object 4177 11949 18 0

The image objects are themost resource demanding func-
tion since it trackmultiple external memory request at a time,
trying to group access before being send to the memory con-
troller.
7.2.2. Autocontrast

Autocontrast, requiring to extend HiFlipVX to support
the graph from Figure 10b with two new kernels for color
conversions: NV12 to RGB and RGB to NV12, and Equal-
izeHist.

Autocontrast requires more RAM resources than other
graphs because the intensity channel (Y) is stored in RAM
memory until histogram is calculated. This strategy avoids
stalls in streams at expense of higher resource usage that
mainly depends on the input image size; e.g., if the image
size changes from HD to 4K, RAM usage increases by 4 ×.
HiFlipVX enables the user to provide FPGA tuning param-
eters. For example, in this case, the code includes a hint to
implement the DRAM access coalescence with a LSUwidth

2Since all FPGAs used in this work are from the same family, Stratix
10, the resource estimation on HiFlipVX graph are equal, and from here on,
all results corresponds to the Stratix 10 GX FPGA, except when noted.

3Orientation only for 4 gradient directions.
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Figure 10: OpenVX application graph diagrams. a) Canny edge detector, b) Autocontrast image, c)Census transform, d) Skin
tone detection.

//AFFIX Edges
CHANNEL(images_0, uchar , SIMD_SIZE, CH_DEPTH)    
CHANNEL(images_1, uchar , SIMD_SIZE, CH_DEPTH)

SRC_KERNEL(uchar, SIMD_SIZE, images_0) 
STENCIL_KERNEL(kernel_gblur3x3, TILE_DIM, SIMD_SIZE, 5, 
                                 uchar,  uchar, gaussian3x3, images_0, images_1)
SINK_KERNEL(uchar, SIMD_SIZE, images_1) 

#define INTEL
//#define XILINX
//HIFLIPVX edges
 vx_image<vx_uint8, SIMD_SIZE, vx_stream_e, CH_DEPHT> images_0; 
 vx_image<vx_uint8, SIMD_SIZE, vx_stream_e, CH_DEPTH> images_1; 
template<...>
void graph(){
    vxGaussian3x3Node<vx_uint8, SIMD_SIZE  WIDTH, HEIGHT, KERN_SIZE, 
                  BORDER_TYPE, SEPARABLE_FILTER, images_0, images_1>  
    vxGaussian3x3Node0;       
} 

CPP_HiFlipVX.h

#include OpenCl_model.h // CPP function definition for OpenCL
__kernel void vxProcessGraph(__global vx_image* restrict Img_in,
                                       __global vx_image* restrict Img_outx) {
    graph(Img_in, Img_outx);
}

OpenCL_with_HiFlipVX_graph.clNon-standard
OpenCL or OpenVX
definitions

Standard OpenCL

Macro definitions:
difficult to extend
library, error prone

Easy to duplicate
kernels to multiply
compute units

Based on OpenVX
data types 

Based on OpenVX
nodes 

Parametrization to be optimized on FPGA.
 Channel depth (CH_DEPTH) is optional on
HiFlipVX

FPGA Vendor

//Edges
vx_image images[]={
vxCreateImage(context, WIDTH, HEIGHT, VX_DF_IMAGE_U8),
vxCreateImage(context, WIDTH, HEIGHT, VX_DF_IMAGE_U8)};
//Nodes
vxGaussian3x3Node(graph, images[0], images[1]);
//Process
vxProcessGraph(&graph);

OpenVX  Reduced example

AFFIX.cl

Figure 11: Code comparison between a reduced version of OpenVX, AFFIX, and HiFlipVX. OpenVX definitions and FPGA
optimization parameters are marked in orange and grey, respectively.

Table 4
Estimated resource usage for each OpenVX function in Auto-
contrast graph using HiFlipVX, with a HD image and vector-
ization factor of 1.

Function ALUTs FFs RAMs DSP

Load Image Object 934 3025 16 0
vxColorConvert(NV12) 1273 1744 0 1
vxSplit 130 103 0 0
vxChannelExtract 143 119 0 0
vxEqualizeHist 2584 3874 1029 0
vxChannelCombine 173 143 0 0
vxColorConvert(RGB) 1037 1268 0 0
Store Image Object 1102 3605 18 0

of 64 bits to save resources and compensate the extra DRAM
usage. The Table 4 shows the resource for each function in
the Autocontrast graph.

7.2.3. Census Transform
Census transform is not part of the OpenVX standard,

so we added it to the HiFlipVX library. The implementation
concatenates several filters as Canny does. Table 5 shows
the estimated resource usage for Census transform functions,
while Table 3 shows the usage for shared functions between
Census transform and, above explained, Canny.

Table 5
Estimated resource usage for each function in Census
transform using HiFlipVX, with a 4K Image and vector-
ization factor of 8.

