
A Learning Experience Toward the Understanding of Abstraction-Level
Interactions in Parallel Applications

Alejandro Valero1, Rubén Gran-Tejero, Daŕıo Suárez-Gracia, Emanuel A. Georgescu, Joaqúın Ezpeleta,
Pedro Álvarez, Adolfo Muñoz, Luis M. Ramos, and Pablo Ibáñez

Department of Computer Science and Systems Engineering
Universidad de Zaragoza

Spain

Abstract

In the curriculum of a Computer Engineering program, concepts like parallelism, concurrency, consistency,
or atomicity are usually addressed in separate courses due to their thoroughness and extension. Isolating
such concepts in courses helps students not only to focus on specific aspects, but also to experience the reality
of working with modern computer systems, where those concepts are often detached in different abstraction
levels. However, due to such an isolation, it exists a risk of inducing to the students an absence of interactions
between these concepts, and, by extension, between the different abstraction levels of a system.

This paper proposes a learning experience showcasing the interactions between abstraction levels addressed
in laboratory sessions of different courses. The driving example is a parallel ray tracer. In the different
courses, students implement and assemble components of this application from the algorithmic level of the
tracer to the assembly instructions required to guarantee atomicity. Each lab focuses on a single abstraction
level, but shows students the interactions with the rest of the levels. Technical results and student learning
outcomes through the analysis of surveys validate the proposed experience and confirm the students learning
improvement with a more integrated view of the system.

Keywords: Ray tracing, task queue, semaphore, futex, assembly instructions.

1. Introduction

The development of a Computer Engineering (CE)
program must catch up with the fast evolution of
the field. Since the end of the 2000s decade, tech-
nological limitations have led to an increase in the
number of execution contexts running in parallel on
a computer system. This requires the ability to not
only implement algorithms that expose as much par-
allelism as possible, but also make an efficient use
of hardware mechanisms to guarantee safe parallel
execution. In this sense, following the recommen-
dations of both the NSF/IEEE-TCPP Curriculum
Committee [1] and the ACM/IEEE Joint Task Force
on Computing Curricula [2], numerous approaches
have made an effort to increase the presence or
to reinforce Parallel and Distributed Computing

1Corresponding author
Email address: alvabre@unizar.es (A. Valero)

(PDC) in CE programs. Recent work distribute
PDC topics across different courses through the in-
tegration of modules into existing courses [3, 4, 5],
introducing parallel programming in lower-level
courses [6, 7, 8], the proposal of research-oriented
teaching methodologies [9, 10, 11], or the creation
of new courses [12, 13, 14].

A common approach to design and explain a com-
puter system is to split the complexity of the whole
system into self-contained levels. Since such levels
relate to each other, each level provides a working
interface to the remaining levels. These interfaces
model a simplified abstraction of the underlying
complexity and establish clear boundaries across
the different parts of a system [15].

In most CE programs, each course typically re-
sorts to abstractions in order to design and explain
computer systems. Abstractions help to strengthen
the learning process, since they make students fo-

Preprint submitted to Journal of Parallel and Distributed Computing May 27, 2021

cus on specific aspects. However, in our experience,
students often lose the overall view of a computer
system with such an approach. This may lead stu-
dents to the conclusion that some courses are self-
contained and do not relate to each other. Particu-
larly, many of them forget the hardware implications
underlying high-level abstractions, in terms of per-
formance and power.

Previous work have proposed to teach PDC topics
from the perspective of either high-level abstractions
to ease both algorithm and software designs [16, 17],
or low-level abstractions such as assembly program-
ming to understand what is required to support
parallel execution [18]. Unlike these approaches,
this paper reinforces PDC topics from the highest
to the lowest level of abstraction that underlie com-
plex parallel applications in a computer system [19].
More precisely, this work exposes to the students
how the Instruction Set Architecture (ISA) and the
operating system provide the required support to
high-level synchronization operations, which in turn
help strengthen the knowledge on how the essential
concepts of parallelism, concurrency, consistency,
and atomicity entangle among them and with the
hardware [20, 21, 22].

To better understand the relations among the
aforementioned concepts, this paper proposes to de-
velop multiple components that at the end build a
fully parallel ray tracing application. Ray tracing
has been used in the past as a cross teaching expe-
rience to integrate two upper-level courses referring
to high-level abstractions such as CUDA program-
ming and advanced rendering concepts [23]. On
the contrary, we present a learning experience in-
volving multiple laboratory sessions of lower-level
and upper-level courses of a CE program. The ray
tracer serves as a motivating example that uses a
concurrent queue to assign tasks to different exe-
cution threads. The queue is accessed in mutual
exclusion to preserve data integrity. With this pur-
pose, the access to the queue is managed according
to each abstraction level, with mutexes implemented
with library functions, system calls, or directly in
assembly language. This way, the proposed learning
experience covers four abstraction levels: Applica-
tion, Library, Operating System, and ISA. Each
abstraction level implicates a different course.

Each proposed lab is mainly tied to the interaction
of two specific levels of abstraction, and purposely
endowed with a context referring to the rest of the
levels, contributing this way to integrate the differ-
ent abstraction levels. In this work, we introduce the

main guidelines, objectives, and results of the pro-
posed experience, which allow to implement other
experiences reinforcing inter-course learning.

Prior work has proved the suitability of a single-
board computer for teaching parallel computing over
mobile devices, student laptops, virtual machines,
or remote multicore servers [24, 25, 26]. We build
upon these studies by using a common hardware
board in all the proposed labs, which contributes
to consolidate an integrated view of the system. To
this end, we analyze several boards and conclude
that Raspberry Pi meets the vast majority of the
hardware and software requirements of an inter-
course learning experience.

The presented experience is the result of a project
carried out in a CE program during the current and
the past two academic years, in which assessment
studies of the proposal have been already carried out
thanks to a set of volunteer students. For the current
2020/2021 academic year, all the proposed labs are
fully deployed and all the enrolled students in the
involved courses are taking part in the proposed ex-
perience. This paper discusses experimental results
for all the proposed labs, including both the techni-
cal details of the lab assignments and the students
learning outcomes using pre/post surveys. These
surveys expose that students effectively demand a
deeper understanding of the interactions between
the abstraction levels, and such demands are fulfilled
after the completion of the labs.

The remainder of this paper is organized as follows.
Section 2 introduces the context of the CE program
and specific courses in which the proposed experi-
ence is established. Section 3 describes in depth the
learning experience. Section 4 discusses the require-
ments to implement inter-course learning and the
suitability of the selected boards. Section 5 shows
the technical results. Section 6 presents a quali-
tative assessment of the applied learning method
and students learning outcomes. Finally, Section 7
summarizes the paper.

2. Context

This section describes the organization of the CE
program, including a brief description of the types
of courses in each academic year. In addition, the
syllabus of the involved courses in the proposed
learning experience are described in more detail.

2

2.1. CE Program

The proposed experience is planned to be fully
integrated in the CE program at the Universidad
de Zaragoza (UNIZAR). This program consists of
four academic years, 240 ECTS2 credits in total3.
The first two and a half years are common for all
students. The core courses in this period mostly fo-
cus on the knowledge that any CE graduate should
learn: algebra, calculus, discrete mathematics, pro-
gramming theory, data structures and algorithms,
computer architecture and organization, operating
systems, physics and electronics, computer networks,
databases, distributed systems, software engineering,
artificial intelligence, and human-computer interac-
tion. Afterward, students reinforce their knowledge
in the major that most interests them within five
available options: Computing, Computer Engineer-
ing, Information Systems, Information Technology,
and Software Engineering. Each major consists of
eight compulsory courses. In addition, students se-
lect two optional courses from any other major, as
well as two core courses that are studied regardless
of the chosen major. Finally, the students achieve
the program by undertaking an undergraduate dis-
sertation of 12 ECTS.

The CE program focuses on the application of
theoretical knowledge in real-life problems, includ-
ing the development of labs and projects. This
approach is ideal to help students with the assimila-
tion of the concepts studied in the different courses.
Each course offers a well-though out lab sessions
tailored to reinforce the theoretical contents. At
best, they are coordinated with other courses that
belong to the same area of knowledge. As mentioned
above, this can lead students to perceive a course, or
a group of courses, as isolated islands, which makes
it difficult for them to apply the knowledge acquired
in each course in their professional career. In fact,
these divisions are purely organizational, and all the
courses have many interactions with each other. Ac-
cording to the Computer Engineering Curricula [20],
students should learn the development of a whole
computer in the lab experiments that include ex-
posure to hardware and operating systems in the
context of a relevant application, which is, in our
case, the ray tracing algorithm.

2ECTS refers to European Credit Transfer and accumula-
tion System: http://ec.europa.eu/education/resources-

and-tools/european-credit-transfer-and-accumulation-

system-ects_en
3https://estudios.unizar.es/estudio/ver?id=148

2.2. Involved Courses

The proposed experience implicates four differ-
ent courses within the program to jointly face the
problem. These courses are Computer Graphics,
Distributed and Concurrent Systems Programming,
Operating Systems, and Multiprocessors, which are
related to the Application, Library, Operating Sys-
tem, and ISA abstraction levels, respectively.

Computer Graphics (CG) is a core course of the
Computing major, and an optional course in other
majors. CG focuses on mathematical models and al-
gorithms that generate synthetic images (or videos)
in which performance is a must. Students learn the
underlying mathematical and physical concepts that
define appearance and, as practical assignments,
develop algorithms like ray tracing that output im-
ages from such concepts. Parallelization is key to
the performance of such algorithms, and different
parallelization strategies (static/dynamic, with dif-
ferent high level structures and partitions) must be
explored.

Distributed and Concurrent Systems Program-
ming (DCSP) is a core course that concentrates on
the fundamentals of programming such classes of
systems. In the case of concurrency, the lectures
focus on the explanation of the problems that arise
when a set of processes have to share data and re-
sources, and the way such a problem has been solved,
from the main mutual exclusion algorithms based
on shared variables to higher level structures such as
semaphores and monitors. In the case of distributed
systems, students learn how to coordinate processes
by means of synchronous and asynchronous message
passing as well as by means of the use of a shared
tuple space. Besides studying the concepts from
a conceptual point of view, students work in a set
of laboratory sessions and a final team project in
which they have to develop some programs where
the studied concepts are a crucial part.

