

Performance and energy efficiency analysis of a Reversi player
for FPGAs and General Purpose Processors

JAVIER OLIVITO, University of Zaragoza, 0034876555081, jolivito@unizar.es
RUBÉN GRAN, University of Zaragoza
JAVIER RESANO, University of Zaragoza
CARLOS GONZÁLEZ, University Complutense of Madrid
ENRIQUE TORRES, University of Zaragoza

Board-game applications are frequently found in mobile devices where the computing performance and the
energy budget are constrained. Since the Artificial Intelligence techniques applied in these games are
computationally intensive, the applications developed for mobile systems are frequently simplistic, far
from the level of equivalent applications developed for desktop computers.

Currently board games are software applications executed on general purpose processors. However, they
exhibit a medium degree of parallelism and a custom hardware accelerator implemented on an FPGA can
take advantage of that.

We have selected the well-known Reversi game as a case study because it is a very popular board game
with simple rules but huge computational demands. We developed and optimized software and hardware
designs for this game that apply the same classical Artificial Intelligence techniques. The applications
have been executed on different representative platforms and the results demonstrate that the FPGAs
implementations provide better performance, lower power consumption and, therefore, impressive energy
savings. These results demonstrate that FPGAs can efficiently deal with this kind of problems.

1. INTRODUCTION
The future of computation demands to increase performance while keeping power
consumption as low as possible. This applies especially to mobile devices. With a
strongly limited power/energy budget, they strive to approach the performance of
desktop computers.

As the number of transistors that can fit in a chip grows, more components can be
placed inside, leading to complex on-chip systems with several processors that can be
homogeneous (multi-core platforms) or heterogeneous systems. In the latter case, the
platform includes some specialized processors, where each one of them has been
designed to be very efficient for an application field. This design trend results in what
is called System-on-a-Chip (SoC). One recent example of this kind of platforms is
Texas Instruments OMAP 5 Processor [1]. It includes two different General Purpose
Processors (GPPs), each one with a different power/performance trade-off, and
several specific processors to manage 2D and 3D graphics, audio, Digital Signal
Processing (DSP), and encryption-decryption.

However, no matter how many transistors are available, it is clear that in general
purpose computing platforms it is not possible to add custom hardware for every
single application since the number of different applications can be extremely large.
Moreover, the actual applications that will run on a given platform are not known at
design time, because users can add new applications whenever they want. It is at
this point where hardware accelerators implemented in programmable logic play an
important role.

Recently, a new family of silicon devices have appeared, combining low-power
GPPs with programmable logic. A first multi-chip approach was developed by Intel
and Altera, integrating an Intel Atom E6xx Series GPP and an Altera Arria II GX
FPGA in a single package [2]. More recently, the major FPGA manufacturers, Xilinx
and Altera, have released a complete processor-based SoC and a powerful FPGA

39

integrated in a single chip (Xilinx Zynq-7000 EPP [3], and Altera Cyclone V and
Arria V SoC [4]). Both consist in a processor-centric solution with several GPP cores
for command and control purposes and to execute all the task that do not demand
hardware acceleration, and programmable logic resources for those tasks that
demand parallel data processing, have tight real-time restrictions, or must be very
energy-efficient.

These platforms allow the software developers to work in a familiar environment,
and the logic designers to differentiate their solution from others by adding
customized hardware blocks that improve the performance and reduce the energy
consumption. In fact, Google has announced that it will include an FPGA in its
Project ARA modular smartphones [5]. This is the first time that a mobile phone will
include an FPGA.

Artificial intelligence in board games is a field that can take enormous advantage
of these new hybrid FPGA/processors platforms. Board games applications such as
Chess, Reversi and many others are frequently found in portable devices. The
algorithms applied in these games usually involve a heavy computational workload
which can benefit from custom hardware. This hardware is able to efficiently analyze
the boards not only to improve the performance of the system but also to drastically
reduce its energy consumption. The reason is that the size of the boards is especially
suitable for a hardware module that processes the board and extracts all its
information very fast seamlessly exploiting all its parallelism by processing all the
squares in parallel, whereas an equivalent software version executes nested loops
that must analyze the board following different access patterns. These loops cannot
be profitably parallelized using several threads, because the size of the board is not
big enough to compensate for the parallelization overheads. Moreover, they are
neither suitable to take advantage of the Single-Instruction Multiple-Data (SIMD)
units included in modern processors. These units execute the same arithmetic
instructions to several data; however, in board games each board position may
demand a different computational treatment.

Although theoretically custom hardware can be extremely efficient for board
games applications, the fact is that, in the specialized literature, no previous work
can be found presenting an in-depth analysis of this approach taking into account not
only the performance, but also the energy and power consumption. For that reason,
we have made a performance and energy efficiency analysis between hardware and
software implementations of a board game application to quantify the advantages of
using programmable logic.

As a case study we have selected a Reversi application, since it is both very
popular and very complex. There are many Reversi applications available both for
desktop computers and mobile devices. WZebra [6] is probably the most popular
application for desktop computers and Reversi Free the most popular for
smartphones (it has been installed in more than five millions of Android-based
systems). If we compare both of them, WZebra playing in a low level easily defeats
Reversi Free playing at its highest level. Reversi Free cannot process millions of
boards, as WZebra does, since it would consume a lot of time and quickly drain the
battery.

