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Abstract Heterogeneous computing that exploits simultaneous co-processing with
different device types has been shown to be effective at both increasing perfor-
mance and reducing energy consumption. In this paper we extend a scheduling
framework encapsulated in a high level C++ template, and previously developed
for heterogeneous chips comprising CPU and GPU cores, to new high-performance
platforms for the data center, which include a cache coherent FPGA fabric and
manycore CPU resources. Our goal is to evaluate the suitability of our framework
with these new FPGA-based platforms, identifying performance benefits and limi-
tations. We target the state-of-the-art HARP processor that includes 14 high-end
Xeon-class tightly coupled to a FPGA device located in the same package. We
select 8 benchmarks from the High Performance Computing domain that have
been ported and optimized for this heterogeneous platform. The results show that
a dynamic and adaptive scheduler that exploits simultaneous processing among
the devices can improve performance up to a factor of 8x compared to the best
alternative solutions that only use the CPU cores or the FPGA fabric. Moreover,
our proposal achieves up to 15% and 37% of improvement compared to the best
heterogeneous solutions found with a Dynamic and Static schedulers, respectively.

Keywords Heterogeneous architecture, FPGA, parallel for template, heteroge-
neous scheduling, hybrid algorithm, adaptive chunk size

1 Motivation

To bring up to date Herb Sutter’s quote “the free lunch is over”, we would say
that “lunch is becoming prohibitively expensive”. Now it is not the multicore
architecture the one being democratized, but the heterogeneous on-chip processor
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is the one getting momentum. Free lunch was over when developers were forced to
face parallel programming. We are now facing heterogeneous programming that is
certainly harder.

For instance, heterogeneous chips with integrated GPUs are commonplace in
desktops (Intel Coffee Lake or AMD APUs –Accelerated Processing Unit–) and mo-
bile devices (Qualcomm Snapdragon, Samsung Exynos and HiSilicon Kirin to name
a few), usually called heterogeneous MultiProcessor System-on-Chip or MPSoC. In
our quest to achieve the three Ps (Performance, Productivity and Portability) on
those CPU+GPU chips, we recently proposed a heterogeneous library including a
scheduling algorithm that dynamically distributes different chunks1 of a parallel
iteration space among CPU cores and a GPU [17]. Performance is achieved by
keeping all the cores and the GPU collaborating at the same time. The scheduler
monitors the throughput of each computing unit during the execution of the itera-
tions and uses this metric to adaptively resize the CPU and GPU chunks in order
to optimize overall throughput and to prevent underutilization and load unbalance
between GPU and CPU cores. Productivity is achieved because the library offers
an easy-to-use API that eases the implementation of an heterogeneous parallel for.
Portability is achieved because the library is based on the Intel Threading Building
Blocks, TBB, and OpenCL libraries, that are available for Intel, AMD, ARM and
most integrated GPUs.

With the increased focus on energy-efficient acceleration, heterogeneous archi-
tectures integrating CPU and FPGA have become attractive platforms to deliver
both high performance and low cost in the context of servers, deep learning and
exascale, among others [26], [15], [30]. However, these systems are difficult to
program posing a challenge to Productivity. A new trend is to couple the CPU and
FPGA through cache coherent interconnect. Intel and IBM developed coherent
memory interconnect technologies, as QPI, UPI and CAPI, that can provide coher-
ent shared-memory access between the CPU and FPGA. This enables the FPGA
to be a peer to the CPU from a memory access standpoint, eliminating the need
to move data back and forth between both of them and allowing the offloading of
specific tasks to the FPGA in a fine-grained manner.

In this paper, we evaluate the Intel Xeon+FPGA heterogeneous chip, commonly
known as HARP system. This platform features 14 Xeon cores along with an Intel-
Altera Arria10 FPGA on the same chip, so we will refer to it as Xeon+A10 from
now on. Both devices are connected via a QuickPath Interconnect (QPI) bus. As in
our CPU+GPU work [17], here we also demonstrate that Performance is increased
when the FPGA and the 14 CPU cores share the computational burden. Although
the FPGA can run OpenCL kernels, this is not enough to ensure Performance
Portability. OpenCL kernels written for GPU execution have to be significantly
tuned to make the most out of the FPGA capabilities. In fact, specific FPGA
idioms have to be used when porting a kernel to the new accelerator. Also, a
more careful chunk size selection which considers the alignment of the data for
both the CPU and the FPGA caches, or the selection of the appropriate memory
sharing mechanism for the data in global memory were needed in our heterogeneous
implementations to efficiently utilize the CPU and the FPGA simultaneously.

All in all, this paper proposes the following novel contributions:

1 A chunk is a block of consecutive iterations, that are independent of other iterations or
chunks of the parallel loop.
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1. An extension of our CPU+GPU scheduling framework to consider the require-
ments of a CPU+FPGA platform. In particular, some restrictions to the size and
alignment of the chunks were implemented to better exploit the communication
bandwidth between the memory and the FPGA.

2. A novel implementation of the n-body problem based on the concept of an
hybrid algorithm tailored to the CPU+FPGA particularities. The idea is to
have both devices computing disjoint regions of the data, but each one running
a different algorithm for the n-body computation: a regular brute-force NBody
algorithm on the FPGA and an irregular CPU-optimized BarnesHut algorithm
on the CPU.

3. An evaluation of our extended heterogeneous scheduler, called HAP (from
Heterogeneous Adaptive Partitioner), on the Xeon+A10 chip. Our scheduler
adaptively and continuously adjusts the size of the chunk of iterations offloaded
to CPU cores and the FPGA. We also provide a thorough exploration of the
performance of 8 applications in which the main kernels have been carefully
tuned for the Arria10.

The rest of the paper is organized as follows. Next section introduces the
problem as well as related works that tackle a similar problem. Section 3 briefly
describes the proposed programming interface that eases the development of
heterogeneous applications and a summary of the implementation details for the
different scheduling strategies studied. The description of the testbed, the evaluated
benchmarks and their optimization to target the Arria10 as well as the experimental
evaluation of our heterogeneous scheduler is covered in Section 4. Finally, we wrap
up with conclusions in Section 5.

