
Analytical Model of Memory-Bound Applications
Compiled with High Level Synthesis

Maria A. Dávila-Guzmán∗, Rubén Gran Tejero†, Marı́a Villarroya-Gaudó‡ and Darı́o Suárez Gracia§
DIIS-I3A, Universidad de Zaragoza — HiPEAC Network of Excellence

e-mail: ∗angelicadg@unizar.es, †rgran@unizar.es, ‡mvg@unizar.es, §dario@unizar.es

Abstract—The increasing demand of dedicated accelerators
to improve energy efficiency and performance has highlighted
FPGAs as a promising option to deliver both. However, pro-
gramming FPGAs in hardware description languages requires
long time and effort to achieve optimal results, which discourages
many programmers from adopting this technology.

High Level Synthesis tools improve the accessibility to FPGAs,
but the optimization process is still time expensive due to the
large compilation time, between minutes and days, required to
generate a single bitstream. Whereas placing and routing take
most of this time, the RTL pipeline and memory organization are
known in seconds. This early information about the organization
of the upcoming bitstream is enough to provide an accurate and
fast performance model.

This paper presents a performance analytical model for HLS
designs focused on memory bound applications. With a careful
analysis of the generated memory architecture and DRAM orga-
nization, the model predicts the execution time with a maximum
error of 9.2% for a set of representative applications. Compared
with previous works, our predictions reduce on average at least
2× the estimation error.

Index Terms—Analytical model, FPGA, HLS, DRAM,
OpenCL.

I. INTRODUCTION

The promise of faster and more energy efficient systems
with the inclusion of heterogeneity faces several challenges,
specially for systems including re-programmable hardware such
as FPGAs [1]. Fortunately for programmers, the development
of High Level Synthesis (HLS) improves programmability and
productivity, because CPU and GPU languages such C, C++,
or OpenCL can be used to describe FPGA hardware [2], [3].

Although HLS tools simplify programming, generating
highly tuned code remains a challenge for several reasons. First,
CPU and GPU optimization techniques are not always directly
suitable for FPGA, and, second, bitstream generation takes a
long time, preventing any “trial-and-error” optimization process.
To address this issue, programmers can follow two alternatives.
Either they write well-known code patterns from previous
explorations [4], or they rely on pre-synthesis analytical models
for estimating performance [3], [5]–[7]. These models analyze
the RTL code generated by the HLS tools, the high-level code,
or both, and often they require to instrument and run the code
to obtain dynamic profiling information.

The High Performance Computing, HPC, domain represents
an opportunity for HLS and FPGAs because HPC requirements
include performance and energy efficiency, and, ideally, to reuse
as much code as possible. Many HPC applications are memory-
bound, which together with the HLS generated code, enables to

propose simple yet effective analytical models to predict their
execution time when running on FPGAs. Besides, previous
models focus more on the compute part, or kernel pipeline,
covering the Global Memory Interconnect (GMI) connecting
the kernel pipeline with the off-chip DRAM memory, in less
detail. For example, the error of two state-of-the-art analytical
models [6], [7] multiplies by 3 when the DRAM changes and
can be larger than 50% for accesses with data dependencies.
In future systems, those errors could become more prevalent
because DRAM scaling is slow with a growing data rate of 7%
per year, compared with FPGA that grows capacity 48% per
year [8], potentially increasing the number of memory bound
applications.

The GMI is composed by multiple Load/Store Units (LSUs)
which include coalescers to group requests into DRAM burst,
and arbiters to order them. HLS tools generate the GMI
architecture at an early stage in the tool flow, so combining
information from the GMI and DRAM organizations, it is
possible to build an analytical model that mainly requires static
information. The model can be easily plugged into existing
models for memory-bound applications, or, even, integrated
into HLS tools to guide optimizations.

The contributions of this work are: a) A description of the
generated memory interconnect of an HLS tool, b) An open-
source available analytical model that estimates the execution
time of memory bound applications1, c) A set of experiments
showing that the error of the model is below 9% for a set of
representative applications.

The rest of the paper is organized as follows. Section II
describes the HLS flow and the GMI architecture. Section III
introduces the model. Section IV presents the methodology.
Section V comments on the results. Section VI discusses the
related work and Section VII concludes.

II. HLS FLOW FOR FPGA

Traditionally, HDL was the preferred tool to program
FPGA devices, slowing its adoption by average programmers.
Recently, HLS has evolved to a point where programming
from languages such as C or OpenCL for FPGA becomes an
easier task. In fact, the explicit parallelism of OpenCL offers
many opportunities to exploit the pipeline parallelism inherent
to FPGAs, making OpenCL a good language for FPGAs.

1The model with the experiment data are available at https://anonymous.
4open.science/r/db707fea-264d-46bf-a6f8-f2cdf455d8d2/.

1

Figure 1 shows the main components of an OpenCL
application compiled for an FPGA with the Intel OpenCL
FPGA SDK. Without loss of generality, this flow is also
representative for other toolchains. On the host side, ¶, the
application communicates with the FPGA device through the
Board Support Package2 (BSP, in blue on the figure). The BSP
implements the lower layers of the application stack such as
the Memory-Mapped-Device (MMD) library, performing the
basic I/O with the board and the PCIe communications. On
the FPGA side, the BSP, ·, provides support to communicate
back with the host and with the device memory, DRAM . . .

User OpenCL host
Application

OpenCL Lib

HAL

Kernel
Pipeline

Host Interface
External Memory

Controller DRAM

Global Memory Interconnect

On Chip
Memory

Kernel
Pipeline

Local Memory Interconnect

FPGA

FPGA Driver
MMD

Host Software
CPU

PCIe

Avalon Bus

OpenCL Kernel
aoc

Toolchain

3

21

Figure 1. OpenCL FPGA main elements. Blue and brown colors represent
the BSP and kernel logic, respectively.

