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ABSTRACT

The ever-increasing parallelism demand of General-Purpose Graphics Processing

Unit (GPGPU) applications pushes toward larger and more energy-hungry register files in successive GPU
generations. Reducing the supply voltage beyond its safe limit is an effective way to improve the energy
efficiency of register files. However, at these operating voltages, the reliability of the circuit is compromised.
This work aims to tolerate permanent faults from process variations in large GPU register files operating
below the safe supply voltage limit. To do so, this paper proposes a microarchitectural patching technique,
DC-Patch, exploiting the inherent data redundancy of applications to compress registers at run-time with
neither compiler assistance nor instruction set modifications. Instead of disabling an entire faulty register
file entry, DC-Patch leverages the reliable cells within a faulty entry to store compressed register values.
Experimental results show that, with more than a third of faulty register entries, DC-Patch ensures a reliable
operation of the register file and reduces the energy consumption by 47% with respect to a conventional
register file working at nominal supply voltage. The energy savings are 21% compared to a voltage noise
smoothing scheme operating at the safe supply voltage limit. These benefits are obtained with less than 2 and
6% impact on the system performance and area, respectively.

INDEX TERMS Computer architecture, data compression, energy efficiency, fault tolerance, memory

management, registers, SRAM cells, vector processors.

I. INTRODUCTION
For more than a decade, Graphics Processing Units (GPUs)
have established themselves as a massively parallel com-
puting device and have been adopted in multiple comput-
ing areas, from embedded systems to high-performance data
centers. This success has ultimately resulted in a plethora
of applications coded and optimized to run on GPU devices
(GPGPU applications). Within those, emerging applications
such as deep learning, analytics, or big data mining push
toward GPU architectures with higher computational and
memory resources while maintaining power under control.
As a consequence, energy efficiency has become a major
concern for modern GPU architecture designs.

The register file is one of the largest and most
energy-hungry structures in a GPU, consumes approximately

The associate editor coordinating the review of this manuscript and

approving it for publication was Junaid Shuja

173276

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

20% of the total GPU energy [22], and grows generation
after generation. For instance, the register file of the NVIDIA
Tesla V100, with 20 MB, is more than 5x larger than its
counterpart in the Tesla K40 [35]. Many approaches focus
on energy efficiency in the register file, from traditional
techniques like clock and power gating to recent research
including the exploitation of the data access behavior [3],
liveness analysis [26], prefetching [38], data redundancy [27],
register sharing [21], or coalescing techniques [9].

On the other hand, like any other digital circuit, GPU reg-
ister files are affected by static and dynamic variation effects.
Static variations are a consequence of the chip manufacturing
process (e.g., process variations), whereas dynamic variations
come from the circuit operation (e.g., voltage noise and aging
effects). Process variations impose a minimum safe supply
voltage limit (V,,;,,) for each memory cell to be reliable and,
in turn, for an entire register file, V,,;, is set to the highest
Vinin from the worst-case cell.
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A high supply voltage (V4q) over V,,;, ensures a suffi-
cient guardband for a safer operation against sudden Vg,
droops but speeds up circuit aging. In addition, a high
Vaaq results in energy wasting since energy scales quadrat-
ically with Vy; and large supply voltage noise is a rare
event [29]. In this context, prior work has proposed voltage
noise smoothing schemes for GPU register files that allow
relaxing the guardband by pushing V;,; toward V,,;, at a fixed
frequency [28], [29]. Scaling V44 below V,,;, is a challenging
task due to the high number of permanent faults as a result
of surpassing the V,,;, of multiple cells [39]. Contrary to
lone faults induced by either dynamic variations or particle
strikes, the high number of uprising permanent faults when
Via < Vpin are far from conventional Error-Correcting
Code (ECC) capabilities, requiring not only larger storage
capacities and energy consumption but also complex and slow
encoders/decoders to ensure a reliable operation [25], [46].

With the aim to further improve energy efficiency without
using costly ECCs, patching is being explored as a solu-
tion to tolerate permanent faults due to process variations
in GPU register files operating at low voltages below V.
This approach consists of disabling faulty register entries
and providing alternative and reliable entries where faulty
register accesses are redirected (patched). In this context,
prior work has identified reliable entries containing useless
data at compile-time, and has patched faulty accesses to
such entries at run-time thanks to Instruction Set Architec-
ture (ISA) modifications [42]. However, modifying the ISA
has the following downsides: i) exposes unnecessary imple-
mentation details to the programmer, ii) requires software
changes to exploit the mechanism, and iii) increases the ISA
complexity (backwards-compatibility and future extensions).
On the contrary, we present a novel pure-microarchitectural
patching technique, DC-Patch, that enables faulty entries for
patching purposes by exploiting the inherent data register
compression of GPGPU applications at run-time.

Effective data compression requires the presence of regular
patterns in the streams. Fortunately, many GPU program-
ming idioms generate regular memory access patterns and
avoid branch divergence, which entails that applications store
regular data patterns in GPU registers [5], [18], [34], [47].
Such regular patterns can be compressed using variations of
the Base-Delta-Immediate (BDI) algorithm originally pro-
posed to compress CPU cache lines [37]. These compression
algorithms can be applied to any modern GPU architecture
from either NVIDIA or AMD, since the exploited data
patterns exclusively come from the single-instruction
multiple-thread programming model provided by CUDA or
OpenCL.

Recent work focusing on GPU register files leverage data
compression to save energy [27], [48], [50], to mitigate
transistor aging phenomena [44], or to deal with transient
faults [32]. However, to the best of our knowledge, compres-
sion has not been previously exploited to circumvent perma-
nent faults in GPU register files. Moreover, this is the first
work that proposes a patching mechanism for GPU register
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files without introducing any complexities or added burden
to software or the programmer.

Modern GPUs from either NVIDIA or AMD usually divide
the register file entries into smaller register blocks. This is
because a Single Instruction, Multiple Data (SIMD) unit has
a number of lanes equal to the block size. That is, a SIMD
unit is capable of executing a single block in a given processor
cycle, meaning that an entire register is accessed and executed
in successive cycles [4], [31]. We exploit such an inherent
GPU architectural organization to patch as much compressed
registers as the number of blocks in a sole entry, which
enables faulty entries with a minimal design overhead.

