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Abstract—The efficiency of the reconfiguration process in mod-
ern FPGAs can improve drastically if an on-chip configuration
memory is included in the system because it can reduce both the
reconfiguration latency and its energy consumption. However,
FPGA on-chip memory resources are very limited. Thus, it is
very important to manage them effectively in order to improve
the reconfiguration process as much as possible even when the size
of the on-chip configuration memory is small. This paper presents
a hardware implementation of an on-chip configuration memory
controller that efficiently manages run-time reconfigurations. In
order to optimize the use of the on-chip memory, this controller
includes support to deal with configurations that have been
divided into blocks of customizable size. When a reconfiguration
must be carried out, our controller provides the blocks stored
on-chip and looks for the remaining blocks by accessing to the
off-chip configuration memory. Moreover, it dynamically decides
which blocks must be stored on-chip. To this end, the designed
controller implements a simple but efficient technique that allows
maximizing the benefits of the on-chip memories. Experimental
results will demonstrate that its implementation cost is very
affordable and that it introduces negligible run-time management
overheads.

Keywords—FPGA, Configuration Caching, Configuration map-
ping.

I. INTRODUCTION

One of the main drawbacks of reconfigurable devices in
general, and FPGAs in particular, is that the tasks’ configu-
ration process involves not only important delays in the task
execution, but also a significant additional energy consumption
that does not exist in Application Specific Integrated Circuits
(ASICs) [1], [2].

Typically, this configuration process consists in copying the
configuration data of the tasks from an off-chip memory to the
configuration memory of the device, usually using a dedicated
reconfiguration circuitry. However, an important drawback of
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this scheme is that loading a configuration from the off-chip
memory involves a high overhead in terms of performance
(typically in the order of hundreds of milliseconds [3]), and in
terms of energy consumption [4]. This trend has been observed
especially during the last decade. Thus, over the last few years,
the gap between off-chip memory bandwidth and the system
performance has been increasing significantly. And at the same
time, an on-chip memory access with the current technology
costs approximately 250 times less energy per bit on average
than an off-chip one [5].

In order to overcome this problem, a number of techniques
based on configuration caching have been proposed in the
literature [6], [7], [8], [9]. They consist in adding one or several
intermediate on-chip memories acting as caches, between the
off-chip memory where the configurations are stored and the
reconfigurable hardware. They aim at accelerating the run-time
reconfigurations, as well as reducing the energy consumption
due to the reconfiguration process, and they may have different
performance and energy consumption trade-offs [10].

However, a typical limitation of these techniques is the
reduced capacity of the on-chip RAM memories available
in modern reconfigurable devices. For instance, the Virtex-5
FPGA existing in the XilinxTMXUPV5-LX110T development
board contains just 6,448 Kbits of on-chip memory [11],
compared to the 256 MBytes of the external DDR2 memory
that can be attached to it. High-end FPGAs have about 50
Mbits on-chip memory, but this is still not enough for large
reconfigurable regions. Moreover, the designs implemented on
the FPGA may use part of the memory on-chip resources.
Therefore, only a percentage of them will be available. This
percentage is application dependent.

Hence, in many cases there are not enough memory re-
sources to store the needed configurations on-chip. However,
if some memory resources are available, it is still a good idea
to store them partially. For this reason this article proposes to
manage the configurations at a smaller granularity. With this
approach, the benefits of a configuration caching technique
depend on how much on-chip memory is available and which
is the size of the configurations. If there are enough on-chip
memory resources to store a significant part of the needed
configurations, the proposed configuration caching approach
will be useful. Here, it is important to remark that the tendency
in computer architecture is to include more and more on-
chip memory resources. Hence, the presented techniques can
currently be applied in many situations, and in the future it
is likely that there will be even more resources to apply them
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more efficiently.
This paper proposes to extend traditional configuration

caching approaches to divide the configurations into blocks,
thereby further reducing the granularity of the configuration
management. This approach allows mapping each one of these
blocks in different on-chip memories, or storing only some of
the blocks on-chip, thereby leaving the remining ones in the
off-chip memory.

However, this scheme leads to a considerable amount of
management services that have to be carried out at run-time
(i.e., as the configurations are fetched) and it is desirable to
do it transparently to the user. This paper also focuses on
this problem, and presents a hardware implementation of a
controller that transparently deals with the configurations in
an efficient way. This controller also implements an adaptive
mechanism that adapts very well to dynamic situations and that
aims at maximizing the hit rate on the on-chip memories. It has
been implemented using a XilinxTMXUPV5-LX110T develop-
ment board, which features a Virtex-5 XC5VLX110T FPGA.
Experimental results demonstrate that the proposed hardware
controller has a very affordable resource consumption and it
adds an additional time overhead of just a few hundreds of
clock cycles, which is negligible compared with the reconfi-
guration latency. In addition, the adaptive mechanism not only
improves the hit rate, but also reduces the number of write
operations in the on-chip memories.

The remainder of the paper is organized as follows: Sec-
tion II overviews other relevant works in the literature on
reconfiguration overhead reduction. Next, Section III describes
the target architecture. Section IV describes a motivational
example for the presented work and Section V presents the
hardware implementation of the developed controller. Finally,
Section VI describes the experimental results obtained and
Section VII presents the conclusions of this work.

II. RELATED WORK

Four interesting recent articles [12], [13], [14], [15] have
analyzed the impact of loading the configurations at run-time
from a non-volatile external memory. The experimental results
presented in [12] conclude that the reconfiguration speed is
three orders of magnitude worse than the peak reconfiguration
speed of the device if a flash memory is used to store the
configurations. In [13] the authors analyze the impact of the
reconfigurations in the performance of the High-Performance
Reconfigurable Computer Cray XD1, including one or several
FPGAs and a conventional multiprocessor system. According
to their measurements, loading the configurations from an ex-
ternal memory is again three times slower than the theoretical
reconfiguration speed. In these two articles, the reason for the
additional reconfiguration delays is the access to the off-chip
memory. Finally, [14], [15] demonstrate that, by using an on-
chip configuration memory directly connected to the reconfi-
guration port, it is possible to carry out the reconfigurations at
full speed. Hence, including an on-chip intermediate level that
works as a configuration cache is a straightforward solution to
improve the reconfiguration process.