From a programmer’s perspective, the most important part
is the kernel logic (in brown), ¸, which mainly corresponds
to the compiled OpenCL kernel. In fact, programmers seldom
need to generate a new BSP3. The compilation process consists
of two main steps. First, a translator generates HDL code from
the OpenCL, and then, a synthesis tool generates the bit-stream.
The translator creates 4 blocks from the code: Local Memory
Interconnect, On Chip Memory, Kernel Pipeline, and Global
Memory Interconnect, being the last two the most critical from
a performance point of view.

A. Kernel Pipeline

The kernel pipeline implements the whole data and control
operations. The high-level OpenCL statements are translated
into a graph where each node performs an operation. To receive
and send data, there are nodes that interconnects the pipeline
with either the local or global memory. To exploit work-item
parallelism, HLS tools implement very deep pipelines. Splitting
up the processing into small pipeline stages also helps reaching
high frequency, which is another key parameter for kernel
performance besides pipeline length and initiation interval.

B. Global Memory Interconnect

The GMI communicates the Kernel Pipeline and the main
DRAM memory. In OpenCL source code, each reference to
a variable hold in the global memory constitutes a global

2Manufacturers often provide BSP, but advanced users can tune and re-
implement them.

3Please also note that HLS tools would always require a BSP to compile
an OpenCL kernel for supporting the aforementioned low-level tasks.

1 #define N 1024
2 int random_vector[N]={5,1023, 450, 100, ...}
3 __kernel void
4 test_patterns(global int *restrict x,
5 global int *restrict z,
6 constant int *cn)
7 { int i = get_global_id(0);
8 int j = random_vector[i];
9 int out = 0; local int lmem[1024];

10 //Code Snippet form Table I
11 z[0] = out;
12 }

Listing 1. OpenCL Code for access patterns in Table I

access. Since global accesses are the main source of kernel
stalls, the GMI implements several strategies to maximize
DRAM throughput and kernel pipeline flow. Internally, the
GMI architecture, as other hardware memory interfaces from
Intel [9], has two main components: LSUs, which track in flight
memory operations, and arbiters. There are two independent
round-robin arbiters ordering read and write accesses.

Depending on the access pattern, Intel FPGA SDK [10] has
defined 5 LSU types: two for the Local Memory Interconnect
(Constant-Pipelined and Pipelined) and the rest for the GMI:
Burst-Coalesced, Prefeching, and Atomic-Pipelined. To under-
stand the access pattern of each LSU, Listing 1 and Table I show
the code that generates them and their main features; namely,
1) Pipeline, when an LSU can support multiple active requests
at a time, 2) Burst, when requests are grouped before being
sent to DRAM, and 3) Atomic, which serializes the operation
and guarantees atomicity. Please note that each one of these
LSU features expose an increasing hardware complexity. Each
global access (GA) stated in the source code can be translated
into one or several LSUs, as Section III describes.

Each LSU type provides a different maximum bandwidth,
being the burst-coalesced (BC) with aligned modifier the most
efficient type because it maximizes DRAM effective-utilization.
Figure 2 shows a read operation generated by a BC LSU. Each
LSU has a coalescer unit that tries to group continuous memory
address into a single burst DRAM operation. Eventually, the
read arbiter dispatches this operation to the FIFO into the
Avalon Interconnect in order to issue a DRAM access to the
Memory Controller IP through the Avalon Bus. The benefits
come from the DRAM organization [11] because during a read
operation at least 3 commands are required: precharge (PRE),
activate (ACT), read out (RD). PRE opens a row in every bank,
then, ACT opens a row in a particular bank, and RD read
the burst out back to the controller. When an LSU receives a
requested address, it attempts to group consecutive addresses
into a burst, the burst cnt bus size defines the maximum number
of burst requests at compilation time, because contiguous
access to memory enables to hide the overhead of PRE/ACT
commands.

In burst coalesced LSU, three limits trigger a request to
the DRAM: 1) Burst cnt bus, that usually corresponds to
memory page size, 2) Maximum number of threads allowed to
be coalesced and 3) Time out to minimize stalls in the kernel

2

Table I. GMI LSU Types and their modifiers for Intel FPGA SDK, the codes snippets are from Intel FPGA Guides [10].

LSU Type Description Pipelined Burst Atomic Code Snippetsa

Burst-Coalescedb Request are group into a set of DRAM burst
Aligned Index is contiguous and aligned to page size 4 4 8 out = x[i];
Non Aligned Index has a modifier non-aligned to page size 4 4 8 out = x[3*i+1];
Write ACK Index to access has dependencies 4 4 8 out = x[j];
Cache Index have repetitive dependencies 4 4 8 for (uint k=0; k<N; k++)

z[N*i+k] = x[k];

Prefetching Compiled as Burst-Coalesced Aligned 8 4 8

Constant-Pipelined Read from a constant cache 4 8 8 z[i] = cn[i];

Pipelined Requests are submitted immediately 4 8 8 out= lmem[li - i];
Never-Stall Connects the LSU without arbitration 4 8 8 lmem[li] = x[i];

Atomic-Pipelined For atomic operations 4 8 4 atomic_add(&x[0], 1);
a Each code snippet corresponds to line 10 in listing 1.
b The burst-coalesced type has four modifiers affecting its organization.

Row hit!
P
R
E

Time Line Command

R
D

D
0

D
1

D
2

D
3

D
4

D
7

...