In order to analyze the benefits of a hardware accelerator for Reversi we have
developed two algorithmically equivalent versions of a Reversi application. Both of
them apply classical AI algorithms for board games, but they differ in the way that
the computations are carried out. It is important to point out that the AI algorithms
selected are sequential, hence they do not look as a promising target for hardware
acceleration. However, these algorithms process millions of boards during a game,

and a custom hardware module can process those boards very fast exploiting its data
parallelism.

To make a fair comparison, we optimized both designs. In the case of the software
version, which was written in C code, the design team included two proficient on code
optimization that analyzed its execution in detail in order to identify hot-spots and
improve the code. We also parallelized the code and tested compiler optimizations.

Both versions were implemented in the Zynq hybrid FPGA/processor platform and
we compared its performance and power/energy consumption. Moreover, we also
implemented them on other representative FPGAs and general-purpose processors.
The hardware design has been implemented in two high-end FPGAs, Xilinx Virtex II-
Pro and Virtex-5, and in one low-cost Xilinx Spartan 6. The software design has been
executed on a high-performance Intel i7, and on a low-power Intel Atom.

Our main contributions are:
— Analysis of the benefits of including custom hardware for a board game

application, demonstrating that the parallelism granularity of a board nicely fits
with current FPGAs architectures.

— Comparison of two algorithmically equivalent hardware and software versions.
— Analysis of the results in several platforms according to three metrics:

performance, power consumption, and energy efficiency.

The rest of the paper is organized as follows: Section 2 mentions related work for

hardware implementations of the Reversi game, and for performance and energy-
efficiency comparisons in different fields. Section 3 describes the rules of Reversi.
Section 3 and 4 explains the artificial intelligence techniques implemented. Section 5
motivates hardware acceleration with an example related to Reversi. Sections 6 and
7 analyze the hardware and software designs. Section 8 shows a comprehensive
performance analysis. Section 9 finishes the comparison tackling the energy
efficiency. Finally, Section 10 weighs the design effort in hardware design and
software development, and Section 11 exposes the conclusions of this work.

2. RELATED WORK
There are other works proposing hardware implementations for the Reversi game.

C.K. Wong et al. presented in 2004 and FPGA-based implementation with a simple
AI [7]. This design did not evaluate the game board dynamically but only apply a
static weight for each possible move, which is a very weak approach. In any case, it
was an interesting proof of concept that demonstrated that FPGAs can be used for
board games. Later in 2010, Reversi was the target of a digital hardware design
competition organized by the International Conference on Field Programmable
Technology [8]. A previous version of our hardware design was awarded with the first
prize [9]. This version provide similar performance than our current version but it
was less efficient, needing 30% more hardware resources to carry out the same
computations. The main reason is that it was designed very fast in order to
participate in the competition. Moreover, in that competition the only objective was
to play as well as possible. Hence we did not spend time optimizing the hardware
resources. In this competition, the design presented by T. Mabuchi et al. was
awarded with the second prize [10], and the design presented by M. Smerdis et al.
[11] with third prize.

The design presented in [10] proposed to use the FPGA to implement a
multiprocessor system with six specific processors specifically designed to carry out
the operations needed in this game. The design described in [11] follows a Monte-
Carlo method that generates several random games for each possible move and

selects the move that provides better score (more random games won). These two
designs follow completely different paradigms than our hardware design. Hence it is
complex to compare the results. Fortunately there are objective metrics that can be
used to compare them. Firstly, our design defeated these two other designs in a live
session of the International Conference on Field Programmable Technology. In that
session, our design won all the games, two against the design presented in [10] and
two against the design from [11]. Secondly, as a preliminary step of this competition
all the designs were tested against a reference software that was provided by the
organizers. Each design played fourteen games (the software had seven different skill
levels, and each design played one game with black stones, and another with white
stones). The average results are presented in the following table. The score
represents the score of the hardware design minus the score of the reference software.
The maximum score that can be achieved is +64, which means that all the games
finished 64-0 (64 stones for the hardware design, and 0 stones for the software
opponent). As it can be seen in the table our design almost reached that value. The
other hardware designs also provided very good results, but they scores were
significantly worse.

Table I. Results of the ICFPT ’10 designs against the reference software

Design Average result
Our design [9] +63

Othello solver [10] +35
CarlOthello [11] +50

Previously, several relevant works have analyzed the benefits of using FPGAs to

implement custom accelerators. For instance, Lopez et al. show the use of FPGAs for
Remote Sensing applications [12,13], Cope et al. analyze performance speedups
obtained for several image processing algorithms implemented on Graphics
Processing Unit (GPUs) and FPGAs [14], and J. Cong et al. present a case study for a
medical application [15]. These works prove that FPGAs provide excellent
performance for a wide range of applications. However, this is not enough for mobile
platforms, where energy efficiency is compulsory.

3. REVERSI
Reversi [16] is a two-player board game played on an 8x8 board using black and
white discs. The game begins with the movement of the black player. Then, both
players alternate their movements. A legal move consists in placing a disc
outflanking at least one opponent’s disc in any direction (horizontal, vertical,
diagonal). Every opponent’s disc outflanked turns over its color. When a player has
no legal moves, the turn comes back to the other player, and when both have no legal
moves the game ends. The goal is to have more discs than the opponent at the end of
the game.

(a) (b)

Fig. 1. (a) Initial Reversi board depicting legal moves for black player in red
(b) Board after black player played ‘A’

Fig. 1a depicts the initial board and the four possible dark-player legal moves (A,

B, C and D). Fig. 1b shows the board after the dark player played ‘A’. Although the
rules are very simple, Reversi has a huge computational complexity, as the game-tree
has approximately 1058 nodes. Currently, it still remains as an unresolved game.

