
19

ABS: A Low-Cost Adaptive Controller for Prefetching in a Banked
Shared Last-Level Cache

JORGE ALBERICIO, RUBÉN GRAN, PABLO IBÁÑEZ, and VÍCTOR VIÑALS,
University of Zaragoza
JOSE MARÍA LLABERÍA, UPC Barcelona Tech

Hardware data prefetch is a very well known technique for hiding memory latencies. However, in a multicore
system fitted with a shared Last-Level Cache (LLC), prefetch induced by a core consumes common resources
such as shared cache space and main memory bandwidth. This may degrade the performance of other
cores and even the overall system performance unless the prefetch aggressiveness of each core is controlled
from a system standpoint. On the other hand, LLCs in commercial chip multiprocessors are more and
more frequently organized in independent banks. In this contribution, we target for the first time prefetch
in a banked LLC organization and propose ABS, a low-cost controller with a hill-climbing approach that
runs stand-alone at each LLC bank without requiring inter-bank communication. Using multiprogrammed
SPEC2K6 workloads, our analysis shows that the mechanism improves both user-oriented metrics (Harmonic
Mean of Speedups by 27% and Fairness by 11%) and system-oriented metrics (Weighted Speedup increases
22% and Memory Bandwidth Consumption decreases 14%) over an eight-core baseline system that uses
aggressive sequential prefetch with a fixed degree. Similar conclusions can be drawn by varying the number
of cores or the LLC size, when running parallel applications, or when other prefetch engines are controlled.

Categories and Subject Descriptors: B.3.0 [Memory structures]: General

General Terms: Design, Performance

Additional Key Words and Phrases: Prefetch, shared resources management

ACM Reference Format:
Albericio, J., Gran, R., Ibáñez, P., Viñals, V., and Llaberı́a, J.M. 2012. ABS: A low-cost adaptive controller for
prefetching in a banked shared last-level cache. ACM Trans. Architec. Code Optim. 8, 4, Article 19 (January
2012), 20 pages.
DOI = 10.1145/2086696.2086698 http://doi.acm.org/10.1145/2086696.2086698

1. INTRODUCTION

Hardware data prefetch is a very well known technique for hiding the long latencies in-
volved in off-chip accesses. It tries to predict memory addresses in advance, requesting
them to the next level, and loading the lines into the cache before the actual demands
take place. Several commercial multicore processors implement some form of hardware
data prefetch [Conway et al. 2010; Le et al. 2007]. These devices are fitted with a hier-
archy of cache memories. Usually, the first levels are private and the Last Level Cache
(LLC) is shared by all the cores in the system. In this work we consider this kind of
system.

This work was supported by grants TIN2007-60625 and TIN2010-21291-C02-01 (Spanish Government and
European ERDF), gaZ: T48 research group (Aragon Government and European ESF), Consolider CSD2007-
00050 (Spanish Government), and HiPEAC-2 NoE (European FP7/ICT 217068).
Authors’ addresses: J. Albericio, R. Gran, P. Ibáñez, and V. Viñals, University of Zaragoza, Dpto. de Ing. de
Sistemas e Informática; J. M. Llaberı́a, DAC UPC Barcelona Tech; email: jalberic@unizar.es.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1544-3566/2012/01-ART19 $10.00

DOI 10.1145/2086696.2086698 http://doi.acm.org/10.1145/2086696.2086698

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

19:2 J. Albericio et al.

Fig. 1. Last Level Cache organizations.

Prefetches may be initiated in the first-level caches or directly from events occur-
ring in the LLC, but in the end the prefetches reach the shared LLC and interfere
with each other. That is, prefetches issued on behalf of one core may evict LLC lines
previously allocated by other cores, either by a memory instruction or a prefetch re-
quest. In addition, the prefetch activity originated from a single core can reduce the
overall available bandwidth, potentially increasing the latency seen by the demands
or prefetches coming from the rest of cores.

Most prefetch proposals in multiprocessors deal with systems having only private
caches [Cantin et al. 2006; Dahlgren et al. 1993; Koppelman 2000; Somogyi et al.
2009; Tcheun et al. 1997], while prefetch for shared caches has received little attention
[Ebrahimi et al. 2009].

Ebrahimi et al. [2009] tackle for the first time the problem of reducing the prefetch
inter-core interference in a chip multiprocessor with a shared LLC. They propose the
Hierarchical Prefetcher Aggressiveness Control (HPAC) mechanism, that monitors sev-
eral global indexes (prefetch accuracy, inter-core pollution, and memory controller ac-
tivities) to adjust the prefetch aggressiveness of each core. This assumes a centralized
implementation of the LLC, internally organized in banks but with a single access
port (see Figure 1(a)). Thus, the global aggressiveness control and associated hardware
structures are also centralized.

To the best of our knowledge, this is the first work where prefetch is studied in a
multicore system fitted with a banked shared LLC, see Figure 1b. We assume an LLC
organized in independent cache banks with an access port each, and an interconnection
network attaching cores to cache banks (a crossbar is assumed, but other topologies
can be considered) [Kongetira et al. 2005; Kottapalli and Baxter 2009]. Each bank is
internally sub-banked in order to provide a higher throughput. We think this kind
of LLC will become mainstream in the short term, because independent banks add
layout flexibility and increase access bandwidth. Commercial processors from AMD,
Sun, Intel, or IBM are using this design [Conway et al. 2010; Kongetira et al. 2005;
Kottapalli and Baxter 2009; Le et al. 2007].

In this scenario, we introduce the ABS controller, an Adaptive controller for prefetch
in a Banked Shared LLC. ABS controllers are installed in all the LLC banks which
are already fitted with a prefetch engine. Each ABS controller runs autonomously and
gather local statistics to set the prefetch aggressiveness for each core in the bank it
controls in order to maximize the overall system performance using a hill-climbing
approach. Therefore, a given core is allowed to prefetch with different aggressiveness
on different banks of the LLC.

Isolation between banks is a key factor of our proposal, meaning that both the ABS
controller and the prefetcher in a bank are not influenced by their peers at other banks.
Bank isolation achieves two essential benefits, namely (i) the prefetches generated from

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

ABS: A Low-Cost Adaptive Controller for Prefetching 19:3

Fig. 2. IPC for eight SPEC2K6 applications (mix2) running on an 8-core system with a shared LLC.

a given bank target itself, and it will always be possible to filter useless prefetches
by looking up in the bank, thus saving memory bandwidth, and (ii) communicating
prefetchers or ABS controllers among banks is not required, removing the need for a
dedicated interconnection network or extra traffic in the existing one. As discussed in
Section 5.2, bank isolation can be achieved by selecting a proper address interleaving
among banks or by adjusting the prefetch distance.

Our results show that an eight-core system with ABS controllers running multipro-
grammed SPEC2K6 workloads improves in both user-oriented metrics and system-
oriented metrics over a baseline system with a fixed degree sequential prefetch. The
results are consistent when varying the number of cores or LLC sizes. ABS control can
be applied to other prefetch engines as long as they are able to operate at different
aggressiveness levels. Specifically, we introduce ABS-controlled sequential streams.
A comparison with HPAC-controlled sequential streams, such as that proposed by
Ebrahimi et al. [2009], shows higher performance at a very small fraction of the cost.
Furthermore, when running multithreaded workloads from SPLASH-2 [Woo et al.
1995] and PARSEC [Bienia 2011], the ABS controllers also reduce the execution time
and the consumed bandwidth over the baseline system.