Operating Systems (OS) is a core course that
presents in a comprehensive way the structure and
functions of an operating system. The operating
system is presented as a resource manager and as a
service provider at the system call and command in-
terpreter levels. At each level, the student acquires
concepts and skills related to the management and
the use of the main system resources such as the
processor, memory, and input/output devices. In
relation to the topic presented in this paper, the
course presents the synchronization primitives of-
fered in the pthread library and studies the keys to

3

http://ec.europa.eu/education/resources-and-tools/european-credit-transfer-and-accumulation-system-ects_en
http://ec.europa.eu/education/resources-and-tools/european-credit-transfer-and-accumulation-system-ects_en
http://ec.europa.eu/education/resources-and-tools/european-credit-transfer-and-accumulation-system-ects_en
https://estudios.unizar.es/estudio/ver?id=148

Table 1: Relations among the abstraction levels, courses, activities, academic years, semesters, and chronological order.

Abstraction Course Activity Academic Semester Chronological
level year order

Application CG Ray tracing 4th Fall 4th

Library DCSP Concurrent 2nd Fall 1st

task queue

Operating OS Futex 2nd Fall 2nd

System system calls

ISA MP Futexes with 3rd Spring 3rd

assembly code

their implementation. First, it analyzes the imple-
mentation of spinning primitives with the support
offered by the processor in the form of atomic mem-
ory access instructions and then it motivates the
need of the operating system support to implement
sleeping primitives.

Multiprocessors (MP) is a core course of the Com-
puter Engineering major, and an optional course
in other majors. MP focuses on the mechanisms
that support the parallel execution of tasks in a
computer system from the point of view of the archi-
tecture and the organization of a computer. More
precisely, this course focuses on parallel processors
with shared memory, which are basic elements of
current complex digital systems. The covered topics
include performance analysis, performance model-
ing, on-chip networks, atomicity, consistency, and
coherence in the memory hierarchy of a parallel
processor. In the laboratory sessions of the course,
OpenMP is presented and used as a tool for paral-
lel programming of computers, as well as tools for
performance measurement.

3. Proposed Learning Experience

This section presents the proposed experience
that helps students to accomplish an integrated
view of a computer system. The lab materials
and resources for each abstraction level consist of
a description of the work to be done, code snip-
pets, and a series of milestones, where each one
builds on top of the previous one. The experi-
ence involves a total of eight hours, since each lab
session comprises two hours in the course associ-
ated with the level. Interested readers may refer
to the following repository with the source code
of every lab: https://github.com/universidad-

zaragoza/learning-experience-ray-tracing.

3.1. Overview

The proposed learning experience allows students
to consolidate the concepts of parallelism, concur-
rency, consistency, and atomicity exploitable in cur-
rent multicore computers. We focus on ray tracing,
an appealing application which can be efficiently par-
allelized by learning and using the above concepts.
Table 1 shows the involved four levels of abstraction
and the associated courses. The table also shows,
for each course, the academic year, semester, and
chronological order in which the activities take place.

According to the chronological order, students
start the experience in the second academic year.
The first lab, which belongs to the DCSP core course,
focuses on the library level. This lab deals with the
implementation and management of a task queue
with concurrent access by multiple threads. Syn-
chronization aspects must be considered in order
to avoid race conditions. To do so, students use a
semaphore library for handling such synchronization
questions.

The subsequent lab takes place shortly, during
the same academic year and semester, and focuses
on the Operating System level. In this core lab, a
mutex is implemented with a futex (fast userspace
mutex) mechanism through atomic primitives and
operating system calls that are only invoked when
the mutex is contested [27]. This mutex is then
used to implement a new semaphore library, which
replaces the one used in the previous lab.

The following academic year covers the third lab,
that is, the Assembly level, which is developed in the
optional MP course. In this lab, assembly instruc-
tions are used to implement the mutex/futex, which
have the potential to achieve a greater efficiency in
energy consumption and performance compared to
library functions and system calls.

Finally, in the fourth year, the students focus on
the Application level by implementing a ray tracer

4

https://github.com/universidad-zaragoza/learning-experience-ray-tracing
https://github.com/universidad-zaragoza/learning-experience-ray-tracing

in a lab of the CG optional course. In this activity,
the rendering of an image is parallelized by dividing
the image into regions. These regions are assigned
to different threads by using the concurrent task
queue. At this moment, the students fully evaluate
and state the differences of protecting concurrent
accesses to the task queue by using library functions,
system calls, or assembly instructions.

Note that the development of the presented expe-
rience is subject to certain risks; e.g., students trans-
ferring from one institution to another, or students
failing a course or simply not choosing the involved
optional courses would not complete the full expe-
rience. To mitigate such risks, all the labs include
two parts. The first one, which is self-contained,
includes the material for the actual lab, and the
second part links the lab with the others. There-
fore, if a student does not complete a preceding or
following lab assignment, the faculty can provide a
solution, so that students can accomplish the second
part of the lab and establish the links between the
abstraction levels.

3.2. Abstraction Levels

The application under study is presented in the
next sections following the chronological order that
students will experience.

3.2.1. Concurrent Task Queue

The aim of this lab is the implementation of one
of the most common concurrent data structures:
a queue. Queues, whose sequential approach has
already been studied in a previous course of Data
Structures and Algorithms, are a very suitable mech-
anism for the collaborative work of a set of processes.
In the considered case, producers and consumers can,
in a natural way, use one or more queues to share in-
formation and to synchronize [28]. As in any shared
data structure, in order to preserve data integrity,
the concurrent access to the shared data requires
the use of some synchronization mechanisms.

In this context, the main objectives of this lab
work are as follows: i) to implement a concurrent
bounded queue for generic data types, ii) to get
familiarity with semaphores as a mean for solving
synchronization problems, and iii) to use a general
and powerful approach to solve general synchroniza-
tion problems using semaphores.

Controlling the concurrent access to a queue re-
quires to consider not only mutual exclusion access
to some queue components, but also condition syn-
chronization (no first element exists in an empty

queue, or no new element can be inserted when the
queue is full). According to the focus proposed for
the DCSP course, as a first assignment, students
have to design the concurrent access to the queue
using the coarse-grain atomic statement <await B

S>, where B is a boolean guard, usually concerning
shared data, and S is a block of sequential state-
ments. The semantics of the statement ensures that
S starts its execution being B true, and the whole
statement is atomically executed. The high-level
point of view of such a statement makes easier the
task of designing correct concurrent programs, which
is one of the aims of the course. This will be done in
the generic class ConcurrentBoundedQueue sketched
in Listing 1, which includes a BoundedQueue as one of
its attributes. Students have to code the complete
data structure, including both enqueue and dequeue
operations using semaphores for synchronization.

Listing 1: ConcurrentBoundedQueue generic class.

template <class T>
class ConcurrentBoundedQueue {
public :

void enqueue (const T d) ;
//<await th i s −>bq−>l ength ()<N
// th i s −>bq−>enqueue (d)
//>

void dequeue () ;
//<await th i s −>bq−>l ength ()>0
// th i s −>bq−>dequeue ()
//>
. . .

private :
int N; // s i z e o f the bounded queue
BoundedQueue<T> ∗bq ; // data s to rage
. . .

} ;

Critical section S
i

wait(mutex)

if not B {i

d ++i

signal(mutex)

wait(b)i
}

pass_the_baton()

(a) <await Bi Si >

Critical section Sj

wait(mutex)

pass_the_baton()

(b) Sj

Figure 1: Implementation of critical sections using (binary)
semaphores.

5

In previous lectures, students have seen the pass
the baton technique [29] to implement <await ...>

statements using (binary) semaphores. This tech-
nique works as follows. Let us consider all the <await

Bi Si> and <Sj> sections that must be synchronized
together. A mutex semaphore ensures exclusive ac-
cess to such code areas. For each different Bi, a
(binary) semaphore bi with an initial count equal to
0 is added to block a process in the <await Bi Si>

statement when Bi is false. In addition, a counter di

with an initial value set to 0 is included to store the
number of processes blocked at Bi. Figure 1 illus-
trates an implementation of both <await Bi Si> and
<Sj> sections. The pass the baton implementation is
sketched in Listing 2.

Listing 2: pass the baton function.

void pas s the baton () {
switch {

. . .
Bi and di >0:

di− −
s i g n a l (b i)

. . .
o the rw i se :

s i g n a l (mutex)
}

}

In the case of the concurrent bounded queue,
there are only two conditions: non-empty and
non-full. Therefore, three semaphores and two
counters will be used. The private part of the
ConcurrentBoundedQueue class can be extended as
shown in Listing 3.

Listing 3: ConcurrentBoundedQueue class including a syn-
chronization mechanism.

template <class T>
class ConcurrentBoundedQueue {
public :

. . .
private :

int N; // s i z e o f the bounded queue
BoundedQueue<T> ∗bq ; // data s to rage
Semaphore ∗mutex ; // i n i t i a l count w i l l

//be 1
Semaphore ∗ b n o t f u l l ; // to block u n t i l

// queue i s not f u l l
Semaphore ∗b not empty ; // to block

// u n t i l queue i s not empty
int d n o t f u l l ; //# of b n o t f u l l −

// blocked p r o c e s s e s
int d not empty ; //# of b not emtpy−

// blocked p r o c e s s e s
void pas s the baton () ; // to pass the

// baton
} ;

Since we want students to finally implement gen-
eral semaphores, the presented technique will be
developed using general semaphores instead of bi-
nary semaphores. Anyway, notice that the way the
technique is implemented, every semaphore count is
always 1 or 0, having a behavior equivalent to binary
semaphores. At this level, the (binary) semaphores
are the lowest abstraction construct to manage syn-
chronization, considered as an abstract data type.
The students know two possible semantics, equiva-
lent from a safeness point of view, but with possible
different liveness properties. However, they still do
not know how a semaphore can be implemented and
how operates internally, whether it makes a process
spin until the access is granted or the process goes
to sleep controlled by the operating system. These
issues are outlined in the lab, and students will find
out the answers by implementing the semaphore
abstract data type in the two following labs.