4. BOARD EVALUATION METRICS
Our design uses four metrics in order to estimate the quality of a board.

(1) Mobility. It refers to the number of legal moves of a player. This is a very
important strategic concept of the game. A good player tries to maximize its mobility
while limiting the opponent’s one. This usually forces the opponent to make
undesirable movements.

(2) Stable discs. Stable discs are those that once they are placed, they cannot be
flipped anymore. They are generally desirable because they allow dominating its
surrounding squares and definitely contribute to the final score. We have identified
two situations where a disc is stable:

i. A disc is stable if at least one neighbor in each direction is stable.
This is formally defined as follows:

Si,j if (Si,j-1 ˅ Si,j+1) ˄ (Si-1,j ˅ Si+1,j) ˄ (Si-1,j+1 ˅ Si+1,j-1) ˄ (Si-1,j-1 ˅ Si+1,j+1)

Where Si,j means that the square located in row i and column j is stable. This

definition implies mutual recursion since a square needs to check if a neighbor is
stable while the latter also needs to check if the former is stable. Implementing
mutual recursion algorithms is always a complex issue, since it can easily lead to
large performance degradations.

ii. A disc is stable if its row, column, and diagonals are fully filled.

(3) Corners and x-squares. Corners are considered valuable squares because they are
stable and they are the key to get more stable discs around the corner. On the
contrary, x-squares (corners adjacent squares placed on the major diagonals) are
generally undesirable squares because they facilitate the opponent to reach the
corners. Note that this applies only when the corresponding corner is empty.

(4) Number of discs. This metric evaluates end-game boards.

Our evaluation function is a linear combination of these metrics. The weights of

the metrics were assigned based on the relative strategic importance of each metric,
and later they were empirically tuned analyzing its behavior against several
opponents. More accurate evaluation functions can be easily included in the system
but it is not the focus of this work.

5. SEARCH TECHNIQUES
We have chosen the Minimax algorithm to explore the game-tree because it is the
most common search algorithm for board games. Minimax is a depth-first search
algorithm that looks for the best movement assuming that the opponent will play his
best movement as well. Additionally, we included the following techniques to improve
the performance of the game-tree exploration:

(a) Alpha-beta pruning. In a Minimax search, it is very common to find situations
where it is possible to stop generating new successors from a node because they are
irrelevant in the search outcome. The efficiency of alpha-beta pruning depends on the
order in which nodes are generated. The sooner the best movements are generated
the higher the pruning efficiency [17].

(b) Iterative Deepening. Typically the movement must be selected before a timeout
arrives. However, the search depth that can be reached for a given time depends on
the board. Hence, fixing the depth search may lead to returning no move, if the
system runs out of time before finishing the analysis, or suboptimal decisions, if a
small depth is chosen. Iterative deepening solves this issue making incremental
depth searches until a timeout arrives. Moreover, it allows inferring knowledge about
the quality of the movements, so it can be used to increase the pruning efficiency.
This is discussed below.

(c) Dynamic node ordering. As we have exposed before, exploring first the best
movements increases the pruning efficiency. We have implemented two kinds of
dynamic node ordering that attempt to explore first the most promising moves.

The first one is based on strategic concepts of Reversi, and consists in analyzing

first the movements on corners, and analyzing last the movements that will help the
opponent to get a corner (i.e. x-squares).

The second one uses the inferred knowledge acquired throughout incremental
searches. In a search of depth d+1, the first movement explored is best movement of
the previous search, i.e. depth d.

6. HARDWARE ACCELERATION
Board games offer many sources of parallelism. Parallelism is classified as fine-
grained when the tasks to do in parallel require a little amount of work and have to
be performed many times. The current trend in GPPs is to exploit parallelism by
adding more cores. However, this scheme fails to exploit fine-grained parallelism
because of communication overheads. We can illustrate this with an example from
the Reversi game. The most frequent task is identifying the legal moves of a board.
Fig. 2 illustrates the squares to analyze in order to determine if the square (3,4)
corresponds to a legal move for the dark player, and also the specific patterns to find
out whether it is a legal move due to its row configuration. These comparisons check
if any of the patterns is satisfied, and the same analysis must be done for its

corresponding column and diagonals. Finally, if any pattern correspondence is found,
the square is a legal move.

Fig. 2. Legal move analysis of the square (3,4). ‘x’ means ‘do not care’

We carried out these computations in software and hardware as follows.
Algorithm 1 shows a brief pseudo-code that finds all the legal moves of a board. It
traverses the board looking for a legal move pattern in each square. To this end, four
small loops are nested in such a way that the function analyzes each square in all
directions and try to identify up to six different patterns. The same function is
implemented in hardware using an array of combinational blocks which consists of
1920 2-bits comparators that seamlessly exploit all the data parallelism. This
corresponds to a fully unroll of the four nested loops by executing every single
iteration in parallel. Fig. 3 depicts a piece of hardware of one of these blocks that
determines if the row satisfies the pattern 5 for the square (3,4).