In fact, this technique, so-called configuration caching in
the literature, has been elaborated in the literature from long

ago [6], [7]. [6] proposes a set of algorithms well suited for
single-context, multi-context and partially run-time reconfigu-
rable devices. Their results show that a factor of about 5x
overhead reduction can be achieved over traditional method-
ologies targeting off-chip memories exclusively. [7] extends
these ideas for variable-sized tasks, and presents a couple of
techniques, so-called Penalty-based and History-based. Other
interesting approaches are [16], [8], [9]. On the one hand, [16]
presents a heterogeneous reconfigurable system that includes
several reconfigurable processors. It also proposes to include
a configuration memory cache for each processor, as well as
a configuration prefetch technique. On the other hand, [8], [9]
propose hybrid techniques that combine reconfiguration and
data caching for tasks in FPGAs.

In addition to the memory access time, many researchers
have pointed out that, in embedded systems, the energy con-
sumption due to the configuration memory hierarchy stands for
a very important percentage (around 30%) of the overall energy
consumption [17], [18]. And this is true for fine-grain and
coarse-grain architectures, as long as frequent reconfigurations
are demanded. In this sense, our research group has also
proposed to extend traditional caching techniques taking into
account this point [10]. In that article we present a memory
hierarchy composed of two on-chip memory blocks with diffe-
rent performance/energy consumption trade-offs. This scheme
provides fast reconfigurations when they are especially critical
for the system performance, and at the same time, it allows
reducing the energy consumption generated by the dynamic
reconfigurations. We also present a technique to decide the task
mapping for acyclic task-graphs in this memory architecture.

However, all these configuration caching methodologies
share an important limitation: they assume that the task
configurations are indivisible. This limits their applicability
in modern embedded systems, where the on-chip memory
capacities are usually very restricted. Moreover they do not
provide hardware support to manage the configuration caching
process efficiently.

III. TARGET ARCHITECTURAL MODEL AND
ASSUMPTIONS

The hardware controller presented in this paper aims at
overcoming the previous limitation. It has been designed to
target the hardware architectural model depicted in Figure 1.
This model comprises one or several on-chip memories placed
between the off-chip configuration memory and the reconfigu-
rable hardware. These memories are sometimes called confi-
guration caches, although normally they are not actual caches,
but SRAMs controlled by software (i.e., a scratchpads). If used
properly, they may drastically improve the performance of the
memory hierarchy, as well as the energy consumption, since
they prevent the system from accessing a high-capacitance off-
chip bus [19]. These on-chip memories feature lower energy
consumption and memory access time than off-chip ones.

In addition, each one of them may have different properties.
Typically these memories are composed of embedded memory
blocks (named Block RAMs or BRAMs in XilinxTMFPGAs).
However, if not enough BRAMs are available, it is also
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Fig. 1: The target configuration memory hierarchy. The reconfigurable HW is
also connected to the off-chip memory by means of a dedicated connection,
which is not shown in the figure for simplicity

possible to implement a memory module using the distributed
RAM memory resources available in the FPGA slices. This
can lead to an heterogeneous scheme where not all the memory
components feature the same memory access latency.

In this architecture, it is assumed that the different configu-
rations’ blocks are assigned to the different memory/memories
that is/are available in the system. These assignments (map-
pings in the remainder of the article) are made depending on
the tasks’ constraints. For instance, if one task is especially
critical for the system, all its blocks can be mapped to the on-
chip memory; whereas if another task is executed few times
and its execution latency is not critical for the system, its
blocks can be mapped to the off-chip memory. Moreover, inter-
mediate options are also supported with some blocks mapped
to the on-chip memories and the remaining ones mapped to
the off-chip one. It is assumed that an initial mapping is
selected for each configuration at design-time, which is used
to initialize the hardware controller. This mapping specifies
how many blocks must be stored in each one of the on-chip
configuration memories. However, the presented controller
provides support to dynamically update these mappings at run-
time, depending on the system’s workload and the pressure
exerted on the on-chip memories (this is explained in Section
V-B2).

When the system is powered up, it is assumed that all the
configuration blocks are initially stored in the off-chip memory.
When a task is reconfigured, the controller checks which
blocks are stored on-chip and fetches the remaining ones from
the external memory. Moreover, it checks the mapping of the
configuration to identify if some of the blocks fetched from the
off-chip memory must be stored on-chip. If the target on-chip
memory is full, the controller makes the proper replacement
decisions in order to make room for the incoming block. This
is explained in greater detail in Section V.

IV. MOTIVATIONAL EXAMPLE

Figure 2 illustrates the potential benefits of the utilization
of the configuration memory hierarchy depicted in Figure 1
in combination with the blocks-based approach hinted in the
previous section. In this case, it is assumed that the system
executes a loop with two tasks (A and B in the figure) in
one reconfigurable unit. The size of each configuration is 100
KB. In order to reduce the reconfiguration latency, the system

Fig. 2: Motivational example showing the benefits of the blocks-based confi-
guration caching approach

includes an on-chip memory of 160 KB and a configuration
controller that can load the configurations both from the on-
chip and the off-chip memory (these numbers are reasonable
for the family of XilinxTMVirtex-5 FPGAs [3]). The system
can also store a configuration on-chip at the same time that it
is loading it in the reconfigurable unit.

Since this system does not feature enough memory re-
sources, both configurations A and B cannot be stored in the
on-chip memory simultaneously. In fact, if the configurations
are indivisible, only one of them can be stored in that memory.
Figure 2.a depicts a thrashing problem that exists in this case,
when the on-chip memory is used as a conventional cache. In
this example, Task A is reconfigured and written in the on-
chip memory simultaneously, before its execution. Then, the
system has to do the same with Task B. However, in order
to store the configuration of Task B in the on-chip memory,
Task A has to be replaced. Hence in the following iteration,
Task A will have to be written again in the on-chip memory.
At the end, the system is not taking advantage of the on-chip
memory, but only introducing additional energy overheads.

