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Board-game applications are frequently found in mobile devices where the computing performance and the 
energy budget are constrained. Since the Artificial Intelligence techniques applied in these games are 
computationally intensive, the applications developed for mobile systems are frequently simplistic, far 
from the level of equivalent applications developed for desktop computers.  

Currently board games are software applications executed on general purpose processors. However, they 
exhibit a medium degree of parallelism and a custom hardware accelerator implemented on an FPGA can 
take advantage of that. 

We have selected the well-known Reversi game as a case study because it is a very popular board game 
with simple rules but huge computational demands. We developed and optimized software and hardware 
designs for this game that apply the same classical Artificial Intelligence techniques. The applications 
have been executed on different representative platforms and the results demonstrate that the FPGAs 
implementations provide better performance, lower power consumption and, therefore, impressive energy 
savings. These results demonstrate that FPGAs can efficiently deal with this kind of problems.  

1. INTRODUCTION 
The future of computation demands to increase performance while keeping power 
consumption as low as possible. This applies especially to mobile devices. With a 
strongly limited power/energy budget, they strive to approach the performance of 
desktop computers. 

As the number of transistors that can fit in a chip grows, more components can be 
placed inside, leading to complex on-chip systems with several processors that can be 
homogeneous (multi-core platforms) or heterogeneous systems. In the latter case, the 
platform includes some specialized processors, where each one of them has been 
designed to be very efficient for an application field. This design trend results in what 
is called System-on-a-Chip (SoC). One recent example of this kind of platforms is 
Texas Instruments OMAP 5 Processor [1]. It includes two different General Purpose 
Processors (GPPs), each one with a different power/performance trade-off, and 
several specific processors to manage 2D and 3D graphics, audio, Digital Signal 
Processing (DSP), and encryption-decryption. 

However, no matter how many transistors are available, it is clear that in general 
purpose computing platforms it is not possible to add custom hardware for every 
single application since the number of different applications can be extremely large. 
Moreover, the actual applications that will run on a given platform are not known at 
design time, because users can add new applications whenever they want. It is at 
this point where hardware accelerators implemented in programmable logic play an 
important role. 

Recently, a new family of silicon devices have appeared, combining low-power 
GPPs with programmable logic. A first multi-chip approach was developed by Intel 
and Altera, integrating an Intel Atom E6xx Series GPP and an Altera Arria II GX 
FPGA in a single package [2]. More recently, the major FPGA manufacturers, Xilinx 
and Altera, have released a complete processor-based SoC and a powerful FPGA 
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integrated in a single chip (Xilinx Zynq-7000 EPP [3], and Altera Cyclone V and 
Arria V SoC [4]). Both consist in a processor-centric solution with several GPP cores 
for command and control purposes and to execute all the task that do not demand 
hardware acceleration, and programmable logic resources for those tasks that 
demand parallel data processing, have tight real-time restrictions, or must be very 
energy-efficient.  

These platforms allow the software developers to work in a familiar environment, 
and the logic designers to differentiate their solution from others by adding 
customized hardware blocks that improve the performance and reduce the energy 
consumption. In fact, Google has announced that it will include an FPGA in its 
Project ARA modular smartphones [5]. This is the first time that a mobile phone will 
include an FPGA.   

Artificial intelligence in board games is a field that can take enormous advantage 
of these new hybrid FPGA/processors platforms. Board games applications such as 
Chess, Reversi and many others are frequently found in portable devices. The 
algorithms applied in these games usually involve a heavy computational workload 
which can benefit from custom hardware. This hardware is able to efficiently analyze 
the boards not only to improve the performance of the system but also to drastically 
reduce its energy consumption. The reason is that the size of the boards is especially 
suitable for a hardware module that processes the board and extracts all its 
information very fast seamlessly exploiting all its parallelism by processing all the 
squares in parallel, whereas an equivalent software version executes nested loops 
that must analyze the board following different access patterns. These loops cannot 
be profitably parallelized using several threads, because the size of the board is not 
big enough to compensate for the parallelization overheads. Moreover, they are 
neither suitable to take advantage of the Single-Instruction Multiple-Data (SIMD) 
units included in modern processors. These units execute the same arithmetic 
instructions to several data; however, in board games each board position may 
demand a different computational treatment. 