ALGORITHM 1. Legal moves computation
Input: Current board and color.
Output: Legal moves for the input color.
function legalMove(in row, in col) returns boolean
 for each direction do
 for each pattern do
 if pattern_match(row, col, direction, pattern) then
 return true;
 end if
 end for
 end for
 return false;
end function

function allLegalMoves(out legalMoves)
 for each row do
 for each col do
 legalMoves(row, col) = legalMove (row, col);
 end for
 end for
end function

The execution of this function executed on an Intel i7 processor takes about 750 ns

on average after both algorithmic and compilation optimizations. The code cannot be
profitably parallelized because the little amount of work to parallelize (about 6,000
assembly instructions per invocation) is not enough to make up for multi-thread
overheads. Using SIMD instructions is not feasible because each square requires
slightly different computations.

In contrast, a hardware implementation on a FPGA exploits all the available
parallelism devoting one hardware block per board square. With the 64 blocks
working in parallel it just takes 7 ns to find all legal moves on a Virtex-5 FPGA,
which yields a speedup factor of above 100x over the Intel i7 processor.

Fig. 3. Hardware architecture to identify the pattern 5 of Fig. 2

7. HARDWARE DESIGN
In this section, we present the Reversi player hardware architecture (see Fig. 4), and
a description of the most relevant modules.

 Fig. 4. Hardware architecture of the Reversi player

7.1 Move checker

This module identifies the legal moves of a board. It is a purely combinational
module which implements a logic function for each square that compares its row,
column, and diagonals with every legal move pattern.

7.2 Disc flipper

This module returns the new board after making a legal move. It has been
implemented as an iterative network composed by 64 cells, one per each board square.
This network works as follows:

(1) The cell corresponding to the selected movement begins the pattern propagation
to its neighbors in every direction.
(2) Each cell propagates a new pattern in each direction based on the content of its
square and its input pattern.

(3) If a cell identifies a flip pattern, it returns a flip signal in the opposite direction.
Every cell that receives this signal turns its color and keeps propagating this signal
until it arrives to the cell corresponding to the movement.

Table II shows the patterns propagation scheme after a movement of the white
player. Three different patterns are considered: no relevant pattern, one white disc,
and one white disc followed by at least one black disc. For the black player the design
follows a similar scheme with the opposite patterns (one black disc and one black disc
followed by at least one white disc).

Table II. Pattern propagation scheme

Fig. 5 shows a simplified example with four squares in one direction. A white disc
is placed in the cell marked with an ‘x’. This cell begins the pattern propagation by
sending the corresponding pattern to its neighbor. The next cell propagates a new
pattern according to its input pattern and the content of its square (see Table II). The
third cell does the same propagation. The fourth cell completes a flip pattern, so it
returns a flip signal in the opposite direction that is propagated until the starting cell
is reached. All the intermediate cells that receive this signal flip their discs.

Fig. 5. Toy example of the Disc flipper network

7.3 Stable discs evaluator
This module returns the number of stable discs of a board. We implemented it as an
iterative network. In this case, it was necessary to add a flip-flop to each cell because
implementing it as a purely combinational module leads to combinational loops that
strongly downgrade the performance by reducing the maximum frequency the design
might work.

The cells corresponding to the border of the board are a special case and they can
be easily evaluated using combinational logic. The layout of the module is shown in
Fig. 6. The dashed lines represent the layers of the network due to the flip-flops
added to each cell. This network works as follows:

(1) The combinational logic for the border squares determines which ones of them are
stable discs in the first cycle.

(2) If any stable disc is detected, in the following cycles, the intermediate results are
propagated in a round trip wave fashion until the results converge (i.e. no output has
changed within the last cycle).

The second step takes a variable number of cycles (from 1 to 5), so we have added

a 1-bit comparator to each cell that compares the current network status with the
previous cycle status in order to identify when the evaluation finishes.

Finally, once the stable discs have been identified, two 64-bit tree adders return
how many of them have been found for each color.

Fig. 5. Stable Discs Network layout

7.4 Boards memory and tree data register bank

These are the modules that storage the information concerning each game-tree
level. Best move register stores the best move of the last fully explored game-tree.
Current best move register stores the best move of game-tree under analysis. Last
move registers store the last move analyzed in each level. α-β values registers store
the scores propagated from the leaf nodes to upper levels according to the Minimax
algorithm.

Boards memory stores all the boards of the open branch under analysis. It has
been designed using several memory modules in parallel in such a way that a board
can be read or written in just one clock cycle. Fig. 6 shows these two storage elements.

(a) (b)

Fig. 6. (a) Register bank module. (b) Boards memory module

7.5 Minimax control unit

Minimax control unit has been implemented as a Finite-State Machine (FSM) (see
Fig. 7). State ‘Find next move’ performs legal moves calculation, movement
reordering, and move selection. State ‘Generate new board’ generates the new board
after placing a disc. State ‘Evaluate board’ evaluates a board and manages the flow
control of Minimax.

Fig. 7. Minimax FSM

8. SOFTWARE VERSION
We have developed an algorithmically equivalent software solution to be executed in
general purpose processors for performance and power consumption evaluation. It
has been written in C code and compiled with GCC both for Intel and ARM
processors.

The application was analyzed with Intel VTune Amplifier XE 2011 [18], which is a
powerful profiling software.

An initial analysis of the hotspots revealed that finding the legal moves is the
most time-consuming task, so we focused on reducing its impact. Initially this
function was computing the legal moves every time that a node was analyzed, as it is
done in the hardware design. However, after the results of this analysis, we decided
to reduce the number of invocations to this function by storing the legal moves of
every open node in a specific data structure, in such a way that they are computed
only when the node is initially generated. The remaining times the code loads the
stored data instead of computing it again. This reduced the hotspot by 44%.