As a final and optional lab assignment, students
are asked to implement a second approach of the
concurrent queue. In the first one, each operation
on the queue is executed in mutual exclusion. In
the second one, students have to adapt the readers-
writers approach so as to allow multiple access to
reading operations (operations with no side effects on
the queue) while preserving mutual exclusion access
for writing operations, giving priority to writers in
case of conflict. During the lectures, students have
already designed a solution based on the <await

...> instruction, whereas this assignment deals with
the implementation.

After completing this lab, students will have re-
inforced their knowledge about the main concepts
related to semaphore-based synchronization. In ad-
dition, the proposed assignments also deal with the
use of design techniques focusing on the synthesis
of correct concurrent programs.

3.2.2. Task Queue Protection with Futex Sys-
tem Calls

This lab is intended to present the mechanisms
required by the operating system to provide syn-
chronization in concurrent algorithms. The main
objectives of this lab are: i) show the operating sys-
tem as a service provider for the user through system
calls, ii) learn an efficient use of the futex system
calls and the primitives of atomic instructions pro-
vided by the operating system and the C standard
library, iii) understand the necessary mechanisms to
provide execution in mutual exclusion with futexes
and atomic instructions, and iv) show and use self-

6

Critical section

while(test_and_set(&val));

val=0; u
n

lo
c
k

lo
c
k

(a) Spin-Lock (SL)

Critical section

if(val==1) {
enqueue(th);
sleep();

}
val=1;

val=0;
if(!empty_queue()) {

th=dequeue();
wakeup(th);

}

u
n

lo
c
k

lo
c
k

(b) Naive-sleep

Critical section

c=test_and_set(&val);
while(c==1) {

futex_wait(&val,c);
c=test_and_set(&val);

}

val=0;
futex_wake(&val,1); u

n
lo

c
k

lo
c
k

(c) Basic-Sleep (BS)

Critical section

if((c=cmpxchg(val,0,1))!=0)
do {

if(c==2
|| cmpxchg(val,1,2)!=0)

futex_wait(&val,2);
} while((c=cmpxchg(val,0,2))

!= 0);

if(fetch_sub(val)!=1) {
val=0;
futex_wake(&val,1);

}

u
n

lo
c
k

lo
c
k

(d) Advanced-Sleep (AS)

Figure 2: Lock and unlock procedures of spin-lock and sleep mutexes. The sleep implementations include operating system calls
to change the thread status.

implemented lock and unlock primitives of a mutex
abstraction to manage the access to the concurrent
task queue implemented in the previous activity.

The lab material firstly describes the C11 atomic
instructions from stdatomic.h and solicits the stu-
dents to implement a mutex with spin-lock based
on atomic instructions. Next, the sleep approach of
a mutex is motivated, introducing the mandatory
intervention of the operating system to change the
thread status, and providing a naive approach of
the sleep mutex using hypothetical sleep and wakeup

system calls as well as management operations on a
system queue. The limitations of this approach are
used to motivate the futex system calls. Then, the
syntax and use of the parameters of the futex wait

and futex wake system calls are described. By using
these calls, the students are guided to implement
an intuitive and straightforward version of the sleep
mutex referred to as basic implementation. Finally,
the pseudo-code algorithm of a more efficient mutex
is offered as a guideline to code an advanced imple-
mentation. This approach is based on the mutex
implementation proposed by U. Drepper [30], which
is integrated into the Linux kernel [31].

Figure 2(a) shows the lock and unlock procedures
of a Spin-Lock (SL) mutex protecting a critical sec-
tion. The value of the userspace val variable repre-
sents the two states of the mutex: not taken (val=0)
and taken (val=1). The test and set atomic instruc-
tion changes the mutex state4. More precisely, this
instruction sets val to 1 and loads its previous value
into c without the overhead of a system call. Then,
a thread enters into the critical section if the lock
is uncontested (c=0). Otherwise, the thread keeps
spinning in the lock. In the unlock procedure, the

4For the sake of brevity, we have shortened the original
stdatomic.h function names; e.g., test and set corresponds
to atomic flag test and set and the assignment operator
for val refers to atomic store.

thread simply sets val to 0 to release the mutex.
Since the SL mutex leaves all the waiter threads in
the lock awake, it may suffer system performance
losses when the mutex is contested.

Figure 2(b) illustrates the naive-sleep approach
of a mutex. These procedures are similar to other
versions offered in textbooks of operating system
concepts such as [32, 33], and [34]. This code is
only correct if both procedures are executed atom-
ically. However, assuming a non-atomic execution
presents several problems that are listed in the lab
material and should be understood by the students,
specifically: i) the reading and writing operations
of val are not atomically performed, which can lead
to multiple threads reading the lock as not taken,
ii) the reading of the lock and the insertion of the
thread in the queue are neither atomic, which can
lead to an indefinitely suspended thread if the lock is
freed between the reading and insertion operations,
and iii) after waking up from the sleep call, a thread
has no guarantee of obtaining the lock in mutual
exclusion since another thread can enter into the
critical section before the former takes the lock.

Figure 2(c) shows the Basic-Sleep (BS) imple-
mentation addressing all the incorrect behaviors
stated above. In the lock function, the atomic op-
eration changes the state of the mutex. If the lock
is uncontested, the kernel is not invoked and the
thread enters into the critical section. Otherwise,
the futex wait system call is invoked. It suspends
the calling thread in a system queue if the lock is
still taken (val=1), or it returns immediately if the
lock has been released in the meantime (val=0). In
the first case, the thread remains suspended until
another thread wakes it up. Notice too that every
time futex wait returns, the thread tries to acquire
the lock again.

The unlock procedure sets val to 0 and calls
futex wake. This system call wakes up a number

7

of threads stated in the second argument (1 in the
example as only a single thread is allowed to enter
into the critical section) from those suspended in
the system queue. Notice that such a call is invoked
regardless of the lock is uncontested or not, which
may impact on the system performance.

The Advanced-Sleep (AS) implementation shown
in Figure 2(d) addresses the performance problem of
the basic approach. In this case, there are three mu-
tex states: not taken (val=0), taken and no waiter
threads (val=1), and taken and at least one waiter
thread (val=2). In the lock procedure, test and set

is no longer useful since val takes three values. In-
stead, the atomic cmpxchg primitive is used, in which
a 1 (desired third argument) is loaded into val on a
successful comparison between val and 0 (expected
second argument). Regardless of the result of the
comparison, the original value of val is loaded into
c. If c==0, the calling thread updates the state of
the mutex as taken and no waiters, and then enters
into the critical section. Otherwise, the thread is
suspended in the system queue by calling futex wait.
Previously, the second cmpxchg sets val to 2 if nec-
essary, updating the state of the mutex as taken
and at least one waiter. Note that, if the lock is
freed between the first and second cmpxchg, the lat-
ter returns 0 and the thread is not suspended. The
third cmpxchg ensures that a thread takes the mutex
only if a 0 is returned. In such a case, val is set
to 2 because there is no certainty of the number of
waiters.

The unlock method subtracts 1 to val with the
atomic fetch sub, which returns the previous value
of the argument. The futex wake call is invoked
just in the case of a suspended thread in the lock,
avoiding such costly system calls when there are no
waiter threads. The reader is referred to [30] for
further details about the AS mutex implementation.

Once the different mutexes have been coded
and understood, the students use them to sup-
port a complex abstraction, that is, the concurrent
task queue implemented in the previous lab. List-
ing 4 shows an implementation alternative of the
Semaphore class introduced in Listing 1, referred to
as Library. This approach uses standard library mu-
texes (std::unique lock <mutex>) to ensure mutual
exclusion in Semaphore class methods. On the other
hand, Listing 5 shows a different implementation of
the same class, referred to as Thread-suspension, in
which the lock and unlock methods are replaced by
the procedures of each mutex version (see Figure 2).

Listing 4: Library implementation alternative of the
Semaphore class.

class Semaphore {
private :

s td : : mutex mtx ;
std : : c o n d i t i o n v a r i a b l e a n y cv ;
int count =0;

public :
. . .

void Semaphore : : s i g n a l () {
std : : un ique lock<mutex> l c k (mtx) ;
count =1;
cv . n o t i f y a l l () ;

}

void Semaphore : : wait () {
std : : un ique lock<mutex> l c k (mtx) ;
while (count == 0)

cv . wait (l ck) ;
count =0;

}
} ;

Listing 5: Thread-suspension implementation alternative
of the Semaphore class. Mutex lock and unlock procedures
refer to the different approaches from Figure 2.

class Semaphore {
private :

s td : : mutex mtx ;
int count =0;

public :
. . .

void Semaphore : : suspend (int ve) {
s y s c a l l (NR futex , &(count) ,

FUTEX WAIT, ve , NULL, 0 , 0) ;
} // suspends thread i f f ve != count

void Semaphore : : wakeup () {
s y s c a l l (NR futex , &(count) ,

FUTEX WAKE, INT MAX, NULL, 0 , 0) ;
} //wake up a l l suspended threads

void Semaphore : : s i g n a l () {
mtx . l ock () ;
count =1;
wakeup () ;
mtx . unlock () ;

}

void Semaphore : : wait () {
mtx . l ock () ;
while (count == 0) {

int vr = count ;
mtx . unlock () ;
suspend (vr) ;
mtx . l o ck () ;

}
count =0;
mtx . unlock () ;

}
} ;

8

For both implementation alternatives, the wait

method consists of a loop over a count variable, but,
if count equals to 0, the current thread suspends its
execution. On the other hand, the signal method
wakes up all suspended threads after freeing the
semaphore. In order to implement such a function-
ality for Thread-suspension, the suspend and wakeup

methods are coded by the students using futex sys-
tem calls. On the contrary, the Library approach
relies on condition variables to suspend/wake up
threads. Using both alternatives, the students as-
sess the suitability of not only their coded spin-lock
and sleep mutexes, but also a library mutex by
measuring the execution time and the chip tem-
perature under different contention scenarios (see
Section 5.2).