The paper is structured as follows. Section 2 describes the motivation behind the
work. Section 3 gives some background and reviews related work. Section 4 introduces
the ABS controller. Section 5 presents the prefetch framework. Section 6 shows the
methodology followed. Section 7 shows the results when ABS controllers are evaluated
in a variety of situations, and Section 8 concludes the paper.

2. MOTIVATION

Figure 2 shows instructions per cycle (IPC) for eight SPEC2K6 applications running on
a system with eight cores and a 4MB shared LLC. The simulation details are shown in
Section 6. The figure shows four bars for each application. The first two bars represent
programs running alone in the system, either without prefetch or with an aggressive
(degree 16) sequential tagged prefetch (see Section 3). The last two bars represent the
eight applications running together, either all without prefetch or all with the former
aggressive prefetch turned on. When comparing the systems with prefetch (second and
fourth bars), significant performance losses appear when resources are shared among
cores. Note that prefetch involves virtually no performance loss in any application when
running alone (first and second bars), while it causes losses in 5 out of 8 applications
when running all together (third and fourth bars). Therefore, in order to boost the
shared LLC performance by means of prefetch, a mechanism to control aggressiveness
is called for. Such a mechanism should consider global metrics to realize when the
prefetch activity of a core harms the overall system performance and it should be
decreased in spite of the improvement achieved by that core.

As Figure 2 highlights, the benefit obtained by an application due to prefetch can
decrease or even turn into losses if prefetch is simultaneously active in all cores.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

19:4 J. Albericio et al.

Therefore, our goal is to design a mechanism that dynamically controls the prefetch
aggressiveness of each core in order to maximize system performance.

The impact on system performance can be assessed using global indexes such as
aggregated IPC or shared LLC miss ratio. Both are obtained by adding quantities that
are distributed in the cores or the cache banks, respectively. So, a centralized design
of the prefetch aggressiveness control requires sending information from the places
where events are counted to the centralized control point. Alternatively, we propose to
place an ABS controller in each LLC bank. The controller uses bank-local information
(i.e. bank miss ratio) to improve bank performance. Improving the performance of every
bank will thus improve the system performance.

3. BACKGROUND AND RELATED WORK

Prefetch Aggressiveness. Prefetch aggressiveness is often defined in terms of degree
and/or distance. Let us consider a stream of references a processor is going to demand
(ai, ai+1, ai+2, . . .), where address ai has just been issued. A prefetcher can be designed
to produce the next k addresses following ai (ai+1, . . . ai+k), calling k the prefetch degree.
Alternatively, or in addition, it can also be designed to produce a single address of a far
reference (ai+d), calling d the prefetch distance. As an example, we recall the sequential
tagged prefetcher with degree k [Dahlgren et al. 1993]. If reference ai having the line
address V is going to trigger a burst of prefetches (ai misses or is the first use of
a prefetched line), then the prefetcher will issue the following request burst (V +
1, V + 2, . . . , V + k). Another example of a prefetch engine using aggressiveness is the
sequential streams as presented in [Srinath et al. 2007]. In that work, aggressiveness
was defined as a combination of distance and degree.

Mechanisms to Adjust Prefetch Aggressiveness in Multiprocessors. Several works ad-
dress the problem of adjusting prefetch aggressiveness in CC-NUMA multiproces-
sors having only private cache memories. Dahlgren et al. [1993] suggest determining
the prefetch aggressiveness at each private cache by counting the number of useful
prefetches for every given number of prefetches issued(an epoch); the prefetch ag-
gressiveness is increased or decreased taking into account two usefulness thresholds.
Tcheun et al. [1997] add a degree selector to a sequential prefetch scheme; when the se-
lector detects useful prefetches along a sequential sub-stream it increases the prefetch
aggressiveness of the next sub-stream belonging to the same stream. As these works do
not use a shared cache, the interference problems found among cores are only related
with the available bandwidth when accessing to memory.

To our knowledge, only the Hierarchical Prefetcher Aggressiveness Control (HPAC)
presented by Ebrahimi et al. [2009] has faced the problem of adjusting prefetch ag-
gressiveness on a shared LLC (HPAC). We notice four main differences between that
work and the present one. (i) While HPAC resorts on computing the prefetching ag-
gressiveness by means of a set of rules applied to several system variables (a kind of
fuzzy controller), ABS relies on a local search method (a variant of hill-climbing) to
minimize a single system variable, the bank miss ratio. (ii) HPAC was proposed for
a centralized LLC with a single access port (see Figure 1(a)). We propose ABS for a
cache organized in banks, each one with an access port (see Figure 1(b)). (iii) HPAC
throttles auto-regulated prefetch engines attached to each core. In the original paper,
HPAC is evaluated using Feedback Directed Prefetching as the auto-regulated prefetch
engine [Srinath et al. 2007]. However, ABS controllers set directly the aggressiveness
level of the local prefetchers. (iv) HPAC uses four global metrics and FDP (as part of
HPAC) uses three more local metrics. All these metrics are monitored and compared
to ten thresholds (4 for HPAC + 6 for FDP). In contrast, ABS only samples two system

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

ABS: A Low-Cost Adaptive Controller for Prefetching 19:5

Fig. 3. ABS controller operations. (a) Core selection and temporal sampling. (b) Finite state machine con-
trolling the per-core prefetch aggressiveness.

variables and only considers one threshold. A performance and complexity comparison
between HPAC and ABS is presented in Section 7.4.

4. THE ABS CONTROLLER

An ABS controller is an adaptive mechanism that sets dynamically the aggressiveness
associated to each core on the prefetcher installed in a bank of a banked shared LLC.
Every LLC bank has an ABS controller commanding the prefetcher of that bank. Thus
the ABS controller of an LLC bank is able to associate different levels of prefetch
aggressiveness to each core, and conversely ABS controllers in different banks can
associate to the same core different levels of prefetch aggressiveness.

ABS control relies on a hill-climbing approach for finding the minimum of a function
(the miss ratio of a bank1) that we assume to be dependent on a set of variables namely,
the prefetching aggressiveness of each core in the bank. Time is divided into regular
intervals called epochs. In each epoch, in order to establish a cause-effect relationship
between change in aggressiveness and change in performance, the aggressiveness of
only one core (the probed core) is varied. The point is that at each epoch, the observed
change in the bank miss ratio is only due to a single aggressiveness change. At the end
of the epoch an aggressiveness value is established for the currently probed core and
this value remains unchanged until it is probed again. Furthermore, ABS controllers
force the prefetch aggressiveness associated to a core to be decreased if its accuracy
falls under a given threshold. The operation of ABS controllers involves two aspects:
(i) selection of the core to probe and temporal sampling, and (ii) adaptive per-core
aggressiveness control.

Core Selection and Temporal Sampling. At the beginning of each epoch a core is
chosen in a round-robin fashion2 and its current prefetch aggressiveness is changed.
Then, at the end of the epoch, the effect of the change is evaluated by comparing the
bank miss ratios observed during the current epoch and a reference epoch (Figure 3(a)).
The change is undone if the current bank miss ratio is greater than the reference one.
Otherwise, the change is confirmed and the current epoch is set as the new reference.
So, the core selection and temporal sampling guarantee that there is always only one
prefetch aggressiveness change between reference and current epochs. That change
corresponds to the probed core at each epoch.