2 Background and related work

The development of an easy programming framework and its runtime support
for a broad class of applications in systems that integrate a multicore CPU and
a FPGA is still an open problem [2]. The success of these systems as general-
purpose architectures heavily depends on how easy we can map application-level
parallelism onto the available heterogeneous hardware resources. Traditionally,
FPGAs are programmed with hardware description languages (HDLs) that are
based on hardware-centered abstractions that enable flexibility but do not provide
the expressiveness needed by software developers. Recent developments of high-level
synthesis (HLS) focus on leveraging programming languages, such as C [29], Java [1],
OpenCL [24], Scala [11], and others [20], [21], to raise the level of abstraction.

Most of these previous works mainly use the CPU of the heterogeneous platform
for scheduling and pre-processing. So, when the accelerator is processing, the
CPU cores become idle. Compared with the existing designs, our framework
enables efficient CPU+FPGA simultaneous processing to fully utilize the computing
resources of heterogeneous platforms, addressing the load balancing between the
CPU cores and the accelerator. Related to our work, a previous research led by
Belviranli et. al [4] also proposed a strategy to enable the simultaneous processing
of work between the CPU cores and an accelerator (GPU or FPGA) while taking
care of the load balancing between devices. However in that work the potential
irregularity of the workload was not taken into account, a key consideration in
our approach. In Section 3.4 we provide a more detailed discussion comparing
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our proposal with [4]. A recent work on the Xeon+A10 platform has considered
the co-processing of CPU and FPGA for graph analytics applications (BFS and
SSSP) [30], although in this work the FPGA code is generated using HDL low
level language, whereas our approach targets higher level hardware specifications.
Another recent work has used a framework to orchestrate the cooperation of two
discrete accelerators a GPU and a FPGA in addition to the CPU, however, its
scheduler still depends on a previous setting of operating parameters [8].

Our proposal aims at providing an easier programming model that strives
to hide most of the hardware details and OpenCL nuances when programming
parallel loops for CPU+FPGA architectures. The user still has to provide the
FPGA kernel, but the TBB based run-time takes care of evenly partitioning the
iteration space. To do so, we select a state-of-the-art high-level scheduler called
LogFit [27,17] that was recently developed for CPU+GPU chips and we extend it
to support simultaneous computing on CPU+FPGA. LogFit has been also used
for Xilinx chips composed of ARM cores and FPGA [19], but in that case, instead
of OpenCL, SDSoC and C were used to generate the FPGA computing units for
regular applications. Irregular applications such as BarnesHut and SPMV were not
considered for the Xilinx chip with SDSoC, whereas we implement and study these
type of applications in this work.

Additionally, for a more efficient implementation of the wide range of appli-
cations that we cover in this paper, some modifications have been required in
the LogFit scheduler, as we explain in more detail in section 3.4. Thus, the re-
sulting HAP scheduler that we present in the paper, represents one of the novel
contributions of this work.

The idea of designing hybrid algorithms based on different algorithmic paradigms
tailored to the specificities of the devices in order to accelerate the simultaneous co-
processing of parallel iterations on CPU+GPU [22] or CPU+FPGA [30] platforms
has already been explored, in particular in the context of graph analytics. In this
paper we propose a hybrid algorithm to accelerate n-body problems in CPU+FPGA
systems, which is another novel contribution of this work.

3 Programming Environment

3.1 Programming Interface

This section introduces the Heterogeneous Building Blocks (HBB) library API. It
is a C++ template library that takes advantage of heterogeneous processors and
facilitates its usage and configuration. HBB aims to make easier the programming for
heterogeneous processors by automatically partitioning and scheduling the workload
among the cores and the accelerator. The current version offers a parallel for()
function template that exploits heterogeneous CPU+GPU platforms [17] and that
we have extended to also work on CPU+FPGA systems. HBB relies on TBB as the
orchestrating task-parallel library and OpenCL as the FPGA back-end for the sake
of availability and programmability features. That way, HBB offers an abstraction
layer that hides the initialization and management details of TBB and OpenCL
constructs (contexts, command queues, device ids, etc), thus the user can focus on
the application instead of dealing with thread management and synchronization.

Figure 1 depicts a simplified scheme of how the parallel for() has been built.
The engine is implemented with a two-stage pipeline TBB template. Each token
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1.- Get a circulating token
2.- Depending on the type
    2.a. Assign FPGA chunk
    2.b. Assign CPU chunk
3.- Send token
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Fig. 1 Scheme of the parallel for() implementation. Stage0 performs the partitioning and
scheduling, while Stage1 computes the assigned chunks.

corresponds to a compute unit class, FPGA or CPU core in our system, and their
sum represents the number of chunks of the iteration space that will be processed
in parallel. In the figure, we have two CPU tokens and one FPGA token being
processed concurrently, two on the CPU cores and one on the FPGA. The first
stage, Stage1, adaptively selects the chunk size for FPGA and CPU tokens, and
extracts the corresponding chunk of iterations from the set of remaining iterations,
r. The procedure to select the FPGA and CPU chunk sizes is covered in the next
section. Then, when a token reaches the second stage, Stage2, the chunk gets
processed on the corresponding device. Stage1 is a serial stage, so it can host just a
token at a time, whereas Stage2 is parallel, and several tokens can be in this stage
simultaneously. We define the concept of Scheduling Interval, I, as each invocation
of Stage1 that results on a FPGA chunk, so that Ii identifies the ith invocation
of such Stage that generates the ith chunk of iterations that will be processed on
the FPGA. The time required for the computation of the chunk on the FPGA and
on a CPU core is recorded. This time2 is used to update the relative speed of the
FPGA w.r.t. a CPU core, that we call f . Factor f will be required to adaptively
adjust the size of the next chunk assigned to a CPU core. Tokens are recycled until
there are no remaining iterations.