Overall, the students will be able to use futex
system calls and atomic instructions to implement
spin-lock and sleep versions of a basic synchroniza-
tion abstraction such as a mutex, incorporate such
approaches to protect the concurrent task queue,
and experimentally state the performance differences
among them.

3.2.3. Futexes with Assembly Code

The main purpose of this lab is to help students
understand the support provided by the ISA level
to implement fast and reliable mutual exclusion, in
terms of consistency and atomicity. The ARM pro-
cessors include load-link/store-conditional instruc-
tions and memory barriers, providing the foundation
for higher level structures such as mutexes and fu-
texes. In addition, these instructions do not require
any privilege level for being executed, so program-
mers can directly exploit them to improve efficiency
and reduce the overhead of systems calls.

By the end of this lab, students will have ac-
complished the following goals: i) understand how
atomic instructions operate at the ISA level for
the ARMv8 processors, ii) know why data memory
barriers are often required when writing atomic in-
structions, and iii) learn the performance and energy
implications of the different mutex implementations.

The assignments of this lab are designed to help
students to engage with complex code enhancing
their low-level programming skills, especially con-
cerning performance and energy efficiency. In ad-
dition, they show how important is for an ISA to
provide support for complex high-level constructors
such as the mutexes used by operating systems, li-
braries, and applications. Finally, students gain
knowledge on the relation between the C/C++11

loop:

w2, [@lock]ldaxr

w2, loopcbnz

w3, #1mov

w4, w3, [@lock]stxr

w4, loopcbnz

wzr, [@lock]stlr u
n

lo
c
k

lo
c
k

Critical section

(a) Spin-lock (SL-ASM)

Critical section

wzr, [@lock]stlr u
n

lo
c
k

lo
c
k

sevl

loop:

wfe

w2, [@lock]ldaxr

w2, loopcbnz

w3, #1mov

w4, w3, [@lock]stxr

w4, loopcbnz

(b) Low-power state (LPS-ASM)

Figure 3: Lock and unlock procedures with ARMv8 assembly
code.

memory model and the corresponding consistency
models at the ISA level.

The lab material of this session is organized in
two parts. In the first part, the students are asked
to generate a race condition with the writing of
a multi-threaded program that reduces an array
by adding all the elements without synchronization
primitives. Then, the students code a fetch and
add primitive with ARMv8’s load-link (ldaxr) and
store-conditional (stlxr) instructions [35]. The im-
plemented fetch and add is included in the previous
program to verify that the code is now free of race
conditions.

The second part comprises two assignments. The
first one proposes a basic implementation of lock
and unlock mutex functions based on ldaxr/stlxr

instructions as plotted in Figure 3(a). Threads in
the lock function spin until they acquire the lock.
This mutex approach is referred to as SL-ASM. The
spinning can occur at the two cbnz instructions.
Either if the lock is already taken (first cbnz) or
the stxr instruction fails the attempt to take the
lock (second cbnz), the branch instructions return
the flow to the beginning of the loop. Notice too
that, likewise the SL and BS implementations from
the OS level, just two mutex states, taken and not
taken, are considered in the assembly level.

The second assignment proposes an advanced im-
plementation of the lock function by replacing the
power-hungry spin-lock with a wfe instruction. This
instruction puts the core into a low-power state with-
out returning the control to the operating system.

9

Figure 3(b) shows such an energy-efficient imple-
mentation, referred to as LPS-ASM, also with the
two mutex states taken and not taken. The student
will learn how the operating system considers that
the program is running, while it is actually waiting
for the lock to be released, and how the thread can
regain the lock without a system call. In particular,
the stlr instruction, located in the unlock function,
performs a store with a release barrier and wakes
up any core that could be in a low-power state after
executing a wfe instruction. To guarantee progress,
the cores also leave the low-power state after an
interruption occurs (e.g., a context switch).

With both SL-ASM and LPS-ASM implementa-
tions, students will carry out a quick comparison
between them in terms of performance and energy
consumption. Since Raspberry does not provide en-
ergy hardware counters, as an indirect measurement,
we periodically measure the temperature provided
by the chip itself, which is mapped by the OS in the
filesystem5.

3.2.4. Parallel Ray Tracing

The CG course proposes a practical assignment
involving the implementation of a ray tracing al-
gorithm [36], which is parallelized by assigning dif-
ferent tasks (partitions or regions of the expected
synthesized image) to different threads. The main
objectives of this lab are: i) find and understand
the computational bottlenecks of the algorithm, ii)
devise parallelization strategies that affect perfor-
mance without any accuracy loss, and iii) test, ex-
plore, and analyze the impact (and overhead) of
the combination of different parallelization strate-
gies, including partitioning structures and thread
assignment methodologies, on performance.

The contents of this lab include a description of
the ray tracer, and an introduction on how to par-
allelize it. In particular, this assignment makes use
of the minimalist C++ smallpt ray tracer by K.
Beason6. This algorithm generates a 2D image from
a 3D representation of a virtual scene, including
geometry and optical properties of the objects and
physical characterizations of sensors (cameras) and
light sources. In practice, the algorithm simulates
light transport paths across the virtual scene in or-
der to obtain the final color that reaches each of
the pixels of the image. Paths are generated from

5Temperature can be found in the path
/sys/devices/virtual/thermal/thermal zone0/temp

6http://www.kevinbeason.com/smallpt/

task0

task0

task1

task2
task3

...

ta
s
k

0

ta
s
k

1

ta
s
k

2

ta
s
k

3

..
.

task0 task1

task2

task3......

task1
task2

task3

pixels lines columns rectangles

Figure 4: Diagrams of a 2D image split into render tasks
with different kinds of image regions and sizes.

the camera and traverse each pixel independently.
Since the computation associated to each pixel is
independent, the algorithm is highly parallelizable.
Moreover, such a parallelization is worthwhile be-
cause the algorithm is computational intensive and
takes quite a long time to converge (about 1 or 2
hours for a good quality result for a simple virtual
scene, and even days in the case of more complex
scenes).

A common ray tracing parallelization strategy is
to subdivide the image into different regions, con-
verting the computation of each of the regions into
a render task to be assigned to an execution thread.
The students are required to explore different paral-
lelization strategies in different dimensions as illus-
trated in Figure 4:

• Different kinds of image regions: pixels, lines,
columns, or rectangles.

• Different region sizes: smaller or larger rectan-
gles and line or column batches.

Depending on the geometry and other properties
of the virtual scene, and the different implementa-
tion details of the algorithm, the computational load
can vary greatly from one region to another [37]. For
this reason, we need a safe mechanism to distribute
tasks among threads. This assignment can be static
(pre-assigned per thread) or dynamic (using a con-
current task queue).

Listing 6 shows the implementation of a static
parallelization assignment, distinguishing between
the generation of the regions and the rendering pro-
cess. In this strategy, prefixed indices are computed
as a vector of regions and threads access to such
indices during the rendering process.

Since it is impossible to estimate the computa-
tional load of each task beforehand, a dynamic as-
signment is likely to be more efficient. Listing 7
shows this implementation, where the vector of
regions is replaced by the ConcurrentBoundedQueue

class from the former lab, including the enqueue
and dequeue operations in the generation and ren-
dering processes, respectively. Figure 5 depicts a

10

diagram of such a concurrent task queue where a
main thread generates and enqueues tasks, whereas
multiple worker threads dequeue tasks and perform
the rendering process in parallel. Finally, notice too
that both static and dynamic strategies are orthogo-
nal to the region distributions depicted in Figure 4.

Listing 6: Static parallelization strategy for computer graph-
ics algorithms.

struct Region {
int row0 , co l0 , row1 , co l1 , spp ;

} ;

// Producer
void generate () {

Image image (width , he ight) ;
s td : : vector<Region> r e g i o n s ;
for (r eg i on in <r e g i o n s accord ing to

s t ra tegy >)
r e g i o n s . push back (r eg i on) ;

s td : : vector<std : : thread> threads ;
for (int i =0; i<n th ; ++i)

threads . push back (std : : thread (
render , i , n th , r eg ions , image)) ;

for (auto &t : threads)
t . j o i n () ;

}

//Consumer
void render (unsigned int thread , unsigned
int nthreads , std : : vector<Region>& parts ,
Image& image) {

for (int p=thread ; p<par t s . s i z e () ;
p+=nthreads)

for (int row=part s [p] . row0 ; row<
par t s [p] . row1 ; ++row)

for (int c o l=par t s [p] . c o l 0 ;
row<par t s [p] . c o l 1 ; ++c o l)

for (int s =0; s<spp ; ++s)
// rays per p i x e l

image (row , c o l) +=
c a l c u l a t e p i x e l (row , c o l) ;
}

Listing 7: Dynamic parallelization strategy for computer
graphics algorithms.

// Producer (main thread)
void generate () {

Image image (width , he ight) ;
s td : : vector<std : : thread> threads ;
ConcurrentBoundedQueue<Region> r e g i o n s ;
for (int i =0; i<n th ; ++i)

threads . push back (std : : thread (
render , i , n th , r eg ions , image)) ;

for (r eg i on in <r e g i o n s accord ing to
s t ra tegy >)

r e g i o n s . enqueue (r eg i on) ;
for (auto &t : threads)

t . j o i n () ;
}

//Consumer (worker threads)

void render (unsigned int thread , unsigned
int nthreads , ConcurrentBoundedQueue<Region
>& parts , Image& image) {

while (! par t s . done ()) {
Region part = par t s . dequeue () ;
for (int row=part . row0 ; row<part .

row1 ; ++row)
for (int c o l=part . c o l 0 ; row<

part . c o l 1 ; ++c o l)
for (int s =0; s<spp ; ++s)

// rays per p i x e l
image (row , c o l) +=

c a l c u l a t e p i x e l (row , c o l) ;
}

}

task0

task1

task2

task3task4task5task6

enqueue

main thread

dequeue

worker threads

Figure 5: Concurrent thread-safe task queue to assign tasks
to different worker threads.