Experimental results show that DC-Patch guarantees a reli-
able operation of a register file with 39% of faulty register
entries. Such a fault tolerance reduces energy on average
by 47 and 21% with respect to a conventional register file
working at nominal Vg, and at the safe V,,;, voltage, respec-
tively, whereas the impact on performance and area is less
than 2 and 6%.

The remainder of this paper is organized as follows.
Section II presents the background of this work. Section III
motivates the use of data compression strategies for patching
purposes. Section IV introduces the proposed DC-Patch tech-
nique. Section V discusses experimental results. Section VI
comments on related work, and finally, Section VII concludes
this paper.

Il. BACKGROUND

This section summarizes the GPU register file architecture,
the reliability model and scenarios used to evaluate the pro-
posal, and the exploited data compression strategy to combat
process variations in the GPU register file.

A. GPU REGISTER FILE

Current GPUs consist of tens of in-order processors, also
known as Streaming Multiprocessors (SMs) and Compute
Units (CUs) in NVIDIA and AMD GPUgs, respectively. With-
out loss of generality, this work uses the AMD Graphics Core
Next (GCN) family of GPUs as a driving example [4]. Thus,
AMD terminology is used throughout the paper.

A CU consists of 4 SIMD units. Each SIMD unit works
with a 64 KB slice of the register file, totalling a 256 KB
register file per CU. Figure 1 shows the pipeline stages of an
access to a slice, and how 256 vector register entries compose
a slice. In turn, every entry consists of 64 components of 4
bytes each totalling 256 B. To access to these register entries,
threads or work-items are organized into groups of up to
64 threads called wavefronts. All threads belonging to the
same wavefront access the same register entry, but with a
component shift based on the thread id in the wavefront. This
way, although each thread works with a different component
of the same entry, referring to each component is avoided in
the ISA.

Since a SIMD unit consists of 16 lanes (64 B), the threads
of a wavefront execute a given instruction forming 4 bundles
of 16 adjacent threads, referred to as blocks (blk;) in the
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FIGURE 1. Base slice pipeline stages after fetch and decode stages.

figure. These blocks are accessed in lockstep mode over four
successive cycles. Since AMD instructions usually have two
source operands (src0 and srcl) and one destination operand
(dest), a slice incorporates two read ports and one write port.
Notice too that, according to the pipeline depth, writing blk0
of the destination register entry into the slice and reading blk3
from the source register entries take place at the same cycle.

The register entries of a slice are statically distributed
among the wavefronts running on the corresponding SIMD
unit. To do so, when a wavefront is allocated to a SIMD
unit, it is given an id (WF;), the physical address of its base
register, and a number of contiguous allocated entries, which
is a constant value for all the wavefronts of a given application
and does not change throughout the application execution [7].
The set of entries accessed by a wavefront is referred to as
the register window of the wavefront. For instance, Figure 1
shows 3-register windows in the slice highlighted with a
greater gray gradient for wavefronts WFy, WF, and WF3.

As shown in the register translation stage, wavefront
instructions refer to logical registers within their window with
indexes (idx). These indexes are added to the base register to
obtain the physical register entries. The base register entry is
retrieved from a register base table indexed with the wave-
front id. This table requires as much as 256 rows to support
the uttermost case of wavefronts with 1-register windows.
Finally, each running wavefront receives a different register
base, so that register windows do not overlap.

B. RELIABILITY MODEL AND SCENARIOS
Lowering the V4, of a circuit is an effective way to attain sub-
stantial energy savings. However, at low V;, transistors are
more vulnerable to process variations, which manifest across
a chip as static and spatial fluctuations around the nominal
values in transistor parameters like the threshold voltage (Vi)
and the channel length (L.g) [10], [11]. Such fluctuations can
lead to permanent transistor faults; for instance, when the Vy;,
of a transistor surpasses the V; of the circuit.

Systematic strongly correlated effects such as lithographic
aberrations and random uncorrelated effects like random
dopant fluctuation induce process variations [23], [24].
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Systematic variations cause neighboring transistors to share
similar parameters, whereas random variations alter the tran-
sistor parameters uniformly across the chip [42].

The distribution of permanent faults in an SRAM memory
array depends on the impact ratio of systematic and random
variations. We evaluate the proposal under three different
reliability scenarios: common, clustered, and dispersed. The
common scenario refers to a commonly used ratio for pro-
cess variations where both systematic and random effects are
equally treated [23], whereas clustered and dispersed refer
to scenarios with a greater impact of systematic and random
variations, respectively.

TABLE 1. Supply voltage and percentage of register entries with different
number of faulty bits for each reliability scenario [42].

Reliability |V, Reliable entries Faulty entries
scenario | (mV) || 0-bit | I-bit 2-bit | 3-bit | >4-bit
Common 419 34 33 20 10 3
Clustered 497 43 20 12 10 15
Dispersed | 371 26 35 23 12 4

Table 1 shows the supply voltage and the distribution of the
register entries of a slice according to their number of faulty
bits for each reliability scenario. We assume the 28-nm fault
model proposed in [42] and obtained with VARIUS [24]. The
undervolting margins from the nominal Vy; are 38, 48, and
54% for clustered, common, and dispersed, respectively. Such
undervolting margins are close to those of a recent 14-nm
FinFET reliability model [17]. However, we refer to a 28-nm
model because that is the smallest-node with a synthesis
library available to us (see Section IV-E). Anyway, since the
undervolting margins are similar to [17], we believe that the
presented energy savings would be similar in a 14-nm node.

The assumed reliability model focuses on the register
file by assuming an implementation with dedicated volt-
age domains for logic and arrays, keeping logic at a high
Viq to avoid faults as described in previous academic
work [14], [52], patents [13], and commercial devices [8].
Each reliability scenario operates at a fixed Vy; (below the
safe 600 mV V,;;, for 28 nm [51]) throughout the execution
of an application [36], [42]. For the sake of clarity, entries
with four or more faulty bits are grouped together.