1 #include "hbb.h"
2

3 int main(int argc, char* argv[]){
4 Body body;
5 Params p;
6 InitParams (argc, argv, &p);
7 // Instantiate task scheduler
8 auto *hs = {Static, Dynamic, HAP}::getInstance(&p);
9 ...

10 hs->parallel_for(begin, end, body);
11 ...
12 }

Fig. 2 Using the parallel for() function template.

2 For the FPGA, the registered computation time includes the data transfer -or map/unmap-
times
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3.2 Function template: parallel for()

Figure 2 shows a main function with all the required component initialization to
make the parallel for() function template works. This is the main component
of the HBB library and it is made available by including the hbb.h header file. The
parallel for() function template receives three parameters (line 10): the first
two parameters, begin and end describe the iteration space. The third parameter
is the Body instance that has the implementations of the CPU and FPGA body
loop. Previously, the user has created this Body instance (line 4).

The Body class must implement two methods: one that defines the code that
a CPU core has to execute for an arbitrary chunk of iterations, and the same for
the FPGA device using OpenCL. This method comprises the usual OpenCL steps
required to offload work to the FPGA, namely: i) host-to-device operations to
transfer the array regions that will be processed on the FPGA; ii) kernel arguments
specification; iii) kernel launching to dispatch the computation of a chunk of
iterations on the FPGA; and iv) device-to-host operations to retrieve the results of
such computation. If the arrays are allocated on a memory region shared by the
CPU and the FPGA, steps i) and iv) should be substituted by the corresponding
unmap and map OpenCL operations [6] following zero-copy semantics. In any case,
the user is responsible of: 1) writing and optimizing the OpenCL code for the
FPGA; and 2) compiling the kernel offline by using the Intel/Altera aoc compiler.
The HBB library takes care and hides all the OpenCL boilerplate (kernel loading,
context and command queue initialization, etc.).

Program arguments, like the number of threads and scheduler configuration can
be read from the command-line, as can be seen in line 6 of Figure 2. The benchmarks
that we evaluate in Section 4 accept at least three command-line arguments:
<num cpu tokens>, <num fpga tokens> and <sch arg>. The first one sets the
number of CPU tokens, which translates in how many CPU cores will be processing
chunks of the iteration space. The second one can be set just to 0 or 1 to disable
or not the FPGA as an additional compute unit. The last argument, <sch arg>,
depends on the particular implementation of the heterogeneous scheduler, as we
will see in next section.

Orchestrating the body execution and handling the heterogeneous devices re-
quire a Scheduler class. The class provides methods isolating the parallel for()
function template and the scheduling policies from device initialization, termination,
and management. The compartmentalization simplifies the adoption of different
devices, and, more importantly, enables programmers to get rid of error prone
low-level management chores, such as thread handling or synchronization opera-
tions. Currently, our HBB library provides three heterogeneous schedulers: Static,
Dynamic and HAP. They can be instantiated as shown in Figure 2 at line 8. For
the sake of space, next we cover the schedulers Dynamic and HAP.

3.3 Dynamic Scheduler

If the Dynamic scheduler is selected, only the FPGA chunk size, Chf is manually
set by the user as a positive integer value (Chf = b), which is passed in <sch arg>.
The CPU chunk size, Chc, is automatically computed by a heuristic. This heuristic
aims to adaptively set the chunk size for the CPU cores. To that end, the model
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described in [18] recommends that: each time that a chunk is partitioned to be as-

signed to a compute device, its size should be selected such that it is proportional to the

compute device’s effective throughput. Therefore, if n is the number of iterations of
the parallel for(), r is the number of remaining iterations (initially r = n)
and nCores is the number of cores (in our case, nCores =num cpu tokens), the
computation of the CPU chunk, Chc, follows equation 1:

Chc = min
(Chf

f
,

r

f + nCores

)
(1)

where f is the relative speed and represents how faster the FPGA is w.r.t. a CPU
core. The ratio f is recomputed each time a chunk is processed, as explained
in Section 3.1. In other words, Chc is either (Chf/f) (the number of iterations
that a CPU core must perform to consume the same time as the FPGA) when
the number of remaining iterations, r, is sufficiently high, or r/(f + nCores) (a
guided self-scheduling strategy [23]), when there are few remaining iterations, this
is when r/(f + nCores) < Chf/f . The overhead of our Dynamic scheduler can be
measured as the time consumed in Stage1, and in our experiments this time always
represents less than 0.2% of the total execution time. However, this scheduler
assumes that a single FPGA chunk size i) is provided by the user; and ii) results in
good performance, which might not be the case, specially when targeting irregular
applications.

3.4 HAP Scheduler

To avoid the Dynamic scheduler limitations, HAP (Heterogeneous Adaptive Parti-
tioner) dynamically estimates the FPGA chunk size at run-time. The scheduler
is based on the LogFit scheduler [17] and is designed as a three-phase strategy
consisting of: the Exploration Phase (EP), the Stable Phase (SP) and the Final
Phase (FP).