At the end of an epoch, an aggressiveness value is established for the currently
probed core and this remains unchanged until the core is probed again. Note that if an
application remains in a stable phase the ABS controller reaches a steady state only

1Ratio of bank demand misses to demand requests coming from all cores. Other performance indexes were
also tested as the target function, such as global miss ratio, MPKI, or IPC. Although results were similar,
these other indexes were discarded because they are more expensive to compute in terms of communication
and hardware cost.
2A random order was also tested achieving slightly worse results.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

19:6 J. Albericio et al.

broken by the glitches involved in testing sub-optimal configurations. Hill-climbing
processes usually deals with functions that are not time-dependent. Thus, the process
stops when no change can be found to improve the value reached. However, we know
miss ratio is time-dependent because applications change their behavior over time.
This has two important implications for the design of ABS. (i) Our algorithm never
stops. The combination of aggressiveness able to minimize the miss ratio changes over
time and ABS continually seeks that combination. (ii) When the miss ratio reaches
the global minimum in the corresponding program phase, ABS will set the current
epoch as the reference epoch and the current miss ratio as the rate to beat. So, as a
lower miss ratio will no longer appear, ABS will never change the control actions, and
worse, a similar behavior may occur during long program phases after reaching a local
minimum. In order to remedy this situation, the number of epochs elapsed without
updating the reference epoch is counted. When this count is equal to the number of
cores, the mechanism sets the last epoch as the new reference. Updating the reference
epoch in this way ensures that a new value is taken after probing all cores without
experiencing a miss ratio decrease. We use epochs of 32K cycles. Other durations
were tested without significant variation. Epochs based on counting a given number of
events, like cache misses, were also tested without significant variations.

Adaptive Per-Core Miss-Gradient Aggressiveness Control. In an ABS controller, every
core has a state which consists of a prefetch aggressiveness degree and a prefetch
aggressiveness trend (downward or upward). At the beginning of the epoch in which a
core is being probed, the state changes to eval-downward or eval-upward (Figure 3(b).
Note that to probe a core, ABS only changes the aggressiveness following the trend
associated with the core, instead of testing both possibilities (downward and upward)
as they would do other implementations of hill-climbing.

Four events are locally counted in each LLC bank during each epoch, namely:
(1) bank accesses from all cores, (2) misses from all cores, (3) prefetches issued by
the core being probed, and (4) hits from the core being probed on prefetched lines.
Sequential tagged prefetch uses a bit per cache line to tag the prefetched lines. This
bit is set when a line is loaded in the LLC by a prefetch, and it is reset when the
line is used for the first time. We use this bit to count the hits of the probed core on
prefetched lines. At the end of an epoch two ratios are computed: bank miss ratio (bank
misses/bank accesses) and prefetch accuracy for the core being probed (hits from the
core in prefetched lines/prefetches from the core). Then the computed bank miss ratio is
compared with the bank miss ratio of the reference epoch. If it has increased, the state
changes to the reverse trend (from eval-downward to upward or from eval-upward to
downward). Otherwise, the state changes to the initial trend and the reference bank
miss ratio is updated. Accuracy is involved in the transitions that leave the eval-x
states. It is required that the probed core has an accuracy higher than a threshold to
go to the upward state. The rationale of this requirement is to avoid the increase in
the aggressiveness of one core whose prefetches are almost useless. We have observed
that the optimal threshold depends on the intrinsic accuracy of the prefetch engine.
Aggressive prefetch engines such as sequential tagged need a higher threshold (more
restrictive) than other more conservative prefetch engines like sequential streams.
We use an accuracy threshold of 0.6 when controlling sequential tagged with variable
degree and of 0.3 when controlling sequential streams.

4.1. Example

Figure 4 shows an example of how an ABS controller works in an LLC bank of a system
with four cores. The degree scale (0, 1, 4, 8, 16) represents the prefetch aggressiveness.
Time moves from left to right and is divided into fixed length intervals as shown in

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

ABS: A Low-Cost Adaptive Controller for Prefetching 19:7

Fig. 4. Example of ABS controller working in an LLC bank of a 4-core system.

the Epoch row. The four rows designated as degree & trend (P0, P1, P2 and P3) show
the level of prefetch degree and trend associated with each core at each epoch. For
instance, 4↑ means prefetch degree of 4 and upward trend. The core identifier and its
trend over the dashed arrows indicate the change applied between two consecutive
epochs. For example, from E0 to E1 the degree of P1 is changed from 4 to 1. The bank
miss ratio accounting row shows the miss ratio at each epoch. The last row shows the
comparison result between the reference and the current bank miss ratios. Next we
show the positive and the negative cases.

Positive Aggressiveness Change. At the beginning of E1, aggressiveness of the P1
core is changed from degree 4 to 1 following its downward trend. The question mark
next to the degree of P1 at E1 epoch (1?) means that the change is being evaluated. At
the end of E1 we observe a decrease in the bank miss ratio (a>b) with respect to the
reference epoch (a). Therefore, the change in degree and the current trend of P1 are
confirmed. E1 becomes the new reference epoch. The same happens at the epochs E2
and E5.

Negative Aggressiveness Change. White circles surround negative evaluations. At
the beginning of E3, the P3 degree is changed from 4 to 8 following its upward trend.
At the end of E3, an increase in the bank miss ratio (c<d) is observed, therefore the
change in the P3 degree is undone, becoming 4, and its trend is reversed to downward.
The reference epoch is not changed. At the beginning of E4, the P0 degree is changed
from 1 to 4. Note that E2 is the reference epoch in E4. They only differ in the degree
of P0, which is the one under evaluation in E4. At the end of E4 the bank miss ratio
is also higher than it was at E2. Therefore, the change in the P0 degree is undone, the
trend is reversed, and E2 remains as the reference in E5.

4.2. Miss Ratio as a Good Metric to Guide Aggressiveness

Prefetch related metrics such as coverage, accuracy, timeliness, pollution or consumed
bandwidth have often been proposed to evaluate the quality of a prefetch engine be-
cause an aggregate figure such as the miss ratio does not allow the net effect of individ-
ual prefetches to be distinguished [Palacharla and Kessler 1994; Wallin and Hagersten
2003].

These same metrics were subsequently used in other works to guide prefetch aggres-
siveness [Dahlgren et al. 1993; Ebrahimi et al. 2009; Srinath et al. 2007]. However,
these metrics are not directly related with system performance. Moreover, in the con-
text of a banked LLC they pose two important problems: (i) some of them are hard to
compute online, and (ii) they are difficult to aggregate in a single number in order to
take a decision.

In this paper we use the LLC bank miss ratio as the main metric to guide prefetch
aggressiveness. The penalty of the off-chip misses is large in processor cycles and so
a miss ratio decrease has a great potential to reduce Cycles per Instruction (CPI) and
improve performance. Therefore, we expect the LLC miss ratio to be a good measure of

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

19:8 J. Albericio et al.

performance. Moreover, the ABS controller associated with each LLC bank can locally
count the number of misses in the bank. In consequence, our proposal establishes the
feedback loop without requiring communication among LLC banks.

From a performance standpoint, the prefetch related metrics are highly correlated
with the miss ratio. In fact, some of these metrics are only valuable when they really
correlate with the miss ratio. For instance, a prefetched line is considered useful if it
is used along its lifetime in a cache, and useless otherwise (accuracy metric). However,
a useful prefetch does not always have a positive impact on performance. Indeed, it
will only increase performance if it gets a reduction in the miss ratio. In particular, if
the line evicted by the prefetch is referenced before the prefetched line itself, despite
having a useful prefetch, the miss ratio does not change and therefore no performance
increase will be seen.