The students should identify the different pros and cons
of each of the approaches, analyzing and justifying their
impact on performance. For instance, the students
should answer questions such as which is the optimal
region size? Which of the mutex approaches of the task
queue work best and under which circumstances?
The final part of the lab notes that the proposed ap-
proach relies on low-level programming constructs that
are helpful to showcase the interactions with the rest of
the abstraction levels. However, to boost productivity
and get the most of heterogeneous systems, which are
standard nowadays, students should be advised to opt
for higher level approaches [38, 39, 40].
Overall, the implementation and parallelization of the
path-tracing algorithm together with the performance
evaluation of each mutex will help students understand
and analyze the effect of low-level mechanisms, decisions,
and implementation details with high-level applications
and algorithms, which will reinforce the integrated view
of a computer system.

4. Experimental Environment

To consolidate the overall view of the presented com-
puter system, we propose to use the same single-board
computer in all the labs. To this end, we have analyzed
a subset of commonly used boards that fulfilled two
key restrictions: low-cost (price below 50 $) and mul-
tiprocessing (parallelism experiments cannot be run in
single-core boards).
The selected boards are Raspberry Pi 3 Model B [41],

11

Table 2: Hardware (H) and Software (S) requirements evaluated for the following boards: Raspberry Pi 3 Model B (RP),
ClockworkPi (CP), Rock64 (RC), Le Potato (LP), Orange Pi zero plus (OP), NanoPi M1 Plus (NP), and Pine A64-LTS (PA).

Type Description RP CP RC LP OP NP PA

H JTAG 7 7 7 7 7 7 7

H Ethernet X X X X X X X
H WiFi X X 7 7 X X 7

H Camera X 7 7 7 X X 7

H Virtualization support X X X X X X X
H I/O Extensions (screen, buttons...) X X X X X X X
H GPU X X X X X X X

S Development Framework options X 7 X 7 X X X
S SDK and runtime GPU support X 7 X 7 X X X
S High-level/Standard OS support X 7 X X X X X

H&S Bare metal (no OS) support X X X X X X X

ClockworkPi7, Rock648, AML-S905X-CC (Le Potato)9,
Orange Pi Zero Plus [42], NanoPi M1 Plus10, and Pine
A64-LTS11.
Table 2 summarizes the most relevant hardware and
software requirements for the development of this ex-
perience, and which of them are met by the selected
boards. Of course, there are other boards offering bet-
ter performance or more functionality but at a higher
cost such as DragonBoard 410C [43], HiKey 96012, or
BeagleBoard X-15 [44]. Such highly-priced boards are
not considered in this study.
The list of requirements is mainly focused on the sub-
set of courses taking part in the presented experience.
Nevertheless, it is desirable to choose a base board that
allows future expansions by adding more courses to the
experience. Therefore, we consider a broader range of
requirements that would facilitate the use of the selected
board for additional courses, such as Computer Architec-
ture and Organization, Systems Administration, Com-
puter Networks, Security, Artificial Intelligence, Machine
Learning, Embedded Systems, Robotics, Video-games,
or Computer Vision, among others.
Considering the results from our study of boards, re-
quirements, and potential courses that could use them,
Raspberry Pi, Orange Pi, and NanoPi turn out good
choices to be used in our experience, since they meet all
the requirements but the JTAG support. However, we
finally chose Raspberry Pi primarily due to its broader
usage and large amounts of open source and available

7https://wiki.clockworkpi.com/index.php/Main_Page
8https://wiki.pine64.org/index.php?title=ROCK64
9https://libre.computer/products/boards/aml-

s905x-cc/
10http://wiki.friendlyarm.com/wiki/index.php/

NanoPi_M1_Plus
11https://wiki.pine64.org/index.php?title=Main_

Page
12https://www.96boards.org/documentation/consumer/

hikey960/hardware-docs/hardware-user-manual.md.html

materials [45].

5. Technical Results

This section presents the main technical results and
conclusions that should be obtained by students from
the proposed lab assignments. More precisely, the im-
pact on the system performance and chip temperature
obtained for every mutex implementation is analyzed
under different contention scenarios.
All the experiments are run in a Raspberry Pi 3 Model B,
which includes a quad-core processor where each core is
single-thread. We assumed a fixed CPU frequency of 1.4
GHz (performance governor) for all the experiments to
guarantee reproducibility. The OS is an Ubuntu 18.04.3
LTS release with a gcc 7.5.0 compiler. Before running
each experiment, we wait until the chip temperature
decreases to a defined threshold of 60 ºC (the reported
experiments were carried out during summer and the
board does not include any heat dissipator nor fans).
Once an experiment finishes, we calculate the execution
time and the chip temperature increase and wait for the
CPU to cool down before running the next experiment.
All the presented experiments are run from 1 to 64
threads. Taking into account the quad-core processor
and the fact that the studied applications are CPU-
bound, the thread oversubscription (i.e., a number of
threads higher than the number of physical cores) pe-
nalizes performance, which is a key insight for students.
In addition, another important key insight from thread
oversubscription is that the implementation of each mu-
tex affects performance differently.

5.1. OS Level

The first lab assignment deals with the implementation
of the concurrent bounded queues and the experiments
are limited to ensure the correctness of such queues (Sec-
tion 3.2.1). In the second lab, the first assignment refers

12

https://wiki.clockworkpi.com/index.php/Main_Page
https://wiki.pine64.org/index.php?title=ROCK64
https://libre.computer/products/boards/aml-s905x-cc/
https://libre.computer/products/boards/aml-s905x-cc/
http://wiki.friendlyarm.com/wiki/index.php/NanoPi_M1_Plus
http://wiki.friendlyarm.com/wiki/index.php/NanoPi_M1_Plus
https://wiki.pine64.org/index.php?title=Main_Page
https://wiki.pine64.org/index.php?title=Main_Page
https://www.96boards.org/documentation/consumer/hikey960/hardware-docs/hardware-user-manual.md.html
https://www.96boards.org/documentation/consumer/hikey960/hardware-docs/hardware-user-manual.md.html

0

5

10

15

20

"
T

 (
ºC

)

96
.6

97
.5

96
.6

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of threads

0

10

20

30

40

50

60

E
xe

cu
tio

n
tim

e
(s

)

SL time
BS time
AS time

SL temp
BS temp
AS temp

(a) Real contention

0

1

2

3

4

"
T

 (
ºC

)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of threads

0

0.5

1

1.5

2

2.5

3

E
xe

cu
tio

n
tim

e
(s

)

SL time
BS time
AS time

SL temp
BS temp
AS temp

(b) Synthetic contention

Figure 6: Performance and temperature of the OS mutex implementations varying the number of threads.

to the implementation of the SL, BS, and AS mutexes
using futexes (Section 3.2.2). This section evaluates such
implementations.
Bars and lines in Figure 6 show respectively the execu-
tion time in seconds (s) and the chip temperature in-
crease in Celsius degrees (ºC). Threads access a shared
variable protected with a mutex. In particular, each
thread acquiring the lock increments by one the value of
this variable and then releases the lock. The execution
finishes when the shared variable reaches a value of a
million.
Two different contention scenarios are considered, re-
ferred to as real and synthetic. In the real scenario, a
thread releasing the lock computes some private work
consisting of a series of trigonometric functions with
the shared variable as input. On the other hand, in
the synthetic scenario, after releasing the lock, a thread
immediately competes for the lock without performing
any private work. The latter scenario covers an extreme
case where students observe how a change in the amount
of private work leads to unexpected conclusions.
In the real scenario, all the mutexes obtain a very similar
performance for a given number of threads greater or
equal than 4. For a low number of threads between 1
and 12, the overhead of always invoking a futex system
call in the unlock method and the subsequent context
switch in BS leads to a slight increase of the execution
time compared to SL and AS. However, as the number
of threads increases, SL progressively enlarges a bit the
execution, since threads spin in a more disputed lock.
On the other hand, the sleep mutexes maintain the
same execution time as the number of threads increases.
With this experiment students realize that, for this kind
of application, the thread oversubscription does not
improve performance but, on the contrary, depending
on the mutex implementation, performance can be hurt.
The increase in the chip temperature is quite steady
for a number of threads greater than one, and both the
private work and the chip temperature limit (around 80
ºC) prevents from obtaining significant CPU tempera-

ture differences among the different mutexes. However,
SL reaches a lower temperature in most cases, which
suggests that invoking futex systems calls has a greater
thermal signature.
There is no parallelism to be exploited in the synthetic
scenario, meaning that single-threaded executions should
exhibit the best performance for a given mutex imple-
mentation. This is the case for both SL and AS mutexes.
For the studied mutexes, SL obtains the lowest execution
time both in the single-threaded execution and when
the number of threads coincides with the number of
physical cores. This confirms the overhead of the futex
system calls in both BS and AS approaches. On the
other hand, similarly to the previous scenario, under the
thread oversubscription, spinning largely increases the
execution time over the sleep approaches, whereas such
mutexes maintain roughly the same performance.
An interesting observation is that, for a single thread,
BS has a much larger execution time not only compared
to the other mutexes but also compared to itself when
multiple threads are considered. This confirms the over-
head of always invoking costly futex wake system calls
in the unlock function even when there are no waiter
threads in the lock. Regarding the chip temperature,
the execution time is not sufficiently large to observe
significant temperature differences before and after the
execution.

5.2. Library Level

This section refers to the evaluation of the OS second
lab assignment, where the previous mutexes are used to
support the concurrent task queue. Figure 7 shows the
results. A library mutex from the DCSP lab is included
for comparison purposes. The length of the queue is a
million of elements and its initial state is full. Threads
within the critical section dequeue values from the queue
until it is empty. The private work of each thread is the
same as described in the previous section.
The real scenario confirms that the best performing
number of threads is 4, where both SL and the library

13

0

5

10

15

20

"
T

 (
ºC

)

98 99
.9

97
.9

97
.2

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of threads

0

10

20

30

40

50

60

E
xe

cu
tio

n
tim

e
(s

)

SL time
BS time
AS time
Lib time

SL temp
BS temp
AS temp
Lib temp

(a) Real contention

0

5

10

15

20

"
T

 (
ºC

)

73
.1

84
.5

97
.9

10
3.