TRCDTRP

R
D

Row
Bank 0

Memory
Controller

IP

dq[0..63]

Clk
Cross

avm to read [..]
burst_cnt[..]Avalon Read FIFO
avm to write [..]

burst_cnt[..]Avalon Write FIFO

Kernel
Pipeline

A
C
T

A[0..15]
Token

GMI

...

ls_width Bank 1Burst
Coalesced Aligned

Burst
Coalesced Aligned

Burst
Coalesced LSU

Arbiter Write/Read

DRAM

AVALON INTERCONNECT

 avm is an Avalon-MM bus with
address, data, and control signals

Figure 2. Simplified model of a read operation with LSU Burst-Coalesced modifier. The parameter names in blue are used in the model.

pipeline when the consecutive requests can not be coalesced.
The compiler can modify this LSU depending on the memory
access pattern and other attributes [10]; e.g., in the case of
data dependencies, the compiler infers a Write-ACK LSU with
a work-item level coalescer.

In a Prefetching LSU, the behavior is similar to the burst
coalesced, but anticipating a large amount of data. For write
operations, it uses a burst coalesced non-aligned LSU structure.
In highend FPGAs, the compiler generates a Burst Coalesced
LSU with given Intel SDK code.

The last LSU for GMI is the atomic-pipeline, Intel provides
limited support only for 32-bit integers and it is considered
one of the most expensive functions in HLS.

C. Performance Estimation for FPGA

Both the Kernel Pipeline and the GMI have a huge impact
on performance. Kernel performance has been modeled to
predict the execution time aiming at the automatization of the
compilation process [3], [6], [7], but the memory component
has been simplified, losing details that can expand the search
space to optimize. This simplification, valid for old FPGA
models, does not apply for newer models because the kernel
resources’ number has grown faster than the external memory;
e.g., an Intel Stratix 10 reaches 9 TFLOPS while the newer Intel
Agilex reaches 20 TFLOPS, although DRAM has improved
from DDR4 @ 1333 MHz / 2666 Mbps to DDR4 @ 1600 MHz
/ 3200 Mbps or DDR5 @ 2100 MHz / 4400 Mbps, namely,
kernel performance has doubled, meanwhile the memory
bandwidth has not [12], [13]. Comparing the on-chip memory

and the external memory, the external memory is more critical
because the throughput of the DRAM is 380× worst than
that of the embedded memory, and its size is 80× larger [12].
Therefore, a more accurate model of memory becomes desirable
to estimate performance for the latest FPGA models.

III. ANALYTICAL MODEL

In memory bound kernels, the execution time of memory
bound kernels is dominated by the GMI organization and the
delay of the external DRAM memory.

In the kernel source code, a global access (GA) is translated
into one or several LSUs at the GMI. The compiler determines
the proper type of LSU for each GA according to a static
analysis. As described in Section II, LSUs are part of the
GMI that is modelled in this section. This model just relies
on information available up to the translation phase (OpenCL
to Verilog) providing accurate execution-time estimations for
memory bound kernels without the long delays of the full
compilation process.

Table II summarizes the input parameters to the model with
their respective sources which are described below:

1) Report: Html file generated in intermediate compilation
using aocl -rtl. It shows the kernel basic blocks and the
types of the LSUs.

2) Verilog: These files instantiate the parameters of IPs and
show stop conditions of memory controller. These files
are generated with aocl -rtl.

3) Users: For dynamic loops, users are required to provide
the iteration limit, since it is not available at compile

3

Table II. Variable descriptions, if possible, names come from the HLS tools

Variable Definition Source

#lsu Number of load/store units Report
ls widthi Memory width of i LSU [bytes] Report

burst cnti Size of Avalon burst count port Verilog
param:BURSTCOUNT WIDTH

max thi Maximum threads in a burst Verilog
param:MAX THREADS

δ Address stride of memory access User
ls acci Number of access of each LSU User
ls bytesi Bytes of a single ls acc User
f Kernel vectorization SIMD · Unroll User

dq Memory data width [bytes] Datasheet
bl Memory burst length Datasheet
f mem Memory frequency [Hz] Datasheet
TRCD Row activation time [s] Datasheet
TRP Precharge row miss time [s] Datasheet
TWR Time to recovery from Write[s] Datasheet
n For every i LSU in a maximum of #lsu

time. Please note that the user information could be
automatically inferred by a compiler pass.

4) Datasheets: The DRAM datasheets provide the timing
and the organization of DRAM memory chips.

To begin with, let Texe be the execution time estimated as
the sum of minimum time, Tideal, of every transaction from
every LSU plus an overhead time, Tovh, which depends on the
LSU type, as shows Eq. 1.

Texe =

#lsu∑
i=1

δi · (T iideal + T iovh) (1)

T iideal only depends on maximum memory data transfer,
and, hence, is the same for all LSU types, while T iovh changes;
e.g., when a memory access has a stride of δi, then coalescing
LSUs do not use all data burst, which increases the amount of
memory transactions. In other words, T iideal corresponds to the
minimum time for bringing every data which is the amount
of bytes read by an LSU divided by the DRAM bandwidth,
as shown in Eq. 2, with bw mem = dq · 2 · f mem (The 2
corresponds to DRAM’s double-rate).

T iideal =
ls bytesi · ls acci

bw mem
(2)

A. Burst-Coalesced LSU

In a memory bound application, the Avalon FIFO needs to
be full of requests to maintain the DRAM with high occupancy.
When the kernel pipeline does not make enough requests to
fill the memory burst request before time out, the memory will
fall down in low occupancy. In this state, the kernel is compute
bound which has already been covered in previous works [6],
[7].