4.3. ABS Controller Hardware Cost

The hardware cost of our proposal is low. In each bank, an ABS controller needs 4 bits
per core in order to keep its prefetch state (1 bit for trend + 3 bits for aggressiveness
level). It also needs four 16-bit counters (bank misses, bank accesses, prefetch requests,
and hits on prefetched blocks). Additionally, it needs a 3-bit counter (4 bits in a 16-core
system) to maintain the reference epoch age (number of epochs without changing the
reference). The reference and the current miss ratios are stored in 16-bit registers.
Finally, a 15-bit counter is needed to divide time into 32K-cycle epochs. For instance,
in an 8-core multiprocessor each ABS controller needs 146 bits. Thus, in our baseline
system fitted with 4 LLC banks, 584 bits are needed. If we consider a 16-core system
with the same memory hierarchy, 716 bits are needed by the four ABS controllers.

Most prefetchers add to every cache line a tag bit in order to detect first use after
prefetch and then react based on the prefetchless miss stream3 [Nesbit and Smith
2005; Smith 1982]. For instance, sequential tagged prefetch uses the tag bit to trigger
new prefetches on the first use of a prefetched line. The ABS controller uses the same
tag bit to count hits on prefetched lines, and so we ignore that bit in the ABS costs.

5. PREFETCHING FRAMEWORK

5.1. Prefetch Engine

The operation of the ABS controller is orthogonal to the prefetch engine used to generate
prefetch requests. The only necessary characteristic in this prefetch engine is that it
has to be able to operate at different aggressiveness levels. In this work, the base
system uses a sequential tagged prefetcher with variable degree (degree varying along
the following scale 0, 1, 4, 8, 16). Given an initial address and a degree k, it is asked
to generate k sequential references in the next k cycles. In Section 7.4 we also evaluate
ABS controlling sequential streams as the prefetch engine, using the same model
of sequential streams as Ebrahimi et al. [2009]. ABS can control prefetch engines
generating non-consecutive references, either belonging to a fixed-stride stream, or a
stream generated by a context predictor like GHB or PDFCM [Nesbit and Smith 2005;
Ramos et al. 2011]. Considering such prefetch engines under ABS control is an open
research avenue, but we consider it is outside the scope of this work.

5.2. Bank-Isolated Prefetch

A common mapping of memory lines to LLC banks is line-address interleaving. On a
miss on line L mapped to bank B, a sequential prefetcher located at bank B generates

3Given two equal caches, with and without prefetch, note that the miss stream outgoing from the prefetch
cache differs from that of the prefetchless cache. However, it is possible to rebuild the prefetchless miss
stream in a prefetch cache by joining the actual miss stream with the first-use stream of prefetched blocks.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

ABS: A Low-Cost Adaptive Controller for Prefetching 19:9

Fig. 5. Components of an LLC bank.

a prefetch of line L+1, which maps to the next LLC bank. The address is looked up in
the destination cache bank and, on a miss, it is forwarded to the main memory. Thus,
communication among LLC banks is required in order to send every prefetch request
from the bank that generates it to the destination bank. Alternatively, we could send
the prefetch request to the memory without a previous lookup. In this case, we can
waste memory bandwidth on prefetching lines already existing in the LLC.

In order to avoid expensive communication between LLC banks or waste of memory
bandwidth, LLC prefetch is arranged to achieve isolation among banks, i.e. prefetches
generated from a bank always target itself. We analyze two bank-isolated prefetch
methods: increasing stride and changing the address interleaving among banks. The
first consists on increasing the prefetch stride from one to a multiple of the number
of banks. As an example, in an LLC with 4 banks and a sequential prefetcher at each
bank, a miss on the line L issues the prefetch of the line L+4. Achieving bank-isolation
in this way has the drawback that several prefetchers have to learn a fraction of the
same stream, and thus the number of prefetch addresses not issued during the learning
time is multiplied by the number of banks, this is a serious drawback, especially for
short streams.

The second method consists of increasing the address interleaving granularity among
banks. The LLC banks are interleaved using operating system pages, where consecutive
physical pages map into consecutive LLC banks (mapping logical to physical addresses
is performed in our experiments by the simulated operating system). This way an
address stream always maps to a single bank while the page boundary is not crossed,
and all addresses generated by a bank prefetcher will target the same bank. This is
not a problem because in order to avoid translating prefetch addresses, prefetchers do
not usually issue addresses beyond the page boundary of the address originating the
prefetch [Le et al. 2007; Hennessy and Patterson 2007; Intel 2011].

We have evaluated the performance of both interleaving options for the baseline
system without prefetch, noting that performance was slightly higher using page in-
terleaving. Similar conclusion was obtained in a previous work [Cho and Jin 2006].

5.3. Prefetch Details

Aggressive prefetchers such as a high-degree sequential tagged prefetcher can generate
a significant number of prefetches. We assume the hardware cost of the prefetcher is
lowered by sharing the same lookup port for demand and prefetch requests (demand
requests have higher priority). Furthermore, only one adder is provided to each LLC
bank in order to generate prefetches, and so prefetch addresses are computed at a rate
of one per cycle. The generation of a burst of prefetch requests after a cache miss or
cache hit to a tagged line is cut off if another event initiates a new prefetch burst.

After being generated, each prefetch is sent to a prefetch address buffer (PAB) and
waits in a queue until the LLC lookup port is available, see Figure 5. Because the
PAB has a finite number of entries, it is managed in FIFO order (both for servicing and

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

19:10 J. Albericio et al.

dropping prefetch requests the oldest one is processed first). Before inserting a prefetch
address, the PAB is checked for an already allocated entry with the same address in
order to avoid having duplicated requests.

Prefetch and demand Miss Status Holding Registers (MSHRs) keep the requests
to the main memory until the arrival of the corresponding cache lines. There are no
duplicated entries between MSHRs. When the LLC bank tag port is available, the
request at the head of the PAB looks up both the bank tags and the two MSHRs. Only
if they all miss, is the request sent to the memory and inserted in the prefetch MSHRs.

Demands have higher priority than prefetch requests at every arbiter in the hier-
archy. Moreover, a demand can arrive at an LLC bank asking for a line that is being
prefetched but whose data are not yet loaded into the cache. In that case a prefetch
upgrade command is sent to the memory controller. If the request is queued at the
controller. That command will upgrade the prefetch request giving it demand priority.
The rationale of this mechanism is to prevent an aggressive prefetch from damaging
regular memory instructions.

6. METHODOLOGY

6.1. Experimental Setup

Simics, a full-system execution-driven simulator, has been used to evaluate our pro-
posal [Magnusson et al. 2002]. The Ruby plugin from the Multifacet GEMS toolset was
used to model the memory hierarchy with a high degree of detail [Martin et al. 2005],
including coherence protocol, on-chip network, communication buffering, contention,
etc. The prefetch system has been integrated into the coherence mechanism and a
detailed DDR3 DRAM model has been added.

Multiprogrammed SPECCPU 2K6 workloads running on a Solaris 10 Operating
System have been used. In order to discard the less demanding memory applications
and locate the end of the initialization phase, all the SPARC binaries were run on a
real machine until completion with the reference inputs and hardware counters were
used. Eight applications were subsequently discarded and 21 selected, shown in the
first column of Table I.