This thrashing problem can be solved by assigning, for
instance, the configuration of Task A to the on-chip memory
and by always loading Task B from the off-chip memory.
This is shown in Figure 2.b. This allows speeding up the
reconfiguration of Task A. Thus, with this approach, half of
the configurations are fetched from the on-chip memory and
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Fig. 3: Motivational example for static vs. dynamic configuration mapping
approaches. Configurations are divided into 5 blocks

the remaining ones, from the off-chip one.
However, if the configurations are not indivisible, these

results can be further improved. This is depicted in Figure 2.c,
where not only the configuration of Task A is stored in the
on-chip memory, but also part of that of Task B. In this case,
the latency of the reconfiguration of Task B has been reduced
since only part of its configuration must be loaded from the off-
chip memory. Moreover, the system can also make decisions
regarding how many blocks of each configuration are stored in
the on-chip memory. In the figure, the on-chip memory stores
all the blocks of Task A, plus three blocks of Task B. However,
this can also be done the other way round, or by storing 4
blocks of each task. This flexibility can be very useful since
some specific tasks can be more critical for the system and
storing more blocks in the on-chip memory can help to reduce
the reconfiguration latency.

However, in dynamic systems it may not be possible to
select an optimal mapping for the tasks at design time since
the designer may not know which tasks are going to be
executed concurrently. Hence, this paper also presents a set of
algorithms that adjust the initial mappings at run time. Figure 3
illustrates the idea continuing with the previous example. This
example assumes that the initial mappings for Tasks A and B
assign all their blocks on-chip. In Figure 3.a (static mapping),
only this initial mapping is used. Thus, the on-chip hit rate
is 60%, which is suboptimal since there are enough memory
resources to achieve an 80% hit rate (eight out of the ten blocks
can be stored on-chip). However, the dynamic mapping used
in Figure 3.b makes possible to reduce the number of blocks
mapped to the on-chip memory when any conflict is detected
(i.e. when some blocks existing in the on-chip memory must
be replaced in order to load the new ones). In this example,
this adjustment has involved reducing the number of blocks
mapped on-chip for each task from 5 to 4, thus leading to an
80% hit rate. Subsection V-B2 will explain in detail how this
dynamic adjustment is carried out.

In order to achieve the results hinted in Figures 2 and 3,
the configuration controller proposed in this article can deal
with configurations partitioned in blocks of a given size, and

at the same time, it can support one or several on-chip memory
modules.

It is also interesting to note that dealing with blocks instead
of with large configurations reduces the impact of memory
fragmentation. If an on-chip memory stores and replaces
configurations of different sizes, it may end up in a situation
with several free small-medium memory segments that are not
big enough to store a configuration. Hence, in this case, the
system is not efficiently taking advantage of the available on-
chip resources. Using a scheme based on fix-sized blocks also
alleviates this problem. The reason is that all the memory
transfers deal with a size that is a multiple of the block size.
Hence the size of the available memory segments will be also
a multiple of the block size and, with the proper management,
all these segments can be used to load new blocks.

V. THE PROPOSED HARDWARE CONTROLLER

The general scheme of the designed hardware controller
is depicted in Figure 4. It comprises a number of on-chip
memories, directly and exclusively managed by an instance
of a Local Memory Controller (depicted in detail below). The
Global Memory Controller controls the operation of the local
controllers and it also communicates with the operating system
(OS) of the system or a middleware. All these modules can
access to the off-chip memory, which, in this case, is the 256
MB DDR2 memory block available in the XUPV5-LX110T
development board used for implementation of this design. For
this reason, all their communication interfaces are connected
to a the MUX/DEMUX module, which comprises a set of
multiplexers (in case of the input signals to the memory) and
demultiplexers (for the output ones). They operate through the
local controller selection signal.

We have included two levels in our controller to improve
the scalability and the modularity of the design. With this
approach, it can deal with a variable number of independent
memories that may have different access latencies. In addition,
a distributed approach with several local controllers can oper-
ate faster than an equivalent centralized approach with only
one controller.

The global memory controller receives two kinds of orders:
• Store/Update configuration mapping: An initial mapping

is specified for each given configuration. The global con-
troller stores/updates this information in a table (Conf.
Mappings Table in the figure) accordingly. Each entry
in this table contains the information about the configu-
ration tag (a number that identifies each configuration
in the system), and its initial mapping. This table is
implemented using an embedded BRAM of the FPGA.

• Reconfigure: A given configuration must be loaded onto
the reconfigurable hardware. In this case, the global
controller reads the mapping from the Rec. Mappings
Table and it sequentially demands the blocks assigned
to each on-chip memory, as Figure 5 indicates (Steps
1-4). For this purpose, it invokes the corresponding
instance of the Local Memory Controller module (Step
3). Each controller then sends the blocks assigned to
it. If the local controller does not have those blocks
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Fig. 4: General scheme of the proposed hardware module

Fig. 5: Flowchart for the operation of the global memory controller

stored in its associated memory, it requests them to the
external memory. Each time that a local controller sends
a configuration word to the global one, it forwards it to
the reconfiguration port (called Internal Configuration
Access Port (ICAP) in XilinxTMFPGAs). A 32-bit bus
is used since is the maximum size currently supported
by the ICAP [3]. Steps 3 and 4 are executed for each on-
chip memory in the system. Finally, if some blocks have
been mapped to the external memory, the global con-
troller fetches them and sends them to the ICAP (Step 5).
The global controller carries out all these operations by
means of a finite-state machine, not appearing in Figure
4 for the sake of simplicity.

Figure 6 depicts the local memory controllers that are
instantiated in Figure 4 in greater detail. It contains an As-
sociative Table that keeps record of the information currently
stored in the associated on-chip memory. Each entry of this
table contains the information about which blocks of a given
configuration exist in that memory at any given time. Note that
this information is complementary with the one that is stored
in the Conf. Mappings Table of the global controller (explained
above in this section). The latter contains information of how
the configuration blocks should be mapped in the memories
of the system. This information is obtained at design-time and

Fig. 6: General scheme of the local memory controller

may (or may not) be adapted at run-time depending on the
run-time state of the system (this point is actually studied in
Subsection VI-B). On the other hand, the information stored in
the associative tables refer to the run-time state of the on-chip
memories. Thus, both kinds of tables contain different (and
complementary) information.

