
A small and effective data cache for real-time multitasking systems

Juan Segarra∗, Clemente Rodrı́guez†, Rubén Gran∗, Luis C. Aparicio∗ and Vı́ctor Viñals∗
∗Dpt. Informática e Ingenierı́a de Sistemas, Universidad de Zaragoza, España

∗Instituto de Investigación en Ingenierı́a de Aragón (I3A), Universidad de Zaragoza, España
†Dpt. Arquitectura y Tecnologı́a de Computadores, Universidad del Paı́s Vasco, España

Email: jsegarra@unizar.es, acprolac@ehu.es, rgran@unizar.es, luisapa@unizar.es, victor@unizar.es

Abstract—In multitasking real-time systems, the WCET
of each task and also the effects of interferences between
tasks in the worst-case scenario need to be calculated. This
is especially complex with data caches. In this paper, we
propose a small instruction-driven data cache (256 bytes) that
effectively exploits locality. It works by preselecting a subset of
memory instructions that will have data cache replacement
permission. Selection of such instructions is based on data
reuse theory. Since each selected memory instruction replaces
its own data cache line, it prevents pollution and performance
in tasks becomes independent of the size of the associated data
structures. We have modeled several memory configurations
using the Lock-MS WCET analysis method. Our results show
that, on average, our data cache effectively services 88%
of program data. Such results translate into doubling the
performance of the tested real-time multitasking experiments,
which (increasing from 75 to 89%) approaches the ideal case of
always hitting in instruction and data caches. Additionally, we
show that using partitioning on our proposed hardware only
provides marginal benefits.

I. INTRODUCTION

Real-time systems require that tasks complete their execu-
tion before specific deadlines. Given hardware components
with a fixed latency, the worst case execution time (WCET)
of a single task could be calculated from the partial WCET
of each basic block of the task. However, in order to improve
performance, current processors perform many operations
with a variable duration. A memory hierarchy made up
of one or more cache levels takes advantage of program
locality and saves execution time and energy consumption
by delivering data and instructions with an average latency
of a few processor cycles. Unfortunately, the cache behavior
depends on past references and, in general, it is necessary
to know the previous access sequence in order to calculate
the latency of a given access in advance. Resolving these

This work was supported in part by grants TIN2007-60625 and TIN2010-
21291-C02-01 (Spanish Government and European ERDF), gaZ: T48
research group (Aragón Government and European ESF), Consolider
CSD2007-00050 (Spanish Government), and HiPEAC-2 NoE (European
FP7/ICT 217068).

It is strictly prohibited to use, to investigate or to develop, in a direct or
indirect way, any of the scientific contributions of the authors contained in
this work by any army or armed group in the world, for military purposes
and for any other use which is against human rights or the environment,
unless a written consent of all the authors of this work is obtained, or unless
a written consent of all the persons in the world is obtained.

intra-task interferences is a difficult problem in its own right.
Moreover, real-time systems usually work with several tasks
which may interrupt each other at any time. This makes
the problem much more complex, since the cost of inter-
task interferences must also be identified and bounded. Fur-
thermore, both these problems cannot be accurately solved
independently, since the path that leads to the worst case of
an isolated task may change when considering interferences.

In this paper we propose a small data cache that ef-
fectively exploits locality. Instead of a conventional data-
driven data cache, we propose an instruction-driven data
cache, where selected memory instructions are associated
with particular data cache lines. These data cache lines can
only be replaced by their associated instructions, i.e., only
such instructions have data cache replacement permission.
Since each memory instruction replaces its own data cache
line, it prevents pollution and its performance is independent
of the size of the data structures in tasks. Assuming that
all instructions have data cache replacement permission, the
number of hits and misses in our proposed data cache can
be calculated using data reuse theory [1]. Next, any WCET
optimization method can be used to decide which instruc-
tions have such permissions, depending on the cache size,
the inter-task interferences, etc. To obtain such instructions,
we extend the Lock-MS WCET analysis method [2], [3].

Compared to a conventional data cache, the novel features
of our data cache design are the following: i) Achievement
of high performance with a small cache size (256 bytes),
independently of program data size. Contents are replaced
in a similar way to in conventional caches, maintaining
its dynamic behavior. ii) Predictability and no pollution.
Only selected instructions can replace data cache lines.
This is achieved by indexed-based replacement, with the
advantage that the usual replacement overhead (e.g. LRU)
is eliminated. iii) The number of misses is calculated using
data reuse theory as developed for conventional caches [1].
This enables references to unknown addresses (e.g., pointers)
to be analyzed, which is not possible with other methods
(e.g., [4], [5]).

Compared to scratchpad memories, the performance of
our proposed design does not depend on program data size,
it has no specific problems when analyzing pointers, and it
does not require data addresses to be tuned [6].



The rest of this paper is organized as follows. Section II
reports related background on data caches. Our proposed
data cache is described in Section III. Section IV shows
how to specify its behavior as an ILP model. Sections V and
VI describe the experimentation environment and the results
obtained. Finally, Section VII presents our conclusions.

II. RELATED WORK

Data caching is much more complex than instruction
caching, since references may present very different be-
haviors: scalar vs. non-scalar, global vs. local, activation
blocks (i.e. subroutine context), dynamic memory, etc. Most
proposals use the memory model of C: local and tempo-
rary variables and parameters stored on the stack, global
variables and (some) constants in the global static data
region, and dynamic variables on the heap. So, instead of
a single component (data cache) exploiting them all, some
approaches specialize in exploiting particular access patterns
in separate caching structures. One of the most straight-
forward specialization is exploiting spatial and temporal
locality into two separate caches [7]. The instruction address
of the memory access (load/store) and a hardware predictor
allow to predict the type of locality. The size of such
caches is higher than 8 KB and they have no pollution for
references to non-scalar variables. Early approaches focused
on a stack cache [8]. Other authors have suggested hardware
modification to include a register-based structure for storing
part of the activation block [9]. There are also proposals
to store accesses to the heap in a small cache (2 KB) or a
large cache (32 KB) [10]. Finally, one study proposed three
caches to manage the three memory regions (stack, global
and heap) [11]. Additionally, this avoids conflicts between
regions and provides the required size for each: small for
the stack and global, and large for the heap.