For an eight-core system, a set of 30 random mixes of 8 programs each, were taken
from the previously selected 21 SPECCPU 2K6 programs (no effort has been made to
distinguish between integer and floating point). In the next section, we usually show
averages over this set of 30 mixes, but in order to gain a deeper insight into individual
mix behaviors, sometimes a subset of 10 mixes is shown. This randomly chosen subset
of mixes appears in Table I, along with the misses per kilo-instruction (MPKI) of each
application in each mix when the application runs alone, that is, it runs using all the
shared memory resources and with the remaining seven cores stopped.4

Summarizing, we have created 30 checkpoints of 8 applications each. Each check-
point guarantees that no application is in its initialization phase. The cycle-accurate
simulation starts at these checkpoints, warming the memory hierarchy for 500 million
cycles with the prefetch disabled. We then collect statistics for the next billion cycles.

6.2. Baseline System

The baseline system has eight in-order cores. The shared LLC has four banks inter-
leaved at page granularity (4KB in the simulated operating system). A MOSI protocol

4Notice that in general the same application appearing in two different mixes does not have the same MPKI
value. This is because the number of executed instructions before creating a multiprogrammed checkpoint
is given by the application with the longest initialization phase in the mix. This means that the results for
a particular application, in general, can not be compared between mixes.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

ABS: A Low-Cost Adaptive Controller for Prefetching 19:11

Table I. MPKI of the Benchmarks in the Selected Mixes

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9 mix10
bzip2 1.8 1.7

bwaves 20.7 20.7 20.7 20.7 20.7 20.7
mcf 33.9 37.5 30.7 33.2 20.2

milc 16.4 16.2 34.2
zeusmp 16.7 8.1 9.1 7.3 13.8

gromacs 3.9 4.0
cactusADM 4.2 4.1 4.2 4.2 4.4

leslie3d 28.3 32.5 36.4 14.4
gobmk 1.5 1.5 1.4 1.5
dealII 0.0 0.1 0.2 0.3
soplex 3.0 4.0 3.6
povray 0.3 0.3 0.3 0.3 0.3

calculix 0.5 5.9 0.5
gemsFDTD 32.5 26.9 32.5 26.8
libquantum 28.8 85.5 65.6

tonto 3.4 1.5 1.6
lbm 36.1 47.6 36.1 36.1 36.1

omnetpp 0.7 5.4 0.7 0.7 0.6 0.7
wrf 3.0 0.5 0.5

sphinx3 12.5 12.9
xalancbmk 1.8 1.8 1.5
mix MPKI 16.9 4.62 5.05 7.67 10.8 10.37 9.06 3.22 8.03 4.04

Table II. Baseline System Configuration

Private L1 I/D 16KB, 4-way pseudo LRU replacement, 64B line size, 1cycle
Shared L2 4MB inclusive (4 banks of 1MB each. Data array internally sub-banked), 4KB

interleaving, 64B line size. Each bank: 16-way pseudo LRU replacement, 2-cycle
TAG access, 4-cycle data access. 16 demand + 16 prefetch MSHR

Prefetch engine Sequential tagged, degree 16
DRAM 1 rank, 16 banks, 4KB page size, Double Data Rate (DDR3 1333Mhz)

DRAM bus 667Mhz, 8B wide bus, 4 DRAM cycles/line, 16 processor cycles/line

keeps the memory system coherent while allowing thread migration among cores.5 A
crossbar communicates the first level caches and the shared LLC banks. There is a
single DDR3 memory channel. The DRAM memory bus runs at a quarter of the core
frequency. Table II gives additional implementation details.

6.3. Performance Indexes

As previous work has shown, sequential prefetch delivers good results when only one
program is executed in the system [Smith 1982; Ramos et al. 2011]. However, as pointed
out in Section 2, this assumption is no longer true for a multiprocessor system because
resources are shared among cores that interfere each other. Thus, the goal of the ABS
controller is to control the prefetch aggressiveness on a per-core basis in such a way
that programs running together in the multicore system attain similar performance
as when running alone with an aggressive sequential prefetch. In consequence, our
performance indexes use as references the IPC of the programs running alone on a
system with a sequential tagged prefetcher with a fixed degree of 16.

In order to evaluate the ABS controllers in the multiprocessor system, we use two
system-oriented performance indexes, namely weighted speedup (WS) (Eq. (1)) [Luo
et al. 2001], and main memory bandwidth consumption, and two user-oriented perfor-
mance indexes, namely harmonic mean of speedups (HS) (Eq. (1)) [Snavely and Tullsen
2000], and fairness (FA) (Eq. (1)) [Mutlu and Moscibroda 2007]. The weighted speedup

5Migration can mainly affect to the operating system threads. Each application thread is bound to a different
core for the multiprogrammed workloads.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

19:12 J. Albericio et al.

Fig. 6. IPC for eight SPEC2K6 applications (mix2) running on an 8-core system with a shared LLC.

quantifies the number of jobs completed per unit of time [Eyerman and Eeckhout 2008].
The harmonic mean of speedups is the inverse of the average normalized turnaround
time [Eyerman and Eeckhout 2008]. To determine whether the co-execution in the mul-
ticore system benefits or harms some programs more than others we use the fairness
index.

W S =
n∑

i=1

IPCMP
i

IPCSP
i

, HS = n
∑n

i=1
IPCSP

i
IPCMP

i

, FA = min(IS1, IS2, . . . , ISn)
max(IS1, IS2, . . . , ISn)

, where ISi = IPCMP
i

IPCSP
i

(1)

IPCSP
i : IPC of program i running alone in the system and with fixed degree-16 sequential tagged prefetch.

IPCMP
i : IPC of program i when other applications run in the rest of the cores

7. RESULTS

In this section we evaluate the ABS controllers. Section 7.1 analyzes ABS controlling
sequential tagged prefetch in the baseline system. Section 7.2 shows results for 16-core
systems. In Section 7.3 we increase the LLC size. In Section 7.4 ABS controllers are
compared with a previous proposal, and in Section 7.5 they are evaluated using parallel
applications.

7.1. Results for the 8-Core Baseline System

Figure 6 shows the results of ABS controlling prefetch aggressiveness of the mix2
described in Section 2. The 8 programs run simultaneously and the bars corresponding
to execution without prefetch (8apps no pref) and with fixed-degree (16) aggressive
prefetch (8apps pref) are kept. A new bar corresponding to ABS prefetch (ABS) is
added.

ABS controlled prefetch increases performance compared with the aggressive fixed
degree prefetch in all programs. IPC improvement ranges from 23% in sphinx3 to 40%
in milc. With regard to the system without prefetch, ABS control only slightly affects
the performance of deall and povray, while the aggressive prefetch leads to significant
losses in five of the eight programs. In contrast, in six of the eight programs ABS
control outperforms the system without prefetch, achieving improvements between 3%
in omnetpp and 225% in lbm.

Global measures such as IPC do not allow us to find out how prefetching is working.
To give insight into prefetching behaviour, Figure 7(a) and Figure 7(b) show prefetch
coverage and accuracy, respectively, comparing fixed degree (8apps pref) with ABS-
controlled degree (ABS). Prefetch coverage is very uneven across applications, ranging
from about 0.1 in povray to more than 0.9 in cactus. ABS, despite being less aggressive,
gets coverage similar or even higher than the fixed 16-degree prefetcher. ABS coverage
is clearly better in five of the eight applications, and is clearly worse in two. As for
accuracy, it is also uneven across applications, being very close to zero in povray and

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

ABS: A Low-Cost Adaptive Controller for Prefetching 19:13

Fig. 7. Prefetch accuracy and coverage of sequential tagged prefetching with fixed degree of 16, and variable
ABS-controlled degree (mix2).