8

11
9.

9

12
8.

4

14
5.

9

15
0.

9

17
2

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of threads

0

10

20

30

40

50

60

E
xe

cu
tio

n
tim

e
(s

) SL time
BS time
AS time
Lib time

SL temp
BS temp
AS temp
Lib temp

(b) Synthetic contention

Figure 7: Performance and temperature of the OS mutex implementations protecting a concurrent bounded queue. A library
mutex is included for comparison purposes.

mutex obtain the best performance. This suggests that
the library mutex implements a spin-lock mechanism for
such a number of threads. The thread oversubscription
leads to larger execution times, especially for SL, BS,
and AS. The library mutex clearly outperforms all the
other mutexes for any number of threads greater than
4, suggesting that, differently from the spin-lock and
OS-based solutions, the library implementation possibly
throttles unnecessary threads according to the number
of processor cores and/or exploits an internal userspace
sleep-queue to minimize thread context switches. Con-
trary to the previous experiments, SL always performs
better than AS and BS mutexes. This is mainly due to
the additional overhead of the futex system calls from
the new suspend and wakeup methods in the Semaphore
class. As expected, AS largely reduces the execution
time with respect to BS due to the additional cost of
always invoking futex wake system calls. Similarly to
the previous study, SL shows a slightly lower increase in
the CPU temperature compared to the other mutexes,
including the library mutex.
Surprisingly, the synthetic scenario greatly affects the
library mutex with the number of threads, which points
out that such an extreme contention scenario has not
been considered in the library mutex development. The
higher contention also affects SL, although in a lesser
way. In this scenario, with a sufficient number of threads,
the overhead of the system calls and subsequent con-
text switches compensates the distribution of CPU time
among all the active threads spinning in the lock. Re-
moving the private work allows to see significant temper-
ature differences. The results confirm the lower thermal
signature of SL, even in those cases where SL enlarges
the execution time with respect to the other approaches.
On the other hand, the library mutex shows the highest
temperature increase, most likely due to the extended
execution times.
Overall, the library mutex is a convenient choice in
scenarios where there is a relatively high amount of

private work to be done. In this case, the library likely
exploits a hybrid management by combining spin-lock,
thread throttling, and/or a sleep-queue to provide an
adaptive mechanism to the most frequent case. However,
in the synthetic scenario, the library heuristics fail to
adapt to such an atypical case, making the OS-based
mutexes the preferable choice.

5.3. Assembly Level

This study evaluates the SL-ASM and LPS-ASM mu-
texes protecting the concurrent task queue (see Sec-
tion 3.2.3). The initial state of the queue and the amount
of private work is the same as in the previous study. Fig-
ure 8 depicts the results. For illustrative purposes, just
the best performing mutexes with 4 threads from the
previous study (library and SL for real and synthetic
contention, respectively) are shown.
Similarly to the previous studies, the spin-lock solution
increases the execution time with the thread oversub-
scription in the real contention scenario. Compared to
SL-ASM, LPS-ASM has a lower execution time since
putting cores in a low-power state until a context switch
is triggered reduces the lock contention. However, this
does not prevent the library mutex to obtain better
performance thanks to an enhanced management of the
lock. Differently from previous approaches, the LPS-
ASM alternative shows a temperature reduction with
the thread oversubscription. This is mainly due to, with
a higher number of threads, the chance to put cores in a
low-power state increases. On the contrary, the steady
temperature of the library mutex suggests that such an
implementation does not change the state of the cores.
In the synthetic scenario, both spin-lock alternatives
progressively increase the execution time with the num-
ber of threads. However, implementing the spin-lock
in a higher abstraction level with respect to the ISA
level introduces a performance overhead according to
the timing differences between SL and SL-ASM. Finally,

14

0

5

10

15

20

"
T

 (
ºC

)

97
.2

98 97
.8

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of threads

0

10

20

30

40

50

60

E
xe

cu
tio

n
tim

e
(s

)

Lib time
SL-ASM time
LPS-ASM time

Lib temp
SL-ASM temp
LPS-ASM temp

(a) Real contention

0

2

4

6

8

10

"
T

 (
ºC

)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of threads

0

5

10

15

20

E
xe

cu
tio

n
tim

e
(s

)

SL time
SL-ASM time
LPS-ASM time

SL temp
SL-ASM temp
LPS-ASM temp

(b) Synthetic contention

Figure 8: Performance and temperature of assembly mutexes protecting a concurrent bounded queue. The best performing
solutions from the previous study are also shown.

84
.9

10
0.

9

11
2.

2

13
1.

9

15
4.

1

16
8.

6

19
5.

3

19
9.

2

20
5.

4

23
6.

9

25
0.

1

81
.2

84
.1

88 98
.2

11
5.

9

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of threads

0

10

20

30

40

50

60

E
xe

cu
tio

n
tim

e
(s

)

SL time
BS time
AS time
Lib time
SL-ASM time
LPS-ASM time

Figure 9: Performance of all the mutex implementations
at the path-tracing application level assuming a dynamic
parallelization strategy.

the LPS-ASM solution clearly reduces the temperature
with respect to both spin-lock approaches, which show
very similar temperature numbers.

5.4. Application Level

This section evaluates all the mutexes in the ray tracing
application using the dynamic parallelization strategy
with the concurrent task queue (see Section 3.2.4). Fig-
ure 9 plots the results, which are restricted to perfor-
mance for illustrative purposes. The rendered scene in
all the experiments is forest13. For simplification pur-
poses, the image is partitioned in fixed-size rectangular
regions.
As expected from the real scenarios of the previous stud-
ies, the best performing number of threads is 4 according
to the number of physical cores, where all the analyzed
mutexes exhibit a very similar performance. In addition,

13http://www.kevinbeason.com/smallpt/extraScenes.txt

the performance of the ray tracer scales with the num-
ber of threads, since the execution time with 4 threads
reduces by 4× with respect to the single-threaded per-
formance. Results under the thread oversubscription
corroborate the previous findings from lower abstraction
levels: the OS overhead largely penalizes the AS mutex
and especially the BS mutex, whereas the OS-free so-
lutions like SL and the assembly mutexes show similar
results. Finally, the library mutex is scarcely affected
by the thread oversubscription.

6. Experience Assessment

This section provides a qualitative assessment of all
the proposed labs. The attendance to such labs was
voluntary (37 students participated in each lab of the
DCSP and OS courses, and 12 students participated
in each lab of the MP and CG courses). All labs were
scheduled after the completion of the courses, giving
the students the opportunity to compare between the
current lab assignments (i.e., no direct interactions with
any other lab) and the proposed lab assignments. Notice
too that this experience has been carried out for three
consecutive academic years, meaning that those students
that have participated in the latest CG lab have also
participated in the remaining ones. Assessment results
collected for the DCSP and OS labs correspond to 2
years: current and previous, whereas results for the MP
and CG labs correspond to the previous and current
year, respectively. In the first year, the first two labs
were run without collecting assessment results.
Two different surveys were designed for each lab, referred
to as pre-survey and post-survey. Students filled out the
surveys before and after completing the proposed lab
sessions. Every pre-survey consists of two types of ques-
tions: a series of questions for measuring the perception
of students about the interactions among the courses of
the CE program in general and particularly among the
involved courses in the experience, and 22 theoretical

15

Table 3: Correct answer rates of the common questions for
pre and post surveys.

(a) DCSP

Q1 Q2 Q3 Q4
Pre 100 72.9 27.1 56.7
Post 100 97.3 43.2 59.5

(b) OS

Q5 Q6 Q7 Q8 Q9 Q10
97.3 81.1 48.7 67.6 81.1 10.8
97.3 97.3 91.9 100 100 100

(c) MP

Q11 Q12 Q13 Q14 Q15
75 41.7 41.7 41.7 33.3
100 91.7 83.3 100 75

(d) CG

Q16 Q17 Q18 Q19 Q20 Q21 Q22
75.0 83.3 33.3 41.7 33.3 50.0 58.8
91.7 100 66.7 83.3 100 83.3 83.3

and practical questions for assessing the knowledge of
students about the covered PDC topics.
Every post-survey is structured in four parts: a set of
questions for stressing in the interactions among the
courses, a series of questions for valuing the proposed
lab experiences, other questions referring to the obtained
technical results, and the same 22 theoretical and practi-
cal questions from the pre-surveys. The main conclusions
extracted from these surveys are summarized next.
Before the lab sessions, the students considered that all
the courses of the program are somehow related (8.0
points out of 10, where the edge scores 0 and 10 indi-
cate no relation at all and totally related, respectively),
but that the faculty should make an effort to make this
relation more explicit (the effort was rated 7.9 out of
10). Regarding the courses involved in this learning ex-
perience, the students were very conclusive. All of them
considered that the four courses are strongly related to
other courses of the program, including between them-
selves. The responses of the post-surveys strengthened
the previous results, since the students conveyed that
the courses are more related to each other (8.7 out of
10).
Table 3 compares the correct answer rates of the 22
theoretical and practical questions that were included in
both kind of surveys. Questions Q1-Q4 were proposed
by the faculty of the DCSP course and mainly focus
on the concept of mutual exclusion, the semantics of
semaphores, and the use of semaphores to solve certain
critical section problems. Questions Q5-Q10 refer to
the OS session and are about the low-level requirements
to implement different types of semaphores. Questions
Q11-Q15 refer to the MP course and are about the role
of atomicity and consistency in thread synchronization.
Questions Q16-Q22 correspond to the CG course and