Although theoretically custom hardware can be extremely efficient for board 
games applications, the fact is that, in the specialized literature, no previous work 
can be found presenting an in-depth analysis of this approach taking into account not 
only the performance, but also the energy and power consumption. For that reason, 
we have made a performance and energy efficiency analysis between hardware and 
software implementations of a board game application to quantify the advantages of 
using programmable logic. 

As a case study we have selected a Reversi application, since it is both very 
popular and very complex. There are many Reversi applications available both for 
desktop computers and mobile devices. WZebra [6] is probably the most popular 
application for desktop computers and Reversi Free the most popular for 
smartphones (it has been installed in more than five millions of Android-based 
systems). If we compare both of them, WZebra playing in a low level easily defeats 
Reversi Free playing at its highest level. Reversi Free cannot process millions of 
boards, as WZebra does, since it would consume a lot of time and quickly drain the 
battery. 

In order to analyze the benefits of a hardware accelerator for Reversi we have 
developed two algorithmically equivalent versions of a Reversi application. Both of 
them apply classical AI algorithms for board games, but they differ in the way that 
the computations are carried out. It is important to point out that the AI algorithms 
selected are sequential, hence they do not look as a promising target for hardware 
acceleration. However, these algorithms process millions of boards during a game, 



  
                                                                                                                                         
and a custom hardware module can process those boards very fast exploiting its data 
parallelism. 

To make a fair comparison, we optimized both designs. In the case of the software 
version, which was written in C code, the design team included two proficient on code 
optimization that analyzed its execution in detail in order to identify hot-spots and 
improve the code. We also parallelized the code and tested compiler optimizations. 

Both versions were implemented in the Zynq hybrid FPGA/processor platform and 
we compared its performance and power/energy consumption. Moreover, we also 
implemented them on other representative FPGAs and general-purpose processors. 
The hardware design has been implemented in two high-end FPGAs, Xilinx Virtex II-
Pro and Virtex-5, and in one low-cost Xilinx Spartan 6. The software design has been 
executed on a high-performance Intel i7, and on a low-power Intel Atom. 

Our main contributions are: 
— Analysis of the benefits of including custom hardware for a board game 

application, demonstrating that the parallelism granularity of a board nicely fits 
with current FPGAs architectures. 

— Comparison of two algorithmically equivalent hardware and software versions. 
— Analysis of the results in several platforms according to three metrics: 

performance, power consumption, and energy efficiency. 
 
The rest of the paper is organized as follows: Section 2 mentions related work for 

hardware implementations of the Reversi game, and for performance and energy-
efficiency comparisons in different fields. Section 3 describes the rules of Reversi. 
Section 3 and 4 explains the artificial intelligence techniques implemented. Section 5 
motivates hardware acceleration with an example related to Reversi. Sections 6 and 
7 analyze the hardware and software designs. Section 8 shows a comprehensive 
performance analysis. Section 9 finishes the comparison tackling the energy 
efficiency. Finally, Section 10 weighs the design effort in hardware design and 
software development, and Section 11 exposes the conclusions of this work. 

2. RELATED WORK 
There are other works proposing hardware implementations for the Reversi game. 

C.K. Wong et al. presented in 2004 and FPGA-based implementation with a simple 
AI [7]. This design did not evaluate the game board dynamically but only apply a 
static weight for each possible move, which is a very weak approach. In any case, it 
was an interesting proof of concept that demonstrated that FPGAs can be used for 
board games. Later in 2010, Reversi was the target of a digital hardware design 
competition organized by the International Conference on Field Programmable 
Technology [8]. A previous version of our hardware design was awarded with the first 
prize [9]. This version provide similar performance than our current version but it 
was less efficient, needing 30% more hardware resources to carry out the same 
computations. The main reason is that it was designed very fast in order to 
participate in the competition. Moreover, in that competition the only objective was 
to play as well as possible. Hence we did not spend time optimizing the hardware 
resources. In this competition, the design presented by T. Mabuchi et al. was 
awarded with the second prize [10], and the design presented by M. Smerdis et al. 
[11] with third prize. 