Fig. 8. Evolution of the prefetching aggressiveness level for the milc application (mix2) in two of the four
LLC banks during 160 tests.

very close to one in cactus. But here ABS is the clear winner, achieving higher accuracy
in all applications, highlighting the cases of milc, povray, tonto, omnetpp and sphinx3.
The combination of both metrics, similar coverage and better accuracy, explains the
performance improvement obtained by ABS.

It is interesting to delve into how different the aggressiveness computed in each bank
by the replicated ABS controllers can be. Figure 8 plots a temporal trace of the prefetch
degree for application milc in the mix2, in a prefetch system under ABS control in two
of the four LLC banks (bank 0 and bank 1). The failed tests (glitches), accounting for
1/ 8 of the total time in the worst case, have been removed to smooth the plot.

In the plotted sample, both ABS controllers usually take different control decisions;
e.g. at time 1180, bank 0 prefetchs with degree 2, while bank 1 uses degree 8. The plot
shows the flexibility of the distributed ABS control: a particular core may issue a miss
stream with a different pattern into each LLC bank.

Figure 9 shows HS, WS, FA and consumed bandwidth for systems without prefetch
(no pref), with fixed-degree aggressive prefetch (aggr pref), and under ABS control
(ABS) for the ten mixes shown in Table I. In each plot the rightmost bar group is the
average of the 30 mixes (AVG30).

The HS values show a nonuniform pattern across the different mixes (Figure 9(c)).
Aggressive prefetch increases by 4% the average HS with respect to no prefetch, but
causes losses in six of the 10 mixes. Under ABS control, prefetch improves in 9 of
the 10 mixes (up to 60% in mix6) and produces small losses in the other mix (0.5%
in mix9). Also, ABS control always increases performance compared to no prefetch,
between 20% and 50% in mix3 and mix6, respectively. On average, prefetch under ABS
control, improves the system without prefetch by 35%.

In terms of WS (Figure 9(d)), aggressive prefetch causes losses in seven of the 10
mixes and performs on average 3% worse than the system without prefetch. ABS control
improves aggressive prefetch in 9 of the 10 mixes (up to 47% in mix4) and produces

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

19:14 J. Albericio et al.

Fig. 9. Results for ten mixes of SPEC2K6 applications running on an 8-core system with a shared LLC.

negligible losses in the other mix (1% in mix9). On the other hand, prefetch under ABS
control improves the system without prefetch in 9 of the 10 mixes, with improvements
ranging from 14% in mix9 to 27% in mix3. In mix5, WS results in a reduction of
0.3%. On average, prefetch controlled by ABS improves the system without prefetch by
18%.6

Figure 9(a) plots the FA values, showing that the system with aggressive prefetch
is significantly more fair than the system without prefetch. This is because the perfor-
mance indexes use as reference a system with prefetch as we have seen in Section 6.3.
Therefore, in the system without prefetch we see the unfairness introduced by the lack
of prefetch itself, plus the unfairness due to the interferences among the eight cores. In
Figure 9(a), we observe the low fairness of mix2 in the system without prefetch. As the
HS index includes some notion of fairness in its definition and WS is a pure throughput
index, the previous issue about mix2 becomes clear. On average, the system using ABS
controllers is more fair than the system with aggressive prefetch (0.62 and 0.56, re-
spectively). ABS controllers make the system more fair in 6 of the 10 mixes (differences
between 1% and 140%), and less fair in the remaining 4 (differences between −3% and
−30%).

Finally, in Figure 9(b) we see that the main memory bandwidth consumption of
the system without prefetch is very uneven among the different mixes, varying be-
tween 18% and 55% of the maximum bandwidth. However, the common pattern is
that aggressive prefetch greatly increases bandwidth consumption with respect to the
system without prefetch (on average, from 40% to 85% of maximum bandwidth), and
ABS removes a significant portion of that increase lowering it to 70% of maximum
bandwidth.

Summarizing, in an 8-core chip with a shared 4-MB LLC, the use of ABS con-
trollers improves the system that is using uncontrolled aggressive prefetch. On average,
throughput (WS), the inverse of the turnaround time (HS), and fairness (FA) increase
27%, 23% and 11%, respectively while memory bandwidth consumption decreases by
18%.

6Notice that the performance indexes HS and WS do not always correlate; in mix2, for instance, the HS index
indicates that aggressive prefetch is better than no prefetch while the WS index indicates the contrary. The
discussion on fairness will give a deeper insight into what is happening.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

ABS: A Low-Cost Adaptive Controller for Prefetching 19:15

Fig. 10. ABS performance on a 16-core system.

7.2. Results for a 16-Core System

In this section we analyze the behavior of prefetch in a 16-core system. The LLC is not
modified, so that the increase in the number of cores results in an increased pressure
on the LLC. However, communication with the main memory is expanded from one to
two DDR3 channels. We run 30 mixes of 16 applications randomly selected among the
21 SPEC CPU 2006 shown in Table I. We only present the average of each index over
the 30 mixes of 16 programs each. Figure 9(a) combines in a single Y-X plot the system-
oriented metrics, WS and bandwidth, while Figure 9(b) combines the user-oriented
metrics, HS and FA.

In a system with 16 processors, fixed-degree (16) aggressive prefetch (aggr pref)
produces losses compared to no prefetch (no pref) in terms of throughput (WS decreases
9%) and turnaround time (HS decreases 4%). The memory bandwidth consumption
greatly increases from 36% to 85%. Only fairness improves from 0.28 without prefetch
to 0.36 with aggressive prefetch.

Controlling aggressiveness leads to improvements in all metrics. Compared to ag-
gressive prefetch, ABS control (ABS) increases the HS index by 27% (22% compared to
no prefetch), increases the FA index to 0.48, and also improves the system throughput
index with a WS increase of 25% (14% compared to no prefetch). The bandwidth con-
sumption decreases significantly compared to aggressive prefetch, from 85% to 62% of
the maximum, but it is still greater than without prefetch which only requires 36% of
the maximum.

Summarizing, in a 16-core chip with a shared 4-MB LLC, ABS improves the system in
all indexes. Comparing between 16 and 8 cores, the increase in the WS index is similar
but the improvement in the rest of the indexes, HS, fairness and memory bandwidth, is
much higher. This result is consistent because the pressure on the memory hierarchy
in a 16-core chip is larger than in an 8-core, resources are more scarce, and therefore
controlling the prefetch aggressiveness becomes more important.

7.3. Doubling the LLC Size

In this section we analyze the behavior of prefetch in the 8-core baseline system when
doubling the LLC size to 8 MB. We only show average indexes computed over the 30
mixes already used in section 7.1. The system-oriented metrics WS and bandwidth,
are shown in Figure 10(a), while Figure 10(b) shows the user-oriented metrics HS and
Fairness.

In an 8-core chip with a shared 8-MB LLC, the use of ABS controllers also improves
the behavior of uncontrolled aggressive prefetch. On average, throughput (WS), the
inverse of the turnaround time (HS), and fairness (FA) increase 18%, 24% and 38%,
respectively while memory bandwidth consumption decreases 14%.

When increasing the cache size, controlling the prefetch aggressiveness becomes less
important for improving performance, but it improves fairness and saves bandwidth.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

19:16 J. Albericio et al.

Fig. 11. ABS performance on an 8-core system with an 8MB LLC.

Thus, when increasing from 4 to 8 MB, ABS improvements over uncontrolled prefetch
change from 27% to 18% in WS, from 11% to 38% in FA, and from 18% to 14% in BW.
As for HS, the results are similar.