The information stored in the Associative Table is divided
into five fields:
• Tag, which is the name of the involved configuration.
• Address, indicating the initial address in the on-chip

memory where the configuration blocks are stored.
• Size, which indicates the number of blocks stored in

this on-chip memory. It is important to note that this
table always manages consecutive blocks (no matter how
many times the system replaces and loads the blocks of
a configuration, the controller does guarantee that the
blocks are stored in order; i.e., if the first one is block
n, the next one will always be block n+ 1).

• EXT addr, which is the initial address where this set of
blocks are stored in the external memory.

• Ini block, which indicates the relative position of the
first stored block in the sequence of blocks assigned to
this memory. Thus, is this field is 0, then Address points
to the first block in that sequence; and if Ini block is
2, that means that the two first blocks assigned to this
memory are not currently stored on-chip. Hence, if the
global controller requests the configuration of this task,
it must manage two misses and fetch these two blocks
from the off-chip memory.

In the on-chip memory, the blocks that belong to the same
configuration are linked by means of pointers. The pointer
associated to the last block in each sequence is equivalent to
null (for instance, Blocks 1, 4 and 5 in Figure 6). This approach
allows the local controller to easily fetch the information from
the memory, by simply following the pointers as many times
as indicated in Size. This controller also includes a register
that stores the address of the first free block in the on-chip
memory (Free Blocks Register in the figure). Again, these free
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blocks are also linked among them by means of pointers.
The on-chip memories can be implemented either using the

distributed RAM of the FPGA, or by instantiating BRAMs.
The developed design uses generic parameters in the VHDL
code to adapt itself to different memory and block sizes.

Also, it is important to note that the controller associates
a parameter to each on-chip memory indicating its memory
access time (in clock cycles). For instance, a value of “1”
indicates that a new word can be read from the memory at
each clock cycle.

A. The Local Memory Controller
The objective of the local memory controller is to dispatch

the load requests from the global one. To this end, it delivers
the blocks that were assigned to the corresponding on-chip
memory. In addition, the associative table, the free blocks reg-
ister and the data stored in the on-chip configuration memory
must be correctly updated. It follows the flowchart of Figure
7. It firstly checks if the involved configuration exists in the
local memory by consulting the associative table (Step 1).
Depending on this, the register n is updated with the number
of blocks that have to be fetched from the external memory. If
this configuration has no blocks stored in this on-chip memory,
all the assigned blocks must be fetched from the external one
(Step 2; n blocks conf is the number of blocks assigned to
this on-chip memory). Otherwise, the controller only fetches
from the external memory those blocks that are not already
stored on-chip (Step 3, Size is the number of blocks from the
current configuration that are already stored on-chip).

Then, the controller deals with the missing blocks by
accessing to the external memory (Step 4), it writes them to the
local memory (Step 5) and it updates the associative table and
the free blocks register accordingly (Step 6). Note that, if n is
equal to 0, then Steps 4-6 do not carry out any computations.
Next, n is updated again with the number of blocks that were
not fetched from the external memory and that hence, must be
loaded from the local memory (Step 7). Thus, if n is greater
than 0 (Step 8), these blocks are fetched from the local memory
following the pointers-based approach explained above (Step
9) and the algorithm finishes (Step 10).

Note that this approach assumes that the blocks stored in any
memory are a sequence of consecutive blocks, always finishing
in the last one in that sequence. Our local memory controller
have been designed in order to ensure that this is always true.

B. The Replacement Module
On-chip memories are expensive; hence, in the developed

system it is very likely that an on-chip memory will not
have enough resources to store all the active configurations
simultaneously. Thus, when executing Steps 5 and 6 in Figure
7, if not enough free blocks are available in the involved on-
chip memory, the local controller must decide which block(s)
must be replaced in order to make room for the new incoming
one(s). To this end, it invokes the Replacement Module. Note
that, in order to guarantee the consistency with the algorithm
depicted in Figure 7, a replaced block is always the first one

Fig. 7: Flowchart for the operation of the local memory controller

in its sequence. For instance, if the on-chip memory stores
Blocks 1, 2, 3, 4 and 5 of Configuration A, and two of them
must be replaced, the controller always replaces Blocks 1 and
2. And after that, it updates the Size field (from 5 to 3), the
Ini block field (from 1 to 3) and the Address field, which now
points to the address where block 3 is stored.

Of course, if the replacement module decides that the
only existing block in a sequence must be deleted from the
memory (because it is the only block left in that sequence),
the corresponding entry in the associative table is deleted too.

Typically, a conventional cache would take advantage of
the spatial locality. Indeed, if a given memory location is
referenced at a particular time, then it is likely that nearby
memory locations will be referenced in the near future. Thus,
when the access to a certain memory location generates a miss,
the cache fetches a block containing not only the requested
memory location, but also some adjacent locations. As a
consequence, when the processor accesses these other locations
it will obtain hits in the cache. Unfortunately, this behaviour
cannot be expected in the configuration on-chip memories
because on the one hand, configurations are very large; hence
it will not be a good idea to fetch N adjacent configurations
in memory when only one of them has been requested, and
on the other hand, it is not clear that adjacent configurations
will be executed in the near future since they can belong to
independent tasks.

Hence, temporal locality has to be exploited instead. If a
particular configuration is requested, it is likely that it will be
requested again in the near future. Thus, if a configuration is
going to be executed only once, it is not a good idea to store
it on-chip. Instead of that, only those configurations that are
going to be executed several times should be stored on-chip.
However, as previously illustrated in the motivational example
of Figure 2, when the size of the active configurations exceeded
the capacity of the on-chip configuration memory, it is very
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Fig. 8: Datapath of the LRU implementation

easy to fall into a thrashing problem. However, the replacement
module satisfactory deals with these situations. It includes
mechanisms that optimize the decisions made at run-time in
order to maximize the utility of the on-chip memory. On the
one hand, it implements different replacement policies and
on the other hand, in includes a custom adaptive mechanism.
Both features are explained in greater detail in the next two
subsections.

