
Towards the inclusion of FPGAs on Commodity Heterogeneous Systems

Marı́a Angélica Dávila Guzmán, Rubén Gran Tejero, Marı́a Villarroya Gaudó & Darı́o Suárez Gracia
Instituto de Investigación en Ingenierı́a de Aragón (I3A)
Departamento de Informática e Ingenierı́a de Sistemas

Universidad de Zaragoza, SPAIN
angelicadg@unizar.es, rgran@unizar.es, mvg@unizar.es, dario@unizar.es

INVITED PAPER

Abstract— Nowadays, most commodity heterogeneous systems consist
in either a CPU+GPU or CPU+FPGA. An attractive alternative
consists in merging both in a new class of heterogeneous system:
CPU+GPU+FPGA in order to combine the advantages of all of them
into a single platform.

In a three-device heterogeneous system, similarly to a two-device
system, we have to face problems like: programmability versus device
performance, data-buffers management and workload distribution. In
this work, we present the first steps into a runtime which deals with
theses problems for a system with a CPU+GPU+FPGA.

Index Terms— Heterogeneous System; CPU; GPU; FPGA; Runtime;
Load Balance

I. INTRODUCTION

Until a few years ago, each new technological node allowed man-
ufacturing computing devices with more transistors that were faster
and consumed less energy than the previous generation. Dennard
scaling has been supporting this effect for CMOS technologies: the
power density, power dissipated per unit area, have remained constant
generation after generation. When changing node technology, the
supply voltage was reduced, and a greater number of transistors
could be integrated per unit of area [1]. Nevertheless, in the recent
nanometric CMOS technologies, the requirements for a reliable
operation of the transistors have forced to maintain their supply
voltage, so the power density has increased. That is, in a constant
area there are more and more transistors consuming energy, and,
therefore, dissipating power becomes almost impossible, since we
are talking about 100 watts per cm2, greater than the surface of a
frying pan. Because of this, many transistor can not be active at the
same time, and, the dark silicon effect emerges. Nowadays, novel
approaches are required in order to sustain the growing computation
requirements of future systems.

A viable candidate to tackle this problem are heterogeneous
systems. Heterogeneous systems group different types of processors
architectures into the system in order to provide an specialized
hardware for each different task. Many heterogeneous systems rely
on a general purpose CPU and either a discrete or on-chip GPU
(Intel Core, AMD Ryzen). An example of the broad adoption of
this heterogeneous approach is that the first positions in the list of
TOP500 supercomputers rely on a CPU+GPU tandem.

Beyond solutions in the field of digital design, FPGAs have
shown great potential in solving problems very efficiently, especially
from the energy consumption point of view [2]. Unfortunately,
application development on a FPGA requires knowledge of digital
design, which has been the main obstacle preventing their broad
adoption by programmers. To mitigate this problem, High-Level
Synthesis frameworks with languages like C, C++, or OpenCL
improve programmer’s productivity [10]. In consequence, FPGA’s
are also a solid proposal for heterogeneous systems and then industry

not only offers discrete FPGA’s but also on-chip CPU+FPGA (f.e.
Altera DE-1, Xilinx Zynq-7000).

In this work, we focus on the combination of these three different
devices: CPU, GPU, and FPGA in a single runtime platform. Our
aim is the complete integrations of these three different architectures
in a cooperative and coordinated work for speeding-up single
applications.

II. THE RUNTIME

Our runtime is based on EngineCL [12], it acts as an OpenCL
C++ wrapper to simplify the programming of heterogeneous devices
and squeeze the performance out of them. This runtime support
the input/output data-buffer management besides we add a work
scheduler in charge to exploit parallelism among accelerator devices:
CPU, GPU and FPGA [3].

The scope of our runtime are data-parallel applications which are
divided into slices that are later delivered to available accelerators.
Therefore, an important element of the runtime is the scheduler, that
now, it is in charge of dividing the work among three accelerators.
We have considered two different scheduling policies until now:

• Static. This algorithm requires and offline exploration that sets
the distribution of the data-set and work in as many packages
as devices that are in the system. After that, a single work
package is delivered to each device.

• Dynamic. It divides the data-set in packages of equal size
(chunk). The number of packages is well above the number of
devices in the heterogeneous system. During the execution of
the kernel, a master thread in the host assign packages to the
different devices.

A. OpenCL Portability

One of the characteristics of OpenCL is the code portability for the
different accelerators that provides an OpenCL driver. However, this
functional portability does not translate into performance portability,
specially in case of FPGA. For FPGAs, performance and energy
efficiency depends mainly on three factors: initiation interval, clock
frequency, and resource utilization. These three factors deeply depend
on the OpenCL source code and the idioms that the compiler is
able to recognize in order generate an FPGA optimized hardware
design.

Due to the easy for FPGA of exploiting naturally pipeline
parallelism, a task based kernel fits better than a NDRange; e.g., a
task-based kernel in an application is near to 113000 × faster than
the NDRange version. In contrary GPU behaves 523 × slower in
case of a task based kernel in comparison to NDRange.