7.4. HPAC Comparison

Next we compare the ABS control with the Hierarchical Prefetcher Aggressive Control
mechanism (HPAC) introduced in Ebrahimi et al. [2009]. To the best of our knowledge,
this was the only work to date on adjusting prefetch aggressiveness in a shared LLC.

HPAC works in a centralized LLC with a single access port although internally
it is organized in banks to support several concurrent accesses. The proposal uses
sequential streams as the prefetch engine and a local control of aggressiveness for each
core: Feedback-Directed Prefetching (FDP) [Srinath et al. 2007]. HPAC adds a global
interference feedback in order to coordinate the prefetchers of the different cores and
throttle their aggressiveness.

Since we assume autonomous LLC banks, possibly placed at distant die locations,
distributing HPAC is not straightforward. We choose a distributed implementation
giving HPAC as much knowledge and control as possible, namely each core has an
FDP per LLC bank, and each LLC bank has an HPAC controlling the corresponding
FDP. So, the distributed HPAC/FDP we test requires 32 FDPs (8 FDPs per bank × 4
banks = 32 FDPs), and 4 HPACs (1 HPAC per bank × 4 banks = 4 HPACs).

Besides other local bank metrics, HPACs gather statistics from one/two memory
controllers (8/16 core systems), and the communication among HPACs and the memory
controllers is modelled in an ideal way (zero-delay/no BW limitations).

We have used the thresholds indicated in the published proposals for both mech-
anisms. We simulate 32 streams per core and LLC bank (32 streams × 8 cores × 4
banks = 1024 streams). Each stream launches sequential prefetches with a degree and
distance from a starting address. We implement five levels of aggressiveness that cor-
respond to degrees 1, 1, 2, 4, and 4 and distances 1, 4, 16, 32, and 64, respectively. The
aggressiveness control mechanism (HPAC/FDP or ABS) decides the aggressiveness
level associated to each core.

Figure 12 plots the results for HPAC and ABS on an 8-core system. Both mecha-
nisms use sequential streams as the prefetch engine. Performance indexes have been
computed using as references the IPCs of the programs running alone on a system with
a sequential stream prefetcher with a fixed level of aggressiveness (distance 64 and
degree 4). We only show average indexes computed over the 30 mixes already used in
Section 7.1.

Figure 12(a) shows the system-oriented metrics, WS and BW, while Figure 12(b)
shows the user-oriented metrics, HS and Fairness. ABS control obtains better results
than HPAC in all metrics except in the consumed bandwidth. ABS improves WS index
by 8%, HS index by 14% and fairness by 40%. Compared to no prefetch, bandwidth
consumption is higher in ABS (62%) than in HPAC (50%).

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

ABS: A Low-Cost Adaptive Controller for Prefetching 19:17

Fig. 12. HPAC and ABS performance on an 8-core system.

Fig. 13. Prefetch accuracy and coverage of sequential streams with variable ABS-controlled and HPAC-
controlled degrees (mix2).

The results for a 16-core system are not shown but are similar. ABS also produces
better results than HPAC in all metrics except consumed bandwidth. ABS improves the
WS index by 7%, the HS index by 11%, and fairness by 29%. Compared to no prefetch,
bandwidth consumption is higher in ABS (54%) than in HPAC (44%).

Figure 13(a) and Figure 13(b) show prefetch accuracy and coverage, respectively, of
sequential streams prefetching, with ABS and HPAC controlling the prefetch aggres-
siveness. Sequential streams, as a prefetch engine, are less aggressive than sequential
tagged, because the former has a long learning period and the latter has not. This
explains the low coverage we see compared to that of Figure 13(b). On the other hand,
ABS shows greater coverage than HPAC for most applications in the mix. This may be
so because HPAC can be more restrictive than ABS. For instance, in a situation of low
accuracy and high pollution, HPAC throttles prefetch aggressiveness regardless of its
overall impact on the miss ratio. In contrast, ABS throttles prefetch only if the miss
ratio grows. As for accuracy, Figure 13(a) shows that, despite being more aggressive,
ABS gets accuracy similar to that of HPAC.

From the referenced papers we can compute accurately the HPAC/FDP hardware
costs [Ebrahimi et al. 2009; Srinath et al. 2007]. In the 8-core system having 4 LLC
banks of 1MB each, the total budget to implement HPAC/FDP is 466,624 bits (196,608
+ 4 × (33,664 + 33,840)).7 The implementation cost of the 1024 sequential streams,
and the prefetched bit in each cache line have not been accounted for. In the 16-core
system with the same LLC the FDP/HPAC cost is 933,056 bits.

Summarizing, the ABS controller gives a better performance than HPAC at the
expense of some increase in consumed bandwidth. In addition, it succeeds with a very
low implementation cost.

7FDP requires a core identifier per LLC block (3 bits × 64K blocks = 196,608 bits). In each bank, FDP also
requires seven 16-bit counters per core, and a 1-Kentry Bloom filter per core to detect intra-core prefetching
interferences (1 bit and a core id per entry, totaling 33,664 bits per bank). In turn, HPAC requires in each
bank eight 16-bit counters per core, three more 16-bits counters, and a 1-Kentry Bloom filter per core (1 bit
and a core id per entry) to detect inter-core prefetching interferences (33,840 bits per bank).

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

19:18 J. Albericio et al.

Fig. 14. Results for five parallel applications.

7.5. Results with Parallel Applications

In this section we analyze the behaviour of our proposal when running parallel appli-
cations in the baseline system presented in Section 6.2. A priori, this behaviour should
not depend on whether the threads running on each processor are independent or not.
ABS varies the prefetch aggressiveness associated with each core seeking to optimize
the performance of each LLC bank in terms of bank misses. The decrease in the number
of misses in each bank should result in improving system performance.

We have selected the five applications of the PARSEC [Bienia 2011] and SPLASH-2
[Woo et al. 1995] suites which have more than 1 MPKI in a 4-MB LLC (concretely
canneal, facesim, ferret, vips and ocean applications. And their MPKIs are respectively
4.48, 3.45, 1.27, 1.74, and 13.35). In order to avoid migration, the threads are bound
to cores using system calls. Binding is not performed if an application spawns in its
parallel phase more threads than there are cores in the system. Performance statistics
(execution time, memory bandwidth) are only taken in the parallel phases, which
are run to completion in all the applications. We utilize the simmedium input set for
PARSEC applications and a 1026x1026 grid for Ocean.

Figure 14(a) shows speedups of a system with fixed-degree prefetch (aggr pref) and
with prefetch under ABS control (ABS) compared to a system without prefetch. The
fixed-degree prefetch improves performance with respect to no prefetch in four out of
the five applications. Only canneal suffers a 5% increase in execution time when under
prefetch with fixed-degree. The ABS control achieves higher speedups than fixed-degree
prefetch in all the applications except vips (−1.8%). In canneal, the ABS controllers
reduce prefetching looses from 5% to 0.3%.

Figure 14(b) shows the memory bandwidth consumption of the system without
prefetch (no prefetch), with fixed-degree prefetch (aggr pref), and with prefetch under
ABS control (ABS). Fixed-degree prefetch significantly increases the memory band-
with consumption for all the applications (from 40% in facesim to 450% in ferret). The
ABS control reduces memory bandwidth consumption with respect to fixed-degree in
canneal (−50%), ferret (−70%), and vips (−23%), and slightly increases it in facesim
(+5%). Summarizing, the ABS controllers also improve performance over fixed-degree
prefetch when running parallel applications, in spite of the low miss ratios of these ap-
plications. Execution time is reduced in four out the five analyzed parallel applications.
Besides, significant savings in memory bandwidth arise in three applications.