1) Replacement Policies: The replacement module imple-
ments either of the following three well-known replacement
policies:

• Random: It replaces a random block. The implementa-
tion cost is very affordable: it just involves a counter
ranging from 1 to the number of configuration blocks in
the memory. When the system makes a replacement, it
stops the counter and it replaces the first available block
belonging to the victim configuration. This is consistent
with the ideas explained above, at the beginning of
Subsection V-B.

• LRU (Least Recently Used): It replaces the first available
block from the least recently used configuration. If a
configuration has not been used for a long time, maybe
is not going to be used anymore. Hence it is a good
candidate for replacement. This is considered as a very
good replacement policy but it is also very expensive.
Its hardware implementation involves storing when each
configuration was used for the last time, and including
some hardware to identify which configuration must be
selected as the replacement victim.

• LFU (Least Frequently Used): It replaces the first avai-
lable block from the least frequently used configuration.
Again, the idea is simple: those configurations that
are executed more frequently should not be replaced.
However, it is also an expensive policy.

Figures 8 and 9 depict the datapath of the LRU and
LFU implementation, which include some important features
especifically designed for this problem. Both designs include

a Register Bank that stores the age of the configuration blocks
(i.e., indicating the instant of the last use of that block) for the
LRU and the frequency for the LFU. It also includes a validity
bit for each block. When all the blocks of a configuration
have been replaced, the local controller sets this bit to invalid,
and this configuration will not be selected again. The LRU
design also includes a counter that is increased after each
reconfiguration and it is used to update the ages (Time Counter
in Figure 8). Finally, it includes hardware support to read
the ages of all the blocks and to select two of them: the
LRU and the SLRU (Second Least recently Used). This is
done using the Blocks Counter to read all the registers, and a
comparator to identify if the age of the current block is smaller
than the current LRU. When the LRU has been identified,
a second iteration is carried out in order to find the SLRU.
This has been included to prevent a configuration block from
replacing to itself. For instance, it may happen that the on-
chip memory contains one block of a configuration and needs
to fetch an additional one. In this case, it is not a good idea
to replace the block that is already on-chip. If that block is
selected as LRU, the SLRU is selected instead. It is important
to note that the SLRU block is selected in such a way that
it belongs to a different configuration from that of the LRU
block. This makes possible to always avoid replacing blocks
from the configuration that is currently being requested. Of
course, this approach involves duplicating the number of cycles
needed to select the LRU. But this is not a problem because
these cycles do not generate any delay in the configuration
management. Indeed, in order to know which configuration
should be replaced, it is enough to read the LRU and the SLRU
registers. Afterwards, while the replacement is being carried
out, both registers are updated for the next time this module
is invoked. Since a replacement involves moving large blocks
from the external memory to the on-chip one, the latency of
the replacement module is completely hidden.

The LFU design (Figure 9) is very similar. The main differ-
ence is that, when a configuration is executed, the frequency
is incremented instead. To this end, it is read from the register
bank, updated, and stored again.

Both designs also have to deal with possible count over-
flows: when a counter finishes its count, it will return to
zero, and then the values will not be consistent. When that
happens, the signal TC (Terminal Count) is activated and all
the values of the register bank are set to 0. This is also true
for the LFU design, and in that case these periodic resets are
important since they prevent the on-chip memory from keeping
configurations that were used many times in the past but are
not being used anymore.

2) Adaptive Mechanism: A good replacement policy is a
key point to obtain good results, but if the pressure exerted
on the on-chip memory is too high, it will not be enough
since the configurations will be replaced before they can be
reused. Indeed, in that situation, the on-chip memory does not
improve the performance, and in fact it increases the energy
consumption due to the additional written data. A simple
solution is to dynamically adjust the number of blocks assigned
to the on-chip memory in order reduce the pressure. This is as
simple as adjusting the initial mappings of the configurations.
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Fig. 9: Datapath of the LFU implementation

However, in order to decide the proper mappings for each
configuration, it is necessary to know the current pressure
on a given on-chip memory, since that pressure may change
at run-time depending on dynamic events. For instance, a
mapping that works fine when few configurations are active
can start being inefficient if more tasks are assigned to the
reconfigurable resources. The problem is that it is not always
possible to know at design time how many tasks are going to
be active simultaneously. In order to deal with this problem, the
replacement policy also implements a simple but very effective
adaptive mechanism.

The basic idea is to monitor the replacement activity on
the on-chip memories in order to identify if the pressure is
high or low. If frequent replacements occur on a given on-
chip memory, it is likely that that memory is under a big
pressure and that the fetched blocks will probably be replaced
before they are reused. Therefore, in order to reduce that
pressure, in the next miss the developed mechanism modifies
the configuration mapping of that configuration, by reducing
the number of on-chip blocks from the configuration that
triggered the replacement.

This new value is stored in the controller and it will be the
reference value for that configuration in the future. In the same
way, if the controller detects that no replacements have been
carried out on a given on-chip memory during a certain period,
maybe the pressure exerted on that memory is low. Hence,
in the next iteration the adaptive mechanism increments the
number of blocks assigned on-chip.

Figure 10 depicts the implementation of this mechanism.
It contains a shift register that stores whether the last N
reconfigurations triggered a replacement or not. Then, an adder
reports the number of replacements. Finally a comparator
compares this number with a lower and an upper threshold.
If the number of replacements is over the upper threshold,
the Decrease signal is set to 1 and if it is smaller than the
lower threshold the Increase signal is set to 1. This design can
be instantiated with different sizes for the shift register and

Fig. 10: Scheme of the adaptive mechanism implemented in the replacement
module

different thresholds. We have experimentally checked that it
provides good results even for small registers of just 8 bits.
Thus, in our experiments we use a 8-bit shift register; and we
set the upper threshold to 3, and the lower threshold to 1.

VI. EXPERIMENTAL RESULTS

This section evaluates the hardware controller presented in
this paper, both in terms of resources consumption, runtime
overhead and performance. The results are explained in the
following subsections.