Locking data caches and scratchpad memories are al-
ternatives intended to capture temporal locality and avoid
pollution [12], [13]. However, exploiting spatial locality is
still a problem. Since different data structures may be used in
different parts of a task and they may be too large to fit into a
locked data cache, some authors propose a dynamic locking
mechanism where tasks include code to lock/unlock the data
cache, and also to preload its contents at run time [6], [14].
The selection of data memory lines (or scratchpad content) is
based on estimations of the number of misses for different
chunks of code. The number of misses can be predicted
using cache miss equations [15], based on the data reuse
theory for LRU replacement in conventional data caches [1].
So, if preloading and locking the data cache with a given
selection of data reduces the number of misses, the required
instructions are inserted into the code. In general, whole
data structures are preloaded to guarantee hits if they fit in
the cache. Otherwise, the data cache may be also locked to
reduce pollution. This technique is particularly sensitive to
optimizations that increase locality (padding and tiling), and

it may be combined with partitioning techniques to avoid
inter-task interferences (e.g., [16]).

Our proposal does not lock specific data but dynamically
caches the data used by selected instructions. This avoids
pollution, performance is independent of the data size and
allows the analysis of references to unknown addresses
based on their reuse. Further, being a single hardware
component, it is more efficient than structures specialized on
different access patterns. Lastly, modification of task code
is not required and optimizations are not so important.

III. ACDC CACHE

Our proposed data cache is able to take advantage of
temporal and spatial locality. Usually, data caches are data-
driven, i.e. their behavior (and thus their WCET analysis)
is based on which data addresses are requested and their
request order. Our proposed data cache is instruction-driven,
which means that its behavior depends on the instructions
accessing the data, i.e. on how the data are accessed.

A. Hardware description

Our proposed data cache structure, ACDC (Address-
Cache/Data-Cache), is a small fully-associative data cache
(DC) with an instruction driven replacement policy. We
assume a write-back policy, since it involves less traffic than
write-through. Since the replacement policy is external to
the DC, no replacement mechanism is needed unlike in other
conventional caches (e.g., LRU, FIFO, etc.). So, on read hits
it provides the data, and on write hits it updates the data. On
cache misses, it is checked whether the accessing instruction
has data replacement permission. If so, its associated data
cache line is replaced with the missing data from main
memory. Otherwise, the data cache is not modified and
the missing (read or write) data is serviced/updated directly
from main memory. Since each instruction with replacement
permission is only allowed to replace a predefined data cache
line for its references, there is no pollution.

This behavior can be implemented in many ways. We
describe an implementation (Figure 1) that does not modify
the instruction set and only requires the data cache to be fully
associative with replacements disabled. Accordingly, the
only requirement is a new hardware structure to manage the
instruction replacement permissions. This is simply a table
that stores the memory instruction addresses (PC) which can
replace the cache lines, and the specific data cache line that
they can replace. For instance, this table or address cache
(AC) could be implemented by a small fully-associative
lockable cache, not requiring the conventional replacement
capabilities, where the tag is the memory instruction address
and its entry points to the specific data cache line that this
instruction is allowed to replace.

In context switches, the task starting/continuing the execu-
tion stores in the AC its own set of instruction addresses with
replacement permission and the index of the DC line they are



Data embedded
SRAM memory

128 b
PC

AC

hit

addr

DC

tag
PC

DC
idx

tag
dat

fully-assoc
data

cache

data
32 b

DRP

Figure 1. Data memory architecture. AC contains addresses of instructions
with data cache replacement permission and the index to their associated
DC line

Data access
〈PC, addr〉

Get addr line
from memory

(miss)

No

Yes

Yes

No

Yes

Store in memory
the dirty line l

(writeback)

Is 〈PC , l〉
in AC?

Is addr
in DC?

No

End (hit)
End (miss and
replace with
writeback)

End (miss and
replace without

writeback)

End (miss
without DC
replacement)



¬

®

¯

Is line l in
DC dirty?

Figure 2. Data access procedure

allowed to replace. Then, data accesses are made as depicted
in Figure 2. The DC is accessed with the desired data address
(addr). On hits, it reads or writes the requested data and the
access procedure is completed (¬). On misses, data in main
memory are requested and it must be determined whether the
requested data line must replace a currently stored memory
line in the DC or not. With our proposed implementation,
the AC is accessed with the current memory instruction
address (PC). On misses in the AC, the DC will not be
replaced (). On AC hits, the data access has replacement
permission, and the DC line to replace is indicated by the
index stored in the AC. In this case, having a write-back
policy, if the currently stored line is dirty, it will be written
back to memory (¯). Otherwise, the DC will be replaced
without write back (®). It is important to note that, since
the DC is the first component to be looked up, replacements
can only occur if the accessed data are not cached, so it is
not possible to duplicate lines in the DC.

B. Locality exploitation

In our proposed ACDC, only specific memory instructions
are allowed to replace a given cache line, each of them
having a predefined DC line to work with. This allows
WCET minimization/analysis to be carried out relatively
easily, without limiting the benefits coming from spatial and
temporal reuse. Although there are many situations in which
such reuse can be exploited into data locality, in this paper
we consider only the most common cases. Such cases cover
most situations and can be modeled in a simple way.

Temporal reuse: Memory references present temporal
reuse when they access the same memory address repeatedly
during program execution. In this paper, only accesses to

static int ga[2];

void sub1(int p1,
int p2,...) {

int l1, l2;

for (l1=0;l1<100;l1++){
...
l2=p1*...
ga[0]=ga[0]+p2*l2...
ga[1]=ga[1]+p1*l2...
...

}
}

p1
p2

ga[1]
ga[0]

Lk

Lj

l2
l1

Li

Memory

PC2

AC

PC1

Idx

PC3

ga[0], ga[1]Li

DC

Data

p2, p1
l1, l2

Lj
Lk

D-AddrI-Addr
(tag) (tag)

Figure 3. Example of temporal locality in code, memory and the ACDC
structure

scalar variables are considered for temporal reuse. Although,
in general, array reuse is better described by spatial reuse
(see below), we consider small arrays that fit in a single
cache line as if they were scalar variables. When such
variables are accessed, if the same memory line has been
accessed before only by the same instruction, there is what
can be referred to as self-temporal reuse [1] of the reference
in this instruction. Otherwise, if the same line has been
accessed before but by another instruction, this is described
as group-temporal reuse. Figure 3 shows an example of the
temporal reuse of different structures, namely global (static)
variables, local variables (within the function scope) and
function parameters. For variables not stored in registers,
their location in memory (in specific memory lines L) will
determine their associated temporal reuse. In order to exploit
such reuse, the first reference to each of these memory lines
will be given replacement permission in order that they can
be cached, i.e., its PC will be included in the AC with an
associated DC line to cache this data line. For instance, there
will be only a single miss for references to the global small
array variable ga (the first access), since all references to
this variable will access the same memory line. Furthermore,
assuming that the function sub1 always works with the
same stack addresses (roughly speaking, it is always called
from the same nesting level), all its accesses will have
temporal locality, with a single miss on the first access to
each memory line. If sub1 is called from n different stack
addresses, there will be n misses for each line with temporal
locality instead of a single one.