In the Exploration Phase (EP) we look for an initial FPGA chunk size and a
CPU chunk size that maximize the throughput in both devices. To that end, we
carry out an exploration in which at each scheduling interval Ii, we increase the size
of the FPGA chunk selected in the previous interval and sample the throughput
(λf (Ii)) for the new FPGA chunk (Chf (Ii)). We keep increasing the size of the chunk
and sampling its throughput until the throughput is stabilized. At this particular
scheduling interval of stabilization, Is, we perform a first logarithmic fitting to find
an expression to model (estimate) the FPGA throughput: λf = as · ln(Chf ) + bs.
To compute this expression we apply the least squares logarithmic fitting to
the samples (Chf (Ii), λf (Ii)), i = 1..s, i.e. the chunks and their corresponding
measured throughputs that we have collected from all the previous intervals. Next,
we compute the parameter Refs = as/Chf (Is), which gives us a ratio between the
estimated FPGA throughput and the chunk size at the point of stabilization. This
ratio is the tangent to our fitting curve at this point of stabilization, and it is a
reference that represents the slope of the best straight-line approximation to the
curve at that point. Also, during this phase, for each sampled FPGA chunk size,
we compute a CPU chunk size that balances the load for both devices (see Chc in
equation 2).
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Then, in the Stable Phase (SP), for each new scheduling interval at time t,
It, we continuously re-adjust the FPGA chunk size, Chf (It), to cope with the
application irregularities, as shown in equation 2. In this equation, at comes from
function λf = at · ln(Chf ) + bt, which now represents the logarithmic fitting to
estimate the FPGA throughput at scheduling interval It. Here, we consider samples
(Chf (Ij), λf (Ij)), j = 1..t− 1. Please notice from equation 2 that we also use Refs,
the reference from the initial fitting performed in the Exploration Phase. In other
words, each time we recompute a new logarithmic curve in the Stable Phase and
get a new at coefficient, we look for the point in the new curve that gets the same
slope found in EP: at/Chf (It) = Refs. From this expression we obtain equation 2.
Therefore, Refs is the criteria we set to guarantee that we select equivalent optimal
points each time we re-adjust the logarithmic fitting curve. Again, at the same
interval It, we re-compute a CPU chunk size, Chc(It), that balances the load for
both devices while ensuring optimal throughput as we also see in equation 2. Please
note, that for computing this chunk size we take as reference the relative speed of
the devices in the previous interval (ft−1 = λf (It−1)/λc(It−1)), which comes from
the throughputs just measured.

Chf (It) =
at
Refs

Chc(It) =
Chf (It)

ft−1
(2)

The Final Phase (FP) is activated when there are just a few remaining iterations
and we have to pay particular attention to finding out the best possible partitioning.
The goal is to minimize the time to compute the remaining iterations by finding
Tmin = min(TCPU , TFPGA, THET ) where TCPU and TFPGA estimate the time
required to execute those iterations only on the CPU or the FPGA, respectively,
whereas, THET (heterogeneous time) is evaluated assuming that we can partition
the remaining iterations between the CPU and FPGA ensuring that they finish at
the same time. More details about each one of these phases can be found in [17].

In all these phases, we approximate (estimate) the FPGA throughput as a
logarithmic function of the FPGA chunk size as done by Belviranli et al. [4].
However, in Belviranli’s work, after the Exploration Phase, the estimations of the
throughput for the accelerator and the CPU cores are fixed, and they are used for
a guided self-scheduling strategy to keep feeding the accelerator and the CPU until
the end of the iteration space. We found that this solution is sub-optimal, especially
for irregular applications because: i) for these applications the throughput may
change during execution so the initial throughput estimation might not be valid as
computation progresses; and ii) when the end of the iteration space is approaching
then the guided self-scheduling usually selects a chunk size that is not big enough
to achieve the predicted throughput, so the performance of the FPGA quickly
degrades, which additionally leads to load imbalance with the CPU. This effect is
particularly harmful in time-steps based applications such as the ones we study in
this work, finding that for our irregular applications the performance degrades 21%
on average when compared to our approach. By contrast, in our proposal we keep
re-computing the FPGA chunk sizes, applying logarithmic fittings to continuously
optimize the accelerator throughput, and we add a Final Phase that strives to find
the assignment of the last iterations to the corresponding device(s) so that time is
minimized.

With respect to our previous scheduler, LogFit, described in [17], that targets
CPU+GPU chips, we have extended the Exploration Phase significantly:
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1. In LogFit, the exploration starts with an initial chunk size nEU , which is the
number of Execution Units on the target GPU3. Now in HAP, we start searching
for smaller chunk sizes that were not appropriate for GPUs, where at least all
the Execution Units must get one iteration. For CPU+FPGA architectures,
using smaller initial values resulted in finding better FPGA chunk sizes at the
end of the exploration.

2. Since the EP explores now smaller chunk sizes, the execution time for these
chunks is less reliable, which leads us to also modify the stabilization criteria. In
HAP, we keep increasing the FPGA chunk size, and sampling the corresponding
throughput, until there are 3 samples for which the throughput does not increase
more than a given threshold value, θ, that in our experiments is 1%. When this
criteria is met4, then we have reached the interval of stabilization.

3. Another optimization is that now we ensure that the samples used to compute
the first logarithmic fitting increase monotonically. That is, if a throughput
sample is smaller than the previous one, the sampling procedure restarts, now
using the last FPGA chunk size as the initial one. At least four monotonically
increasing samples have to be collected to compute the first logarithmic function
that approximates the FPGA throughput of the Exploration Phase.

Due to additional requirements of OpenCL for the FPGA, we also modified
the chunk size computation in two aspects:

i. Some OpenCL kernels require the size of the chunk to be a multiple of a certain
value. Since equation 2 does not initially guarantee this behavior, we updated
it to return the closest multiple of the required size.

ii. Intel-Altera Best Practices guide [6] recommends 64-bytes aligned buffers to
allow direct DMA transfers. We actually observed in our experiments that
FPGA kernels are particularly susceptible to such data misalignment. To keep
all the chunks 64-bytes aligned, we modified the scheduler to ensure that all
chunk sizes (FPGA and CPU) are a multiple of 64 bytes which also provides
cache alignment on the Xeon+A10 platform. This change reduced data transfer
times from/to the FPGA. We studied the effect of selecting misaligned chunks
(FPGA and CPU) finding that for our applications the throughput degrades
up to 7% w.r.t. 64-bytes aligned chunks.

4 Experimental results

In this section, we present a comparative study of performance of our proposals.
Firstly, in subsection 4.1, 4.2 and 4.3, we describe the test-bed, the benchmarks
and the different optimizations that we apply to the FPGA kernels, respectively.
Subsection 4.4 elaborates on the performance results of a hybrid proposal for the n-
body problem that is based on combining a regular and an irregular implementation,
tailored to the FPGA and the CPU, respectively. In subsection 4.5 we show the
performance results of the Dynamic and HAP schedulers. We also compare HAP
against a Static scheduler that partitions the workload once between the computing
device taking into account the relative speed of each device.