A. Resource Consumption and Time Overhead

First of all, Table I presents the resources consumption for
a hardware module as the one depicted in Figure 4, when it
instantiates 2 local memory controllers and the capacity of the
on-chip memories are 8 configurations each. The results are
shown in terms of reconfigurable resources in a XilinxTMXUP
Virtex-5 XC5VLX110T FPGA. It is interesting to underline
that the size of the configurations does not modify the size
of the controller since the same information is needed for any
configuration independently of its size.

For a local memory controller (Row 5), these results are also
broken down into its submodules: the associative table (Row
2), the finite state machine (Row 3) and the replacement mo-
dule (Row 4). The results for the global memory controller are
also presented (Row 6), as well as those of the complete system
(Row 7). The resources consumption of the complete design is
very affordable (up to 2.70% of the available resources in the
FPGA). In this case, its maximum operating frequency is 153.7
MHz, which allows to deliver configuration data to the ICAP
at its maximum theoretical speed (100 MHz) [3]. In any case,
we consider that the design presented in this paper is a proof
of concept. The objective was not to minimize the hardware
cost and maximize the frequency, but to demonstrate that the
proposed techniques can be implemented in hardware with an
affordable cost.

The scalability of the design has also been studied. In this
case, the complexity of the design increases with the number
of local controllers instantiated, and with the maximum num-
ber of different configurations that the local controllers can
manage. The results of this study are depicted in Figure 11.
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Fig. 11: Scalability of the proposed hardware controller, both in terms of resource consumption and maximum operating frequency (for a XilinxTMXUP Virtex-5
LX110T FPGA)

TABLE I: Resource consumption of the proposed hardware controller, featu-
ring 2 local memory controllers with LRU replacement policy and assuming
local memories being able to manage up to 8 different configurations each
(for a XilinxTMXUP Virtex-5 LX110T FPGA)

Slice
Registers Slice LUTs Block

RAMs

Assoc. Table 8 (0.01%) 43 (0.06%) 1 (0.68%)

FSM 143 (0.21%) 344 (0.50%) 0 (0%)
Replacement

Module 49 (0.07%) 141 (0.20%) 0 (0%)

Local Memory
Controller 200 (0.29%) 528 (0.76%) 1 (0.68%)

Global Memory
Controller 16 (0.02%) 77 (0.11%) 1 (0.68%)

TOTAL 432 (0.63%) 1,130 (1.63%) 4 (2.70%)

On the one hand, Figure 11.a shows that the proposed design
scales linearly with the number of local memory controllers
(keeping the number of configurations per on-chip memory to
8). Note that the numbers in the x axis grow exponentially.
However, in spite of that, the resource consumption keeps rea-
sonable values. In addition, the maximum operating frequency
remains very close to 150 MHz.

On the other hand, an important parameter of the proposed
controller is the number of active configurations supported.
This parameter is used to set the size of the associative table
and the structures used for the replacement modules. Figure
11.b shows how the system scales for different values of
this parameter (in the figure: supported active configurations).
In this case, for an implementation with two local memory
controllers, where each one of them supports 32 active congu-
rations, the resource consumption never exceeds 4% of the
available resources in the FPGA, while the maximum operating
frequency remains always above 100 MHz. The increase that

can be observed in the resource consumption and in the
performance degradation is due to the increasing complexity of
the replacement module and the associative table. In fact, the
hardware cost of the proposed LRU and LFU implementations
increases linearly with the size of their register bank (see
Figures 8 and 9). Thus, for instance, a design that supports 32
configurations per on-chip memory and that uses registers of
9 bits (8 bits for the age or the frequency plus the validity bit)
needs 316 slice registers (0.46%) and 160 slice LUTs (0.23%).
This is a very affordable implementation cost. Finally, it has
also been checked that the adaptive mechanism barely has any
impact on the implementation cost. With an 8-bit shift register
(see Figure 10), and setting the upper and lower thresholds
to 3 and 1 respectively, the hardware cost of the adaptive
mechanism is negligible.

The time overhead that the proposed controller introduces at
run-time has also been studied (i.e. the number of management
cycles introduced by our controller in order to identify where
each block is stored, carrying out the block replacements, and
updating all the information accordingly). Table II shows these
results for different granularities of the configurations. Thus,
three situations have been considered: when the configurations
are indivisible and when they comprise 8 and 64 blocks each.
This experiment involved a single configuration whose blocks
were initially mapped on the external memory. Thus, in this
example the total reconfiguration latency of a configuration
that has been split into 64 blocks will be the transfer time
(that will be different each time depending on whether the
blocks are stored on-chip or off-chip), plus the management
time that is the data presented on this table. In this case, as
the table shows, it will be at most 778 clock cycles.

The following two experiments have been carried out:

1) When the benchmarks are executed for the first time
on the system. The objective is to observe how the
controller works in case of block misses (initially, all
the on-chip memories are empty). In this case, it has
to fetch the configuration blocks from the external
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TABLE II: Time overhead in terms of clock cycles of the proposed controller,
for different block sizes

Indivisible
configurations

8 blocks per
configuration

64 blocks per
configuration

1st execution 281 292 309

2nd execution 473 494 778

memory and to copy them on the on-chip memories.
2) For a second (and subsequent) executions of the same

benchmarks in the system. The objective is to observe
how the controller works in case of block hits in the
on-chip memories.

As the table shows, in all the cases, all the involved opera-
tions introduce delays in the order of several hundreds of clock
cycles. Assuming that the controller works at the maximum
theoretical speed of the ICAP port (100 MHz), these delays
are negligible with respect to the reconfiguration latency of the
applications. Besides, note that the second (and subsequent)
execution(s) of the same tasks on the reconfigurable system
generate more overhead than the first execution of the same
task. The reason is that in that case, the controller must
individually check if the involved blocks are still stored on-chip
or not. Otherwise, this is not necessary since the associative
tables reported that the entire configuration is off-chip.

Finally, it is important to note that the proposed design
scales very well with the number of blocks per configuration
(again, see Table II). Thus, even with 64 blocks per configu-
ration, the proposed controller works very well.