Spatial reuse: There is spatial reuse of memory refer-
ences when they access close memory addresses during pro-
gram execution [1]. In this paper, only sequential accesses
(those with stride 1) are considered, since other strides
are unusual in real-time applications and formulae would
become less clear. Nevertheless, considering other constant
strides would be trivial. As above, if a given case of spatial
reuse involves a single instruction it is considered to be self-
spatial reuse, whereas it is referred to as group-spatial reuse
when several instructions are involved.

Let us illustrate the spatial locality in matrix multiplica-
tion codes (Figure 4) using our proposed ACDC structure.
We present three cases, namely, the matrix multiplication



for (i=0;i<n;i++)
for (j=0;j<n;j++)

for (k=0;k<n;k++)
A[i][j]=A[i][j]+B[i][k]*C[k][j];

/* st A ld A ld B ld C */

(a) NonOpt
for (i=0;i<n;i++)
for (j=0;j<n;j++){
t=A[i][j];
for (k=0;k<n;k++)

t=t+B[i][k]*C[k][j];
A[i][j]=t;}

(b) Opt1

for (i=0;i<n;i++)
for (k=0;k<n;k++){

t=B[i][k];
for (j=0;j<n;j++)
A[i][j]=A[i][j]+

t*C[k][j];}

(c) Opt2

Figure 4. Matrix multiplication algorithms

Table I
DATA REFERENCES IN MATRIX MULTIPLICATION (FIGURE 4)

NonOpt T S G AC DC Access Miss WrBk
ld A 3 3 – 3 3 n3 n2/b n2/b
st A – – 3 – 3 n3 0 0
ld B – 3 – 3 3 n3 n3/b 0
ld C – – – – – n3 n3 0
Opt1 T S G AC DC Access Miss WrBk
ld A 3 3 – 3 3 n2 n2/b n2/b
st A – – 3 – 3 n2 0 0
ld B – 3 – 3 3 n3 n3/b 0
ld C – – – – – n3 n3 0

Total Opt1 − NonOpt: −2n3 + 2n2 0 0
Opt2 T S G AC DC Access Miss WrBk
ld A – 3 – 3 3 n3 n3/b n3/b
st A – – 3 – 3 n3 0 0
ld B – 3 – 3 3 n2 n2/b 0
ld C – 3 – 3 3 n3 n3/b 0

Total Opt2 − NonOpt: −n3 + n2 −n3 + n3/b n3−n2

b

code of the matmul benchmark (NonOpt), an optimized
version using a cumulative temporal variable (Opt1) and a
more highly optimized version changing the i, j, k nesting to
i, k, j (Opt2). In all cases, matrices are stored in row-major
order. For each case, Table I shows the locality type (self-
temporal T, self-spatial S or group G including both temporal
and spatial), the ACDC behavior (instruction addresses to
include in AC and data lines dynamically cached in DC), and
the number of accesses, misses and write backs. In order to
simplify the mathematical notation, we assume n×n aligned
matrices, with n being a multiple of the cache line size b.
Further, we place the write back cases in the instruction
which replaces the dirty lines.

It can be seen that Opt1 reduces the number of memory
accesses (hits) and Opt2 provides a reduction in the number
of misses. Using our proposed architecture, for the NonOpt
and Opt1 codes, the instructions ld A (spatial and temporal
reuse) and ld B (spatial reuse) would be given DC replace-
ment permission, i.e., their PC would be stored in the AC.
This would allow them to use the data cache and, since st A
(group-spatial reuse) is always executed after ld A, it would
always hit. In these two codes the C matrix is accessed by
columns, which translates into no locality for small caches.
For the Opt2 code, all accesses have stride 1, so all loads
would have replacement permission and all accesses would

benefit from the data cache. As can be seen, the required
size of the ACDC is small: 2 AC entries and 2 DC lines
for the NonOpt and Opt1 cases, and 3 AC entries and 3 DC
lines for the Opt2 case. Further, since each instruction with
replacement permission can only replace its associated DC
line, there is no pollution.

All these benefits can be obtained by carefully selecting
the specific instructions able to replace the data cache. To
identify the optimal selection, we have extended Lock-MS,
a method for analysis and minimization of WCET.

IV. LOCK-MS EXTENSION

The aim of Lock-MS is to identify a selection of in-
struction lines from memory such that, when locked into
the instruction cache (IC), the schedulability of the whole
system is maximized [2], [3]. For this, Lock-MS considers
the resulting WCET of each task, the effects of interferences
between tasks and the cost of preloading the selected lines
into cache. All requirements are modeled as a set of linear
constraints and then the resulting system is minimized. In
a similar way, our proposed ACDC requires a selection of
instructions with permission to replace an associated line in
the data cache. This selection has the drawback of being
reloaded in the AC on each context switch, and the content
in the DC must be considered flushed.

Previous work on Lock-MS has grouped all costs of a
given instruction memory line into costs on instruction cache
hit and miss. Considering the detailed costs in the case of our
ACDC, we use the following organization for the instruction
memory line k of path j of task i.

lineCosti,j,k = fetchi,j,k + execi,j,k +memoryi,j,k (1)

In this way, the fetch cost (fetch) includes exclusively the
cost of retrieving the instruction, the memory access cost
(memory) is the possible stalling of memory operations,
and the execution cost (exec) is the remaining cost of the
instruction. With this organization, the fetch and execution
costs of a given memory line would be a literal translation
of those in previous papers on Lock-MS [2], [3].