B. Host-Device Communications & Overlapping Computation

In a heterogeneous system, input/output data must be transfered
among the host thread and the three different devices. In OpenCL,
each device requires a command queue in order to forward them
orders like: kernel launch and send/receive buffer (Read/Write).
Therefore, previously to computation kernel-launch input-data must
be sent to device memory and after the computation output-data
must come back to the host.

Communication among the host memory and device memory
can be significant specially for discrete systems. So that, it is very
important to take benefit of overlapping opportunities among the
computation and communication. Moreover, each OpenCL driver
can provide different PCI-express management policies to the point
to not to allow concurrency among independent transfer operations.

C. OpenCL Driver and Synchronization

Synchronization mechanisms are critical for the operation of a
runtime, included ours. OpenCL provide a synchronization primitive
based on callback functions. Callbacks are asynchronous functions
that are invoked on behalf of the application in response to a certain
event; i.e., kernel completion. The execution model of these callback
functions is inherently concurrent to the execution of the host
application, and therefore, it could leverage parallelism. However,
this is not possible if the OpenCL driver is not tolerant to several
threads running in parallel driver code (thread-safe). In such a case,
a conservative approach consists in limiting the number of OpenCL-
driver threads to one which impedes any parallelism for callbacks
functions.

III. PRELIMINARY RESULTS

This section analyzes the behavior of the two load balancing
policies: Static and Dynamic on an heterogeneous system composed
by a CPU, GPU, and FPGA.

Fig 1 shows the normalized execution time for single devices
without overlapping communication and computations, labeled as
CPU, GPU, and FPGA. We also include normalized execution
time for all 3 devices in cooperation with static and dynamic
schedulers. Our heterogeneous system is composed by an Intel
core i7-6700k CPU, a NVIDIA GeForce GTX TITAN X GPU,
and an Altera DE5NET Stratix V GX FPGA, and each device
run OpenCL 2.0 LINUX, OpenCL 1.2 CUDA 9.1.83, OpenCL 1.0
FPGA Version 16.1.2, respectively. We use four benchmarks: Matrix
Multiplication, Mersenne Twister, Sobel Filter and Watermarking.
In Fig 1, considering single accelerator configuration, there is not
a clear winner, and depending on the benchmark, some devices
behave better than the rest.

When considering the heterogeneous system, schedulers are able
to orchestrate both three accelerators and perform slightly better
than the best single accelerator option. However, neither the static
nor dynamic scheduler is better than the other. Therefore it is still
needed an alternative able to find out always the best distribution.

a) Static: With static scheduling, the user has to choose the
amount of work each device performs, and if percentages are
not right, performance degrades considerably. Therefore, Static
scheduler requires from a exploration phase in order to set the
proper proportion of work to be delivered to each device. Moreover,
this exploration phase is dependent on the problem, the input
data and the devices themselves and it must be reevaluated in
case of change of any of them. This scheduler minimizes the
number of synchronization points, therefore, it performs well when
facing regular loads (Matrix Multiplication, Mersenne Twister,
Watermarking) with known computing powers that are stable

throughout the data-set. Sobel Filter is also a regular load, however,
the exploration phase does not find the optimal workload distribution
in the given number of exploration experiments (100 exploration
experiments per benchmark). In this case, it is required a fine grain
exploration.

b) Dynamic: With this scheduler, each device fetches and
executes chunks of work (equally-sized for all devices) until there is
no work left; therefore, chunk size has a large impact on performance.
Also, as chunk size shrinks, there are more opportunities to overlap
computation and communication with dedicated command queues
as described before. Similarly to Static scheduler it is needed an
exploration phase in order to determine the optimal chunk size
for each device. This algorithm adapts to the irregular behavior of
some applications. However, each completed package represents a
synchronization point between the device and the host, where data
is exchanged and a new package is launched. This overhead has a
noticeable impact on performance.

IV. RELATED WORK

Scheduling among several devices has been widely addressed. For
example, Navarro et al. proposed LogFit, an adaptive partitioning
strategy to find the optimal chunk size of the GPU [11], [18], [17].
Pandit and Govindarajan presented FluidiCL where a CPU and GPU
work on a shared iteration space, but each device starts from an
end of the iteration space [16]. In the same sense, there are studies
that focus on systems with a CPU+FPGA integrated on the same
chip [13]. For an ample overview of load balancing techniques,
please refer to Mittal and Vetter [9].

Luk et al. proposed Qilin, a framework providing adaptive
mapping to distribute work between CPU and GPU devices running
on top of TBB and CUDA, [8]. MKMD maps multiple kernel
into multiple devices in a two-phase approach, the first phase
assign kernels to devices and the second enables work-group
level partitioning to keep all devices busy [7]. There are also
open standards that annotate sequential code to be run on an
accelerator device [15], [14], [4]. Industry solutions include Intel
TBB, supporting GPU offloading with OpenCL [6] or Qualcomm
Symphony SDK, supporting GPU and DSP offloading [5]. On the
contrary, this work targets systems with three devices: CPU, GPU
and FPGA.