Additionally, we implemented a data structure that reduces the number of
pattern checks by marking as potential legal moves only the squares that have at
least one disc in any of its surrounding squares. This improvement reduced the
computation by an additional 9%.

We have also compiled it with Intel C Composer XE [19], getting no relevant
improvements even after tuning the compiler optimizations for each processor.

Finally, we tried to parallelize the legal moves function by using automatic
parallelization feature of the GCC compiler, and by manually modifying the code
using two thread libraries (POSIX Threads and Intel Threading Building Blocks). In
the first case, the compiler was unable to parallelize the code. In the second case, the
result was a strong performance downgrade, as expected, due to the threads
management overhead.

9. PERFORMANCE ANALYSIS

We have used the Zynq hybrid FPGA/processor platform, three FPGAs, and two
GPPs to evaluate the performance of hardware and software solutions. Tables III and
IV summarize their main features. Note that in the case of FPGAs, the working
frequency depends on the design, and in this case it is low due to the delay of the
large combinational blocks.

Table III. Main features of General Purpose Processors Platforms

Platform Processor Tech (nm) Year Clock
Atom Intel Atom D525 45 2010 1.8 GHz

i7 Intel i7-2600 32 2011 3.4 GHz
Zynq (GPP) ARM Cortex-A9 28 2012 667 MHz

Table IV. Main features of Programmable Logic Platforms.
Clock Column indicates the design working frequency

Platform Board Tech (nm) Year Logic cells BRAM (KB) Clock (MHz)

Virtex II-Pro [20] 90 2002 30K 306 32
Virtex-5 [21] 65 2006 110K 666 60

Spartan-6 [22] 45 2009 43K 261 32
Zynq (FPGA) [23] 28 2012 85K 560 32

Table V. FPGA resources utilization

FPGA Slice Registers Slice LUTs BRAMs

Virtex II-Pro 634 (2%) 8250 (30%) 8 (5%)
Virtex-5 599 (<1%) 5837 (8%) 4 (2%)

Spartan-6 622 (1%) 8251 (30%) 8 (6%)
Zynq 637 (<1%) 8834 (16%) 6 (4%)

Table V shows the occupied resources for each FPGA. Even for low-cost FPGAs,

like the Spartan-6, the design occupies less than one third of the FPGA hence our
design can be implemented in very small FPGAs. Regarding the cost of a software
solution, if a processor is already present in the system the only cost will be to store
the application in the memory subsystem. Since its memory footprint is very small
(less than 500KB) any memory subsystem will provide enough storage capacity.
Hence, using the software version reduces the cost of the system, but as we will see
in the following sections, it also provides worst performance and more energy
consumption.

9.1 Overall performance
We have used two metrics to measure the performance: boards analyzed per second,
and average computing time per move.

Depending on what kind of comparison we want to carry out, we have used two
slightly modified versions:
(a) Time-constrained. These designs decide the next movement in no more than one
second, and their performance is measured as boards analyzed per second. This
metric allows analyzing the behavioral differences between the software and
hardware implementations during a game.

As Fig. 8 depicts, in the software version the number of boards analyzed per second
increases during the game. The reason is that as the board becomes fuller of discs,
the number of squares which are potential legal moves decreases, and therefore
analyzing a board requires fewer instructions. On the contrary, the hardware version
exhibits the opposite trend. In this case all the positions are analyzed in parallel.
However, the number of boards analyzed per second slightly decreases during the
game due to the stable discs evaluation. Boards without stables discs are evaluated
in one cycle, whereas boards with stable discs need up to five cycles. In fact, the more
stable disc the more cycles it takes to identify them.

The hardware version provides two order of magnitude better performances than
the software version. It is interesting to point out that a Virtex II-Pro, which is FPGA
from 2002, offers from 15 to 40 times better performance than a last-generation
multi-processor chip such as the i7-2600. These results demonstrate that FPGAs are
extremely efficient analyzing boards.

Fig. 8. Boards analyzed per second in software and hardware

(b) Fixed depth. These designs explore always the same number of movements in
advance, in such a way that each movement demands the same useful workload.

Fig. 9. Average computation time per movement

Performance for Virtex II-Pro, Spartan 6 and Zynq FPGA is exactly the same
because they implement the same hardware design, running at the same frequency.
Virtex 5 FPGA enables an implementation at a higher frequency; therefore it
provides the best performance.

In the case of GPPs, the performance not only depends on frequency but also
many other architectural details. The results evidence that i7 processor is about
seven times faster than Atom, and about ten times faster than Zynq GPP.

Comparing FPGAs with GPPs, even a low-cost FPGA, Spartan 6, achieves a
remarkable speedup of 25 over a high-performance processor (i7).

9.2 Task-level performance

In order to better understand the previous results, it is interesting to identify the
tasks where a design achieves greater performance and the reasons for that. To carry
out this analysis we have used the fixed-depth designs, in order to guarantee that
software and hardware designs have the same useful workload (i.e. they have to
explore the same game-tree).

A task performance analysis requires knowing the execution time of each task.
For Intel processors, we profiled our application with Intel VTune in order to gather
accurate execution statistics of every function. For ARM processor, we manually
instrumented the code using hardware counters included in the system for accurate
time measuring.

For this analysis, we have split the application in three tasks: Find next move,
Generate new board and Evaluate board. Fig. 10 shows the average computation time
for each task exploring eight moves in advance during a game.