Error-Correcting Pointer (ECP) is an approach correcting
permanent faults by encoding the locations of faulty bits into
a table and assigning additional replacement bits to replace
faulty bits [40]. In this work, ECP is employed at a reasonable
granularity of register entry with a single replacement bit per
entry. Thus, entries with less than two faulty bits are treated
as reliable. We conservatively assume that the faulty bits
are uniformly distributed across the four blocks of a register
entry. That is, faulty entries with i faulty bits, i > 2, have i
faulty blocks. Of course, when i > 4, all the blocks are faulty
and the entry is considered as completely useless.

The common scenario shows a register distribution where
the percentage of entries reduces with the number of faulty
bits within an entry. In contrast, the clustered scenario, where
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the systematic effect dominates over the random effect, shows
a higher percentage of entries in the edges of zero and four
or more faulty bits. The dispersed scenario, where faults
are randomly distributed, presents a higher percentage of
entries with at least one faulty bit, but does not show as much
completely faulty entries as the clustered scenario. Overall,
the percentage of faulty register entries in a slice is 33, 37,
and 39% for common, clustered, and dispersed, respectively.

Finally, each reliability scenario has a different 256 x 4
faulty map per slice according to the location of the
faulty register blocks. These maps are determined during a
post-fabrication testing. At a given Vg, all the slice cells are
tested by comparing a bit to be written in a cell with the
read-after-written bit from the cell. In the case of a mismatch,
the cell fails the test and the corresponding block is marked
as faulty in the map [36], [41], [42]. The faulty map will be
used as input for DC-Patch to differentiate between reliable
and faulty register entries and blocks. Note that these faulty
maps apply to permanent faults from process variations.
Other types of faults induced by either dynamic variations or
particle strikes, which are out of the scope of this paper, can
be covered with recent ECC approaches [45].

C. DATA COMPRESSION
This paper leverages the data compression mechanism pro-
posed in [44], where three different regular data patterns are
identified, namely constant, single- A, and double- A patterns.
The constant pattern appears when all the components of a
register entry store the same scalar value. This pattern is com-
mon in practice due to divergence control [47]. The single-
A pattern occurs when a register entry stores a sequence of
values where the difference, referred to as delta, between
successive components is constant and greater than zero.
Examples are registers storing thread ids or the addresses of
an array. Finally, register entries showing a double- A pattern
are those in which the register is divided in subsets of com-
ponents. A first delta value refers to the constant difference
between the first component of a subset and the first compo-
nent from the successive subset, and so on. Like the previous
pattern, a second delta value refers to the constant difference
between adjacent components within the subsets. Register
entries linearly storing the addresses of a matrix typically
show this pattern. In addition, this pattern also appears when
using programming techniques like tiling or sliding windows.

These patterns offer a high compression ratio, since
a single base component and two delta values (totalling
4.88 bytes) are needed to completely unwind an entire
256-byte register. The required hardware units to com-
press/decompress a register at run-time consist of a number
of adders, subtractors, comparators, and tiny memory buffers
to cope with the pipelined 4-cycle read and write operations
in a slice according to the number of blocks in a register
entry.

A decompression unit receives a block with the com-
pressed data of a register and outputs each uncompressed
block in a successive cycle, completing the process after four
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cycles. Similarly, a compression unit receives each uncom-
pressed block one after the other, computes the compressed
data in the first cycle, and determines if the complete register
can be compressed in the fourth cycle after all blocks have
been examined. If the entire register cannot be compressed
with a single base and two deltas, it is considered as uncom-
pressible. Further implementation details of these units can
be found in [44].

Divergent slice writes in a compressed register require to
act on an uncompressed register before performing the write
operation, since only some components are updated. In such
cases, the compressor is disabled and an additional MOV
instruction is injected into the pipeline to force the register
decompression before the divergent write operation. !

Ill. MOTIVATION

This section explores the potential of a fault patching tech-
nique based on data compression. To do so, the coverage of
the compression algorithm is firstly analyzed by studying the
percentage of compressed and uncompressed register writes.
Secondly, register entries are classified depending on the
compression state of the contents and the reliability state of
the entry.

100% T
80% - O Compressed data

70% -
60% -
50% -
40% 1
30% -

Percentage of register writes

20% -
10% 1

0%

BlackS  DCT Histog MatrixM QRandS RadixS Reduct SConv Avg

FIGURE 2. Percentage of register writes divided in writes storing
compressed or uncompressed data.

Figure 2 illustrates the register writes split in those storing
compressed or uncompressed data in a conventional regis-
ter file exploiting the compression algorithm described in
the previous section. Results are shown for a representative
subset of applications from the OpenCL SDK 2.5 bench-
mark suite with various characteristics like different memory
requirements, register file utilization and stress, or data com-
pression opportunities [6]. The reader is referred to Section V
for further details about the experimental environment.

Results show that the compression algorithm has a high
potential, since almost 40% of the register writes on average
compress the registers. The compression coverage largely
differs between applications (from 14 to 76% in MatrixM and
QRands, respectively) mainly due to their different required

]Experimemal results show that the impact on performance of the addi-
tional MOV instructions is negligible, since a 4% of writes on average are
divergent but only a 0.13% refer to compressed registers.
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data types and structures. Applications with a low compres-
sion coverage usually demand a high number of scalar and
floating-point data types, which are less likely to be com-
pressed. On the other hand, benchmarks with a high com-
pression coverage usually exploit multiple data dimensions
(vectors and matrices), integer data types, and thread ids.

60%

O Compr & reliable
O Uncompr & reliable
50% I Compr & faulty

W Uncompr & faulty

40%
30% 1
20% |
10%

0% £ =

BlackS DCT Histog MatrixM QRandS RadixS Reduct SConv Avg

Average % of register entries per cycle

FIGURE 3. Average percentage of reliable and faulty entries per cycle
storing compressed and uncompressed registers under the common
reliability scenario.

Figure 3 classifies the register entries into four categories
depending on the compression state of the register contents
(i.e., compressed or uncompressed) and the reliability state
of the entry (i.e., reliable or faulty). Each bar shows the aver-
age percentage of occupied entries per cycle. For illustrative
purposes, results are only shown for the common reliability
scenario.