3 nEU = clGetDeviceInfo(deviceId, CL DEVICE MAX COMPUTE UNITS).
4 It is not guaranteed that the stabilization criteria is always met. If the number of iterations

is not large enough to fully utilize the FPGA we may finish the computation without leaving
the Exploration Phase.
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4.1 Experimental Settings

We run our experiments on the Xeon+A10 (a.k.a. HARP) that tightly couples an
Intel Broadwell 14-core Xeon CPU (2680v4) and an Intel Arria 10 FPGA in the
same multi-chip socket. The communication channel between the CPU and the
FPGA is Intel’s Core Cache Interface (CCI-P), that indeed is an abstraction layer
of other communication buses: one QPI and two PCI-Express. In total, CCI-P
accumulates a bandwidth of 41.7 GB/s. Broadwell E5 2680v4 processor operates
at 2.4Ghz (Turbo 3.3GHz) and features a shared L3 of 35 MB, L2 of 256KB
and a TDP of 120W. The Arria 10 GTX1150 FPGA accounts with 1150K Logic
Elements, 65 MB of internal memory (M20K + MLAB) and 1518 single-precision
floating-point hardware multiplier/adder which delivers a peak performance of 1366
GFLOPS. The FPGA runs kernels compiled with Altera SDK for OpenCL, 64-Bit
Offline Compiler version 16.0.2, supporting OpenCL 1.2. Note that this platform is
using pre-production hardware and software and therefore the experimental results
may not reflect the performance of production or future systems.

4.2 Benchmarks

Our benchmark collection comprises both integer and floating point applications
from the High Performance Computing domain: linear algebra (Sparse Matrix Vec-
tor Multiplication-SPMV), cryptography (AES), gravitational dynamics (NBody-
NB and BarnesHut-BH), physics simulation (HotSpot-HS), 3D graphics (Bezier-BZ),
financial (Black Scholes-BS) and molecular dynamics (Bude-BD).

NB: NBody. We study two different implementations of a n-body problem: a regular
approach called Nbody [14] and an irregular one called BarnesHut. These two
benchmarks consist of a sequential outer loop that represents a sequence of
time-steps. In each time-step all the body-body gravitational interactions are
computed. To that end, each time-step contains a parallel loop that traverses
all the bodies and an inner loop that, in the NBody code, for each body of the
parallel loop, computes the interactions with all the other bodies. For our study
an input set of 100,000 bodies and 15 time-steps were simulated.

BH: BarnesHut. An irregular implementation of the n-body problem that employs
an octree data structure [13]. The number of interactions of each body varies
depending on its location, so in the inner loop of BarnesHut, depending on the
iteration, some bodies are approximated by a single “virtual body” with the
aggregated mass and located at their center of mass. Thus, for each parallel loop
iteration, the inner loop has a different number of iterations (or interactions),
resulting in an irregular application. It was used the same input as in NB.

SPMV: Sparse Matrix-Vector Multiplication. This code comes from Bell and Garland
work [3], also representing an irregular application since each row has a different
number of non-zeros, which are stored using a Compressed Sparse Represen-
tation, CSR, data structure. The GL7d17 sparse matrix from the University
of Florida Sparse Matrix Collection that exhibits a triangular-like profile was
selected as input.

AES: Advance Encryption Standard. This benchmark comes from the Hetero-Mark
suite [25]. The program takes plain text as input and encrypts it using a given
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encryption key. In our experiments we took an input text of 2 Gbytes and
256-bit encryption key length.

BZ: Bezier. This benchmark computes a 3D Bezier surface from a normal surface.
The original algorithm is taken from the Chai benchmark [9] and comprises
4 nested loops. The two most outer loops traverse the output matrix that is
filled after traversing all elements from the two most inner loops, representing
the input image. For this benchmark, the size of the input was 4 by 4, and the
output resolution was 4096 by 4096.

HS: HotSpot. An iterative solver that models the heat dispersion on a flat surface
using differential equations [10], which comes from the Rodinia Benchmark
Suite [5]. The benchmark has two input matrices, 8192x8192 each, that represent
the actual temperature and the heating power corresponding to each point of
the surface. These matrices are processed into 64-element width shift-registers.

BS: Black-Scholes. This benchmark consists on an Asian Option Pricing Algorithm
based on the one provided by Intel-Altera in [7]. The computation in this kernel
is divided in 3 stages. First stage uses the Mersenne Twister random number
generator in order to feed the second stage. The second stage models the stock
price using the geometric brownian motion as described by the black scholes
model. The last stage sums each of the results of the previous stage to produce
the total payoff of the option. We performed 100,000 simulations for each run
of this benchmark.

BD: Bude. This benchmark runs a molecular docking algorithm developed at the
Bristol University to perform virtual drug screening [16]. Organized in 3 nested
loops (poses, ligands, and proteins), the kernel performs intensive floating point
computations for 65536 poses.

Both BH and SPMV can be considered irregular benchmarks (due to their
irregular memory accesses and their control divergences) while NB, HS, AES, BS,
BZ and BD are representative of regular applications.

4.2.1 Hybrid Algorithm: BH-NB

As we said in the previous section, NB is a regular approach in which, for each
time-step, each body has to compute the gravitational interaction with every other
body. To that end, an array of bodies store the attributes (mass, position, velocity,
acceleration) of each body. On the other hand, BH is an irregular variation of the
n-body problem that assumes that far-away bodies can be summarized by their
center of mass. To implement this alternative, a tree (oct-tree in a 3D space) is
used to keep the information of the centers of mass and the bodies belonging to
each sector of the space.

As we cover in Section 4.4, the NB implementation fits better on the FPGA
whereas the HB algorithm is more suitable for the CPU, so we propose a hybrid BH-
NB as an heterogenous implementation that targets the Xeon+A10 heterogenous
hardware. Figure 3 sketches how a single data structure is used simultaneously by
the FPGA and the CPU.