A. Constraints for the hardware structures

A memory instruction is modeled by the identifiers pc and
ref . pc is the address of the instruction and ref represents its
access(es) to a given data structure recognizable at compile
time. In general, the memory reference does not appear in
the code (source or compiled) as a constant address, but
rather as a series of operations to obtain the address. For
instance, an access to an array inside a loop may have a
memory reference based on the array base address, the size
of elements and the position of the element accessed in the
array (based on the loop iteration). The association 〈pc, ref 〉
cannot change, i.e., a given memory instruction pc always
accesses memory using a given reference ref . However,
several memory instructions reusing the same data structure



will have the same reference identifier. The theoretical basis
used by compilers to match a data address expression with
a reference and thus determine whether it is new or a data
structure is being reused is outlined in Section IV-C.

We use binary variables to set whether an instruction has
data cache replacement permission (DRPpc,ref = 1) or not
(DRPpc,ref = 0). For a task i, the number of instructions
with replacement permission must fit in the AC, and the
number of data references to cache must fit in the DC.

MemIns∑
pc=1

DRPpc,ref = nInsDRP i ≤ AClines

MemRefs∑
ref=1

DRPpc,ref = nRefsDRP i ≤ DClines

So, the additional (ACDC) costs for each context switch
would be those due to preloading the AC and those due to
assuming that the DC has been flushed. This value times
the maximum possible number of context switches in Rate-
Monotonic scheduling is added to the WCET.

dataSwitchCosti = ACpreloadCost · nInsDRP i +

DCoverestCost · nRefsDRP i

B. Memory timing constraints
The detailed data access cost can be described as the

sum of the cost of each possible situation multiplied by the
number of times that it occurs. The situations considered
are data cache hits, data cache misses (with or without
replacement) and line write-backs (see Figure 2). Since our
proposed method of data cache management is instruction-
based, we identify the accessed data by the instruction lines
accessing these data, i.e., line k of path j of task i, and
the resulting data memory cost is added to the line cost
constraint (eq. 1). A single memory line can, however,
contain several memory instructions and, in such cases, data
access costs must be considered separately. We use nIns to
account for the number of instructions in a memory line, as
in previous Lock-MS studies [2].

memoryi,j,k =

nInsi,j,k∑
m=1

(
DChitCost · nDChiti,j,k,m +

DCmissCost · nDCmissi,j,k,m +

DCWBCost · nDCWB i,j,k,m

)
Considering fixed costs for the distinct possible cases of a
data access, the only variables to define are those accounting
for the number of such occurrences for a particular instruc-
tion m in a given memory line. Moreover, such occurrences
are closely related. The number of hits is always the number
of accesses (nfetch) to the instruction memory line (i.e., the
number of times that the load or store instruction is executed)
minus the number of data cache misses (e.g., see Table I).

nDChiti,j,k,m = nfetchi,j,k − nDCmissi,j,k,m

Further, the number of line write-backs depends on whether
all the instructions using the accessed data are loads or
not. If all of them are loads, the number of write-backs
is clearly 0, since the data are never modified. If, on the
other hand, there is at least one store instruction using the
accessed data, there will be write-backs. Since write-backs
are performed on replacements, there will be as many write-
backs as times the data line is replaced, i.e., the number
of write-backs is equivalent to the number of data cache
misses generated by those instructions with data replacement
permission (e.g., see Table I).

nDCWB i,j,k,m = 0 if all instr. performing ref are loads
nDCWB i,j,k,m = nDCmissi,j,k,m ·DRPpc(i,j,k,m),ref

if at least one instr. performing ref is store

For clarity, this constraint shows a multiplication of vari-
ables, but it can be easily rewritten as a linear constraint by
combining and simplifying it with the following constraint.

Considering any data cache, the number of misses of
a given memory access depends on whether it has been
cached before and has not been replaced. With our proposed
ACDC, only instructions with data replacement permission
can cache and replace, while those without DRP will always
(nfetch) miss. Hence, the resulting constraints are:

nDCmissi,j,k,m = ACDCmissesi,j,k,m ·DRPpc,ref +

nfetchi,j,k · (1−DRPpc,ref )

where the DRPpc,ref will refer to the current instruction
(pc(i, j, k,m)) in cases of self-temporal or self-spatial reuse,
and to the previous reference in the case of group reuse. The
only remaining value is the constant describing the number
of misses in ACDC assuming data replacement permission.

C. Determine the number of ACDC misses

In order to determine the number of ACDC misses, we
distinguish between references to scalar variables and to
non-scalar variables. The number of misses for a given
scalar variable depends exclusively on whether its address
changes during program execution. For a global variable,
the total number of misses is 1, corresponding to the first
time it is referenced. For the remaining scalar variables,
having nActsub distinct activation block addresses for their
associated subroutine sub, the number of misses is nActsub.

In order to calculate the number of misses of non-scalar
variables, we consider serial loop nest data reuse and locality
theory, briefly introduced below [1]. Each iteration in the
loop nest corresponds to a node in the iteration space. In
a loop nest of depth n, this node is a vector space in
n dimensions, and is identified by its index vector ~p =
(p1, p2, . . . , pn) where pi is the loop index of the ith loop
in the nest, counting from the outermost to innermost loops.
Let d be the dimensions of an array A. The reference A[~f(~i)]
is said to be uniformly generated if ~f(~i) = H~i+~c, where ~f



is an indexing function Zn → Zd, the d× n matrix H is a
linear transformation, and ~c is a constant vector. Row k in H
represents the linear combination of the iteration variables
of the loop of index k of A[in1, in2, . . . , ink, . . . , ind]. We
consider this type of reference only. Next, the different types
of reuse considered and their equations are described.

Self-Temporal Reuse (STR): It happens when a refer-
ence A[H~i+ ~c] accesses the same data element in iteration
i1 and i2, that is, A[H~i1+~c] = A[H~i2+~c]. The solution of
the equation is the self-temporal reuse vector space ker(H).
If it shows a vector ~ei with all elements equal to 0 except
one equal to 1 in position i, it means that there is temporal
reuse in i, i.e., the iteration variable of loop i does not appear
in any index function. In our case, a reference cannot have
STR only, since it would mean that it is a scalar variable.

Self-Spatial Reuse (SSR): Let HS be H with all
elements of its last row replaced by 0, i.e., a trun-
cated H discarding the information about its last index:
A[in1, in2, . . . , ind−1]. The self-spatial reuse vector space
is then ker(HS). If one of the solutions of this operator is
a vector ~en with all elements equal to 0 except one equal
to 1 in position n, with n being the last dimension of the
iteration space, it means that there is spatial reuse. That is,
this vector indicates that the iteration variable of loop n
does not appear in any other index function, so there will
be accesses in sequence in the last dimension of A.