Nearly 30% of the entries on average are reliable and
store a compressed register by default in each cycle. These
entries are prime candidates for patching, since the proposed
DC-Patch technique preferably forces a reliable entry to be
patched with an uncompressed register. Results also show that
a 22% of the entries are reliable and already store an uncom-
pressed register. Thus, they are not appropriate for patching
purposes. A reduced percentage of 10% of the entries are
faulty and store an uncompressed register. A register in such
a faulty entry requires from a patch operation to a reliable
entry, otherwise the data integrity would be compromised
with the presence of faults. Finally, a 14% of the entries are
faulty but store a compressed register. In this case, a patch
would not be required as long as the compressed register
is stored in a reliable block within the faulty entry. In fact,
the remaining reliable blocks (if any) of such an entry can
store other compressed registers, which results in a faulty
entry storing multiple compressed registers.

Results for both clustered and dispersed scenarios are
similar to those of the common scenario. The largest differ-
ences are seen between common and dispersed. Since the
latter has a higher number of faulty entries, the percentage of
faulty entries storing uncompressed and compressed registers
increase on average to 13 and 17%, respectively, whereas
the percentages of reliable entries storing uncompressed and
compressed registers are reduced to 20 and 25%.

173280

Overall, data compression provides promising opportuni-
ties for patching, since all the benchmarks, apart from BlacksS,
show a higher percentage of reliable entries storing com-
pressed registers over faulty entries storing uncompressed
registers. Note that unallocated entries also offer patching
opportunities for either compressed or uncompressed reg-
isters. The register file utilization depends on: i) the GPU
architecture, like the number of slice entries, the maximum
number of concurrent wavefronts allocated to a slice, and
the wavefront register window size [7], and ii) application
optimizations [1]. In Figure 3, the sum of each category for
a given application gives the percentage of its register file
utilization. Depending on the benchmark, these percentages
range from 54 (QRandS) to 93% (SConv), with an average
of 74%. This percentage is higher than those from previous
work reporting the average register file utilization [1], [44].

IV. DATA COMPRESSION-AWARE PATCHING TECHNIQUE
This section introduces our proposed DC-Patch approach.
First, an overview of DC-Patch is presented, discussing how
the patch selection algorithm works and identifying the main
design components of the approach. Then, these components
are described in detail, including the involved operations
on each of them. Finally, timing, energy, power, and area
overheads are also analyzed.

A. OVERVIEW

DC-Patch dynamically patches registers to slice entries
depending on the register compression state at run-time.
A patch operation is required when a register is written for
the first time, and also when subsequent writes change its
compression state from compressed to uncompressed and
vice versa. This means that the previous patch entry of the
register is released, and a new patch referring to a faulty
or a reliable entry is assigned to the register depending on
its new state. Uncompressed registers are always patched to
reliable entries, whereas compressed registers can be patched
to either reliable or faulty entries. The proposal prioritizes
compressed registers to be patched in faulty entries, since
otherwise reliable entries would be wasted.

The proposed approach exploits the inherent pipelined
access of a 256-byte register entry in 64-byte blocks. That
is, a reliable entry is able to patch up to four compressed
registers, each one in a different block. On the other hand,
faulty entries are able to patch compressed registers only
in reliable blocks, whereas faulty blocks are disabled. This
way, contrary to prior work [42], data compression enables
the use of faulty entries for patching purposes. Note that a
compressed register (4.88 bytes) occupies a small fraction of
the much larger 64-byte block, leaving room for more than
a single compressed register to be patched within a block.
However, this would lead to a more complex design with a
larger energy and area wasting.

Figure 4 plots the pipeline stages of a slice after the fetch
and decode of an instruction, including the main additional
DC-Patch design components colored gray. At a glance,
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FIGURE 4. Slice pipeline stages including the main DC-Patch design components colored gray.

the Patching Table (PT) is located after the register translation
and forwards to the next stage the patch entry of every reg-
ister. The compression and decompression (Com/Dec) units
have dedicated pipeline stages. The latter is placed after the
read ports of the slice and ensures that the SIMD unit operates
with uncompressed blocks from source registers each cycle.
After examining a destination block, the compression unit
outputs the compressed data (if any) to the slice write port.
Finally, the Patching Selection Unit (PSU) is located at the
writeback stage. Taking into account the faulty map of the
reliability scenario, the PSU outputs a new patch when the
compression state of a destination register changes. Below,
we describe each of these components and the involved oper-
ations in detail.

B. PATCHING TABLE (PT)
The PT is 416-byte memory array indexed by the physical
source and destination registers of an instruction. The number
of rows in the PT equals the number of slice entries (i.e., 256),
and they are also arranged in wavefront register windows.
In fact, the PT completely decouples the register windows
to the slice to maximize the chance to find a patch. In other
words, patches allow to dynamically allocate registers from a
wavefront in any available slice entry.

The contents of a PT row are updated by the PSU when
a new patch is necessary. Each PT row contains the patch
entry (entry,) where a register resides in the slice. For a
compressed register, the blk),, bits indicate in which block
within the entry is located the compressed register. These bits
are also used in the slice read ports (blky; s; bits) to forward
a source block to the next stage in a sole cycle. Similarly,
when the state of a destination register remains as compressed
(i.e., a new patch is not required from the PSU), the bk,
bits of such a register control the write port (blky; ges: bits) to
store the compressed result from the SIMD unit to the proper
slice block in a single cycle. In the case of an uncompressed
register, the blk,, bits are not used to control the slice ports.
Instead, all the register blocks are accessed over four cycles.
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The v valid bit and the ¢, compression bit define the state
of a register. When set to logic ‘1’, they refer to a valid and a
compressed register, respectively. The PSU uses these bits to
obtain a patch for a destination register. In addition, the ¢,
bit drives the 2:1 muxes from the decompression stage to
select between either uncompressed blocks from a read port
or decompressed blocks from a Dec unit.

Note that if a patch entry cannot be found for either a
compressed or an uncompressed register, a spilled patch
is assigned to the register. That is, an additional memory
structure stores the register contents. In this work, instead
of polluting or reducing the effective storage capacity of
the memory hierarchy [42], we exploit the Local Data
Share (LDS) cache to cope with spilled registers.>

The m bit indicates whether the patch of a register refers to
aspill im = 1) or not (m = 0). If m = 1, instead of accessing
the slice, an additional load access to the LDS cache is trig-
gered to obtain the requested data. For this purpose, the LDS
is partitioned in two halves, one for regular LDS data and the
other for spilled registers. Spilled registers are arranged as a
contiguous array in the LDS. In the PT, the entry,, bits of
spilled registers refer to an offset from the base address of the
spill partition where the register is located. The small impact
on performance of spill register management by the LDS is
quantified in Section V-A2.