Another cause of low memory occupancy is when the
ls width does not have enough data to allow the maximum
burst size because ls width depends on the vectorization factor

(f) as well. To evaluate this condition, the relation between
the number of kernel request to the LSU (ls width) and the
amount of data that DRAM can fulfil (dq · bl) is calculated
as shown in Eq. 3. Let Ki

lsu be the influence of each type of
LSU modifier. When this condition is fulfilled, the kernel is
defined as memory bound.

Kernel
Bound

⇒

Memory high-
occupancy

∑#lsu
i=1

ls widthi

dq·bl·Ki
lsu

≥ 1

Compute otherwise
(3)

Once the kernel is defined as memory bound, Texe can
be calculated with Eq. 1. To achieve Tideal is possible for
contiguous memory addresses, this type of access hides
PRE/ACT latencies, as was shown in Fig. 2. Furthermore, bank-
interleaving memory controller can completely hide opening
new banks [14] until the #lsu is less than two. When the
#lsu increases, this forces the DRAM to open a new row,
adding a time overhead Tovh.

The T iovh will be proportional to DRAM latency of opening
a new page, given by row miss commands (Trow). These can be
calculated by the amount of times that an i LSU have to open
a new row which depends of the amount of burst transactions,
with a size of burst size, required to request the total bytes
(ls acc · ls bytes), formulated as in in Eq. 4. It should be
noted that latency of LSU and the amount of data in a the
Avalon FIFO would hide the kernel latency, for this reason
only the DRAM latency is considered.

T iovh =

{
0 #lsu < 2
ls acci·ls bytesi
burst sizei · Trow otherwise

(4)

The burst size, Trow and Klsu estimations for each LSU
modifier are analyzed in the subsections III-A1 to III-A3.

1) Burst Coalesced Aligned LSU: This modifier is generated
when all the kernel requests are contiguous memory addresses
aligned to page size.

Two kind of IPs have been detected in this type of access,
one is the “simple” whether the program only has one LSU
and every kernel request is sent directly to the memory
controller, without FIFO registers. This simplifies the hardware
and maximizes the memory throughput. With more LSUs the
complete architecture is generated as was shown in Fig. 2

To calculate the memory constrain, the value of Klsu = δ
means that one burst operation is executed per cycle, but it is
limited by strides.

The next step is the estimation of the DRAM burst size.
DRAM sets the minimum burst transaction size to dq · bl, but
it can transfer multiple consecutive burst for the same open
row giving Eq. 5. burst cnti represents the binary logarithm
of the transaction size, as shown in Fig. 2).

burst sizei = 2burst cnt
i

· dq · bl (5)

Finally, to estimate Trow is not trivial because the controller
can overlap commands due to reordering strategies and the

4

page policy [15], then, this model takes into account the inter-
command delay for row buffer misses [7] using ACT/PRE
latencies, as Eq. 6 shows. The command sequence PRE, ACT,
read and write are considered with the same minimum timing.

Trow = TRCD + TRP (6)

2) Burst Coalesced Non-Aligned LSU: Both Aligned and
Non-Aligned LSUs try to coalesce multiple thread request in
a single burst command; however, the δ stride of Non-Aligned
adds a new trigger for memory request, the number of threads,
max th, that have been launched and coalesced.

Eq. 7 calculates this constrain, named max reqs, represent-
ing the maximum size of a DRAM burst-coalesced request.
During the assembly of a request, two conditions can trigger
the request issue towards the memory, either the amount
of requested data equals a DRAM page, or the number of
coalesced threads have reached max th.

When a coalescer is assembling a request, either the request
occurs when the amount of data requested is equals to a DRAM
page or when the number of coalesced threads have reached
max th. This limit is affected by δ, effectively reducing the
effective burst request. In the other case, the δ fraction of
ls width is the effective burst size as Eq. 8 shows. Please
note that ls width should be bounded by DRAM page size.

max reqsi =
max th · ls widthi

δ + 1
(7)

burst sizei =

{
max reqsi

δ max reqsi ≤ 2burst cnt
i · dq · bl

ls widthi

δ otherwise
(8)

Finally, the parameters K lsu and Trow are the same ones
as for burst coalesced aligned LSU.

3) Burst Coalesced Write-Acknowledge LSU : When data de-
pendencies occur, the compiler generates a write acknowledge-
ment signal to guarantee the correct ordering of accesses [10].
Therefore, the burst size equals the aligned case from Eq. 5,
K lsu equals 1, and most important, each burst only consumes
ls bytes increasing the total time by dq·bl

ls bytes . The write-ack
signal adds a write command to the DRAM access, increasing
the Trow delay as Eq. 9 shows.

Trow = TRCD + TRP + TWR (9)

B. Atomic-pipeline LSU

Atomic-pipeline LSU only supports integer data type without
burst commands; hence, its stride is always 1, δ = 1. Every
atomic operation executes a read and a write DRAM commands.
For example, atomic_add from Listing 2 atomically sums
val to p, which is atomically read and written. When val
is constant within a loop or for multiple work items, then the
compiler performs f operations atomically.

1 int atomic_add(volatile __global int *p, int val);

Listing 2. Atomic-pipeline add prototype function

Table III. Fixed variable value to evaluate the LSU model, all
variables (Var.) are defined in Table II

Var. Value Var. Value Var. Value

f mem 933.3 dq 8 bl 8
TRCD 13.5e-9 TRP 13.5e-9 TWR 15e-9

Eq. 10 shows the resulting T irow, including the two accesses,
and T iovh, depending on the f factor.