The design presented in [10] proposed to use the FPGA to implement a 
multiprocessor system with six specific processors specifically designed to carry out 
the operations needed in this game. The design described in [11] follows a Monte-
Carlo method that generates several random games for each possible move and 



 
 

selects the move that provides better score (more random games won). These two 
designs follow completely different paradigms than our hardware design. Hence it is 
complex to compare the results. Fortunately there are objective metrics that can be 
used to compare them. Firstly, our design defeated these two other designs in a live 
session of the International Conference on Field Programmable Technology. In that 
session, our design won all the games, two against the design presented in [10] and 
two against the design from [11]. Secondly, as a preliminary step of this competition 
all the designs were tested against a reference software that was provided by the 
organizers. Each design played fourteen games (the software had seven different skill 
levels, and each design played one game with black stones, and another with white 
stones). The average results are presented in the following table. The score 
represents the score of the hardware design minus the score of the reference software. 
The maximum score that can be achieved is +64, which means that all the games 
finished 64-0 (64 stones for the hardware design, and 0 stones for the software 
opponent). As it can be seen in the table our design almost reached that value. The 
other hardware designs also provided very good results, but they scores were 
significantly worse. 

 
Table I. Results of the ICFPT ’10 designs against the reference software 

Design Average result 
Our design [9] +63 

Othello solver [10] +35 
CarlOthello [11] +50 

 
Previously, several relevant works have analyzed the benefits of using FPGAs to 

implement custom accelerators. For instance, Lopez et al. show the use of FPGAs for 
Remote Sensing applications [12,13], Cope et al. analyze performance speedups 
obtained for several image processing algorithms implemented on Graphics 
Processing Unit (GPUs) and FPGAs [14], and J. Cong et al. present a case study for a 
medical application [15]. These works prove that FPGAs provide excellent 
performance for a wide range of applications. However, this is not enough for mobile 
platforms, where energy efficiency is compulsory. 

3. REVERSI 
Reversi [16] is a two-player board game played on an 8x8 board using black and 
white discs. The game begins with the movement of the black player. Then, both 
players alternate their movements. A legal move consists in placing a disc 
outflanking at least one opponent’s disc in any direction (horizontal, vertical, 
diagonal). Every opponent’s disc outflanked turns over its color. When a player has 
no legal moves, the turn comes back to the other player, and when both have no legal 
moves the game ends. The goal is to have more discs than the opponent at the end of 
the game. 
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Fig. 1. (a) Initial Reversi board depicting legal moves for black player in red 
(b) Board after black player played ‘A’ 

 
Fig. 1a depicts the initial board and the four possible dark-player legal moves (A, 

B, C and D). Fig. 1b shows the board after the dark player played ‘A’. Although the 
rules are very simple, Reversi has a huge computational complexity, as the game-tree 
has approximately 1058 nodes. Currently, it still remains as an unresolved game. 

4. BOARD EVALUATION METRICS 
Our design uses four metrics in order to estimate the quality of a board. 

 
(1) Mobility. It refers to the number of legal moves of a player. This is a very 
important strategic concept of the game. A good player tries to maximize its mobility 
while limiting the opponent’s one. This usually forces the opponent to make 
undesirable movements. 
 
(2) Stable discs. Stable discs are those that once they are placed, they cannot be 
flipped anymore. They are generally desirable because they allow dominating its 
surrounding squares and definitely contribute to the final score. We have identified 
two situations where a disc is stable: 

i. A disc is stable if at least one neighbor in each direction is stable. 
This is formally defined as follows: 
 
Si,j if (Si,j-1 ˅ Si,j+1) ˄ (Si-1,j ˅ Si+1,j) ˄ (Si-1,j+1 ˅ Si+1,j-1) ˄ (Si-1,j-1 ˅ Si+1,j+1) 
 
Where Si,j means that the square located in row i and column j is stable. This 

definition implies mutual recursion since a square needs to check if a neighbor is 
stable while the latter also needs to check if the former is stable. Implementing 
mutual recursion algorithms is always a complex issue, since it can easily lead to 
large performance degradations.  

ii. A disc is stable if its row, column, and diagonals are fully filled. 
 
(3) Corners and x-squares. Corners are considered valuable squares because they are 
stable and they are the key to get more stable discs around the corner. On the 
contrary, x-squares (corners adjacent squares placed on the major diagonals) are 
generally undesirable squares because they facilitate the opponent to reach the 
corners. Note that this applies only when the corresponding corner is empty. 
 
(4) Number of discs. This metric evaluates end-game boards. 



 
 

 
Our evaluation function is a linear combination of these metrics. The weights of 

the metrics were assigned based on the relative strategic importance of each metric, 
and later they were empirically tuned analyzing its behavior against several 
opponents. More accurate evaluation functions can be easily included in the system 
but it is not the focus of this work. 