C. COMPRESSION AND DECOMPRESSION

(COM/DEC) UNITS

According to the number of slice ports, DC-Patch requires
one Com unit and two Dec units. Contrary to the PT,
the latency of these units forces to enlarge the pipeline
depth in two additional stages. The impact on performance

2The LDS is shared among the SIMD units of a CU. For GPGPU appli-
cations, the use of the LDS is programmer-dependent. Applications can load
or store data in the LDS to amplify the cache bandwidth, to avoid polluting
the cache hierarchy with scatter and gather accesses, or to perform atomic
operations within a work-group [4]. This cache is referred to as the shared
memory in NVIDIA counterparts.
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of the enlarged pipeline depth is discussed in Sections IV-E
and V-A4. The input of a Dec unit comes from the read
port and refers to a block containing the compressed data
of a source register. In such cases, this unit unwinds the
four register blocks and forwards one after the other to the
SIMD unit in successive cycles. On the contrary, blocks from
uncompressed registers simply bypass the Dec unit.

The Com unit receives from the SIMD unit an uncom-
pressed block in each cycle. When this unit receives the first
block of a register, it determines the compression state of the
block and notifies such a state to the PSU with the ccomp, bit,
which is set to ‘1’ or ‘0’ when the contents are compressed
or uncompressed, respectively. If ccompr = 1, the compressor
also outputs the compressed data to the write port. Otherwise
the four blocks of a register are simply forwarded to the write
port. The ccompr bit also controls a 2:1 mux to forward either
the compressed or uncompressed data to the write port.

Note that the compression of a register is speculative, since
the register is not known to be definitely compressed until
the fourth block is checked. For this reason, a Destination
Register Buffer (DRB), as large as a slice entry, stores the
four blocks from the SIMD unit while a register is partially
identified as compressible. On a compression mispeculation,
the PSU is notified by changing the state of the ccompr
bit, and the pipeline is stalled during four cycles until the
entire register from the DRB is written to the slice. The
impact on performance of the mispeculation is analyzed in
Section V-A3.

An alternative solution to remove the compression spec-
ulation would be to include an additional slice write port
enabling two simultaneous writes, each one referring to a dif-
ferent compression state of a register. This way, once the final
compression state is determined, the write operation referring
to the wrong register would be invalidated. However, this
solution may incur in a significant design complexity and
additional energy and area overheads.

D. PATCHING SELECTION UNIT (PSU)
The PSU consists of a 256 x 4 bitmap referring to each slice
block and two priority encoders with 1024 and 256 inputs
each to select faulty and reliable entries, respectively. The
bitmap is preset to the faulty map of the chosen reliability
scenario and updated throughout the execution of an appli-
cation with the occupied and released patches. Of course,
faulty blocks will be permanently marked as occupied in
the bitmap and not eligible for patching. According to the
bitmap state, the 1024-input encoder selects a free block from
a faulty entry to patch a compressed register, whereas the
256-input encoder selects an entire and free reliable register
entry (four consecutive blocks) to patch an uncompressed
register. The PSU outputs one of these selections depending
on the compression state of the destination register from the
compressor (Ccompr bit input). The remaining inputs of the
PSU are the PT contents of the destination register.

For each instruction with a destination register, the PSU
enables an encoder to obtain a preventive patch while the
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instruction traverses the pipeline. This preventive patch refers
to an inverse patch of the current register. For instance, if the
current patch refers to a reliable entry (¢, = 0), the PSU
preemptively selects a reliable block from a faulty entry,
assuming that the compression state will change. This way,
when the first block of a register reaches the writeback stage,
the PSU compares the ¢, and ccomp bits, and drives the write
port accordingly (psel bit), either selecting the new patch
(entrypsy desr and blkygy ges:) or the previous patch from the
PT. Preventive patches allow the PSU to be located in the
writeback stage without increasing the pipeline depth. If a
register is written for the first time (vgey = 0), the PSU
enables both encoders to obtain two preventive patches. Once
the instruction leaves the pipeline, the PSU releases the
unused patch and updates the PT if necessary.

In the case of a compression mispeculation, the PSU selects
the reliable patch and the uncompressed blocks from the
DRB are written to the slice one after the other (misp = 1).
Notice too that, when an instruction writes to a spilled register
(mgess = 1), the PSU tries to find a new slice patch for the
register in order to mitigate subsequent LDS latency penal-
ties, obtaining two preventive patches as in the first write to
a register. On the other hand, when a new patch cannot be
found in the slice, the PSU sets the m g bitto ‘1’ and updates
the entryp; gess With the LDS spill partition offset where the
register is allocated.

Finally, when a wavefront is deallocated from the slice
because it has finished the execution, the PSU accesses the
wavefront window of the PT, invalidating all the PT rows
(v = 0) of the wavefront and releasing all the corresponding
patches in the PSU bitmap.

E. TIMING, ENERGY, POWER, AND AREA ESTIMATIONS
This section estimates the timing, energy, power, and area of
the main DC-Patch design components. The memory struc-
tures like the slice and the PT have been modeled with CACTI
7.0 [30], whereas the combinational logic and flip-flops
present in the Com/Dec and PSU units have been synthesized
with Synopsis Design Compiler and simulated with Mentor
Graphics Modelsim. The technology library corresponds to a
low-V; 28 nm technology available to academia. For timing
closure, we assume the 1 GHz clock frequency of the AMD
GCN HD 7770 GPU, which is the GPU device considered in
all the experiments.