T irow = 2 · (TRCD + TRP) + TWR

T iovh =

{
T i
row

f val is constant
T irow otherwise

(10)

IV. METHODOLOGY

All the experiments have been run on an Intel Stratix 10 GX
FPGA Development Kit with 2GB of DDR4 DRAM organized
in a single DIMM and 4 memory banks. Table III shows
the required DRAM parameters for the model, running at
1866MHz. The rest of parameters come from the intermediate
compilation of the Intel FPGA SDK for OpenCL 18.1. For
burst coalesced aligned and non-aligned LSU, δ variations are
validated scaling the array accesses by δ. In the non aligned
case, an offset argument is added to the scaled index.

To validate the model, two types of benchmarks are analyzed:
first, a set of microbenchmarks, targeting each LSU type, where
the vectorization factor f and the global access (#ga) number
vary using the Listing 3.
1 __attribute((num_simd_work_items(SIMD)))
2 __kernel void test_coalesced(
3 __global const int *restrict x0,.., xn
4 __global const int *restrict z)
5 {
6 int id = get_global_id(0);
7 //code snippet from Table II for each LSU
8 }

Listing 3. OpenCL microbenchmark for LSU Coalesced Aligned

A second validation is performed in 9 different me-
mory bound HPC benchmarks from the following sources:
Intel FPGA SDK, Xilinx SDAccel, Rodinia FPGA [5], and
FBLAS [16], which input channels were modified to fit the
DRAM inputs.

The execution time is measured with aocl report, which
compared with host measurements can have ∼ 8% consistent
difference. The atomic cases are measured with OpenCL
events due to atomic LSU does not have dynamic counters
implemented. Finally, the proposed model is compared with
two state-of-the-art works [6], [7].

V. MODEL VALIDATION

Two groups of experiments check the model accuracy:
microbenchmarks, to dig into the keys of the model by
sweeping the most common parameters such as SIMD vector
lanes, δ, or #lsu, varying the number of global access (#ga),
and, the second group being applications to showcase its
effectiveness in real scenarios.

5

The model assumes that execution time depends on memory
delay more than on kernel frequency for memory bound
applications. To verify this claim, Fig. 3 shows the execution
time for multiple sum reduction kernels with burst coalesced
aligned LSUs (line 2 of Listing 4) varying #lsu and SIMD
vector lanes4. For memory bound kernels, encircled markers,
F kernel does not affect execution regardless #lsu and
SIMD, because the memory delay dominates execution time.
For non-memory bound kernels, uncircled markers, memory
width, set by SIMD, affects performance more than F kernel
as well. Both results show the importance of early memory
optimizations writing HLS code.

A. Microbenchmarks

For the sake of completeness, each LSU modifier is evaluated
separately. The evaluation comprises the microbenchmark from
Listing 3 with a body tuned to the LSU type and modifier. As
shown in Listing 4, every loop body is based on sum reduction
to easily change the number of GA, #ga.

Fig. 4 shows the measured and estimated time for every
type LSU under test varying SIMD and #ga. Empty bars
represents non memory bound kernels, as detected with Eq. 3.
For all the combinations, error remains bellow 15.7% for 75%
of the benchmarks with a maximum error of 27.9%.

1 // Aligned
2 z[id] = x1[id] + ... + xn[id];
3

4 // Non-Aligned
5 z[3*id+1] = x1[3*id+1] + ... + xn[3*id+1];
6

7 // Write-Acknowledge
8 int id = rand[i]; //work item index
9 z[id] = x1[id] + ... + xn[id];

Listing 4. Sum Reduction microbenchmark for Burst Coalesced LSUs.
Each modifier is run separately

1) Burst Coalesced Aligned LSU: Digging into each type,
Fig. 4a compares the measured, Tmeas and estimated, Texe
as the sum of Tideal (dots) and Trow (lines), times for burst
coalesced aligned, In this modifier, each global access generates
one LSU (#ga equals to #lsu). For all the cases, error remains
below 10%, the probable source is the simplification of the
DRAM model and the refresh time, which can reduce memory
efficiency around 3.5% [14]. The experiment also evidences
that the higher the #lsu, the higher the Tovh, so DRAM
bandwidth reduces 26%, from 14.2 to 10.5 GB/s. For this
reason, programming strategies such as Array of Structures
reducing #lsu should be preferred.

The model shows a linear dependency to the stride parameter
given by δ, increasing the number of times that the controller
should access to DRAM as Fig 5a shows. Here the times are
normalized to measured time with δ = 1 and evidence how
the estimation follows the linear tendency, marked with points.
Notice that this LSU can not be generated with δ = 5 because
compiler does not detect the DRAM page size’s alignment.

4Other LSU types produce the same results that are not shown for clarity.

2) Burst Coalesced Non-Aligned LSU: BCNA is depicted
in line 5 of Listing 4 for a Klsu = 3. Similarly to aligned
modifier, in BCNA the global access is also supported by just
one LSU. BCNA shows a larger error than BCA, between 4
and 21%, because the latency of BCNA coalescer has a large
variance; e.g., the number of required address comparisons
depends on the coalescer state. Please also note that error
does not correlate neither with SIMD vector lanes nor #lsu,
suggesting that the model correctly tracks parameter changes.

Also, for SIMD and #lsu larger than 4 and 3, respectively,
the number of threads in a burst significantly impacts execution
time, which increases linearly and not exponentially as SIMD
does. This “max th effect” can also be seen varying δ as
Fig. 5b shows for SIMD = 16 and #lsu = 3, times are
normalized to δ = 1. With δ = 7 the max th restriction
appears optimizing the access that increases with strides. In
comparison with an aligned LSU, the performance is reduced
in median a 60% due address comparison increases and burst
window is reduced to avoid long kernel stalls.