5. SEARCH TECHNIQUES 
We have chosen the Minimax algorithm to explore the game-tree because it is the 
most common search algorithm for board games. Minimax is a depth-first search 
algorithm that looks for the best movement assuming that the opponent will play his 
best movement as well. Additionally, we included the following techniques to improve 
the performance of the game-tree exploration: 
 
(a) Alpha-beta pruning. In a Minimax search, it is very common to find situations 
where it is possible to stop generating new successors from a node because they are 
irrelevant in the search outcome. The efficiency of alpha-beta pruning depends on the 
order in which nodes are generated. The sooner the best movements are generated 
the higher the pruning efficiency [17]. 
 
(b) Iterative Deepening. Typically the movement must be selected before a timeout 
arrives. However, the search depth that can be reached for a given time depends on 
the board. Hence, fixing the depth search may lead to returning no move, if the 
system runs out of time before finishing the analysis, or suboptimal decisions, if a 
small depth is chosen. Iterative deepening solves this issue making incremental 
depth searches until a timeout arrives. Moreover, it allows inferring knowledge about 
the quality of the movements, so it can be used to increase the pruning efficiency. 
This is discussed below. 
 
(c) Dynamic node ordering. As we have exposed before, exploring first the best 
movements increases the pruning efficiency. We have implemented two kinds of 
dynamic node ordering that attempt to explore first the most promising moves. 

 
The first one is based on strategic concepts of Reversi, and consists in analyzing 

first the movements on corners, and analyzing last the movements that will help the 
opponent to get a corner (i.e. x-squares). 

The second one uses the inferred knowledge acquired throughout incremental 
searches. In a search of depth d+1, the first movement explored is best movement of 
the previous search, i.e. depth d. 

6. HARDWARE ACCELERATION 
Board games offer many sources of parallelism. Parallelism is classified as fine-
grained when the tasks to do in parallel require a little amount of work and have to 
be performed many times. The current trend in GPPs is to exploit parallelism by 
adding more cores. However, this scheme fails to exploit fine-grained parallelism 
because of communication overheads. We can illustrate this with an example from 
the Reversi game. The most frequent task is identifying the legal moves of a board. 
Fig. 2 illustrates the squares to analyze in order to determine if the square (3,4) 
corresponds to a legal move for the dark player, and also the specific patterns to find 
out whether it is a legal move due to its row configuration. These comparisons check 
if any of the patterns is satisfied, and the same analysis must be done for its 



  
                                                                                                                                         
corresponding column and diagonals. Finally, if any pattern correspondence is found, 
the square is a legal move. 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Legal move analysis of the square (3,4). ‘x’ means ‘do not care’ 
 

We carried out these computations in software and hardware as follows. 
Algorithm 1 shows a brief pseudo-code that finds all the legal moves of a board. It 
traverses the board looking for a legal move pattern in each square. To this end, four 
small loops are nested in such a way that the function analyzes each square in all 
directions and try to identify up to six different patterns. The same function is 
implemented in hardware using an array of combinational blocks which consists of 
1920 2-bits comparators that seamlessly exploit all the data parallelism. This 
corresponds to a fully unroll of the four nested loops by executing every single 
iteration in parallel. Fig. 3 depicts a piece of hardware of one of these blocks that 
determines if the row satisfies the pattern 5 for the square (3,4). 

ALGORITHM 1. Legal moves computation 
Input: Current board and color.  
Output: Legal moves for the input color.  
function  legalMove(in row, in col) returns boolean  
        for each direction do  
             for each pattern do 
                  if pattern_match(row, col, direction, pattern) then  
                     return true;   
                  end if 
             end for 
        end for 
        return false; 
end function 
         
 
function  allLegalMoves(out legalMoves)  
        for each row do  
             for each col do 
                  legalMoves(row, col) = legalMove (row, col); 
             end for 
        end for 
end function 

  
The execution of this function executed on an Intel i7 processor takes about 750 ns 

on average after both algorithmic and compilation optimizations. The code cannot be 
profitably parallelized because the little amount of work to parallelize (about 6,000 
assembly instructions per invocation) is not enough to make up for multi-thread 
overheads. Using SIMD instructions is not feasible because each square requires 
slightly different computations. 



 
 

In contrast, a hardware implementation on a FPGA exploits all the available 
parallelism devoting one hardware block per board square. With the 64 blocks 
working in parallel it just takes 7 ns to find all legal moves on a Virtex-5 FPGA, 
which yields a speedup factor of above 100x over the Intel i7 processor. 