Table 2 shows the results. The access time and dynamic
energy (from read and write operations) of the slice refer to
accessing a 64-byte block. For the Com/Dec units, PT, and
PSU, these parameters refer to evaluating a block, accessing
an entry, and obtaining a new patch, respectively. However,
for the PSU, the access time refers to exclusively forwarding
the new patch to the slice write port in the writeback pipeline
stage, since preventive patches are obtained in prior stages.
Notice too that the dynamic expenses from read and write
operations are not applicable in some DC-Patch components
due to they are not involved in a read or a write access to the
slice. The results of the slice are shown for the three studied
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TABLE 2. Timing, energy, power, and area values for a 28-nm technology node and a 1 GHz clock frequency. N/A: Not applicable.

Slice Slice Slice Slice Com Dec Patching | Patching
@Conv | @Comm | @Clus | @Disp unit unit Table Sel. Unit
Access time (ns) 0.85 0.95 0.95 0.09 0.11
Read energy (pJ) 247.38 84.38 84.90 68.25 N/A 0.62 0.54 N/A
Write energy (pJ) 302.23 97.68 99.76 78.33 0.72 N/A 0.50 0.22
Static power (mW) | 58.58 30.79 35.18 27.73 6.67 7.14 0.41 15.41
Area (mm?) 0.680 0.005 | 0.007 0.005 0.014

reliability scenarios plus a conventional scenario where the
GPU works at nominal Vg, to avoid faults. Like the conven-
tional GPU, all the DC-Patch design components are kept at
nominal Vg, for the same reason. Note that a 64-bit single-bit
error correction and double-bit error detection (SECDED)
ECC with 8 check bits could be also used to protect the small
DC-Patch memory arrays from dynamic variations or particle
strikes with an overhead of 544 check bits [49].

We have assumed that the access time of the slice remains
constant regardless of the V,;; value. However, reducing Vy,
may lead to an increase of the transistors switching delay [3].
In this sense, we have measured the average performance loss
of pipelining the slice block access and increasing the access
time from 1 to 3 additional cycles. Similarly to [27], [50],
the impact on performance ranges from 0.58 to 1.52%. These
results indicate that enlarging the pipeline depth has a rel-
atively low impact on performance, particularly if there is
enough thread-level parallelism from simultaneous wave-
fronts allocated to the slice.

As expected, the dynamic energy and static power of the
slice decrease with Vg;. The largest reductions can be seen
in the dynamic energy since it grows quadratically with V.
Compared to the slice, the proposed components largely
reduce energy, power, and area. Power is the parameter that
impacts the most, since all the DC-Patch components con-
sume 36.77 mW, which is almost two-thirds of the slice
power when working at nominal V;. The reader is referred to
Section V-B for a deeper analysis of the power consumption.
On the other hand, the area estimation of all the proposed
components is by 0.038 mm?, which corresponds to a 5.6%
of the slice.

Recall that the access time of the Com/Dec units (0.95 ns)
forces to enlarge the pipeline in two additional stages. On the
contrary, the access time is small enough in both the PT
(0.09 ns) and the PSU (0.11 ns) to fit them into the orig-
inal register translation and writeback stages. Furthermore,
the impact of the additional 2:1 muxes in the critical path is
minimal since the delay of this component is 13 ps according
to Synopsis.

V. EXPERIMENTAL EVALUATION

DC-Patch has been modeled in the cycle-accurate Multi2Sim
simulator [43]. Results include the execution time of the
applications and additional processor statistics required to
estimate energy. The overall energy consumption has been
calculated combining processor statistics from Multi2Sim
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TABLE 3. GPU configuration and memory hierarchy.

Clock frequency 1 GHz

CUs 10

Vector memory unit | 32 entries, 1 per CU

Scalar unit 2 KB, 1 per CU, 1 cycle/instr.

Slice 64 KB, 4 per CU, 4-1-1-1 cycles/instr.

Max. WFs per CU 16
Work-items per WF | 64

All caches LRU, 64B-line

Scalar L1 caches 16 KB, 4-way, 1 per CU, 1 cycle
Texture L1 caches 16 KB, 4-way, 1 per CU, 1 cycle

LDS caches 64 KB scratch, 1 per CU, 1 cycle

2x L2 caches 128 KB, 16-way per module, 10 cycles
Main Memory 2 channels per L2 module, 100 cycles

with energy numbers from CACTI and Synopsis. The con-
figuration and memory hierarchy parameters of the modeled
GPU are shown in Table 3. All the benchmarks run until
completion.

A. IMPACT ON PERFORMANCE

To better understand the main sources of performance degra-
dation, we firstly classify slice writes into normal accesses,
writes requiring a new patch operation, and writes triggering
an access to the LDS cache due to spilled registers. Then,
we quantify the LDS capacity devoted to spills, the additional
load accesses to this cache, and the mispeculation of the
compressor. Finally, the impact on the system performance
is presented and analyzed.

1) SLICE WRITES BREAKDOWN
Figure 5 plots a breakdown of slice writes divided in normal
accesses, patches to faulty or reliable entries, and writes to
spilled registers in the LDS. The first write of a register is
always considered as a patch to either a reliable or a faulty
entry, or an access to the LDS.

Results show that, in applications like QRandS and
MatrixM, with disparate compression capabilities (see
Figure 2), the percentage of normal writes without a patch
reaches 90%. This percentage is on average by 70%, meaning
that most registers do not change the compression state of
their contents during the entire lifetime. In other words, once
DC-Patch selects a patch entry, it usually refers to the same
logical register for the entire execution of a wavefront. The
fact that results are quite homogeneous for a given application
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FIGURE 5. Percentage of register writes requiring a normal access
without a patch, a patch operation to either a reliable or a faulty entry,
and extra write accesses to the LDS.

under the different reliability scenarios also confirms these
comments.

DC-Patch provides enough patching entries for the studied
reliability scenarios, since the LDS writes are only noticeable
in BlackS, where the percentage ranges between 1-2%. The
combination of two key factors are the cause of the presence
of LDS writes in this application. First, the percentage of
compressed registers is quite low, which implies that a high
number of faulty entries cannot be exploited for patching
purposes. Second, the register file utilization is very high (see
Figure 3), which limits the opportunities to find a patch entry.

2) IMPACT ON THE LDS CACHE

LDS cache writes due to unavailable register entries result
in an LDS partition devoted to store spilled registers and
additional load accesses to this partition when the processor
requests such registers. Both the spill partition size and the
percentage of additional loads increase with the number of
faulty entries, and, hence, dispersed is the reliability scenario
with the highest LDS requirements.