3) Burst Coalesced Write-Acknowledge LSU: The evaluation
of this LSU uses the microbenchmark in Listing 3, with the
code snippet in lines 7 to 9 of Listing 4.

A vector of constant values is generated by software with
random values between 0 and 2048, reducing the probabilities
of coalescing (2048 over 64 floats that can be coalesced in
DRAM).

The SIMD vector lanes in the previous analyzed LSU
affected the lsu width, by contrast, with burst coalesced write
acknowledge LSU the lsu width remains constant. To increase
the vectorization, the compiler generates so many LSU as
the desired SIMD by each global access. The assumption is
that every thread is accessing to different memory locations,
controlling the memory consistency with the Ack signal. The
Fig. 4c shows the comparison between the measured and
estimated execution time.

The execution time is the worst of burst coalesced modifiers
growing 24× more than aligned LSU. The read operations
show a stall on read until 98% with two LSU. To optimize
these cases the programmer should evaluate a balance between
the data dependency with writes vs. the use of on-chip memory
with a tiling strategy.

4) Atomic-pipeline LSU: The evaluation of this LSU uses
the microbenchmark in Listing 3, with the code snippet in
Listing 5. To generate a single global access (#ga = 1), xn[id]
has to be replaced by id, otherwise, each atomic operation
generates its own global access to avoid coalescing.

1 atomic_add(z[0], x[id]);
2 ...
3 atomic_add(z[n], xn[id]);

Listing 5. OpenCL microbenchmark for atomic-pipeline LSU

In general, atomic-pipeline LSU does not change the
lsu width, as burst coalesced does, making Tovh the most
significant component of this LSU. Fig 4d shows that execution
time increases linearly with #ga and maximum error of 16%
corresponding to unaccounted 5ns per atomic operation. This

6

450 460 470
Fkernel(MHz)

10

20

30
Ti

m
e

(m
s)

#lsu =1

460 465 470 475
Fkernel(MHz)

20

25

30

35 #lsu =2

440 450 460 470 480
Fkernel(MHz)

35

40

45
#lsu =3

400 420 440 460
Fkernel(MHz)

50

60

70 #lsu =4

400 420 440 460
Fkernel(MHz)

60

70

80

90 #lsu =5 SIMD
2
4
8
16

Figure 3. Execution time vs. kernel frequency in a burst coalesced aligned LSU varying #lsu and SIMD vector lanes. Encircled markers correspond to
memory bound kernels.

2 4 8 16
SIMD

0

10

20

30

Ti
m

e
(m

s)

#ga=1

2 4 8 16
SIMD

0

10

20

30

#ga=2

2 4 8 16
SIMD

0

20

40

#ga=3

2 4 8 16
SIMD

0

20

40

60

#ga4

2 4 8 16
SIMD

0

20

40

60

80

#ga5
Tmeas

Tideal

Tovh

C.B

(a) Burst Coalesced Aligned LSU

2 4 8 16
SIMD

0

20

40

Ti
m

e
(m

s)

#ga=1

2 4 8 16
SIMD

0

20

40

60

80

#ga=2

2 4 8 16
SIMD

0

50

100

150

#ga=3

2 4 8 16
SIMD

0

100

200

300

#ga=4

2 4 8 16
SIMD

0

200

400

600

#ga=5
Tmeas

Tideal

Tovh

C.B

(b) Burst Coalesced No Aligned LSU

2 4 8 16
SIMD

0

50

100

150

Ti
m

e
(m

s)

#ga=1

2 4 8 16
SIMD

0

200

400

#ga=2

2 4 8 16
SIMD

0

200

400

600

#ga=3

2 4 8 16
SIMD

0

250

500

750

1000

#ga=4

2 4 8 16
SIMD

0

500

1000

#ga=5
Tmeas

Tideal

Tovh

C.B

(c) Burst Coalesced Write Acknowledge LSU

2 4 8 16
SIMD

0

2

4

Ti
m

e
(s

)

#ga=1

2 4 8 16
SIMD

0.0

2.5

5.0

7.5

10.0

#ga=2

2 4 8 16
SIMD

0

5

10

15

20

#ga=3

2 4 8 16
SIMD

0

10

20

30

#ga=4

2 4 8 16
SIMD

0

10

20

30

40

#ga=5
Tmeas

Tideal

Tovh

C.B

(d) Atomic-pipeline LSU

Figure 4. Measured (TMeas) and Estimated (Tideal + Tovh) time for all the LSU’s types varying SIMD vector lanes and global access (#ga). The bars
with dots and lines represent Tideal and Tovh, respectively. Non memory bound kernels (C.B) are detected (empty bars) and not estimated.

1 2 3 4 6
0.0

2.5

5.0

No
rm

. T
im

e

Texe

Tmeas

(a) Burst Coalesced Aligned LSU

1 3 5 6 7
0

5

10

No
rm

. T
im

e

(b) Burst Coalesced Non aligned LSU

Figure 5. Measured (TMeas) and estimated (Texe) time are normalized to
TMeas in δ = 1. The experiment varies δ with fixed values of #lsu = 3
and SIMD = 16 in a) Burst coalesced aligned and b) Burst coalesced
non-aligned LSUs

delay is near the time between the beginning of the internal

write transaction and that of the following read command in
the same group and same bank (TWTR).