 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3. Hardware architecture to identify the pattern 5 of Fig. 2 

7. HARDWARE DESIGN 
In this section, we present the Reversi player hardware architecture (see Fig. 4), and 
a description of the most relevant modules. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Fig. 4. Hardware architecture of the Reversi player 
 

7.1 Move checker 

This module identifies the legal moves of a board. It is a purely combinational 
module which implements a logic function for each square that compares its row, 
column, and diagonals with every legal move pattern. 

 
7.2 Disc flipper 

This module returns the new board after making a legal move. It has been 
implemented as an iterative network composed by 64 cells, one per each board square. 
This network works as follows: 



  
                                                                                                                                         
(1) The cell corresponding to the selected movement begins the pattern propagation 
to its neighbors in every direction. 
(2) Each cell propagates a new pattern in each direction based on the content of its 
square and its input pattern. 
 
(3) If a cell identifies a flip pattern, it returns a flip signal in the opposite direction. 
Every cell that receives this signal turns its color and keeps propagating this signal 
until it arrives to the cell corresponding to the movement. 
 

Table II shows the patterns propagation scheme after a movement of the white 
player. Three different patterns are considered: no relevant pattern, one white disc, 
and one white disc followed by at least one black disc. For the black player the design 
follows a similar scheme with the opposite patterns (one black disc and one black disc 
followed by at least one white disc). 

 
Table II. Pattern propagation scheme 

 

 

 

 

 

 

 

 

Fig. 5 shows a simplified example with four squares in one direction. A white disc 
is placed in the cell marked with an ‘x’. This cell begins the pattern propagation by 
sending the corresponding pattern to its neighbor. The next cell propagates a new 
pattern according to its input pattern and the content of its square (see Table II). The 
third cell does the same propagation. The fourth cell completes a flip pattern, so it 
returns a flip signal in the opposite direction that is propagated until the starting cell 
is reached. All the intermediate cells that receive this signal flip their discs. 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Toy example of the Disc flipper network 



 
 

7.3 Stable discs evaluator 
This module returns the number of stable discs of a board. We implemented it as an 
iterative network. In this case, it was necessary to add a flip-flop to each cell because 
implementing it as a purely combinational module leads to combinational loops that 
strongly downgrade the performance by reducing the maximum frequency the design 
might work. 

The cells corresponding to the border of the board are a special case and they can 
be easily evaluated using combinational logic. The layout of the module is shown in 
Fig. 6. The dashed lines represent the layers of the network due to the flip-flops 
added to each cell. This network works as follows: 

 
(1) The combinational logic for the border squares determines which ones of them are 
stable discs in the first cycle. 
 
(2) If any stable disc is detected, in the following cycles, the intermediate results are 
propagated in a round trip wave fashion until the results converge (i.e. no output has 
changed within the last cycle). 

 
The second step takes a variable number of cycles (from 1 to 5 ), so we have added 

a 1-bit comparator to each cell that compares the current network status with the 
previous cycle status in order to identify when the evaluation finishes. 

Finally, once the stable discs have been identified, two 64-bit tree adders return 
how many of them have been found for each color. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. Stable Discs Network layout 

 
7.4 Boards memory and tree data register bank 

These are the modules that storage the information concerning each game-tree 
level. Best move register stores the best move of the last fully explored game-tree. 
Current best move register stores the best move of game-tree under analysis. Last 
move registers store the last move analyzed in each level. α-β values registers store 
the scores propagated from the leaf nodes to upper levels according to the Minimax 
algorithm. 



  
                                                                                                                                         

Boards memory stores all the boards of the open branch under analysis. It has 
been designed using several memory modules in parallel in such a way that a board 
can be read or written in just one clock cycle. Fig. 6 shows these two storage elements. 

 

 

 

 

 

 

 

 

 

 

 
(a)                                             (b) 

 
Fig. 6. (a) Register bank module. (b) Boards memory module 

 
7.5 Minimax control unit 

Minimax control unit has been implemented as a Finite-State Machine (FSM) (see 
Fig. 7). State ‘Find next move’ performs legal moves calculation, movement 
reordering, and move selection. State ‘Generate new board’ generates the new board 
after placing a disc. State ‘Evaluate board’ evaluates a board and manages the flow 
control of Minimax. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Minimax FSM 



 
 

8. SOFTWARE VERSION 
We have developed an algorithmically equivalent software solution to be executed in 
general purpose processors for performance and power consumption evaluation. It 
has been written in C code and compiled with GCC both for Intel and ARM 
processors. 