The main idea is to keep the leaves of the tree in an array of bodies that can be
used by the FPGA when running the NB implementation. At the same time, the
tree data structure is available for the CPU that executes the BH code. Each chunk
of bodies is assigned to the FPGA or the CPU according to our HAP scheduler.
For a chunk assigned to the FPGA, the NB computation will update the position,
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Data used by the FPGA (NB algorithm)

Data used by the CPU (BH algorithm)

tree

bodies

Center of mass per sector

One 
iteration 

to update 
this body

NB BH

Center 
of massOne 

iteration 
to update 
this body

Fig. 3 Data structure used on the BH-NB implementation of the n-body problem.

velocity and acceleration of the bodies in this chunk and for that, all the other
bodies will be traversed to compute their contribution to the total gravitational
force. Simultaneously, other chunks of bodies will be assigned to the CPU cores
and updated, now following the BH algorithm that saves some of the body-body
gravitational interactions thanks to the tree data structure. As we confirm in
Section 4.4, this heterogeneous algorithm that combines NB and BH outperforms
a pure NB or a pure BH alternative.

4.3 Platform specific OpenCL optimizations

Optimizing OpenCL code for the FPGA requires using a plethora of techniques
that have to be tailored per application [6], [28], [12]. Our benchmarks have not
been an exception as Table 1 shows. No single technique has been effective for all
of them. Having said that, for each benchmark, the best combination of techniques
always improves the efficiency of the memory transfers.

Table 1 summarizes the most commonly applied optimizations. Task (second
column) refers to single task kernels (also known as single work-item), in which
the OpenCL kernel resembles a sequential C implementation. For these type of
kernels the OpenCL NDRange5 is set to (1, 1, 1), so a single thread is invoked
on the accelerator. Intel-Altera [6] suggests to structure kernels this way, to foster
loop pipelining and allow the overlapping of data transfers and computations
between loop iterations. In our study, half of the benchmarks have benefited from
single work-item kernels whereas the other four are NDRange kernels. Compute
Unit Replication (third column) clones the kernel pipeline -when there is enough
availability of resources in the FPGA- for improving throughput. However multiple
compute units competing for global memory might lead to undesired memory access
patterns that could degrade performance, so it must be used carefully. Due to
restrictions in the version of the Altera SDK available in the Xeon+A10 platform,
Compute Unit Replication can be applied only to NDRange kernels. Out of the
four benchmarks that follow the NDRange approach, Compute Unit Replication is
exploited only in BH and BD because for NB and SPMV a single compute unit
already uses more than half of the FPGA resources. Loop Unrolling of inner loops
(fourth column) allows increasing the number of parallel operations effectively
improving the throughput. Loop Unrolling optimization is also limited by the
availability of FPGA resources. Locality (fifth column) encompasses techniques
aiming for maximizing data reuse. For example, Register Privatization (RP) forces
the compiler to keep alive the scalar variable in register rather than in memory to
avoid the usual pattern of load to memory, operation, and store to memory within

5 In the OpenCL standard, the NDRange represents the 3D space of parallel iterations.
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loops. Constant and Local Memory (CM, LM) reduce global memory accesses. Shift
Register Pattern (SRP) and Channels (AC) are specific optimizations for FPGAs.
SRP reduces the number of global memory accesses by keeping previously accessed
data cached in a shift register. AC provides a fast communication mechanism
to pipe data among parallel kernels by eliminating some of the global memory
accesses.

Task
Compute Unit

Loop Unrolling Locality
Replication

BH 7 5 0 RP
NB 7 1 48 RP
SPMV 7 1 32 RP
AES 3 1 16 CM, RP, SRP
BZ 3 1 6 LM, CM
HS 3 1 64 SRP, RP
BS 3 1 64 LM, AC, RP
BD 7 2 4 LM

Table 1 Summary of applied optimizations per benchmark. Legend: RP-Register Privatization,
CM-Constant Memory, LM-Local Memory, SRP-Shift-Register Pattern, AC-Altera Channels.

On the Xeon+A10 platform, it is possible to exploit the OpenCL1.2 zero-copy
buffer optimization since the CPU and the FPGA can share the same memory
region6. However, due to current driver limitations, CPU caching is disabled for
the shared memory region, which severely hits CPU performance (up to 37% of
degradation in our benchmarks). Therefore, to also exploit the CPU cores we do
not use shared memory. Instead, we rely on two possible alternatives. For coarse-
grained benchmarks for which the cost of offloading the data is a small fraction of
their computation time, the traditional OpenCL host-to-device and device-to-host
operations are used (BH, BZ, AES, NB, BS). These memory transfers represent
less than 1.5% of the computing overhead. Otherwise (SPMV, HS), we allocate two
different memory regions: one explicitly allocated and aligned for the CPU, and
a different buffer on physically contiguous memory that is efficiently accessed by
the FPGA via DMAs in the DDR memory controller. After the parallel for()
execution, an extra overhead is paid to merge the final output results produced
by the CPU and the FPGA. That overhead is less than 2% in our codes. As soon
as Altera OpenCL driver provides efficient shared memory between the CPU and
the FPGA, we will save the currently implemented data movement overheads, so
slightly better performance figures can be expected.

Table 2 summarizes the resource usage for all benchmarks under test and
the resultant FPGA frequency in MHz. The variability is large because resource
utilization mainly depends on kernel organization and arithmetic intensity. For
example, DSP utilization ranges between 81% and 2% for BZ and SPMV, whereas
it is 0% for the integer benchmark AES. On top of that, there is no correlation
between resource usage and performance as shown in the sequel.

6 This is achieved by allocating the region with clCreateBuffer(...,
CL MEM ALLOC HOST PTR, size, ...) and then mapping this region to a CPU ac-
cessible pointer using clEnqueueMapBuffer().



14 Andrés Rodŕıguez et al.

Logic (%) Reg. (%) Mem. (%) DSP (%) CLK (MHz) II (cycles)

BH 55 66 87 10 178 NA
NB 51 76 76 70 200 NA
SPMV 42 68 83 2 184 NA
AES 27 24 24 0 276 1
BZ 50 10 21 81 197 2
HS 52 29 28 13 272 1
BS 63 37 35 33 232 4
BD 55 46 71 44 197 NA

Table 2 AOC Compiler Resource Usage Summary per category (% of total resources) compiling
for Altera Arria 10. CLK and II Stands for kernel clock cycle and initiation interval. NA stands
for “Not Applicable” since II is only reported by Altera SDK for Single Task kernels.