deal with the impact of the different abstraction levels
in the parallel ray tracing application. The reader is
referred to Appendix A for further details about these
questions, including the possible and the correct/desired
answers, highlighted in boldface.
In general, the post-survey rates improve the correct
answer rates obtained in the pre-surveys. Overall, the
results support the interest of the experience and the use-
fulness from the students point of view. On average, the
correct answer rate of the post-surveys is 88.0% versus
57.3% obtained before the beginning of the sessions. One
remarkable aspect to be noticed is the rather low rate of
correct answers to questions Q3 and Q4. In our opinion,
the main reason is that the conceptual study of the
different semantics of the semaphore abstract data type
has been presented and discussed two months before the
experience has been carried out. For a set of reasons, we
are currently thinking about the possibility of changing
the order in which concepts are introduced at the OS
course, so as to be able to study the semaphore abstrac-
tion and implementation closer in time. Maybe this fact
will help us to get more information to understand the
reason for such a low rate.
When comparing year-on-year results of the surveys,
we have shown some striking facts. This is the case of
questions Q16 and Q17 of the CG lab, which are the
same as questions Q8 and Q9 of the OS lab. In the
survey after the OS lab, 100% of the students answered
them correctly. However, two years later in the previ-
ous survey of the CG lab, these same questions were
answered correctly by only 75% and 83.3% of the stu-
dents, respectively. These results demonstrate the effect
of time on students’ memory. Fortunately, the CG lab
session helps to refresh students’ memory by reaching
91.7% and 100% on the post-survey.
The post-surveys revealed that all the lab sessions were
well received. All the students completed the lab as-
signments, and they gave an overall score of 8.8 out of
10 to the quality of the lab designs, the materials and
resources, and the faculty assistance. When asked about
their opinion in the CG lab, one student mentioned that
he/she “liked a lot the idea of unifying several courses
in a single learning experience, and this should be done
more often to consolidate the learning”. Another student
pointed out that “this is a very positive initiative to put
together everything we have seen in multiple courses”.
In general, after completing the labs, the students have
reached a broader view of the interactions among oper-
ating systems, computer architecture, and parallel and
distributed computing. As learning outcomes, students
discerned among the different mutex implementation
alternatives and clearly identified the programmability,
execution time, and efficiency trade-offs at each abstrac-
tion level.

16

7. Conclusions

The current structure of the Computer Engineering (CE)
program, arranged in isolated courses, causes students
to lose sight of the overall view of a typical computer
system organized in abstraction levels. This paper has
presented a learning experience that aims to reinforce
this vision as a whole.
The presented experience covers the abstraction levels of
Application, Library, Operating System, and Instruction
Set Architecture, and consists in the implementation of
a parallel ray tracing algorithm that uses a concurrent
queue to assign tasks to different execution threads. The
accesses in mutual exclusion to this queue are managed
by mutexes implemented with either library functions,
system calls, or assembly instructions.
The aforementioned abstraction levels have been intro-
duced and related to each other in a subset of labora-
tories from different courses of a CE program, allowing
students to consolidate the concepts of parallelism, con-
currency, atomicity, and consistency. This paper has pre-
sented the structure and contents of each proposed lab,
as well as the interactions with the remaining labs. In
addition, a detailed study of the hardware and software
requirements and the consequent choice of Raspberry Pi
as the common hardware development platform is also
discussed.
Experimental results consisted of a technical evaluation
and an assessment study of the proposed learning expe-
rience. The technical results referred to an evaluation
and discussion of the performance and temperature dif-
ferences of the implemented mutexes in each lab. The
experience assessment consisted of a series of pre/post
surveys. Most students pointed out an enhancement
in the design of the labs and a greater exposure to the
relations between courses. In addition, the students
showed an enhancement in the integrated perception
of the addressed concepts and the acquisition of the
knowledge, since the correct responses to the technical
questions from the surveys improved by 30.7% after the
experience.

Appendix A. Surveys

Appendix A.1. DCSP survey

Q1 Do you understand the importance of mutual ex-
clusion?

• Yes

• No

• I have a rough idea

Q2 When a P process is said to use an S semaphore
with busy-wait semantics, which of the following
operations refers to wait(S)?:

• Option 1:

< i f S .V>0
S .V := S .V−1

else
S . L := S . L ∪ {P}
P. s t a t e := blocked

end
>

• Option 2:

< await S .V>0
S .V := S .V−1

>

• To anyone, both are equivalent

Q3 If the semantics for semaphores in the first two
answers from the previous question are taken into
account, which of the following statements can be
considered as true?

• Since they are equivalent, there are no differ-
ences in terms of liveliness and safety proper-
ties

• There are no differences in terms of
safety properties, but there are differ-
ences in terms of liveliness

• There are no differences in terms of liveliness
properties, but there are differences in terms
of safety

• Although they are not equivalent, there are
no differences in terms of liveliness and safety
properties

Q4 Consider the following scheme to solve the prob-
lem of the critical section, S being a semaphore
with busy-wait semantics. Which of the following
statements is correct?

Semaphore S:=1
Process P Process Q

loop f o r e v e r loop f o r e v e r
SNC SNC
wait (S) wait (S)
SC SC
s i g n a l (S) s i g n a l (S)

end end
end end

• The solution can generate fairness
problems

• There are no fairness issues

• There will be fairness issues depending on the
first process that gets access to the semaphore

Appendix A.2. OS survey

Q5 Do you know the advantages and shortcomings of
a mutex with/without active waiting?

• Yes

17

• No

• There are no differences

Q6 Would you be able to implement a mutex with busy
waiting?

• Yes

• No

• I am not sure

Q7 Would you be able to implement a mutex without
busy waiting?

• Yes

• No

• I am not sure

Q8 What do you consider essential to implement a
mutex with busy waiting (multiple choices can be
selected)?

• Atomic memory reading and writing in-
structions

• OS support

• A shared memory space

• Nothing, any system supports it by default

Q9 What do you consider essential to implement a
mutex without busy waiting (multiple choices can
be selected)?

• Atomic memory reading and writing in-
structions

• OS support

• A shared memory space

• Nothing, any system supports it by default

Q10 Do you know what a futex is?

• Yes

• No

• I have a rough idea

Appendix A.3. MP survey

Q11 The consistency model defined by ARMv8 is...

• Sequential

• Relaxed

• None of them

Q12 Which of the following instructions puts the pro-
cessor on a low power state?

• sevl

• dbm

• wfe

• All of the above

• None of the above

Q13 For a fetch and add, would you use any of the
following ARMv8 instructions?

• wfe, sevl

• DMB, DSB, ISB

• ldaxr, stlr

• None of the above

Q14 What of the following synchronization alternatives
would you use in a low-contention scenario for the
next program?

// run concur r en t ly by s e v e r a l threads
long long my add = 0 ;
while (work index < n e lements) {

// how do you pro t e c t the next code
// l i n e s ?

int my work index in i = work index ;
work index = work index + chunk ;
int my work index end = work index ;

for (int i = my work index in i ; i <
my work index end ; i++) {

my add = my add + v elems [i] ;
}

}

• Fetch and add

• Mutex

• Energy-efficient mutex

Q15 What of the following synchronization alternatives
would you use in a high-contention scenario for the
same program as in the previous question?

• Fetch and add

• Mutex

• Energy-efficient mutex

Appendix A.4. CG survey

Q16 What are the minimal requirements to implement a
non busy-wait mutex (several choices can be valid)?

• Atomic instructions

• OS support

• A shared memory space

• Nothing, all systems support non busy-wait
mutexes

Q17 What are the minimal requirements to implement
a busy-wait mutex (several choices can be valid)?

• Atomic instructions

• OS support

• A shared memory space

• Nothing, all systems support non busy-wait
mutexes

18

Q18 For a parallel application such as a ray tracer, which
implementation would be faster in a scenario where
the number of logical threads is lower than the
number of physical execution contexts of the pro-
cessor?

• OS mutex

• Library mutex

• Assembly mutex

• All three should have a similar behav-
ior

Q19 For a parallel application such as a ray tracer, which
implementation would be faster in a scenario where
the number of logical threads is equal to the number
of physical execution contexts of the processor?

• OS mutex

• Library mutex

• Assembly mutex

• All three should have a similar behav-
ior

Q20 For a parallel application such as a ray tracer, which
implementation would be faster in a scenario where
the number of logical threads is higher than the
number of physical execution contexts of the pro-
cessor?

• OS mutex

• Library mutex

• Assembly mutex

• All three should have a similar behavior

Q21 Many algorithms, such as ray tracing, whose out-
put is a matrix of pixels (or an image), are easily
parallelizable. Which is the best parallelization
strategy for such algorithms?

• Static: pixels are pre-assigned to a worker
thread by rows, columns, or regions. In this
approach, workers perform their tasks without
synchronizing with other workers

• Dynamic-per-pixel: each worker continuously
fetches single-pixel tasks until completion. It
requires synchronization among workers

• Dynamic-per-region: each worker con-
tinuously fetches region tasks until
completion. It requires synchroniza-
tion among workers

• Hard to guess: the best strategy depends on
the variability of the execution time of each
task

Q22 In a parallel ray tracing algorithm, where each
pixel can be independently generated, assuming
a dynamic-per-region strategy, under which cir-
cumstance reducing the region size can improve
performance?

• When there is variability in the pixel-
generation time

• When there are image areas where is known
beforehand that the pixel-generation time is
smaller than that of other areas

• When the region task delay is signifi-
cantly larger than the synchronization
delay produced by the region

• When the resulting image has many color
disturbances

Acknowledgments

All authors acknowledge support from grants
(1) PIIDUZ 18 246 from Universidad de
Zaragoza, (2) PID2019-105660RB-C21 / AEI /
10.13039/501100011033 from Agencia Estatal de Inves-
tigación (AEI) and European Regional Development
Fund (ERDF), (3) gaZ: T58 20R research group
from Aragon Government and European Social Fund
(ESF), (4) 2014-2020 “Construyendo Europa desde
Aragón” from ERDF, (5) TIN2017-84796-C2-2-R from
Spanish Ministerio de Economı́a y Competitividad,
(6) DisCo-T21-20R from Aragon Government, (7)
PID2019-105004GB-I00 from Spanish Ministry of
Science and Innovation, and (8) CHAMELEON, grant
No 682080 from European Research Council (ERC)
under the EU’s Horizon 2020 research and innovation
programme.