The application was analyzed with Intel VTune Amplifier XE 2011 [18], which is a 
powerful profiling software. 

An initial analysis of the hotspots revealed that finding the legal moves is the 
most time-consuming task, so we focused on reducing its impact. Initially this 
function was computing the legal moves every time that a node was analyzed, as it is 
done in the hardware design. However, after the results of this analysis, we decided 
to reduce the number of invocations to this function by storing the legal moves of 
every open node in a specific data structure, in such a way that they are computed 
only when the node is initially generated. The remaining times the code loads the 
stored data instead of computing it again. This reduced the hotspot by 44%. 

Additionally, we implemented a data structure that reduces the number of 
pattern checks by marking as potential legal moves only the squares that have at 
least one disc in any of its surrounding squares. This improvement reduced the 
computation by an additional 9%. 

We have also compiled it with Intel C Composer XE [19], getting no relevant 
improvements even after tuning the compiler optimizations for each processor. 

Finally, we tried to parallelize the legal moves function by using automatic 
parallelization feature of the GCC compiler, and by manually modifying the code 
using two thread libraries (POSIX Threads and Intel Threading Building Blocks). In 
the first case, the compiler was unable to parallelize the code. In the second case, the 
result was a strong performance downgrade, as expected, due to the threads 
management overhead. 

9. PERFORMANCE ANALYSIS 

We have used the Zynq hybrid FPGA/processor platform, three FPGAs, and two 
GPPs to evaluate the performance of hardware and software solutions. Tables III and 
IV summarize their main features. Note that in the case of FPGAs, the working 
frequency depends on the design, and in this case it is low due to the delay of the 
large combinational blocks.  

 
Table III. Main features of General Purpose Processors Platforms 

Platform Processor Tech (nm) Year Clock 
Atom Intel Atom D525 45 2010 1.8 GHz 

i7 Intel i7-2600 32 2011 3.4 GHz 
Zynq (GPP) ARM Cortex-A9 28 2012 667 MHz 

 
 

Table IV. Main features of Programmable Logic Platforms. 
Clock Column indicates the design working frequency 

Platform Board Tech (nm) Year Logic cells BRAM (KB) Clock (MHz) 

Virtex II-Pro [20] 90 2002 30K 306 32 
Virtex-5 [21] 65 2006 110K 666 60 

Spartan-6 [22] 45 2009 43K 261 32 
Zynq (FPGA) [23] 28 2012 85K 560 32 

 



  
                                                                                                                                         

Table V. FPGA resources utilization 

FPGA Slice Registers Slice LUTs BRAMs 

Virtex II-Pro 634 (  2%) 8250 (30%) 8 (5%) 
Virtex-5 599 (<1%) 5837 (  8%) 4 (2%) 

Spartan-6 622 (  1%) 8251 (30%) 8 (6%) 
Zynq 637 (<1%) 8834 (16%) 6 (4%) 

 
Table V shows the occupied resources for each FPGA. Even for low-cost FPGAs, 

like the Spartan-6, the design occupies less than one third of the FPGA hence our 
design can be implemented in very small FPGAs. Regarding the cost of a software 
solution, if a processor is already present in the system the only cost will be to store 
the application in the memory subsystem. Since its memory footprint is very small 
(less than 500KB) any memory subsystem will provide enough storage capacity. 
Hence, using the software version reduces the cost of the system, but as we will see 
in the following sections, it also provides worst performance and more energy 
consumption. 
 
9.1 Overall performance 
We have used two metrics to measure the performance: boards analyzed per second, 
and average computing time per move. 

Depending on what kind of comparison we want to carry out, we have used two 
slightly modified versions: 
(a) Time-constrained. These designs decide the next movement in no more than one 
second, and their performance is measured as boards analyzed per second. This 
metric allows analyzing the behavioral differences between the software and 
hardware implementations during a game. 

As Fig. 8 depicts, in the software version the number of boards analyzed per second 
increases during the game. The reason is that as the board becomes fuller of discs, 
the number of squares which are potential legal moves decreases, and therefore 
analyzing a board requires fewer instructions. On the contrary, the hardware version 
exhibits the opposite trend. In this case all the positions are analyzed in parallel. 
However, the number of boards analyzed per second slightly decreases during the 
game due to the stable discs evaluation. Boards without stables discs are evaluated 
in one cycle, whereas boards with stable discs need up to five cycles. In fact, the more 
stable disc the more cycles it takes to identify them. 