Group-Temporal Reuse, Group-Spatial Reuse (GSR):
In our particular case, two distinct references A[H~i+~c1] =
A[H~i+~c2] have both group-temporal and group-spatial reuse
iff ~c1 = ~c2, i.e., if both memory references are identical. One
such reference will be SSR also, so we classify it as SSR.

Table II shows the different references of the matrices
for the three versions of matrix multiplication. It shows
the iteration space, the H matrix, the self-temporal reuse
vector space ker(H) and the self-spatial reuse vector space
ker(HS) for each reference. The number of accesses is
obtained by multiplying the dimension of each index in
the iteration space based on the lower and upper bounds
of iteration variables in the loops. The last column shows
the resulting DC misses ACDCmisses . For non-scalar refer-
ences classified as GSR, the accessed addresses are identical
to those of a previous reference (classified as SSR), and
therefore they will already be cached, so ACDCmisses = 0.
Algorithm 5 shows how to obtain the number of misses for
non-scalar references classified as STR or SSR by exploring
their reuse type on the different nesting levels of loops. Note
that results in Table II are consistent with those in Table I,
which were derived intuitively.

D. Structure-Based ILP

Previous constraints correspond to a path-based ILP
model, since they specify all variables with subindexes for
the path j in the task i. We use such notation in order to
make them easier to understand. In general, however, the

Table II
REUSE MATRICES OF MATRIX MULTIPLICATION (FIGURE 4, TABLE I)

NonOpt It. Sp. H STR SSR Ac. Miss

ld A(i,j) (i,j,k)
(
1 0 0
0 1 0

) (
0 0 1

) (
0 1 0

)(
0 0 1

) n3 n2

b

st A(i,j) (i,j,k)
(
1 0 0
0 1 0

)
GSR GSR n3 0

ld B(i,k) (i,j,k)
(
1 0 0
0 0 1

) (
0 1 0

) (
0 1 0

)(
0 0 1

) n3 n3

b

ld C(k,j) (i,j,k)
(
0 0 1
0 1 0

) (
1 0 0

) (
1 0 0

)(
0 1 0

) n3 n3

Opt1 It. Sp. H STR SSR Ac. Miss

ld A(i,j) (i,j)
(
1 0
0 1

)
∅

(
0 1

)
n2 n2

b

st A(i,j) (i,j)
(
1 0
0 1

)
GSR GSR n2 0

Opt2 It. Sp. H STR SSR Ac. Miss

ld A(i,j) (i,k,j)
(
1 0 0
0 0 1

) (
0 1 0

) (
0 1 0

)(
0 0 1

) n3 n3

b

st A(i,j) (i,k,j)
(
1 0 0
0 0 1

)
GSR GSR n3 0

ld B(i,k) (i,k)
(
1 0
0 1

)
∅

(
0 1

)
n2 n2

b

ld C(k,j) (i,k,j)
(
0 1 0
0 0 1

) (
1 0 0

) (
1 0 0

)(
0 0 1

) n3 n3

b

Require: H,memLines(A) # transformation matrix, data structure size
Ensure: ACDCmisses
1: if en ∈ Ker(Hs) then # ref has SSR (may have STR)
2: i← 0
3: Hi ← H
4: while en−i ∈ Ker(Hi) do # while ∃ STR
5: i← i+ 1
6: Hi ← trunc(Hi−1) # truncate column
7: end while # SSR in loop of depth i
8: nmiss ← memLines(A)
9: for all ek ∈ Ker(Hi) do # ∀ outer loops repeating accesses

10: nmiss ← nmiss × loopIter(k)
11: end for
12: return nmiss
13: else # ref without reuse: always miss
14: return always
15: end if
Function memLines() returns the number of memory lines occupied by
a given structure. Function loopIter() returns the number of iterations of
a given loop depth.

Figure 5. Algorithm to get ACDCmisses for STR/SSR non-scalar refs

path information is not relevant, since data reuse is found in
a given path most of the time. Hence, as long as the memory
instructions are executed in the modeled sequence, previous
constraints can be used in a structure-based ILP model by
simply removing the path information (subindex j). The
structure-based ILP model is much more compact and easy
to resolve [2].

In order to detect and optimize the most basic data
reuse cases involving different paths, we can generalize the
previous constraints. Such basic cases involving different
paths are those locality situations that may be found through
different paths where the locality effects are the same as with
only one path with serial locality. That is, all alternative



for(i=0;i<n;i++) {
if (f(i)) r+=A[i];
else r-=A[i];
A[i]=r;} D-Addr Data

DC

A[i]@

I-Addr Idx

r-=A[i]
r+=A[i]

AC

Figure 6. Simple example of cooperative reuse involving different paths

Table III
TASK SETS “SMALL” AND “MEDIUM” WITH DATA ACCESS INFORMATION

Task Dir-mem Period % dat Temp (%) Spa (%) % ca. DC
WCET acc. Self Gr. Self Gr. data lines

sm
al

l jfdctint 18808 40432 17.6 33.8 0 18.5 40.7 93.06 11
crc 213221 478560 13.6 41.0 27.4 15.9 9.0 93.29 6
matmul 834359 2169448 29.8 0 0 51.2 23.8 74.94 5
integral 1587329 6534486 42.1 13.3 86.6 0 0 99.91 1

m
ed

iu
m minver 16793 43902 33.0 9.3 25.4 28.7 5.4 68.88 16

qurt 21644 61908 38.2 13.8 74.1 0.5 1.1 89.54 10
jfdctint 18808 62066 17.6 33.8 0 18.5 40.7 93.06 11
fft 4742498 14792660 22.9 11.4 75.7 5.7 0 92.82 12

paths have equivalent memory instructions accessing the
same references. This means that different instructions may
have data replacement permission on the same data cache
line. However, since these instructions are equivalent, they
work cooperatively and do not pollute each others cached
data. Since the cache accesses are the same regardless of the
path, previous constraints are valid, and they can be used in a
structure-based ILP model. Figure 6 shows a simple example
(references to array A) of this situation.