Fig. 10. Computation time of each task in hardware and software during a game

The graph makes clear that the hardware design obtains the highest speedup
finding the next moves, achieving an impressive speedup of roughly 90 if we compare
the high-performance processor with the low-cost FPGA. Moreover, this in not only
the task where the hardware achieves the higher speedup, but this is also the most
time-consuming task in software, so we conclude that this is the key to explain the
performance advantage of the hardware design over the software.

The hardware exploits perfectly all the parallelism since the 64 squares of a board
are analyzed in parallel, and this is done for both players also in parallel, while the
software cannot profitably take advantage of data parallelism, neither by multi-
threading nor by executing SIMD instructions.

10. POWER CONSUMPTION AND ENERGY EFFICIENCY
Power consumption was measured with a Yokogawa WT210 digital power meter,
which is an accepted device by Standard Performance Evaluation Corporation
(SPEC) for power efficiency benchmarking [24].

The power consumed by a system can be divided in two different terms: static and
dynamic power. On the one hand, the static power is the power consumed by the
system even when no useful work is carried out. The only way to avoid this
consumption is to turn off the system. On the other hand, the dynamic power is the
power consumed due to the computations carried out by the system.

Table IV shows the power consumption data of the evaluated platforms. The
column ‘Total Power’ is the average power consumption of the whole system
executing our application. Hence, it includes both the static and the dynamic terms.
The column ‘∆Power’ only includes the dynamic power consumption, i.e. the average
increase in the power consumption due to the execution of our application. This is the
most important metric since ‘Total Power’ includes the static power consumption of
all the elements of the platform, even those that are not used.

Table IV. Average power consumption executing our Reversi application

Platform Total Power
(W) ∆Power (W)

i7 68.31 24.19
Atom 34.20 1.07

Zynq (GPP) 4.61 0.1
Virtex II-Pro 4.79 0.42

Virtex-5 7.31 0.15
Spartan-6 3.02 0.06

Zynq (FPGA) 2.90 0.02

Energy efficiency measures useful work done per unit of energy. In this application,
we define the useful work as the number of boards analyzed; therefore, combining
the performance metric boards analyzed per second with the power data, we obtain
the energy efficiency metric as shown in Eq 1.

𝐸𝑛𝑒𝑟𝑔𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
𝑝𝑜𝑤𝑒𝑟

=
𝑘𝐵𝑜𝑎𝑟𝑑𝑠

𝑠 𝑤𝑎𝑡𝑡
� = 𝑘𝐵𝑜𝑎𝑟𝑑𝑠

𝐽
 (1)

Fig. 11 shows the energy efficiency results. Columns named as ‘System’ show the

energy efficiency taking into account the power consumption of the whole system,
while columns named as ‘∆Energy’ only take into account the dynamic power
consumption.

The ARM Cortex-A9 (Zynq GPP) demonstrates to be the most energy-efficient
processor whereas Intel i7 is the least efficient because it is a performance-oriented
processor. In the case of FPGAs, the energy efficiency increases as the scale
integration improves.

Fig. 11 Energy efficiency of each platform executing the Reversi application

It is remarkable the fact that FPGAs implementations achieves energy efficiencies
from two up to four orders of magnitude higher than the software running on GPPs.
Hence adding a customize hardware module for the Reversi game not only leads to
an important performance improvement, but also to remarkable energy savings.

11. DEVELOPMENT EFFORT
The previous results demonstrate the utility of FPGAs to improve both the
performance and the power consumption of a board game application. However,
using FPGAs has some drawbacks.

The first drawback is the way to code the design. Hardware designs are usually
written in a Hardware Description Language (HDL), typically VHDL or Verilog, and
writing a hardware design is usually more complex than writing a software
application that has the same functionality. However, if the design team has a good
command of HDL, writing an initial version of the hardware design requires just a
little more time than writing a software application. Moreover, FPGA vendors are
doing an important effort to simplify the hardware design process. For instance
Xilinx has developed a C/C++ to HDL compiler [25] that can be used to directly map
a C or C++ code to an FPGA, and they have reported good results for several digital
processing applications

There are two additional drawbacks associated to FPGA hardware design. The first
one is the compiling time. Extracting the FPGA configuration which implements a
design requires much more time than compiling software code. For large designs it
may take even hours, and this is done several times during the development process,
significantly slowing down the development pace. The last drawback is the debugging
complexity. Once the initial design has been written, the testbenchs will likely
identify several malfunctions, but debugging large hardware designs with several
modules interacting and working in parallel becomes much more complex than
debugging a sequential software code. Once again, FPGA vendors provide several
tools to make this step more affordable, such as powerful simulators, or specific
support to monitor some FPGA internal signals. Anyway, debugging a parallel
system is always more complex than debugging a sequential one.

Hybrid hardware/software platforms offer a well-balanced solution to minimize the
impact of these drawbacks. Those tasks that are not critical for the system
performance may run on the GPP, and only very demanding tasks would be mapped

to the FPGA. This approach enables to design a custom SoC with an affordable
development effort.

12. CONCLUSIONS
In this article we have analyzed the performance and energy efficiency of a Reversi
player implemented on FPGAs and GPPs. Board games offer many sources of fine-
grained parallelism, and the experimental results demonstrate that FPGAs can
seamlessly exploit it in order to speed up the execution and reduce the power
consumption of the critical functions that analyze the boards.