Function ALUTs FFs RAMs DSP

Load Image Object 10569 39520 17 0
vxCensus 179 208 0 0
vxHistogram 960 16924 2 0
Store Image Object 2095 5501 18 0
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7.2.4. Skin Tone Detection
The last evaluated graph is Skin tone detection, which

requires threshold objects to produce output Boolean im-
ages. The graph is composed by 14 nodes of four different
OpenVX kernels that process 8 bit data. Table 6 shows the
resources for each function in the Skin tone graph.

Table 6
Estimated resource usage for each OpenVX function in
Skin tone graph using HiFlipVX, with an HD image and
vectorization factor of 1.

Function ALUTs FFs RAMs DSP

Load Image Object 3675 17257 16 0
vxAndNode 152 119 0 0
vxSubtract 230 153 0 0
vxThresholdNode 154 120 0 0
Store Image Object 2380 6936 18 0

7.3. OpenVX Application Analysis
The new HiFlipVX implementation simplifies the adop-

tion of different FPGAs. For example, this section evalu-
ates execution time, frequency, power, and energy on two
FPGA devices: Stratix 10 GX (S10GX) and Stratix 10 MX
(S10MX). The main difference between the boards is the
global memory. While the S10GX has one DRAM bank
with a data port width of 512 bits, the S10MX has a HBM
multi-banked memory composed by 32 DRAM banks and a
data port width of 256 bits per bank. Running on both boards
only required to change the vxCreateImage port declaration.

Table 7 shows the execution time, frequency, power and
energy of the four graphs. For all of them, the S10GX has
higher frequencies and lower execution times, with time gains
between 1.4 and 6,8%. Since all graphs are compute bound;
e.g., in Canny edge andCensus transform themaximummem-
ory bandwidth used is 2.4GBs for S10GX and S10MX, the
HBM memory does not provide any advantage in spite of
using one memory bank per variable. Most probably, the
same Stratix 10 architecture explains the close results. For
power and energy, in all but Autocontrast, the S10GX con-
sumes more energy and with the lower execution time in-
creases average power, up to 18%. The higher energy con-
sumption in Autocontrast by the S10MX may be due to the
BSP differences and the required extra RAM that increases
routing complexity.

C
yc

le
s

0
35
70

105
140

vxSobel vxGauss vxMagnitude vxPhase vxNonMaxSuppress

HiFlipVX AFFIX

Figure 12: Latency of canny edge for HiFlipVX and AFFIX
using an Stratix 10 GX FPGA.

7.4. Comparison with Existing Approaches
AFFIX [24] is a previous proposal that implementsOpen-

VX graphs. It relies on OpenCL channels to offer an im-
plementation based on OpenVX standard, as shown in Fig-
ure 2b. The use of OpenCL limits the programmability of
AFFIX. Comparing the graph codes from Figure 11, AF-
FIX, lower left, relies on OpenCL macros that are error-
prone, difficult to maintain, and moves away from the clarity
of OpenVX, upper left. In contrast, our work allows to use
a well-formed C++ code, the same language as OpenVX
API, to program graphs using OpenVX standard with tem-
plates to optimize hardware generation. In any case, in order
to integrate HiFlipVX graphs to a host CPU, HiFlipVX can
have a simple OpenCL interface called from a single queue
command to execute the graph.

In order to comparatively analyse performance against
our proposal, we modified AFFIX to communicate host and
FPGA kernels through the on-board DRAM instead of us-
ing the Intel host pipe extension to directly communicate
between the host and FPGA kernels. Although host pipes
reduce latency overhead, they have two limitations: they are
only supported on a few Arria 10GX development kits [9],
and also, each pipe can only have one input and one output
port. This second fact limits graph implementations; e.g.,
the Census transform was reduced to one output as shown
in Figure 10c where the AFFIX implementation follows the
dotted line and ignores the solid one. To compare with this
work, it is mandatory to replace the pipes with equivalent
DRAM input/output to run benchmarks on Stratix10 GX and
Stratix 10 MX boards.

In Table 8, it can be observed that HiFlipVX reaches a
speed-up of 3.4× and 3.6 × for Canny Edge and Census.
In case of Autocontrast, it was not possible to use the same
implementation for both AFFIX and ours, so that, they are
hardly comparable. Our approach is behaving a 20% worse
since synthesized frequency is lower in comparison to AF-
FIX (Figure 13). This penalization on frequency is due to
a higher consumption of resources (RAM) in the HiFlipVX
implementation.

Comparing the energy of the proposals, HiFlipVX dissi-
pates 23% less power than AFFIX in Census transform case,
our assumption is that, in HiFlipVX, the dispatch circuits to
connect nodes with host are minimized4, also, in Canny edge
and Census transform the HiFlipVX frequency is lower than
AFFIX, at least 50% in Canny. In Autoconstrast, with the
worst performance, it is only 10% less energy efficient.