B. Performance Evaluation
This subsection presents some experiments to show per-

formance results of the developed controller. Hit rate on the
on-chip memory has been used as the metric to measure the
performance since other metrics (such as the global execution
time) heavily depend on additional factors such as the external
memory controller, the technology of the off-chip memory, the
hierarchy and congestion of the bus, or whether the system
includes a DMAC (Direct Memory Access Controller) or not.
On the contrary, for a given execution sequence, the hit rate
only depends on the configuration management.

A trace-based functional simulator was implemented for
these experiments. This simulator models an organization as
shown in Figure 4, with a single local memory controller. Both
non-adaptive (NA) and adaptive (A) mechanisms have been
modeled with 3 replacement policies: Random, LRU, LFU.
Non-adaptive mechanisms use an initial mapping that assigns
all the blocks to the memories available in the system, whereas
the adaptive mechanisms start from the same mapping but they
can update it at run time.

In order to test the capabilities of both mechanisms, the
simulator is fed with a sequence of tasks to be reconfigured.
5 different reconfiguration sequences have been modeled:

1) Cyclic: This sequence fetches the reconfiguration of all
the tasks cyclically. The order that each task occupies
in a reconfiguration cycle is always the same.

(a) Histogram of # of tasks

(b) Histogram of # of blocks

Fig. 12: Characterization of the 1000 scenarios

2) Cyclic drop: A cyclic sequence in which tasks are
removed from the sequence with a probability of 5%.

3) Rand eq: A randomly generated sequence of tasks in
which all the tasks have the same probability to appear.

4) Rand 3: A randomly generated sequence that prioritizes
3 tasks above the others. A 70% of the tasks in the
traces is one of these 3 tasks.

5) Pocket GL: A trace that corresponds to the real-world
application Pocket-GL [20]. It imitates the actual re-
configuration pattern observed for this application.

For the first four sequence types, 1000 different scenarios
have been generated. Each one of them had a random number
of tasks and blocks per task. All these scenarios had at least 30
blocks in total, and no task had more than 8 blocks. Figures 12a
and 12b show two histograms that characterize these scenarios.
The first one shows the total number of blocks in the scenario,
whereas the second one shows the number of tasks in it.

For each one of these 1000 different scenarios, the Cyclic,
Cyclic drop, Rand eq and Rand 3 reconfiguration sequences
included 1024 different tasks. In case of Pocket GL, it includes
1000 reconfiguration sequences randomly selected among the
reconfiguration patterns observed in the real application.

Figure 13 shows the hit ratios obtained for cache sizes
of 8, 16 and 32 blocks, when using the non-adaptive (NA)
mechanism in combination with the discussed replacement
policies: LRU, Random and LFU. Additionally, for each re-
placement policy there are two hit-ratio boxplots: one of them
labeled with t and the other with b. In the former case, the
replacement mechanism victimizes not only the victim block,
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(a) Cache size = 8 blocks

(b) Cache size = 16 blocks

(c) Cache size = 32 blocks

Fig. 13: Hit ratios in the 5 reconfiguration sequences for cache sizes: 8,
16, 32 blocks of non-adaptive mechanism with replacement policies: LRU,
Random and LFU. The suffix b means that the replacement is done at block
granularity, whereas t means that the replacement is done at task granularity.
For each model and reconfiguration sequence, we show a box-plot from the
1000 samples. The central rectangle spans the first quartile to the third quartile
(interquartile range). Whiskers indicate the minimum and maximum values
(first and fourth quartiles)

but also all the blocks belonging to the same task (i.e., it
carries out a task granularity replacement). In case of b, the
replacement policy will evict only the victim block.

Focusing on the comparison of task and block granularity
eviction, all the cases reveal that victimizing at task granularity
is an aggressive decision that has a negative impact in the
performance. For instance, victimizing a task with a large
amount of blocks will free the corresponding blocks of the
cache. If they stayed unoccupied until the next reconfiguration
of that large task, then the system would incur into additional
block misses. This does not not occur in case of block
granularity victimization.

In addition, while the cache size increases, it also increases
the hit ratio. However, NA LFU b always performs better

(a) Cache size = 8 blocks

(b) Cache size = 16 blocks

(c) Cache size = 32 blocks

Fig. 14: Hit ratios in the 5 reconfiguration sequences for cache sizes: 8, 16, 32
blocks of non-adaptive and adaptive mechanisms with replacement policies:
LRU, Random and LFU

than the other replacement policies. On the one hand, for 16
blocks of cache size and reconfiguration scenarios Rand 3 and
Pocket GL, LFU is able to identify which blocks are most
frequently accessed and then they stay in cache above other
blocks in case of replacement. In Rand eq, all configurations
have the same chance to appear, similarly to Cyclic, and also
there is not a pattern of reconfiguration as in Rand 3. In such
random reconfiguration sequence, victimizing a block is not
neither better nor worse than victimizing any other block.
Even more, in Rand eq, all replacement policies perform
similarly. The reason is that, in these circumstances, every
configuration in cache have the same chance to be reconfigured
next, independently of how the replacement policy behaves.

On the other hand, despite the simplicity and predictability
of Cyclic and Cyclic drop, LRU and Random evict blocks
that are accessed with the same probability than the blocks
that update the cache. Moreover, because of the cyclic pattern,
the evicted blocks are accessed again before than the ones
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(a) Cache size = 8 blocks

(b) Cache size = 16 blocks

(c) Cache size = 32 blocks

Fig. 15: Ratios of updated blocks in the 5 reconfiguration sequences for
cache sizes: 8, 16, 32 blocks of non-adaptive and adaptive mechanisms with
replacement policies: LRU, Random and LFU

that are being updated, therefore blocks come in/out of the
cache but locality is not captured (thrasing). Only if the cache
is large enough to hold the blocks of all the tasks, this
trashing effect does not occur and then the replacement policy
stops penalizing performance (Figure 13c). In such cyclic
reconfiguration sequences, if the number of blocks of all the
tasks is greater than the size of the cache, then a good approach
consists in locking some blocks in cache and disabling the
replacement. This strategy assures that, in every cycle of tasks,
accesses to locked blocks will hit. Assuming that the average
size of the scenarios is 32 blocks (Figure 12b), in case of cache
size of 8 blocks, this locking mechanisms assure as 25% of
hit ratio (50% when the cache size is 16). This locking model
is represented in the figure by means of a horizontal line and
it can be understood as an ideal upper-bound of the hit ratio
without help of predictive mechanisms such as prefetch. It can
be observed that LFU is quite close to this locked cache. The
reason is that blocks of the first tasks of the cycle prevail in

cache over the blocks at the end of it. In case of replacement,
note that a task of the beginning of the Cyclic pattern is always
as frequent (or even more) as the task at the end of the pattern.
Therefore, the cache is filled up with blocks of the first tasks
and then a similar effect to a locked cache is achieved.