V. EXPERIMENTATION ENVIRONMENT

All our experiments consist of modeling each task and
system as linear constraints, optimizing the model and
simulating the results in a rate-monotonic scheduler. Linear
constraints follow the Lock-MS model to minimize the
WCET [2]. The feasibility of such a system can be tested
in a number of ways [17]. Response time analysis is one of
these mathematical approaches, and it is used as our main
multi-task metric.

Table III lists the two sets of tasks used in our exper-
iments. Benchmarks include JPEG integer implementation
of the forward DCT, CRC, matrix multiplication, integral
computation by intervals, matrix inversion, computation of
roots of quadratic equations and FFT, from the SNU-RT
Benchmark Suite for Worst Case Timing Analysis. The
“small” and “medium” task sets have been used in previous
studies with similar periods [2], [12]. Sources have been
compiled with GCC 2.95.2 -O2 without relocating the text
segment, i.e., the starting address of the code of each task
maps to cache set 0. The option -O2 implies fomit-frame-
pointer (the frame pointer is not used). Also, the stack can
grow only once in each routine (Stack Move Once policy).

The WCET in Table III refers to a system without
caches or buffers (i.e., direct access to separate eSRAMs
for instructions and data) and it has been computed without
context switches. For this cacheless system, task periods
have been set so that the CPU utilization is 1.5 for the small

Table IV
TIMING (CYCLES) CONSIDERED IN OPERATIONS (SEE FIGURE 2)

Fetch hit 1 (IC/LB/PB access)
Fetch miss 1+6 (IC/LB/PB + memory access)
Fetch by prefetch 1 to 6
Data access without ACDC 1+6 (addr. computation + memory)
¬ ACDC hit 1+1 (addr. + ACDC access)
 ACDC miss without replacement 1+1+6 (addr. + ACDC + memory)
® ACDC miss and repl. without wb 1+1+6 (addr. + ACDC + memory)
¯ ACDC miss and repl. with wb 1+1+6+6 (ACDC miss + memory)

task set, and 1.35 for the medium task set. The remaining
columns in this table are discussed in Section VI.

The target instruction set architecture considered in our
experiments is ARMv7 with instructions of 4 bytes. We use
separate instruction and data paths, each one using its own
128 KB eSRAM as main memory. The cache line size is
16 bytes (4 instructions). The instruction cache (IC) size
is varied from 64 bytes (4 sets) to 1 KB (64 sets), all
direct mapped. All the tested memory configurations include
an instruction line buffer (LB) keeping the most recently
fetched line, and some of them include a form of sequential-
tagged instruction prefetch that keeps a single prefetched
line in a prefetch buffer (PB) as in previous studies [2],
[3], [12]. It is important to note that a careful modeling
of the instruction supply is essential in order to study the
real impact of the ACDC on the system, since instruction
fetch delays and interactions with data references set the
worst path and its WCET. Our proposed ACDC structure
is composed of a 16-way fully associative data cache (DC)
with 16 bytes per line and a 16-way fully associative address
cache (AC) with 4 bits per entry, plus their required tags.
In order to compute memory circuit delays we have used
Cacti v6.0 [18], a memory circuit modeling tool, assuming
an embedded processor built in 32 nm technology and
running at a processor cycle equivalent to 36 FO41. All
the tested caches meet the cycle time constraint. Further,
the access time of each eSRAM is 6 cycles if we choose
to implement it with low standby power transistors. The
specific cost of the instruction fetch and data access can be
seen in Table IV. Note that on data misses, our proposed
data cache performs worse than a system without data
cache. Moreover, a data hit is only 4 times better than
a data miss. That is, we assume a base system with a
very good performance in order to truly test our ACDC.
Other studies consider off-chip main memories and assume
a higher miss penalty, such as 38 cycles [14] or 64 cycles [9].
Clearly, in these systems the room for improvement is much
higher. Thus, our results can be seen as a lower bound on
performance, which would rise if the Tmiss/Thit ratio were
increased.

1A fan-out-of-4 (FO4) represents the delay of an inverter driving four
copies of itself. A processor cycle of 36 FO4 in 32 nm technology would
result in a clock frequency of around 2.4 GHz, which is in line with the
market trends [19].



VI. RESULTS

In this section we combine our proposed data cache
structure with the instruction fetch components (lockable
instruction cache, line buffer and instruction prefetch) [2],
[3]. Figure 7 shows the response time speedups relative to a
baseline system with an instruction LB but no caches (first
bar of group 0). As a reference, the baseline response times
are 0.85 and 0.60 times the largest period for the small
and medium task sets. The tested memory configurations
combine the previously introduced components and policies,
namely LB, PB, IC, and our proposed data cache (ACDC).
The first bar group (labeled 0) assumes no IC, and the
remaining four bar groups vary the IC size from 64 to
1024 bytes. The ACDC size is not varied since, even with
such small size, tasks use only a subset of its lines. The
IC is a dynamically locked instruction cache with contents
selected using the Lock-MS method [2], [3]. First bar
(LB+DC Lock-MU) represents a system with an LB and
a statically locked data cache using the Lock-MU method
on data [12]. Such a configuration exploits temporal locality
but not spatial locality, whereas ACDC exploits both locality
types. Finally, bar Always hit represents an ideal system
always hitting in both instructions and data. Response times
of this ideal system are 0.12 and 0.10 times the largest period
for the small and medium task sets. This is an unreachable
bound, but provides an easily reproducible reference. Per-
formance of the considered systems is discussed below.

A. Instruction cache and prefetch

Regardless of task set size, systems with instruction
prefetch (LB+PB, LB+PB+ACDC) are relatively insensitive
to IC size, whereas those without prefetch (LB, LB+ACDC)
are much more dependent on it. As expected, the benefit of
prefetching decreases as the IC size grows. Thus, instruction
prefetch is especially interesting to improve systems with
small instruction caches. Also, it improves tasks with large
sequences of instructions executed a few times. Adding our
ACDC improves any memory configuration. Independent of
the IC size, the speedup roughly doubles (LB vs. LB+ACDC
and LB+PB vs. LB+PB+ACDC) for the small task set,
whereas for the medium task set the speedup is roughly 1.5.