V. CONCLUSIONS

In the horizon of the heterogeneous systems, a greater number
of devices and the management of very different architectures
are glimpsed. In order to provide a friendly framework to the
programmer a runtime must be provided. This runtime must adapt
to the specifics of each device and the driver that manufacturer
provides. Beyond this, the schedulers tested are able to properly
distribute work and leverage the cooperative parallel work of them.
However, the still rely on off-line exploration phases which can
be not affordable in some scenarios, besides there is not a best
scheduler option according to our experiments.

ACKNOWLEDGMENT

The authors would like to thank Altera and Nvidia for their
generous hardware donations through their respective University
Programs. This work was supported in part by grants TIN2016-
76635-C2-1-R (AEI/FEDER, UE) gaZ: T48 research group (Aragón
Gov. and European ESF), and HiPEAC4 (European H2020/687698).

 Matrix Multiplication Mersenne Twister Watermarking Sobel Filter
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ti

m
e

CPU GPU FPGA Static Dynamic

Fig. 1. Normalized execution time with respect to the worst single device version

REFERENCES

[1] M. Bohr. A 30 year retrospective on dennard mosfet scaling paper.
IEEE Solid-State Circuits Society Newsletter, 12(1):11–13, January
2007.

[2] D. Chiou. The microsoft catapult project. In 2017 IEEE International
Symposium on Workload Characterization (IISWC), pages 124–124,
Oct 2017.

[3] Maria A. Dávila-Guzmán, Rubén Gran Tejero, Maria Villaroya Gaudó,
and Darı́o Suárez Gracia. ”first steps towards cpu, gpu, and fpga parallel
execution with enginecl”. In Proceedings of the 18th International
Conference on Mathematical Methods in Science and Engineering
(CMMSE), Jul 2018.

[4] Swapnil Ghike, Rubén Gran, Marı́a J. Garzarán, and David Padua.
Directive-based compilers for gpus. In James Brodman and Peng
Tu, editors, Languages and Compilers for Parallel Computing, pages
19–35, Cham, 2015. Springer International Publishing.

[5] Qualcomm Inc. Symphony System Manager SDK, 2018.
[6] Alexei Katranov and Alexey Kukanov. Intel threading building block

(tbb) flow graph as a software infrastructure layer for opencl-based
computations. In Proceedings of the 4th International Workshop on
OpenCL, IWOCL ’16, pages 9:1–9:3, New York, NY, USA, 2016.
ACM.

[7] Janghaeng Lee, Mehrzad Samadi, and Scott Mahlke. Orchestrating
Multiple Data-Parallel Kernels on Multiple Devices. Parallel Architec-
tures and Compilation Techniques - Conference Proceedings, PACT,
2016-March:355–366, 2016.

[8] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: Exploiting
Parallelism on Heterogeneous Multiprocessors with Adaptive Map-
ping. Proceedings of the 42nd Annual IEEE/ACM Intr. Symp. on
Microarchitecture - Micro-42, page 45, 2009.

[9] Sparsh Mittal and Jeffrey S. Vetter. A Survey of CPU-GPU Heteroge-
neous Computing Techniques. ACM Computing Surveys, 47(4):1–35,
2015.

[10] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno. Efficient fpga
implementation of opencl high-performance computing applications
via high-level synthesis. IEEE Access, 5, 2017.

[11] Angeles Navarro, Francisco Corbera, Andres Rodriguez, Antonio
Vilches, and Rafael Asenjo. Heterogeneous parallel for template for
cpu–gpu chips. International Journal of Parallel Programming, Jan
2018.

[12] Raúl Nozal, Jose Luis Bosque, and Ramón Beivide. EngineCL:
Usability and Performance in Heterogeneous Computing. arXiv, May
2018.

[13] Jose Nunez-Yanez, Sam Amiri, Mohammad Hosseinabady, Andrés
Rodrı́guez, Rafael Asenjo, Angeles Navarro, Dario Suarez, and
Ruben Gran. Simultaneous multiprocessing in a software-defined
heterogeneous fpga. The Journal of Supercomputing, Apr 2018.

[14] OpenACC Architecture Review Board. OpenACC application program
interface version 2.6, November 2017.

[15] OpenMP Architecture Review Board. OpenMP application program
interface version 4.5, November 2015.

[16] Prasanna Pandit and R Govindarajan. Fluidic kernels: Cooperative
execution of OpenCL programs on multiple heterogeneous devices.
Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization, 2014.

[17] A. Vilches, A. Navarro, R. Asenjo, F. Corbera, R. Gran, and M. J.
Garzarn. Mapping streaming applications on commodity multi-cpu and
gpu on-chip processors. IEEE Transactions on Parallel and Distributed
Systems, 27(4):1099–1115, April 2016.

[18] Antonio Vilches, Rafael Asenjo, Angeles Navarro, Francisco Corbera,
Ruben Gran, and Mara Garzarn. Adaptive partitioning for irregular
applications on heterogeneous cpu-gpu chips. Procedia Computer Sci-
ence, 51:140 – 149, 2015. International Conference On Computational
Science, ICCS 2015.