Moreover, new hybrid platforms that tightly couple FPGAs and GPPs enable
energy-efficient implementations with a reasonable design effort by implementing
the core functions in hardware and the remaining functionality in software. Hence
we believe that FPGAs can play an important role in general-purpose systems
dealing with any kind of application that exhibits either data or task parallelism,
especially for battery-dependent devices where energy efficiency is compulsory. In
fact, as we have shown in our case study, they can be the key to provide the
performance of powerful desktop processors in low-power devices.

As future work, it would be interesting to explore different co-design possibilities,
such as managing all the computations on the programmable logic, and leaving the
I/O in the processor side, or using the programmable logic to process the boards while
the processor executes the search algorithm. We believe that it will be especially
interesting to carry out a comprehensive evaluation of the communication schemes
between the processor and the programmable logic in order to decide the best co-
design alternative.

ACKNOWDELGEMENTS
This work was supported in part by grants TIN2010-21291-C02-01 (Spanish Gov. and

European ERDF), Consolider CSD2007-00050 (Spanish Gov.), gaZ: T48 research group (Aragón
Gov. and European ESF).

REFERENCES
[1] OMAPTM Mobile Processors: OMAPTM 5 Platform. Retrieved March 13, 2014 from

www.ti.com/lsds/ti/omap-applications-processors/omap-5-processors-products.page?paramCriteria=no
[2] Intel® AtomTM Processor E6x5C Series. Retrieved March 13, 2014 from

http://www.intel.com/p/en_US/embedded/hwsw/hardware/atom-e6x5c/overview
[3] Zynq-7000 Extensible Processing Platform. Retrieved March 13, 2014 from

http://www.xilinx.com/products/zynq-7000/extensible-virtual-platform.htm
[4] Arria V SoC FPGA Hard Processor System. Retrieved March 13, 2014 from

http://www.altera.com/devices/fpga/arria-fpgas/arria-v/hard-processor-system/arrv-soc-hps.html
[5] Google Project ARA. Retrieved March 24, 2014 from http://www.projectara.com/
[6] Zebra – Gunnar Andersson’s Homepage. Retrieved March 24, 2014 from

http://www.radagast.se/othello/
[7] C.K.. Wong, K.K.. Lo and P.H.W. Leong. 2004. “An FPGA-Based Othello Endgame solver”.

International Conference on Field-Programmable Technology 2004 (ICFPT ’04). Brisbane, NSW,
Australia, pp. 81–88.
DOI:http://dx.doi.org/10.1109/FPT.2004.1393254

[8] FPT ’10 Design Competition. Retrieved March 13, 2014 from
http://cas.ee.ic.ac.uk/people/as999/FPTDesignComp/

[9] J. Olivito, C. González and J. Resano. 2010. “FPGA implementation of a strong Reversi player”.
International Conference on Field-Programmable Technology 2010 (ICFPT ’10). Beijing, China, pp.
507–510.
DOI:http://dx.doi.org/http://dx.doi.org/ 10.1109/FPT.2010.5681469

[10] T. Mabuchi, T. Watanabe, R. Moriwaki, Y. Aoyama, A. Gundjalam, Y. Yamaji, H. Nakada and M.
Watanabe. 2010. “Othello Solver based on a soft-core MIMD processor array”. International Conference
on Field-Programmable Technology 2010 (ICFPT ’10). Beijing, China, pp. 511–514.

DOI:http://dx.doi.org/http://dx.doi.org/10.1109/FPT.2010.5681470
[11] M. Smerdis, P. Malakonakis and A. Dollas. 2010. “CarlOthello: An FPGA-Based Monte Carlo Othello

player”. International Conference on Field-Programmable Technology 2010 (ICFPT ’10). Beijing, China,
pp. 515–518.
DOI:http://dx.doi.org/10.1109/FPT.2010.5681471

[12] N. Aranki, D. Keymeulen, A. Bakhshi and M. Klimesh. 2010. “Hardware Implementation of Lossless
Adaptive and Scalable Hyperspectral Data Compression for Space”. NASA/ESA Conference on
Adaptive Hardware and Systems (AHS ’09). San Francisco, California, 315–322.
DOI:http://dx.doi.org/10.1109/AHS.2009.66

[13] Y. Guoxia, T. Vladimirova and M. N. Sweeting. 2009. FPGA-based on-board multi/hyperspectral image
compression system. IEEE International Geoscience and Remote Sensing Symposium (IGARSS ‘09).
Cape Town, South Africa, Vol 5, 212–215.
DOI:http://dx.doi.org/ http://dx.doi.org/10.1109/IGARSS.2009.5417693

[14] B. Cope, P.Y.K. Cheung, W. Luk, and L. Howes. 2010. Performance Comparison of Graphics Processors
to Reconfigurable Logic: A Case Study. IEEE Transactions on Computers. Vol. 59, no. 4, 433–448.
DOI:http://dx.doi.org/ http://dx.doi.org/10.1109/TC.2009.179

[15] J. Cong, et al., 2011. Customizable Domain-Specific Computing. IEEE Design and Test of Computers.
Vol. 28, no. 2, 6–15.

[16] Othello: A Minute to Learn... A Lifetime to Master. Retrieved March 13, 2014 from
http://othello.federation.free.fr/livres/othello-book-Brian-Rose.pdf

[17] S.J. Russell and P. Norvig. 2003. Artificial Intelligence: A Modern Approach. Upper Saddle River,
New Jersey: Prentice Hall.