4.4 Hybrid algorithm case study: BH-NB

Figure 4 shows a study about how the size of the chunk of parallel iterations
assigned to each device affects the throughput of the execution for our n-body
implementations when different hardware configurations were selected. For the
one-device configurations (1, 4, 8 and 14 CORES, or only FPGA) we apply a
classic dynamic scheduling in which we fix the size of the chunk on each experiment.
However for the two-device configurations (FPGA+1, 4, 8 and 14 CORES) we
apply the heterogeneous Dynamic and HAP schedulers presented in section 3.3.
For the Dynamic scheduler we explore different sizes of the chunk offloaded to the
FPGA (each size shown on the “x” axis), while the chunk assigned to a CPU core
is computed adaptively by the scheduler. For HAP, considering that the FPGA
chunk size is continuously re-adapted, we only show one point, depicted by a red
five-point star ( ), whose coordinates are (<average FPGA chunk size>, <average
throughput>) for the FPGA+14 CORES configuration. This is, instead of showing
the range of chunk sizes used throughout the execution, the x-axis value of the
represents the average of all the automatically estimated FPGA chunk sizes.
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Fig. 4 Throughput of single algorithm (NBody, BarnesHut) and hybrid algorithm (BH-NB)
implementations of the n-body problem.

As we see in Figure 4(a), the irregular BH implementation achieves the highest
throughput for CPU-only execution (14 CORES). Heterogeneous executions that
include the FPGA (Dynamic and HAP) provide lower performance. In this code,
the random memory accesses are highly irregular resulting in dramatically higher
memory access latency. As a consequence, the accelerator stalls and the performance
significantly deteriorates: the FPGA is 1/34x slower than the multicore CPU. Thus,
including the FPGA will only add some imbalance what explains the degradation of
heterogeneous executions (FPGA+4 CORES, FPGA+8 CORES, ... ), in particular
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when exploring big chunk sizes for the FPGA. On the other hand, Figure 4(b)
shows that the regular NB implementation obtains the highest throughput for the
HAP heterogeneous execution that includes the FPGA (red star), although the
improvement with respect to FPGA-only execution is small. Now, NB traverses
the bodies in a streaming fashion, making the FPGA an appropriate platform for
acceleration. In fact, the FPGA is now 10x faster than the multicore CPU. Clearly,
the FPGA benefits the most when a regular algorithm is implemented, obtaining
a throughput of 9.48E+04 bps (bodies per second), while the multicore benefits
from an irregular approach as BH that reduces the computational complexity of
the n-body problem, achieving a throughput of 2.59E+05 bps in our case. This
dramatic difference in performance motivated us to explore the trade-offs between
BH and NB, and to propose a hybrid algorithm to accelerate the n-body problem
when targeting a CPU+FPGA heterogeneous platform.

Figure 4(c) shows the throughput of the hybrid BH-NB algorithm for the one-
device and the heterogeneous two-device configurations. Now, the heterogeneous
implementation offloads chunks of iterations to the multicore CPU and computes
them using BH, while simultaneously offloads chunks of iterations to the FPGA
which are computed using NB. Now, the best heterogeneous execution of the hybrid
BH-NB, obtained with our scheduler HAP, outperforms the highest throughput of
BH (NB) by up to 1.4x (3.7x).

4.5 Evaluation of Heterogeneous Schedulers

Figure 5 summarizes the best speedups for the optimal chunk sizes of iterations that
each of our heterogeneous schedulers, Dynamic (DYN) and HAP (HAP), obtained
for our benchmarks. For both schedulers, the configuration that gets the highest
throughput employs the FPGA + 14 CPU cores, simultaneously. The speedup is
computed against the CPU only executions (CPU), which are shown as reference.
The CPU results are obtained for 14 CPU cores. We also show the speedups for the
FPGA only executions (FPGA), i.e. all iterations of the parallel loop are offloaded
to the accelerator.

4

6

8 CPU
FPGA
DYN
HAP

BH-NB SPMV AES BZ HS BS BD0

1

Speedup over 14 CPU cores

Fig. 5 Speedups of each benchmark w.r.t. CPU (14 CORES) execution when executing only
on CPU (CPU), on FPGA (FPGA), on CPU + FPGA with Dynamic Scheduler (DYN) and on
CPU + FPGA with HAP Scheduler (HAP).

As we see from the figure, the heterogeneous executions generally improve
performance when compared to the homogeneous ones (CPU or FPGA). The
accelerator clearly outperforms the multicore for BS and BD. In fact, for both codes,
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the heterogeneous schedulers achieve up to 8x and 3.7x improvement, respectively,
compared with the CPU-only. For the rest of the codes, the improvement of the
heterogeneous schedulers is more modest when compared to the CPU-only: it goes
between 1.6x (HS) and 1x (AES). For AES we also observe a slight degradation
of throughput with the DYN scheduler (0.97x). For these latter codes, the FPGA
implementation is not so competitive against the multicore, but it still contributes
to the increment in throughput. The lack of improvement in AES with the DYN
scheduler is due to the fact that the FPGA achieves the highest throughput with
big chunks. Offloading big chunks to the accelerator creates a small load imbalance
in the DYN heterogeneous execution, which is avoided with the adaptive FPGA
chunk size selection in the HAP scheduler.

As a summary, Figure 5 shows that for all codes (except BD), HAP improves the
throughput up to 15% compared to DYN. For BD the degradation of throughput
is marginal: smaller than 1%. These results confirm that the overhead of the
Exploration Phase is not significant, and that HAP saves the burden of manually
tuning the FPGA chunk size while still obtaining some improvements.