8. CONCLUSIONS

In this paper we focus on the shared, last level cache (LLC) of a multicore chip. We
assume a LLC having a distributed implementation in multiple banks. In this scenario,
we introduce the ABS controller (Adaptive prefetch control for a Banked Shared LLC),
an adaptive mechanism to control the prefetch aggressiveness independently for each
core in each LLC bank. The ABS controller implements a hill-climbing algorithm which
runs stand-alone at each LLC bank, using only local information. Bank miss ratio and
prefetch accuracy are sampled at fixed-length epochs and used as performance index.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

ABS: A Low-Cost Adaptive Controller for Prefetching 19:19

For each bank at each epoch the aggressiveness of only one core is varied in order
to establish a cause-effect relationship between the change in aggressiveness and the
change in the performance index.

The ABS controllers are evaluated to adjust the aggressiveness level of variable-
degree sequential tagged prefetchers. Our analysis using multiprogrammed SPEC2K6
workloads shows that the mechanism improves both user-oriented metrics (Harmonic
Mean of Speedups by 27% and Fairness by 11%) and system-oriented metrics (Weighted
Speedup increases by 22% and Memory Bandwidth Consumption decreases by 14%)
over an eight-core baseline system that uses aggressive sequential prefetch with a fixed
degree. Similar results have been obtained on a sixteen-core system, when doubling
the LLC size or running parallel applications.

Besides, ABS is also compared to the mechanism for a centralized shared LLC pro-
posed by Ebrahimi et al. [2009] but adapted for a banked LLC. For this comparison,
variable-aggressiveness sequential stream prefetchers are used as prefetch engines.
ABS performs better in all the performance indexes except in required bandwidth,
which is somewhat greater.

Summarizing, ABS controllers are able to control the aggressiveness of prefetch
engines in a distributed fashion and with very low implementation costs. Their dis-
tributed nature assures scalability in the number of cores and cache banks for future
multicore chips.

REFERENCES

BIENIA, C. 2011. Benchmarking modern multiprocessors. Ph.D. thesis, Princeton University.
CANTIN, J. F., LIPASTI, M., AND SMITH, J. E. 2006. Stealth prefetching. In Proceedings of the 12th International

Conference on Architectural Support for Programming Languages and Operating Systems. ASPLOS-XII.
CHO, S. AND JIN, L. 2006. Managing distributed, shared l2 caches through os-level page allocation. In Pro-

ceedings of the 39th International Symposium on Microarchitecture.
CONWAY, P., KALYANASUNDHARAM, N., DONLEY, G., LEPAK, K., AND HUGHES, B. 2010. Cache hierarchy and memory

subsystem of the amd opteron processor. IEEE Micro 30, 16–29.
DAHLGREN, F., DUBOIS, M., AND STENSTROM, P. 1993. Fixed and adaptive sequential prefetching in shared

memory multiprocessors. In Proceedings of the 22nd International Conference on Parallel Processing.
EBRAHIMI, E., MUTLU, O., LEE, C. J., AND PATT, Y. N. 2009. Coordinated control of multiple prefetchers in

multi-core systems. In Proceedings of the 42th Annual International Symposium on Microarchitecture.
EYERMAN, S. AND EECKHOUT, L. 2008. System-level performance metrics for multiprogram workloads. IEEE

Micro 28, 42–53.
HENNESSY, J. AND PATTERSON, D. 2007. Computer Architecture: A Quantitative Approach. Morgan Kaufmann.
INTEL. 2011. Intel 64 and IA-32 Architectures Optimization Reference Manual.
KONGETIRA, P., AINGARAN, K., AND OLUKOTUN, K. 2005. Niagara: a 32-way multithreaded sparc processor. IEEE

Micro 25, 21–29.
KOPPELMAN, D. M. 2000. Neighborhood prefetching on multiprocessors using instruction history. In Proceed-

ings of the 9th International Conference on Parallel Architectures and Compilation Techniques.
KOTTAPALLI, S. AND BAXTER, J. 2009. Nehalem-ex cpu architecture. In Hot Chips.
LE, H. Q., STARKE, W. J., FIELDS, J. S., O’CONNELL, F. P., NGUYEN, D. Q., RONCHETTI, B. J., SAUER, W. M., SCHWARZ,

E. M., AND VADEN, M. T. 2007. IBM power6 microarchitecture. IBM J. Rese. Devel. 51, 639–662.
LUO, K., GUMMARAJU, J., AND FRANKLIN, M. 2001. Balancing thoughput and fairness in smt processors. In

Proceedings of the International Symposium on Performance Analysis of Systems and Software.
MAGNUSSON, P. S., CHRISTENSSON, M., ESKILSON, J., FORSGREN, D., HALLBERG, G., HOGBERG, J., LARSSON, F.,

MOESTEDT, A., AND WERNER, B. 2002. Simics: A full system simulation platform. Computer 35, 50–58.
MARTIN, M., SORIN, D. J., BECKMANN, B. M., MARTY, M., XU, M., ALAMELDEEN, A., K., M., HILL, M., AND WOOD, D.

2005. Multifacets general execution-driven multiprocessor simulator (gems) toolset. SIGARCH Comput.
Architect. News 33, 2005.

MUTLU, O. AND MOSCIBRODA, T. 2007. Stall-time fair memory access scheduling for chip multiprocessors. In
Proceedings of the 40th International Symposium on Microarchitecture.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

19:20 J. Albericio et al.

NESBIT, K. J. AND SMITH, J. E. 2005. Data cache prefetching using a global history buffer. IEEE Micro 25,
90–97.

PALACHARLA, S. AND KESSLER, R. E. 1994. Evaluating stream buffers as a secondary cache replacement. In
Proceedings of the 21st International Symposium on Computer Architecture.

RAMOS, L. M., BRIZ, J., IBÁÑEZ, P. E., AND VIÑALS, V. 2011. Multi-level adaptive prefetching based on performance
gradient tracking. J. Instruction-Level Paral. 13, 1–14.

SMITH, A. J. 1982. Cache memories. ACM Comput. Surv. 14, 473–530.
SNAVELY, A. AND TULLSEN, D. M. 2000. Symbiotic jobscheduling for a simultaneous multithreaded processor.

SIGARCH Comput. Architec. News 28, 234–244.
SOMOGYI, S., WENISCH, T. F., AILAMAKI, A., AND FALSAFI, B. 2009. Spatio-temporal memory streaming. In Pro-

ceedings of the 36th Annual International Symposium on Computer Architecture.
SRINATH, S., MUTLU, O., KIM, H., AND PATT, Y. N. 2007. Feedback directed prefetching: Improving the per-

formance and bandwidth-efficiency of hardware prefetchers. In Proceedings of the 13rd International
Symposium on High Performance Computer Architecture.

TCHEUN, M., YOON, H., AND MAENG, S. R. 1997. An adaptive sequential prefetching scheme in shared-memory
multiprocessors. In Proceedings of the 26th International Conference on Parallel Processing.

WALLIN, D. AND HAGERSTEN, E. 2003. Miss penalty reduction using bundled capacity prefetching in multipro-
cessors. In Proceedings of the 17th International Parallel and Distributed Processing Symposium.

WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND GUPTA, A. 1995. The splash-2 programs: characterization
and methodological considerations. In Proceedings of the 22nd International Symposium on Computer
Architecture.

Received July 2011; revised October 2011; accepted November 2011

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 19, Publication date: January 2012.