B. ACDC analysis

As outlined above, across all considered memory con-
figurations and task sets, ACDC enhances performance by
a factor of 1.5 to 2. In order to obtain further insight
into how individual tasks benefit from spatial and temporal
ACDC reuse we can consider Table III again. Note that
the percentage of data accesses which have permission to
be placed in the DC (column % ca. data) is high. The
average is 90.30% for the small task set, and 86.08% for
the medium. For the small task set, the only task for which
not particularly high efficiency is achieved (74.94%) is the
matrix multiplication. As studied above (see Table I), it

������

��
��
��
��

������

�
�
�
�

���
���
���
���

��
��
��
��

������

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

LB+DC
Lock-MU

Always hit
(instr. and data)

0

1

2

3

4

5

6

7

8

0 4 8 16 32

L
B

-o
nl

y
re

sp
on

se
tim

e
/

R
es

po
ns

e
tim

e

IC lines (of 16 bytes, direct mapped)

LB
LB+PB
LB+ACDC
LB+PB+ACDC

������
������
���
���
���
���

������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

LB+DC
Lock-MU

Always hit
(instr. and data)

0

1

2

3

4

5

6

0 8 16 32 64

L
B

-o
nl

y
re

sp
on

se
tim

e
/

R
es

po
ns

e
tim

e

IC lines (of 16 bytes, direct mapped)

LB
LB+PB
LB+ACDC
LB+PB+ACDC

Figure 7. Response time speed-up (normalized to a cacheless LB-only
system) of several memory configurations for the small (upper) and medium
(lower) task set

accesses a matrix by columns (stride > 1), which prevents
any small data cache being effectively exploited. The mat-
mul benchmark specifies an i, j, k loop nesting without a
temporal variable outside the deepest loop for calculating
the row times column multiplication. As described above, a
better implementation would set an i, k, j loop nesting with
a temporal variable outside the deepest loop. Implementing
such an optimization our ACDC would cache much more
accesses (99.01%), since all matrix references would have
stride 1. Similarly, the medium task set has also a matrix
benchmark (matrix inversion) with stride > 1. Despite these
two tasks, our results reach 88% and 75% of the always-hit
case for the small and medium task sets having just 16 lines
in AC and DC, i.e., with a DC of 256 bytes.

The specific number of data cache lines used by each
benchmark can be seen in the last column of Table III (DC
lines). For instance, 99.91% of data is captured with a single
DC line (128 bits) for the integral benchmark, and 93.29%
with 6 DC lines (96 bytes) for the crc benchmark. Note that
this number is very small, especially when considering that it
is independent of the size of the data structures in the task.
Additionally, remember that DC lines are shared between
tasks and, therefore, an optimal sizing would only consider
the more demanding task (e.g., 11 lines for the small task
set). Thus, our proposed data cache is very suitable for



embedded systems, where size is usually a key factor.
Additionally, Table III shows in column 5 (% dat acc.) the

percentage of data accesses over the total memory accesses
(data+fetch) for each task. It can be seen that between
13% and 42% of memory accesses are data accesses, which
represents an important factor in the WCET calculation.
Columns 6 and 7 (Temp and Spa) show the percentage of
data accesses managed by ACDC, divided into self or group
locality. As can be seen, some tasks have temporal locality
or spatial locality only, but most of them have both types.
This means that efficiency when using a unified data cache
is higher than other structures intended to separate temporal
and spatial localities.

Our results use a timing with a Tmiss/Thit ratio of 4.
Experiments would not be schedulable using a ratio of 38,
which prevents direct comparisons with other methods [14].
On the other hand, processor utilization values can be
compared. The static locking system (LB+DC Lock-MU)
provides utilization values of 1.74 and 1.25 for the small and
medium task set, whereas the utilization for LB+ACDC sys-
tem without IC (0.86 and 0.72) is similar to that found where
tasks can lock/unlock the data cache dynamically [14].
However, our results are achieved with a much smaller data
cache, without modifying the code of tasks and without
partitioning. Moreover, in the case of tasks using many data
structures (and requiring more than our current 16 DC lines),
we could easily follow a similar dynamic locking behavior,
i.e., specifying different data replacement permissions (AC
contents) for different task stages.

C. Partitioning

In this section we analyze how much improvement would
come from partitioning resources, i.e., without preloads
on context switches. To focus in the effects of inter-task
interferences, instead of partitioning a predefined size for
the instruction and data caches, we replicate all buffers and
caches for each task. In this way, we avoid the problems
associated with selecting adequate partitions and just pro-
vide an upper performance bound. That is, any partitioning
technique will perform as well as or less well than a per-task
hardware replication.

Figure 8 shows the same memory configurations as above.
In this case, the vertical axis shows the response time
speedup due to full replication (shared/replicated). That is,
values of the response time with shared hardware include
preloading costs and overestimations due to inter-task in-
terferences, whereas values with full replicated hardware
do not. Note that, without such penalties, the resulting
replicated system can use the proposed hardware much more
effectively, i.e., lines that were not cached because their
associated penalties on context switches were too large, can
be cached now. Nevertheless, Figure 8 shows very marginal
benefits when replicating hardware. Both for the small and
medium task sets, results show improvements of less than or

������

��
��
��
��

������

�
�
�
�

���
���
���
���

�
�
�
�

������

��
��
��
��
��
��
��

��
��
��

�
�
�
���
��
��
��

��
��
��
��

�
�
�

�
�
�

�����
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

0 4 8 16 32

Sh
ar

ed
H

W
R

es
pT

/
R

ep
lic

at
ed

H
W

R
es

pT

Instruction cache lines (of 16 bytes, direct mapped)

LB
LB+PB
LB+ACDC
LB+PB+ACDC

������

��
��
��
��

������

��

���
���
���
���

������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

1

1.02

1.04

1.06

1.08

1.1

1.12

0 8 16 32 64

Sh
ar

ed
H

W
R

es
pT

/
R

ep
lic

at
ed

H
W

R
es

pT

Instruction cache lines (of 16 bytes, direct mapped)

LB
LB+PB
LB+ACDC
LB+PB+ACDC

Figure 8. Response time speedup of full resource per-task replication of
several memory configurations for the small (upper) and medium (lower)
task set

around 10%. Improvements are smaller (<2% and <8% for
the small and medium task sets, respectively) when prefetch
is enabled. Differences between the small and medium task
sets can be attributed to the fact that the medium task
set involves much more context switches, so the associated
penalties are also higher.

As outlined above, replication offers the highest perfor-
mance bound on partitioning, since partitioning techniques
without increasing the ACDC size would appear to have a
much smaller structure for each task, which would result in
a lower hit ratio. Thus, taking into account that replicating
hardware implies considerable economic costs, it seems
that such marginal benefits are not worth replication or
partitioning.