BH-NB SPMV AES BZ HS BS BD

Dyn (CS) 512 512 65536 1024 64 4096 8192
HAP (Avg. CS) 638 1792 29808 1036 788 5464 16024

Table 3 Optimal FPGA Chunk Size (CS) for each heterogeneous scheduler. For HAP we show
average chunk sizes (the chunk size changes during execution).

In our evaluation, we performed also an exhaustive exploration of different chunk
sizes for the Dynamic scheduler. We found that small chunks degraded performance
due to underutilization of the deep pipeline FPGA implementations. On the other
hand, very big chunks could create load imbalance among the CPU cores and the
FPGA. In any case, this exploration is avoided with the HAP scheduler. Table 3
shows the optimal chunk sizes obtained for both schedulers. As we see, HAP tends
to find bigger average chunk sizes. We also found that for the same program, the
average chunk size that HAP gives for each configuration (FPGA only, FPGA + 1
CPU core, FPGA + 2 CPU cores, etc.) could differ. Let us note that the chunk sizes
reported for HAP are average values. As HAP is an adaptive approach, we found
that the chunk sizes selected in the Final Phase (that partitions the last remaining
iterations among all the computing devices) differ depending on the configuration.
For instance, the Final Phase computes smaller chunk sizes for configurations with
higher number of CPUs, so the average chunk size reported for these configurations
tends to be smaller. As an example, we found that for the the FPGA + 14 CPU
configuration, average chunk sizes reduce between 1% and 18% when compared to
FPGA only.

We also carried out a performance comparison between HAP and a baseline
scheduler based on a Static partitioner that assigns one big chunk to the FPGA
and the rest of the iterations to the CPU. The size of this single FPGA chunk is
computed by a previous offline search phase that measures the average throughput
of the application when running first on the FPGA and later on the CPU multicore
(14 CPU cores in our experiments). Once these average throughputs are measured,
they are used to compute the relative speed of each device, and next to calculate
one block of iterations that are assigned to the FPGA while the rest are assigned
to the CPU cores to ensure that both devices take the same time theoretically. The



Title Suppressed Due to Excessive Length 17

goal of this study is to measure if a Static approach can outperforms our adaptive
solution. For our benchmarks, Table 4 shows the ratio of the iteration space (RIS,
normalized from 0 to 1) assigned to the FPGA with the Static scheduler and the
% of improvement that HAP gets with respect to that Static scheduler (%IMP).
From the results we see that HAP always improves performance, by speedups
between 8% and 37% when compared to a Static solution. The improvement is
more significant in those benchmarks for which a smaller ratio of iterations (RIS)
is offloaded (because the CPU cores are much faster than the accelerator). For
these cases a Static partition is clearly discouraged.

BH-NB SPMV AES BZ HS BS BD

RIS 0.17 0.05 0.07 0.09 0.09 0.86 0.73
%IMP 37% 27% 26% 18% 13% 8% 8%

Table 4 HAP vs Static scheduler comparison: RIS = Ratio of Iteration Space assigned to the
FPGA with Static; %IMP = Percentage of Improvement of HAP vs Static.

The improvement that HAP achieves when compared to Static and Dynamic
approaches comes from the fact that our proposal continuously adapts the FPGA
and CPU chunk sizes to: i) the code behavior (that is essential in irregular codes as
SPMV and BH-NB), and ii) runtime variations (that is useful for designing robust
and fluctuation-tolerant schedulers, even for regular applications, as our evaluation
shows for BZ, HS, BS and BD).

As a final evaluation, we also computed an Ideal Ratio, IR, as the ratio of
the throughput measured in HAP with respect to the ideal throughput which
we estimate by assuming that both the FPGA and the CPU multicore can work
seamlessly simultaneously. This ideal throughput is the sum of the throughputs
for FPGA and for 14 CPU cores (one-device configurations). In other words, this
IR ratio helps us to characterize if heterogeneous executions in which the two
devices work simultaneously allow the aggregation of individual performances, or
on the contrary, if the final performance might be degraded due to contention for
shared resources (in this case, the QPI bandwidth is the critical shared resource).
We found that the ideal ratio is close to 1. This means that the degradation from
the ideal throughput is in general marginal: it goes from 0.2% (NB-BH) to 12%
(AES). These results indicate that heterogeneous executions in our benchmarks
are not constrained by the shared resources, so simultaneous co-processing that
fully utilizes the computing resources of this heterogeneous platform is highly
recommended.

5 Conclusions

In this paper we propose a scheduling framework, encapsulated in a high level
C++ template, which enables simultaneous co-processing of parallel loop iterations
in CPU+FPGA heterogeneous platforms. One key component of the scheduler is
that is able to dynamically and adaptively partition the work among the available
devices ensuring near-optimal throughput while achieving load balancing. Our
evaluation teaches us that the size of the chunk of iterations offloaded to the FPGA
must be carefully selected, taking into account that chunks must be aligned to 64
bytes. Moreover, the adaptability of the chunk size has proved to be profitable



18 Andrés Rodŕıguez et al.

for irregular applications, but also for regular codes. Experimental results for a
diverse set of benchmarks from the HPC domain show that our heterogeneous HAP
scheduler generally improves performance when compared to one-device executions,
achieving up to 8x speedup with respect to CPU-only executions. HAP also achieves
up to 15% of improvement compared with the best solution found with a Dynamic
scheduler, or up to 37% of improvement compared to a Static approach (used as
baseline).

We also propose a novel hybrid algorithm targeted to CPU+FPGA platforms
to accelerate the n-body problem. Taking advantage of our heterogeneous scheduler
that allow us to partition the iterations among the devices to process disjoint
regions of data, our algorithm selects a regular brute-force NBody approach on the
FPGA and an irregular BarnesHut approach on the CPU, achieving up to 3.7x
(1.4x) throughput improvement compared with the best NB (BH) implementations.

As future work we will extend the scheduler to find at runtime the device
configuration and work partition that maximizes energy efficiency, either when
considering running power or total power scenarios. We also plan to extend our
scheduler to target CPU+GPU+FPGA hardware platforms.
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