[18] Intel® VTuneTM Amplifier XE 2011 | Intel® Developer Zone. Retrieved March 13, 2014 from
http://software.intel.com/en-us/intel-vtune-amplifier-xe

[19] Intel® Composer XE 2011 | Intel® Developer Zone. Retrieved March 13, 2014 from
http://software.intel.com/en-us/intel-composer-xe

[20] Xilinx University Program Virtex-II Pro Development System. Retrieved March 13, 2014 from
http://www.xilinx.com/products/boards-and-kits/XUPV2P.htm

[21] Xilinx University Program XUPV5-LX110T Development System. Retrieved March 13, 2014 from
http://www.xilinx.com/univ/xupv5-lx110t.htm

[22] Atlys™ Spartan-6 FPGA Development Board. Retrieved March 13, 2014 from
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,836&Prod=ATLYS&CFID=266512&C
FTOKEN=74324583

[23] ZedBoard Zynq™-7000 Development Board. Retrieved March 13, 2014 from
https://www.digilentinc.com/Products/Detail.cfm?Prod=ZEDBOARD

[24] WT210/WT230 Digital Power Meters. Retrieved March 13, 2014 from
http://tmi.yokogawa.com/products/digital-power-analyzers/digital-power-analyzers/wt210wt230-digital-
power-meters/#tm-wt210_01.htm

[25] 2014. Xilinx Vivado Design Suite. Retrieved March 13, 2014 from
http://www.xilinx.com/products/design-tools/vivado/index.htm

Javier Olivito received the MS degree in computer engineering in 2010 from the
University of Zaragoza, Spain. Currently he is PhD student in the GAZ research
group, from University of Zaragoza. His research has been focused in
hardware/software co-design, acceleration of artificial intelligence algorithms in
board games and dynamic reconfiguration. His FPGA designs have received several
international awards including the first prize in the Design Competition of the IEEE
International Conference on Field-Programmable Technology in 2009 (FPT’09) and in
2010 (FPT’10).

Javier Resano received the Bachelor Degree in Physics in 1997, a Master Degree in
Computer Science in 1999, and the Ph.D. degree in 2005 at the Universidad
Complutense of Madrid, Spain. Currently he is Associate Professor at the Computer
Eng. Department of the Universidad of Zaragoza, and he is a member of the GHADIR
research group, from Universidad Complutense, and the GAZ research group, from
Universidad de Zaragoza. He is also member of the Engineering Research Institute of
Aragon (I3A). His research has been focused in hardware/software co-design, task
scheduling techniques, Dynamically Reconfigurable Hardware and FPGA design. He
have designed hardware accelerators for different fields, including remote sensing
and artificial intelligence, and his designs have received several international
awards including the first prize in the Design Competition of the IEEE International
Conference on Field Programmable Technology in 2009 and in 2010 and the second
prize in 2012.

Carlos González received the M.S. and Ph.D. degrees in computer engineering from
the Complutense University of Madrid, Madrid, Spain, in 2008 and 2011,
respectively.
He is currently a Teaching Assistant in the Department of Computer Architecture
and Automation of the Universidad Complutense Madrid. As a research member of
GHADIR group, he mainly focuses on applying run-time reconfiguration in aerospace
applications. His research interests include remotely sensed hyperspectral imaging,
signal and image processing, and efficient implementation of large-scale scientific
problems on reconfigurable hardware. He is also interested in the acceleration of
artificial intelligence algorithms applied to games.
Dr. González won the Design Competition of the IEEE International Conference on
Field Programmable Technology in 2009 (FPT’09) and in 2010 (FPT’10). He received
the Best Paper Award of an Engineer under 35 years old in the International
Conference on Space Technology in 2011.

Enrique Torres received the MS degree in computer science from the Polytechnic
University of Catalunya in 1993, and the PhD degree in computing science from the
University of Zaragoza in 2005. He was an assistant professor in the Polytechnic
Schools of the University of Girona. He is an assistant professor in the Computer
Science and Systems Engineering Department (DIIS) at the University of Zaragoza,
Spain. He was also on sabbatical leave for study and research at the University of
California in Berkeley, where he was a member of the International Computer
Science Institute (ICSI). His research interests include processor microarchitecture,
memory hierarchy, parallel computer architecture heterogeneous computing with
FPGAs & GPUs. He is a member of the IEEE Computer Society. He is also a member
of the Aragón Institute of Engineering Research (I3A) and the European HiPEAC
NoE. More details about his research and background can be found
at http://webdiis.unizar.es/gaz/miembros.html.

Rubén Gran graduated in Computer Science from the University of Zaragoza (Spain)
and held his PhD in 2010 from the Polytechnic University of Catalonia (UPC, Spain).
Since then, he is assistant professor in the Department of Computer Science and
Systems Engineering at the University of Zaragoza. His research interests are hard
real-time systems, hardware for reducing worst-case execution time and energy
consumption, microarchitecture and effective programming for parallel and
heterogeneous systems.

http://webdiis.unizar.es/gaz/miembros.html

	Performance and energy efficiency analysis of a Reversi player for FPGAs and General Purpose Processors 0F(
	1. INTRODUCTION
	2. RELATED WORK
	3. REVERSI
	4. Board evaluation metrics
	5. search techniques
	6. Hardware acceleration
	7. Hardware design
	7.1 Move checker
	7.2 Disc flipper
	7.3 Stable discs evaluator
	7.4 Boards memory and tree data register bank
	7.5 Minimax control unit

	8. software VERSION
	9. performance analysis
	9.1 Overall performance
	9.2 Task-level performance

	10. Power Consumption and Energy efficiency
	11. development effort
	12. Conclusions
	ACKNOWDELGEMENTs