References

[1] S. K. Prasad, A. Chtchelkanova, F. Dehne, M. Gouda,
A. Gupta, J. Jaja, K. Kant, A. La Salle, R. LeBlanc,
A. Lumsdaine, D. Padua, M. Parashar, V. Prasanna,
Y. Robert, A. Rosenberg, S. Sahni, B. Shirazi, A. Suss-
man, C. Weems, J. Wu, NSF/IEEE-TCPP Curricu-
lum Initiative on Parallel and Distributed Comput-
ing - Core Topics for Undergraduates, Version I, http:
//tcpp.cs.gsu.edu/curriculum/ (2012).

[2] ACM/IEEE, Computer Science Curricula 2013: Cur-
riculum Guidelines for Undergraduate Degree Programs
in Computer Science (2013).

[3] D. J. John, S. J. Thomas, Parallel and Distributed
Computing across the Computer Science Curriculum,
in: Proceedings of the IEEE International Parallel and
Distributed Processing Symposium Workshops, 2014,
pp. 1085–1090.

[4] M. Burtscher, W. Peng, A. Qasem, H. Shi, D. Tamir,
H. Thiry, A Module-Based Approach to Adopting the
2013 ACM Curricular Recommendations on Parallel
Computing, in: Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, 2015, pp.
36–41.

[5] S. Srivastava, M. Smith, A. Ghimire, S. Gao, Assessing
the Integration of Parallel and Distributed Computing
in Early Undergraduate Computer Science Curriculum
using Unplugged Activities, in: IEEE/ACM Workshop

19

http://tcpp.cs.gsu.edu/curriculum/
http://tcpp.cs.gsu.edu/curriculum/

on Education for High-Performance Computing, 2019,
pp. 17–24.

[6] L. B. A. Vasconcelos, F. A. L. Soares, P. H. M. M.
Penna, M. V. Machado, L. F. W. Góes, C. A. P. S.
Martins, H. C. Freitas, Teaching Parallel Programming
to Freshmen in an Undergraduate Computer Science
Program, in: IEEE Frontiers in Education Conference,
2019, pp. 1–8.

[7] M. Grossman, M. Aziz, H. Chi, A. Tibrewal, S. Imam,
V. Sarkar, Pedagogy and tools for teaching parallel
computing at the sophomore undergraduate level, Else-
vier Journal of Parallel and Distributed Computing 105
(2017) 18–30.

[8] S. A. Bogaerts, One step at a time: Parallelism in an
introductory programming course, Elsevier Journal of
Parallel and Distributed Computing 105 (2017) 4–17.

[9] S. Petit, J. Sahuquillo, M. E. Gómez, V. Selfa, A
research-oriented course on Advanced Multicore Archi-
tecture: Contents and active learning methodologies,
Elsevier Journal of Parallel and Distributed Computing
105 (2017) 63–72.

[10] S. Kumar, Research-oriented teaching of PDC topics in
integration with other undergraduate courses at multiple
levels: A multi-year report, Elsevier Journal of Parallel
and Distributed Computing 105 (2017) 92–104.

[11] N. Giacaman, O. Sinnen, EA: Research-Infused Teaching
of Parallel Programming Concepts for Undergraduate
Software Engineering Students, in: IEEE International
Parallel Distributed Processing Symposium Workshops,
2014, pp. 1099–1105.

[12] T. Newhall, A. Danner, K. C. Webb, Pervasive paral-
lel and distributed computing in a liberal arts college
curriculum, Elsevier Journal of Parallel and Distributed
Computing 105 (2017) 53–62.

[13] J. Eckroth, A Course on Big Data Analytics, Elsevier
Journal of Parallel and Distributed Computing 118 (P1)
(2018) 166–176.

[14] E. Saule, Experiences on Teaching Parallel and Dis-
tributed Computing for Undergraduates, in: IEEE Inter-
national Parallel and Distributed Processing Symposium
Workshops, 2018, pp. 361–368.

[15] J. Kramer, Is Abstraction the Key to Computing?, Com-
munications of the ACM 50 (4) (2007) 36–42.

[16] D. Ginat, Y. Blau, Multiple Levels of Abstraction in Al-
gorithmic Problem Solving, in: Proceedings of the ACM
SIGCSE Technical Symposium on Computer Science
Education, 2017, pp. 237–242.

[17] C. Ferner, B. Wilkinson, B. Heath, Toward Using Higher-
Level Abstractions to Teach Parallel Computing, in:
Proceedings of the IEEE International Parallel and Dis-
tributed Processing Symposium Workshops, 2013, pp.
1291–1296.

[18] B. Levandowski, D. Perouli, D. Brylow, Using Embedded
Xinu and the Raspberry Pi 3 to Teach Parallel Comput-
ing in Assembly Programming, in: Proceedings of the
IEEE International Parallel and Distributed Processing
Symposium Workshops, 2019, pp. 334–341.

[19] J. Cuenca, D. Giménez, A Parallel Programming Course
Based on an Execution Time-Energy Consumption Opti-
mization Problem, in: Proceedings of the IEEE Interna-
tional Parallel and Distributed Processing Symposium
Workshops, 2016, pp. 996–1003.

[20] ACM/IEEE, Computer Engineering Curricula 2016:
Curriculum Guidelines for Undergraduate Degree Pro-
grams in Computer Engineering (2016).

[21] V. Kumar, Introduction to Parallel Computing, 2nd
Edition, Addison-Wesley Longman Publishing Co., Inc.,
2002.

[22] D. J. Sorin, M. D. Hill, D. A. Wood, A Primer on
Memory Consistency and Cache Coherence, 1st Edition,
Morgan & Claypool Publishers, 2011.

[23] C. Lupo, Z. J. Wood, C. Victorino, Cross Teaching Par-
allelism and Ray Tracing: A Project-based Approach to
Teaching Applied Parallel Computing, in: Proceedings
of the 43rd ACM Technical Symposium on Computer
Science Education, 2012, pp. 523–528.

[24] S. J. Matthews, Teaching with Parallella: A First Look
in an Undergraduate Parallel Computing Course, Jour-
nal of Computing Sciences in Colleges 31 (3) (2016)
18–27.

[25] S. J. Matthews, J. C. Adams, R. A. Brown, E. Shoop,
Portable Parallel Computing with the Raspberry Pi, in:
Proceedings of the ACM SIGCSE Technical Symposium
on Computer Science Education, 2018, pp. 92–97.

[26] A. A. Younis, R. Sunderraman, M. Metzler, A. G. Bour-
geois, Case Study: Using Project Based Learning to
Develop Parallel Programing and Soft Skills, in: IEEE
International Parallel and Distributed Processing Sym-
posium Workshops, 2019, pp. 304–311.

[27] H. Franke, R. Russell, M. Kirkwood, Fuss, Futexes and
Furwocks: Fast Userlevel Locking in Linux, in: Pro-
ceedings of the Ottawa Linux Symposium, 2002, pp.
479–495.

[28] A. Williams, C++ Concurrency in Action, Manning
Publications, 2012.

[29] G. R. Andrews, Concurrent Programming. Principles
and Practice, 1st Edition, The Benjamin/Cummings
Publishing Company, Inc., 1991.

[30] U. Drepper, Futexes Are Tricky, http://people.redhat.
com/drepper/futex.pdf (2011).

[31] U. Drepper, I. Molnar, The Native POSIX Thread Li-
brary for Linux, https://akkadia.org/drepper/nptl-
design.pdf (2005).

[32] A. Silberschatz, P. B. Galvin, G. Gagne, Operating
System Concepts, 9th Edition, Wiley Publishing, 2012.

[33] W. Stallings, Operating Systems: Internals and Design
Principles, 6th Edition, Prentice Hall Press, 2008.

[34] R. H. Arpaci-Dusseau, A. C. Arpaci-Dusseau, Operat-
ing Systems: Three Easy Pieces, 1st Edition, Arpaci-
Dusseau Books, LLC, 2018.

[35] ARM, ARM DS-5 Development Studio Examples (2018).
[36] E. Veach, Robust Monte Carlo Methods for Light

Transport Simulation, Ph.D. thesis, Stanford Univer-
sity (1998).

[37] M. Pharr, W. Jakob, G. Humphreys, Physically Based
Rendering: From Theory to Implementation, 3rd Edi-
tion, Morgan Kaufmann Publishers Inc., 2017.

[38] M. Haidl, S. Gorlatch, PACXX: Towards a Unified Pro-
gramming Model for Programming Accelerators Using
C++14, in: Proceedings of the LLVM Compiler Infras-
tructure in HPC, 2014, pp. 1–11.

[39] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, D. Schaa,
Heterogeneous Computing with OpenCL, 1st Edition,
Morgan Kaufmann Publishers Inc., 2011.

[40] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner,
J. Pennycook, X. Tian, Data Parallel C++: Mastering
DPC++ for Programming of Heterogeneous Systems
using C++ and SYCL, Springer Nature, 2021.

[41] E. Upton, G. Halfacree, Raspberry Pi User Guide, John
Wiley & Sons Ltd., 2014.

20

http://people.redhat.com/drepper/futex.pdf
http://people.redhat.com/drepper/futex.pdf
https://akkadia.org/drepper/nptl-design.pdf
https://akkadia.org/drepper/nptl-design.pdf

[42] Orange Pi Zero H2 User Manual, version 0.9.1, Shenzhen
Xunlong Software Co., Ltd.

[43] Qualcomm, DragonBoard™410c based on Qual-
comm®Snapdragon™410E processor. Peripherals Pro-
gramming Guide Linux Android, Qualcomm Technolo-
gies, Inc., 2016.

[44] G. Coley, BeagleBoard X15 System Reference Manual,
BeagleBoard.org, 2016.

[45] E. Upton, J. Duntemann, R. Roberts, T. Mamtora,
B. Everard, Learning Computer Architecture with Rasp-
berry Pi, 1st Edition, Wiley Publishing, 2016.

21

	Introduction
	Context
	CE Program
	Involved Courses

	Proposed Learning Experience
	Overview
	Abstraction Levels
	Concurrent Task Queue
	Task Queue Protection with Futex System Calls
	Futexes with Assembly Code
	Parallel Ray Tracing

	Experimental Environment
	Technical Results
	OS Level
	Library Level
	Assembly Level
	Application Level

	Experience Assessment
	Conclusions
	Surveys
	DCSP survey
	OS survey
	MP survey
	CG survey