Comparing the latency between both implementations in
Figure 12, HiFlipVX shows a 10% of improvement on aver-
age. One of the pipeline speed-up sources comes from the
hyper-optimized loop structure which is enabled by default
in the HLS compiler. The use of hyper-registers on an ap-
plication has demonstrated a performance gain of 1.4 × on
Stratix10 devices compared with previous FPGAs genera-
tion [27]. Although the compiler tries to apply this technique
in both AFFIX and HiFlipVX, in case of AFFIX, the use of

4Compilation reports state this difference in the dispatch logic between
AFFIX and HiFlipVX
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Table 7
HiFlipVX results on a Intel Stratix 10 GX and Intel Stratix 10 MX using a 4K image.

OpenVX Application Stratix 10 GX Stratix 10 MX
Time[ms] Frq[MHz] Power [W] Energy[mJ] Time[ms] Frq[MHz] Power[W] Energy[mJ]

Canny edge 6.8 310 13.2 89.8 7.3 293 11.3 76.5
Census 6.8 331 12.9 87.7 6.9 326 10.9 74.6
Autocontrast 23.1 301 13.1 302.6 23.9 294 13.8 318.1
Skin tone 33.2 343 12.8 424.9 35.7 315 10.9 361.5

Table 8
Comparison between HiFlipVX and AFFIX on a Intel Stratix 10 GX and Intel Stratix 10
MX using a 4K image.

OpenVX Application Stratix 10 GX Stratix 10 MX
T ime_HiF lipV X
T ime_AFFIX

Energy_AFFIX
Energy_HiF lipV X

T ime_HiF lipV X
T ime_AFFIX

Energy_AFFIX
Energy_HiF lipV X

Canny edge 3.2 2.4 3.6 1.9
Census 3.6 1.7 3.4 1.8
Autocontrast 0.8 0.9 0.8 0.7

Figure 13: Resource usage per logic unit relative the total units
on Stratix 10 GX and Stratix 10 MX for AFFIX and HiFlipVX
implementations.

OpenCL channels is inhibiting this optimization.
Figure 13 shows the resource consumption: ALUT, RAM,

FF, and DSP; of AFFIX and HiFlipVX. In case of Canny
edge, Census transform, andAutocontrast, AFFIX has a higher
utilization of ALUTs and FFs resources than HiFlipVX. In
opposition toHiFlipVX, inAFFIX,OpenCL generates a “ker-
nel dispatch logic” for each OpenVX kernel to communicate
with the host, which is responsible for an increase of 1463
ALUTs and 1467 FFs per kernel node. In the case of Hi-
FlipVX, kernel nodes are collapsed in a single kernel with a
single dispatch logic with saves from 4 to 24% of resources
per kernel in the evaluated graphs on the Stratix 10 GX. On
the Stratix 10 MX, the difference is less than 5% between
implementations.

In Autocontrast, the amount of RAM resources in Hi-
FlipVX is 4 × bigger as it is sensitive to image size. In con-
trast, AFFIX implementation prefers to split the pipeline and
read twice from external memory instead of using RAM re-
sources. Concerning to DSPs resources, in HiFlipVX the
color conversion is implemented with a 8-bit approximation
[18] that does not require DSPs for float operations in con-
trast to AFFIX.

At last, we compare our proposal against the traditional

OpenCL model, depicted in Figure 2a, used by the Chai
benchmark [8] for Canny edge. Our approach, HiFlipVX
reaches a speedup of 9 × in comparison to Chai’s. There
are two limiting factors that justify this results in Chai’s:
communication between nodes through external memory is
slower and shallow kernels (short pipelines) do not fully ex-
ploit FPGA paralelism.

8. Conclusions
One of the main features of OpenVX is the portabil-

ity among devices. However, on FPGA devices, provid-
ing cross-platform support remains a challenge. This paper
presents a cross-platform OpenVX library for FPGAs based
on HiFlipVX library, which originally only targeted Xilinx
devices. This new version efficiently supports Intel FPGAs
exploiting the novel Intel’s system of tasks to coalesce Open-
VX nodes into accelerated graphs on Intel FPGAs.

The new implementation introduces a novel compilation
flow that integrates the expressiveness of OpenVX graphs
in C/C++ with the performance of OpenCL kernels. Also,
applications can interoperate with OpenCL and SyCL code.
With these 3 aspects, the library gains flexibility to support
multiple FPGA architectures and devices with conventional
and High Bandwidth Memories.

In terms of resource utilization, on Intel devices, the en-
abled optimizations save around 1.5% of ALUTs usage per
node in graphs versus the standard OpenCL approach with
one kernel per node, since the host hardware control commu-
nication is only generated for the complete HiFlipVX graph
application. Compared with the state-of-art, HiFlipVX per-
forms up to 3.6 and 9.6 × faster than AFFIX and Chai, re-
spectively. Energy results also reflects the successful imple-
mentations with savings up to 2.4 ×.
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