VII. CONCLUSIONS

In this paper, we propose a small instruction-driven data
cache (ACDC) that effectively exploits both the temporal
and the spatial locality. It works by preloading at each task
switching a list of instructions with data cache replacement
permission, which are assigned their own data cache line.
Since each instruction replaces its own data cache line,
pollution is avoided and performance is independent of the
size of the data structures in tasks. Moreover, by its nature,
it guarantees that data cache lines cannot be replicated. This



ACDC is relatively easy to analyze (similar level of difficulty
to a locked instruction cache) but maintains its dynamic
behavior, since contents are replaced in a similar way to
in conventional caches. Further, since the selection of in-
structions with replacement permission uses the reuse theory,
explicit sequences of data access addresses are not required
and references to unknown addresses can be analyzed.

We have extended the WCET analysis/minimization
method Lock-MS to include our proposed ACDC compo-
nent. In order to study the real impact of the ACDC in
the system, experiments included different combinations of
instruction cache, instruction line buffering and instruction
prefetch, whose interaction with ACDC sets the worst path
and its WCET. Our results show a high percentage of cached
data on the studied benchmarks (around 93% in most cases),
reaching 99.9% in the integral calculation benchmark and
values of around 70% in inefficiently programmed matrix
benchmarks. Such results are reached with an ACDC of
256 bytes, although most tested benchmarks do not fully
use such capacity. This small size makes our proposal espe-
cially interesting for embedded devices. In our experiments,
performance with the ACDC is roughly double that without
the ACDC, approaching (75 to 89%) the ideal case of always
hitting in both instructions and data. These values are similar
to those reported for methods where tasks can lock/unlock
the data cache dynamically, but our results are achieved with
a much smaller data cache, without modifying the codes of
tasks and without partitioning.

Finally, we repeated our experiments assuming that each
task had its own replicated hardware in order to bound the
benefits of using ACDC in a partitioned environment. Our
results show only marginal improvements (of less than or
around 10%), stating that the added cost of partitioning
makes this option uninteresting if ACDC is implemented.

REFERENCES

[1] M. E. Wolf and M. S. Lam, “A data locality optimizing
algorithm,” SIGPLAN Not., vol. 26, pp. 30–44, May 1991.

[2] L. C. Aparicio, J. Segarra, C. Rodrı́guez, and V. Viñals,
“Improving the WCET computation in the presence of a
lockable instruction cache in multitasking real-time systems,”
Journal of Systems Architecture, vol. 57, pp. 695–706, 2011.

[3] ——, “Combining prefetch with instruction cache locking in
multitasking real-time systems,” in Proc. of the IEEE Int.
Conf. on Embedded and Real-Time Computing Systems and
Applications, Aug. 2010, pp. 319–328.

[4] Y. T. S. Li, S. Malik, and A. Wolfe, “Cache modeling for real-
time software: beyond direct mapped instruction caches,” in
Proc. of the IEEE Real-Time Systems Symposium, Dec. 1996,
pp. 254–264.

[5] R. White, F. Mueller, C. Healy, D. Whalley, and M. Harmon,
“Timing analysis for data caches and set-associative caches,”
in Proc. of the IEEE Real-Time Technology and Applications
Symposium, Jun. 1997, pp. 192–202.

[6] J. Whitham and N. Audsley, “Studying the applicability of
the scratchpad memory management unit,” in Proc. of the
IEEE Real-Time and Embedded Technology and Applications
Symposium, 2010, pp. 205–214.

[7] A. González, C. Aliagas, and M. Valero, “A data cache
with multiple caching strategies tuned to different types of
locality,” in Proc. of the Int. Conf. on Supercomputing, 1995,
pp. 338–347.

[8] S. A. Ward and R. H. Halstead, Computation Structures. 2002.
Kluwer Academics, 2002.

[9] R. Gonzalez-Alberquilla, F. Castro, L. Pinuel, and F. Tirado,
“Stack filter: Reducing L1 data cache power consumption,”
Journal of Systems Architecture, vol. 56, no. 12, pp. 685 –
695, 2010.

[10] M. Geiger, S. McKee, and G. Tyson, “Beyond basic region
caching: Specializing cache structures for high performance
and energy conservation,” in Proc. on the Int. Conf. on High-
Performance and Embedded Architectures and Compilers,
2005, pp. 102–115.

[11] H.-H. S. Lee and G. S. Tyson, “Region-based caching: an
energy-delay efficient memory architecture for embedded pro-
cessors,” in Proc. of the Int. Conf. on Compilers, architecture,
and synthesis for embedded systems, 2000, pp. 120–127.

[12] I. Puaut and D. Decotigny, “Low-complexity algorithms for
static cache locking in multitasking hard real-time systems,”
in Proc. of the IEEE Real-Time Systems Symp., Dec. 2002.

[13] I. Puaut and C. Pais, “Scratchpad memories vs locked caches
in hard real-time systems: a quantitative comparison,” in
Proc. of the Design, Automation Test in Europe Conference
Exhibition, Apr. 2007, pp. 1–6.

[14] X. Vera, B. Lisper, and J. Xue, “Data caches in multitasking
hard real-time systems,” in Proc. of the IEEE Real-Time
Systems Symp., Dec. 2003, pp. 154–166.

[15] S. Ghosh, M. Martonosi, and S. Malik, “Cache miss equa-
tions: A compiler framework for analyzing and tuning mem-
ory behavior,” ACM Transactions on Programming Lan-
guages and Systems, vol. 21, no. 4, pp. 703–746, 1999.

[16] R. Reddy and P. Petrov, “Eliminating inter-process cache
interference through cache reconfigurability for real-time and
low-power embedded multi-tasking systems,” in Proc. of
the Int. Conf. on Compilers, architecture, and synthesis for
embedded systems, 2007, pp. 198–207.

[17] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker,
A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K.
Mok, “Real time scheduling theory: A historical perspective,”
Real-Time Systems, vol. 28, pp. 101–155, 2004.

[18] N. Muralimanohar, T. Balasubramonian, and N. P. Jouppi,
“Cacti 6.0: A tool to understand large caches,” University of
Utah and Hewlett Packard Laboratories, Tech. Rep., 2007.

[19] “Chart watch: High-performance embedded processor cores,”
Microprocessor Report, vol. 22, pp. 26–27, Mar. 2008.