Only three benchmarks store spilled registers in the
LDS. BlackS, which is the application with the least compres-
sion capabilities, requires the largest spill partition, 23 KB.
Nevertheless, spilled registers are only responsible of a 1.2%
of additional loads over the total number of the register file
reads. More importantly, this does not imply any thrashing
effects in the LDS since BlackS does not use this cache for
regular data. Histog and MatrixM, which also present limited
compression capabilities, require a spill partition size of 3 KB
at most and show a low activity in the LDS with a 0.07% of
additional loads due to spills at most. This is mainly due to
the register file utilization of such applications is not as high
as in BlackS. Like BlackS, MatrixM neither uses the LDS
apart from managing spilled registers. On the contrary, Histog
uses the LDS for regular data, but the percentage of additional
loads is very low to cause noticeable thrashing effects.

3) COMPRESSION MISPECULATION
Compression mispeculation is another source of performance
degradation, since an initially patched faulty entry has to be
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invalidated and the uncompressed register from the DRB has
to be written to the inverse reliable patch indicated by the
PSU, stalling the pipeline until the write operation completes.

12%
1% 1
10% 1
9% 1
8% 1
7%
6%
5% 1
4% A
3% 1

2% 4
1%
0% = T T T T T T

BlackS DCT Histog MatrixM QRandS RadixS Reduct SConv Avg

Percentage of writes with compression mispeculation

FIGURE 6. Percentage of register writes with a mispeculation on the
compression phase.

Figure 6 shows the percentage of mispeculated register
writes over the total number of writes. Results are indepen-
dent of the reliability scenario. The prediction of the com-
pression mechanism is quite accurate, since the percentage
of mispeculated writes is on average by 2.4%. In fact, half
of the benchmarks present a negligible percentage of write
mispeculations or no mispeculations at all.

4) IMPACT ON THE SYSTEM PERFORMANCE

Figure 7 depicts the system performance degradation of the
DC-Patch technique with respect to a conventional register
file working at nominal supply voltage. Recall that, apart
from the additional LDS load accesses and the mispeculation
on compression operations, the increased pipeline depth with
the added compression and decompression stages can also
hurt performance.

5.0%

W Common
o, 4
45% O Clustered
4.0% - W Dispersed
3.5% A
c
3.0%
g o
T 2.5% |
o

B 2.0% A
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Histog MatrixM QRandS RadixS Reduct SConv Avg

FIGURE 7. Slowdown of DC-Patch with respect to a conventional register
file.

The performance impact largely varies across applications.
As expected, BlackS shows the highest performance impact,
since it suffers from the three main sources of performance
losses. Nevertheless, the performance losses do not exceed
4.5% with respect to the conventional approach. For DCT,
Histog, and QRandS, the performance impact is quite uni-
form regardless of the reliability scenarios. These losses are
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FIGURE 8. Normalized energy of DC-Patch and a voltage noise smoothing scheme with respect to a conventional register file design.

mainly attributed to the combined effects of the compression
mispeculation and the increased pipeline depth. MatrixM
suffers from both the additional pipeline stages and the num-
ber of additional LDS loads. The remaining benchmarks are
mostly affected by the increased pipeline depth. Nevertheless,
the results confirm that the scheduler is able to frequently
dispatch independent instructions from different wavefronts,
which largely masks the performance penalty of the enlarged
pipeline. Notice too that, for an application with a low com-
pression capability, a high register file utilization, and a high
LDS requirement for regular data, an ultimate solution would
be to raise Vg to enlarge the effective register file storage
capacity at the cost of limited energy savings but enhanced
performance.

Overall, the impact on performance of the DC-Patch mech-
anism is on average by 1.53, 1.60, and 1.76% for common,
clustered, and dispersed reliability scenarios, respectively,
compared to the conventional register file.

B. ENERGY SAVINGS

Aggressively undervolting memory structures brings large
energy savings at the cost of permanent faults. The DC-Patch
mechanism effectively overcomes such faults. However,
the required design components of this mechanism and the
enlarged execution time of the applications incur in energy
overheads.

Figure 8 plots the normalized energy consumption of the
register file slice with respect to the conventional slice design.
A voltage noise smoothing scheme (Smooth) operating at
a safe 600 mV Vy, is included for comparison purposes.
Energy is divided into static and dynamic expenses. In turn,
dynamic energy is classified into expenses due to reads
and write operations in the slice. The energy overhead of
compression mispeculations is added to the Write category.
Label Com/Dec refers to the static and dynamic expenses
of the compression and decompression units, whereas static
and dynamic consumption of the PT, PSU, and DRB are
accumulated in the Patching category. Finally, the dynamic
energy overhead of accessing the LDS due to spills is also
quantified.
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The contribution of static expenses over the total energy
widely varies among applications. For example, applications
with a relatively low register file usage show a smaller con-
tribution of dynamic expenses but keep accumulating static
energy on each cycle. This is the case of RadixS, where a high
number of wavefronts are allocated during the application
execution but their number of slice accesses are relatively low.
Since the static consumption grows linearly with V;, Smooth
and DC-Patch significantly reduce such expenses compared
to the conventional scheme. DC-Patch achieves such energy
savings in spite of the static energy overhead due to the
enlarged execution time over Conv and Smooth. As expected,
dispersed, with the lowest V4, obtains the highest static
energy savings, followed by common and clustered.

The reduction of the supply voltage has a greater impact
on the dynamic expenses, since V4 has a quadratic effect
on this type of consumption. In addition, DC-Patch also
contributes to further reducing the dynamic expenses over
Conv and Smooth. This is due to, on a slice read/write access
to a compressed register, just a single block containing the
compressed data is accessed instead of the whole register.
Applications with a high register file usage and a high number
of compressed registers, like QRandS and SConv, show large
dynamic energy savings.

Recall that the DC-Patch components operate at nominal
Vaaq to avoid faults in them. This imposes an energy overhead,
but it does not prevent the proposed mechanism to largely
reduce the total energy consumption over Conv and Smooth
thanks to: i) aggressively undervolting the slice and ii) miti-
gating slice dynamic expenses when accessing to compressed
registers. Compared to Smooth, only Histog and RadixS show
a higher consumption. This is mainly due to these applica-
tions have a relatively low slice usage and data compression
opportunities that prevent significant energy savings from
dynamic slice expenses.