Next, Figure 14 shows the hit ratio for the adaptive mecha-
nism and compares it with the non-adaptive one. In this figure,
all the replacement mechanisms work at block granularity.

The results show that for the adaptive mechanism, LFU is
the replacement policy that performs the best. It is noticeable
that, in reconfiguration sequences cyclic and cyclic drop, it
works well independently of the replacement policy used. In
case of Random and LRU, the adaptation reduces the number
of blocks to be loaded in cache by each task, and thus, it
manages to allocate in cache a set of blocks that will be hit
every cycle. The adaptive mechanism slightly improves the
results in almost all the cases. Hence, if it is not acceptable to
pay for a complex replacement policy, an interesting alternative
is to use a random replacement combined with the adaptive
mechanism. The implementation cost of this approach is very
small and the results are only slightly worse than those
obtained when using complex replacement policies, such as
LFU. Moreover, there is an additional advantage, which can
be observed in Figure 15. This figure shows the number of
updated blocks in cache with respect to the total number
of blocks accessed. It is clear that the adaptive mechanism
requires less update operations than the non-adaptive one. The
adaptive mechanism manages to adjust the number of blocks
to be loaded in cache by each task. Once that adjustment is
done, the mechanism stays in a stationary regime in which the
update activity is very low in comparison with the non-adaptive
one. In case of change in the features of the reconfiguration
sequence, the adaptive mechanism starts an adjusting phase
until it stabilizes. This lower ratio of updating activity can be
directly translated into energy savings.

Finally, in order to assess the effective improvement of our
techniques in comparison to not caching reconfigurations, we
have evaluated the improvement achieved in terms of overall
performance (execution time) and in the reconfiguration time,
for the Pocket-GL application. Figure 16a shows the speedup
of our techniques over the time taken to reconfigure that
application. In addition, Figure 16b shows the percentage of
performance speedup of caching reconfigurations. Three cache
sizes are modeled: 8, 16 and 32 blocks. Also, we have evalu-
ated both the adaptive and non-adaptive mechanisms with the
three different replacement policies: LRU, Random and LFU.
All the replacement mechanisms work at block granularity. In
this experiment, the XilinxTMVirtex-5 XUPV5-LX110T FPGA
has been used. In that device, the off-chip DDR2 memory
stored the configurations, and a DMA controller optimized
its access. With these settings, we have measured that the
reconfiguration time of a block from the DDR2 memory using
DMA is 3.2 times slower than from the on-chip one.

Figure 16a shows how many times faster is a system with
our controller than a bare system without a reconfiguration
cache for Pocket-GL application. Our controller provides
significant reconfiguration speedups even when using only 8
blocks. Moreover, for larger cache sizes the speedup increases
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(a) Reconfiguration time speedup

(b) Percentage of performance speedup

Fig. 16: Reconfiguration time and % performance speedup of our techniques
over a bare system without reconfiguration cache for the Pocket-GL applica-
tion. Three cache sizes have been evaluated: 8, 16 and 32 blocks for adaptive
and non-adaptive mechanism with the three different replacement policies:
LRU, Random and LFU

accordingly to the hit ratios of Figure 14. Hence, since the hit
ratio for cache size of 32 blocks is approximately 99% for all
the configurations, the speedup of our techniques is close to
3.2, which is the upper-bound speedup for this system.

Next, Figure 16b depicts the overall speedup obtained in
the execution of Pocket-GL thanks to our controller (note
that Figure 16b shows the percentage of overall speedup,
whereas Figure 16a shows the speedup in global terms). In
this application, the execution time of the tasks outweighs
(1.4X) their reconfiguration time on average. That means
that completely removing the reconfiguration overhead will
achieve a 1.7X speedup, and that a 100% on-chip hit ratio
will achieve a 1.4X speedup. Since these weights vary from
application to application, the performance improvement of the
reconfiguration cache is expected to be highly dependent on
the application itself.

In Figure 16b, for large cache sizes, the 99% of hit ratio
leads to an almost 40% performance improvement of Pocket-

GL, which is in fact the upper limit that our controller can
provide for this application. Moreover, even for the smallest
size (8 blocks), the best techniques are delivering around
a 12% of performance improvement for a very constrained
budget. We would like to remark that the baseline organization
we are comparing against (off-chip DDR + DMA), is a
disadvantageous scenario because the penalty for reconfiguring
a block from that memory is very low in comparison to other
alternatives such as: reconfiguring from an off-chip DDR2
without DMA, or from a FLASH memory. In these situations
the latency of the off-chip memories can be tens or hundreds
times worse than the latency of a block RAM. Hence, the
proposed controller can provide even better results.

VII. CONCLUSIONS

This paper presents a hardware implementation of a con-
troller that efficiently manages the reconfiguration process
by taking advantage of on-chip memory resources to apply
conguration caching. In order to optimize the use of the on-
chip resources, it includes support to divide the configurations
into blocks of customizable size. This approach increases
the flexibility and reduces the fragmentation in the on-chip
memories. In addition, it features an adaptive mechanism
and several replacement techniques. Experimental results have
demonstrated that the presented mechanism, combined with a
LFU replacement policy provides very good results, allowing
to maximize the benefits of the on-chip configuration memory.
In order to measure the runtime delays and the implementation
cost generated by this controller, it has been implemented in
a XilinxTMVirtex-5 FPGA. The results show that the hardware
cost is affordable and the delays are very small. Moreover, the
maximum operation frequency of the developed controller is
greater than 100 MHz, hence it is possible to carry out the
reconfigurations at their maximum speed.
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