The hardware version provides two order of magnitude better performances than 
the software version. It is interesting to point out that a Virtex II-Pro, which is FPGA 
from 2002, offers from 15 to 40 times better performance than a last-generation 
multi-processor chip such as the i7-2600. These results demonstrate that FPGAs are 
extremely efficient analyzing boards. 

 
 
 
 
 
 
 
 
 
 



 
 

 

 

 

 

 

 

 

 
 

Fig. 8. Boards analyzed per second in software and hardware 
 

(b) Fixed depth. These designs explore always the same number of movements in 
advance, in such a way that each movement demands the same useful workload. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Average computation time per movement 

 

Performance for Virtex II-Pro, Spartan 6 and Zynq FPGA is exactly the same 
because they implement the same hardware design, running at the same frequency. 
Virtex 5 FPGA enables an implementation at a higher frequency; therefore it 
provides the best performance. 

In the case of GPPs, the performance not only depends on frequency but also 
many other architectural details. The results evidence that i7 processor is about 
seven times faster than Atom, and about ten times faster than Zynq GPP. 

Comparing FPGAs with GPPs, even a low-cost FPGA, Spartan 6, achieves a 
remarkable speedup of 25 over a high-performance processor (i7). 



  
                                                                                                                                         

 
9.2 Task-level performance 

In order to better understand the previous results, it is interesting to identify the 
tasks where a design achieves greater performance and the reasons for that. To carry 
out this analysis we have used the fixed-depth designs, in order to guarantee that 
software and hardware designs have the same useful workload (i.e. they have to 
explore the same game-tree). 

A task performance analysis requires knowing the execution time of each task. 
For Intel processors, we profiled our application with Intel VTune in order to gather 
accurate execution statistics of every function. For ARM processor, we manually 
instrumented the code using hardware counters included in the system for accurate 
time measuring.  

For this analysis, we have split the application in three tasks: Find next move, 
Generate new board and Evaluate board. Fig. 10 shows the average computation time 
for each task exploring eight moves in advance during a game. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10. Computation time of each task in hardware and software during a game 

 

The graph makes clear that the hardware design obtains the highest speedup 
finding the next moves, achieving an impressive speedup of roughly 90 if we compare 
the high-performance processor with the low-cost FPGA. Moreover, this in not only 
the task where the hardware achieves the higher speedup, but this is also the most 
time-consuming task in software, so we conclude that this is the key to explain the 
performance advantage of the hardware design over the software. 

The hardware exploits perfectly all the parallelism since the 64 squares of a board 
are analyzed in parallel, and this is done for both players also in parallel, while the 
software cannot profitably take advantage of data parallelism, neither by multi-
threading nor by executing SIMD instructions. 



 
 

10. POWER CONSUMPTION AND ENERGY EFFICIENCY 
Power consumption was measured with a Yokogawa WT210 digital power meter, 
which is an accepted device by Standard Performance Evaluation Corporation 
(SPEC) for power efficiency benchmarking [24]. 

The power consumed by a system can be divided in two different terms: static and 
dynamic power. On the one hand, the static power is the power consumed by the 
system even when no useful work is carried out. The only way to avoid this 
consumption is to turn off the system. On the other hand, the dynamic power is the 
power consumed due to the computations carried out by the system. 

Table IV shows the power consumption data of the evaluated platforms. The 
column ‘Total Power’ is the average power consumption of the whole system 
executing our application. Hence, it includes both the static and the dynamic terms. 
The column ‘∆Power’ only includes the dynamic power consumption, i.e. the average 
increase in the power consumption due to the execution of our application. This is the 
most important metric since ‘Total Power’ includes the static power consumption of 
all the elements of the platform, even those that are not used. 