Notice too that the expenses of accessing the LDS spill par-
tition are only noticeable in BlacksS, and they are much smaller
than those expenses due to accessing the slice, confirming
that the number of accesses to spilled registers is much lower
than the number of accesses to registers patched in the slice.
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Overall, the total energy savings of DC-Patch under com-
mon, clustered, and dispersed are on average by 39, 43,
and 47%, respectively, over the conventional scheme. Com-
pared to Smooth, these percentages are 10, 14, and 21%,
respectively.

VI. RELATED WORK

This section describes recent work that has exploited data
compression in GPU register files, proposed fault patching
techniques for both GPU and CPU architectures, orthogonal
to this work, and other related research leveraging either data
redundancy or reallocation approaches.

A. DATA COMPRESSION IN GPU REGISTER FILES

Zhang et al. implement a register file with spin-transfer
torque magnetic RAM technology [50]. With the aim to
reduce the dynamic energy overhead and long latencies of
write operations, authors exploit the BDI algorithm to com-
press registers.

Warped-Compression saves static energy in register files
by leveraging BDI compression [27]. For those registers
identified as compressible, this approach maintains the com-
pressed data in the least significant bits of these registers,
whereas the remaining bits do not contain useful data and the
associated cells are power gated.

The EREER approach removes duplicated adjacent com-
ponents of a register, preserving the non-duplicated compo-
nents and additional tag bits with the required metadata to
decompress the register in the least significant bits of the
register entry [48]. The unused components of a compressed
register are power gated to reduce energy consumption.

Power gating helps not only to reduce static energy
consumption but also to mitigate aging effects, particu-
larly the Negative Bias Temperature Instability (NBTI) phe-
nomenon [12]. Unlike Warped-Compression and EREER,
RC+RAR is a technique that switches off entire registers
by storing the compressed data in an auxiliary NBTI-free
memory array [44]. Combining power gating with a register
address rotation approach, all the register file cells can be
powered off and age uniformly over time.

Mittal et al. combines the BDI compression algorithm with
radiation-hardened circuits to tolerate transient faults [32].
Similarly to Warped-Compression and EREER, this approach
stores the compressed data in the least significant bits of
registers. To protect these data against particle strikes, authors
propose to harden such bits. However, hardening methods
either depend on advanced and costly semiconductor man-
ufacturing processes and materials, which do not allow the
dense integration scale of standard and much cheaper com-
mercial semiconductor processes, or incur in larger area by
using standard cells that include redundant transistors, guard
rings, or modify the geometry of the transistors [19].

B. PATCHING TECHNIQUES
GR-Guard is a patching technique for GPU register files that
leverages reliable dead entries containing useless registers to
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store useful registers from faulty entries, avoiding the use of
such defective entries [42]. A register entry is identified as
dead during the time period from the last read to the next
write operation [33]. Since this information is unknown at
run-time, GR-Guard makes use of the compiler and modifies
the instruction set to identify dead register entries at run-
time. Specifically, the instruction format includes an addi-
tional bit for each operand to distinguish if the associated
register entry is dead or not. Contrary to this work, we do
not rely on the compiler neither modify the instruction set.
Our patching technique is driven by the key observation that
register contents are easily compressible at run-time, which
allows to treat faulty entries as patching locations themselves,
increasing the patching opportunities over prior work.

iPatch tolerates faults in CPU L1 caches by exploiting the
replication of both instruction and data cache contents in
other pipeline structures, like the trace cache, the MSHR, and
the store queue [36]. The proposal deals with faulty L1 lines
by storing in such pipeline structures the correct data. This
technique requires non-trivial modifications to the proces-
sor components, including the propagation of the memory
consistency management to the pipeline structures used as
a backup, which complicates the design and verification of
the processor. Moreover, the fault coverage is limited to the
L1 caches due to the relatively small size of the backup
structures.

C. OTHER WORK

Xiang et al. exploit the storage of data copies combined
with parity protection to detect and correct faults in GPU
register files [47]. Other approaches focus on the GPU exe-
cution lanes by exploiting either data reallocation techniques
to avoid the use faulty lanes and to reroute threads to idle
lines [16], or data redundancy in adjacent lanes and the
presence of idle lanes to detect and correct faults [2].

Duwe et al. focus on the tolerance of faults in a CPU
cache-like structure [15]. With the aim to improve the ECC
correction capability, this approach reorders the bits within a
cache line in such a way that ECC is able to generate a cor-
rection code. The search process of a suitable bit reordering is
exhaustive, since each possible combination should be tried.
In terms of execution latency, this can be unbearable inside
a processor pipeline. However, such an operation latency is
more likely to withstand inside a cache. Finally, Jadidi et al.
bypass permanent faults in CPU caches implemented with
phase-change memory technology by leveraging data com-
pression and shifting the compressed data within the cache
lines [20].

VII. CONCLUSION

In GPUs, supply voltage reductions can bring substantial
energy savings, especially in SRAM memory arrays occu-
pying a large percentage of the on-die area. However, low-
ering the supply voltage compromises the reliability of such
arrays as it induces the appearance of permanent faults due to
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process variations, which in turn reduces the effective storage
capacity of the memory.

The main goal of this work has been to operate GPU
register files below the safe supply voltage limit for energy
efficiency and to ensure the reliability of these circuits at such
operating conditions. To do so, we have proposed a patching
technique, DC-Patch, exploiting the inherent data redundancy
of GPGPU applications to compress register entries at run-
time. Such a redundancy appears in many data access patterns
that programmers often write. With compression enabled,
faulty register file entries become useful again because they
can store multiple compressed registers in their reliable cells,
effectively enhancing the register file storage capacity.

Experimental results have shown that DC-Patch ensures a
reliable operation of a register file with 39% of faulty register
entries. At this fault rate, energy consumption reduces by
47 and 21% compared to a fault-free register file operating at
nominal supply voltage and at the safe supply voltage limit,
respectively, whereas the impact on performance and area
remains below 2 and 6%.
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