To quantify the LSU impact on kernel performance, we
analyze read stalls. For burst coalesced aligned and non-aligned,
read stalls are under 20% because the coalescer partially hides
the δ induced delay. Meanwhile, write ACK LSU shows stalls
over 50% as the extra signalling serializes the requests. The
atomic-pipeline modifier cannot be measured because profiling
is unsupported, but it is safe to assume that stalls will be high
due to atomicity requirements.

B. Applications

We validated the model with 9 memory bound applications,
mixing single task and NDRange kernels with and without

7

Table IV. Kernel applications and estimated time .GMI-Global Memory
Interconnect BCA-Burst Coalesced Aligned. BCNA-Burst Coalesced Non-
Aligned. ACK-Burst Coalesced Write ACK. M- Measured. E- Estimated

Kernel GMI #lsu M.Time E.Time Error
[ms] [ms] [%]

Dot [16] BCA 3 60.2 64.5 7.3
FFT-1D [10] BCA 2 9.5 8.8 7.3
nn [5] BCA 2 157.5 172.1 9.2
ROT [16] BCA 4 92.7 86.1 7.2
VectorAdd [10] BCA 3 33.3 33.2 5.1
VectorAddδ = 2 BCA 3 67.9 63.0 6.5
Hotspot [5] BCNA 3 9.7 8.8 8.7
Pathfinder [5] BCNA 3 275.9 254.0 7.9
WM [17] BCNA 2 59.8 55.8 6.6
NW [5] ACK 4 1.4 1.4 4.0

channels. Table IV reports the measured and estimated time
with the respective error. For all the applications, the relative
error remains bellow 9.2% with an average value of 7.6%.

C. Comparison with other models

To compare the proposed model with two state-of-the-art
models: Wang and HLScope+ [6], [7], we have manually
computed their estimations for the microbenchmarks, with
f = 16, and for the vectorAdd application. Unfortunately, the
comparison of more applications is unfeasible because their
dynamic profiling tools feeding the models are not publicly
available. The tests are run with two BSPs with different DRAM
frequency, 1866 and 2666 MHz.

In all, but one case, µb BCA, the error of this work is
lower than that of Wang and HLSCope+ as Table V shows.
Comparing the maximum error of each model, this proposal
is up to 400 and 5× more accurate than Wang and HLScope+,
respectively.

Table V. Execution time estimated error; µb, BCA, BCN, and ACK
refers to microbenchmark, burst coalesced aligned, burst coalesced
non-aligned, and burst coalesced Write Ack, respectively.

Benchmark #lsu Wang HLScope+ This work
[%] [%] [%]

DDR4-1866

µb BCA 1 17.3 12.7 5.6
µb BCA 4 0.3 10.6 4.4
µb BCN 3 - 71.1 4.0
µb ACK 2 8049.9 63.2 27.9
VectorAdd 3 19.3 21.0 5.1

DDR4-2666

µb BCA 1 69.6 57.8 4.7
µb BCA 4 37.8 19.6 5.8
µb BCNA 3 - 137.9 8.7
µb ACK 2 11 279.4 47.6 8.8
VectorAdd 3 67.9 63.3 1.0

In Wang’s case, the errors come from an incomplete support
of all LSU modifiers and by not fully including the memory
features (bandwidth, frequency, row misses, . . .), which this
work does. On the other hand, in HLScope+, for memory bound

applications, the estimation is primary affected by DRAM
bandwidth. Also, HLScope+ requires a board characterization
to compute the controller overhead (Tco) [18]. This subsection
uses Tco = 2.5ns for #lsu > 3, and Tco = 0ns in other
cases.

In addition, please note that Wang and HLScope+ do not
adapt well to changes in memory, contrary to this work that is
able to take them into account.

VI. RELATED WORK

For many HPC applications running on FPGAs, memory is
the main bottleneck [19], [20], contrary to these proposals that
only focus on continuous and stride patterns, this work covers
all possible patterns.

In the race to improve productivity with HLS in FPGA,
performance modeling is a requirement. These models can
be classified between those based on dynamic profiling [7],
[21]–[24] an those based on static analysis [6]. Some predictive
models have been compared for FPGA by [18], where only
[7] covers external memory with the drawback that it requires
on board characterization, and the memory interface is not
portable to other boards [18]. In the same way, works, as [6]
for OpenCL, have a coarse grain model that shows inaccuracies
in the memory behavior and requires non-traditional HLS flow,
some of the limitations of this work has been detected by [3].
Additionally, Liang et al. [3] improve models covering memory
access patterns with a short CPU/GPU execution, but as some
comparison shows, the memory controller makes difference
in the performance [25]–[27], moreover CPU/GPU devices
have a more sophisticated memory hierarchy that can hide
DRAM latency. In [1], [28] they intent to guide programmers
with analytical analysis of kernel, but the memory assumptions
are limited without considering the memory interconnection,
covered by our proposal.

VII. CONCLUSIONS

Compilation time represents an adoption barrier for HLS with
FPGAs. This paper proposes an analytical model, estimating
the execution time of memory bound applications accurately, so
programmers can quickly guess the code performance without
the time consuming synthesis. The model stems from a detailed
study of the generated RTL-code, instantiated IPs, and FPGA
architecture and condenses the factors causing the memory
delay for all possible types of memory accesses, vectorization
factors, strides, . . . without loss in flexibility. Even, it supports
changes in the board support package such as DRAM speed.
By focusing on memory bound applications, the model does
not depend on the kernel pipeline and can be easily plugged
into existing compute bound oriented models and HLS tools.
The model is publicly available, so it can be easily extended
if required.