 
Table IV. Average power consumption executing our Reversi application 

Platform Total Power 
(W) ∆Power (W) 

i7 68.31 24.19 
Atom 34.20 1.07 

Zynq (GPP) 4.61 0.1 
Virtex II-Pro 4.79 0.42 

Virtex-5 7.31 0.15 
Spartan-6 3.02 0.06 

Zynq (FPGA) 2.90 0.02 

 
Energy efficiency measures useful work done per unit of energy. In this application, 
we define the useful work as the number of boards analyzed; therefore, combining 
the performance metric boards analyzed per second with the power data, we obtain 
the energy efficiency metric as shown in Eq 1. 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
𝑝𝑜𝑤𝑒𝑟

=
𝑘𝐵𝑜𝑎𝑟𝑑𝑠

𝑠 𝑤𝑎𝑡𝑡
� = 𝑘𝐵𝑜𝑎𝑟𝑑𝑠

𝐽
     (1) 

 
 
Fig. 11 shows the energy efficiency results. Columns named as ‘System’ show the 

energy efficiency taking into account the power consumption of the whole system, 
while columns named as ‘∆Energy’ only take into account the dynamic power 
consumption. 

The ARM Cortex-A9 (Zynq GPP) demonstrates to be the most energy-efficient 
processor whereas Intel i7 is the least efficient because it is a performance-oriented 
processor. In the case of FPGAs, the energy efficiency increases as the scale 
integration improves. 

 
 
 
 
 



  
                                                                                                                                         

 
 
 
 
 
 
 
 
 
 
 
 
 

  
Fig. 11 Energy efficiency of each platform executing the Reversi application 

 
It is remarkable the fact that FPGAs implementations achieves energy efficiencies 
from two up to four orders of magnitude higher than the software running on GPPs. 
Hence adding a customize hardware module for the Reversi game not only leads to 
an important performance improvement, but also to remarkable energy savings. 

11. DEVELOPMENT EFFORT 
The previous results demonstrate the utility of FPGAs to improve both the 
performance and the power consumption of a board game application. However, 
using FPGAs has some drawbacks. 

The first drawback is the way to code the design. Hardware designs are usually 
written in a Hardware Description Language (HDL), typically VHDL or Verilog, and 
writing a hardware design is usually more complex than writing a software 
application that has the same functionality. However, if the design team has a good 
command of HDL, writing an initial version of the hardware design requires just a 
little more time than writing a software application. Moreover, FPGA vendors are 
doing an important effort to simplify the hardware design process. For instance 
Xilinx has developed a C/C++ to HDL compiler [25] that can be used to directly map 
a C or C++ code to an FPGA, and they have reported good results for several digital 
processing applications 

There are two additional drawbacks associated to FPGA hardware design. The first 
one is the compiling time. Extracting the FPGA configuration which implements a 
design requires much more time than compiling software code. For large designs it 
may take even hours, and this is done several times during the development process, 
significantly slowing down the development pace. The last drawback is the debugging 
complexity. Once the initial design has been written, the testbenchs will likely 
identify several malfunctions, but debugging large hardware designs with several 
modules interacting and working in parallel becomes much more complex than 
debugging a sequential software code. Once again, FPGA vendors provide several 
tools to make this step more affordable, such as powerful simulators, or specific 
support to monitor some FPGA internal signals. Anyway, debugging a parallel 
system is always more complex than debugging a sequential one. 

Hybrid hardware/software platforms offer a well-balanced solution to minimize the 
impact of these drawbacks. Those tasks that are not critical for the system 
performance may run on the GPP, and only very demanding tasks would be mapped 



 
 

to the FPGA. This approach enables to design a custom SoC with an affordable 
development effort. 

12. CONCLUSIONS 
In this article we have analyzed the performance and energy efficiency of a Reversi 
player implemented on FPGAs and GPPs. Board games offer many sources of fine-
grained parallelism, and the experimental results demonstrate that FPGAs can 
seamlessly exploit it in order to speed up the execution and reduce the power 
consumption of the critical functions that analyze the boards. 

Moreover, new hybrid platforms that tightly couple FPGAs and GPPs enable 
energy-efficient implementations with a reasonable design effort by implementing 
the core functions in hardware and the remaining functionality in software. Hence 
we believe that FPGAs can play an important role in general-purpose systems 
dealing with any kind of application that exhibits either data or task parallelism, 
especially for battery-dependent devices where energy efficiency is compulsory. In 
fact, as we have shown in our case study, they can be the key to provide the 
performance of powerful desktop processors in low-power devices. 

As future work, it would be interesting to explore different co-design possibilities, 
such as managing all the computations on the programmable logic, and leaving the 
I/O in the processor side, or using the programmable logic to process the boards while 
the processor executes the search algorithm. We believe that it will be especially 
interesting to carry out a comprehensive evaluation of the communication schemes 
between the processor and the programmable logic in order to decide the best co-
design alternative. 
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