Our proposal has been carefully validated, and the obtained
results show its accuracy predicting execution time. For 9
representative memory bound applications, the model error
remains below 9%, and, compared with two other state-of-
the-art model, it reduces the error by at least 2×. Our future

8

work aims to integrate such models into scheduling policies of
heterogeneous systems, where predicting performance before
launching a kernel can make a difference for achieving a higher
performance and energy efficiency.

REFERENCES

[1] H. M. Waidyasooriya, M. Hariyama, and K. Uchiyama, Design of FPGA-
based computing systems with openCL, 2017.

[2] Q. Gautier, A. Althoff, Pingfan Meng, and R. Kastner, “Spector: An
opencl fpga benchmark suite,” in 2016 International Conference on
Field-Programmable Technology (FPT), 2016, pp. 141–148.

[3] Y. Liang, S. Wang, and W. Zhang, “Flexcl: A model of performance and
power for opencl workloads on fpgas,” IEEE Transactions on Computers,
vol. 67, no. 12, pp. 1750–1764, 2018.

[4] A. Verma, A. E. Helal, K. Krommydas, and W.-c. Feng, “Accelerating
Workloads on FPGAs via OpenCL: A Case Study with OpenDwarfs,”
Computer Science Technical Reports, no. Section IV, pp. 1—-9, 2016.

[5] H. R. Zohouri, N. Maruyamay, A. Smith, S. Matsuoka, and M. Matsuda,
“Evaluating and optimizing OpenCL kernels for high performance
computing with FPGAs,” International Conference for High Performance
Computing, Networking, Storage and Analysis, SC, vol. 2016, no.
November, p. 35, 2016.

[6] Z. Wang, B. He, W. Zhang, and S. Jiang, “A performance analysis
framework for optimizing opencl applications on fpgas,” in 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2016, pp. 114–125.

[7] Y. K. Choi, P. Zhang, P. Li, and J. Cong, “HLScope+,: Fast and accurate
performance estimation for FPGA HLS,” vol. 2017-November, 2017, pp.
691–698.

[8] S. M. Trimberger, “Three ages of fpgas: A retrospective on the first thirty
years of fpga technology,” Proceedings of the IEEE, vol. 103, no. 3, pp.
318–331, 2015.

[9] Intel, “External Memory Interface Handbook Volume 3: Reference
Material,” 2017.

[10] Intel, “Intel FPGA SDK for OpenCL Pro Edition: Getting Started Guide
19.1,” 2019.

[11] H. Zheng and Z. Zhu, “Power and performance trade-offs in contemporary
dram system designs for multicore processors,” IEEE Transactions on
Computers, vol. 59, no. 8, pp. 1033–1046, 2010.

[12] Intel, “Intel® Stratix® 10 TX Product Table,” 2019.
[13] Intel, “Intel® Agilex® I-Series SoC FPGA Product Table,” 2019.
[14] Intel, “External Memory Interfaces Intel ® Stratix ® 10 FPGA IP User

Guide,” 2019.
[15] W. Wang, T. Dey, J. W. Davidson, and M. L. Soffa, “Dramon: Predicting

memory bandwidth usage of multi-threaded programs with high accuracy
and low overhead,” in 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA), 2014, pp. 380–391.

[16] T. D. Matteis, J. de Fine Licht, and T. Hoefler, “FBLAS: Streaming
Linear Algebra on FPGA,” CoRR, vol. abs/1907.07929, 2019.

[17] X. Vivado, “Vivado Design Suite User Guide: High-Level Synthesis,”
vol. 901, pp. 1–120, 2017. [Online]. Available: www.xilinx.com/
products/design-tools/software-zone/sdaccel.html

[18] K. O’Neal and P. Brisk, “Predictive modeling for cpu, gpu, and fpga
performance and power consumption: A survey,” in 2018 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2018, pp. 763–768.

[19] S. W. Nabi and W. Vanderbauwhede, “FPGA design space exploration
for scientific HPC applications using a fast and accurate cost model based
on roofline analysis,” Journal of Parallel and Distributed Computing, pp.
1–13, 2016.

[20] B. Da Silva, A. Braeken, E. H. D’Hollander, and A. Touhafi, “Perfor-
mance and resource modeling for FPGAs using high-level synthesis
tools,” in Advances in Parallel Computing, vol. 25. IOS Press BV, 2014,
pp. 523–531.

[21] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-analyzer:
A high-level performance analysis tool for fpga-based accelerators,” in
2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC),
2016, pp. 1–6.

[22] H. Mohammadi Makrani and et al., “Pyramid: Machine learning
framework to estimate the optimal timing and resource usage of a
high-level synthesis design,” in 2019 29th International Conference on
Field Programmable Logic and Applications (FPL), 2019, pp. 397–403.

[23] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “Performance
modeling and directives optimization for high level synthesis on fpga,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pp. 1–1, 2019.

[24] J. Zhao., L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “Comba: A
comprehensive model-based analysis framework for high level synthesis
of real applications,” 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 430–437, Nov 2017.

[25] C. Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason
Cong, “Caffeine: Towards uniformed representation and acceleration for
deep convolutional neural networks,” in 2016 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Nov 2016, pp. 1–8.

[26] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang, “Understanding
performance differences of fpgas and gpus,” in 2018 IEEE 26th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), April 2018, pp. 93–96.

[27] S. W. Nabi and W. Vanderbauwhede, “Mp-stream: A memory perfor-
mance benchmark for design space exploration on heterogeneous hpc
devices,” in 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 5 2018, pp. 194–197.

[28] H. R. Zohouri, A. Podobas, and S. Matsuoka, “Combined spatial and
temporal blocking for high-performance stencil computation on fpgas
using opencl,” in Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA 18. New
York, NY, USA: Association for Computing Machinery, 2018, p. 153162.

9

