
On Improving a Pipelined Scheduling Logic
Ruben Gran, Enric Morancho, Angel Olive and J.M. Llaberia.

Department of Computer Architecture. Polithecnic University of Catalonia
{rgran, enricm, angel, llaberia}@ac.upc.edu
Abstract
Pipelining the scheduling logic, which exposes

and exploits the instruction level parallelism,
degrades processor performance. Our evaluations
show that pipelining the scheduling logic over two
cycles degrades performance a 14% in SPEC-2000
integer benchmarks. Such a performance degradation
is due to sacrificing the ability to execute dependent
instructions in consecutive cycles.

In this work we introduce a non-speculative
mechanism named Dependence Level Scheduler
(DLS) which tolerates the scheduling-logic latency.
In DLS, the selection of a group of one-cycle
instructions (producer level) is overlapped with the
wake up in advance of its group of dependent
instructions. DLS is not speculative because the
group of woken in advance instructions will compete
for selection only after issuing all producer-level
instructions.

Moreover, we compare it with a speculative
mechanism. In SPEC-2000 integer benchmarks, DLS
performs within 4.0% of an ideal scheduler
(unpipelined) and, on average, outperforms the
speculative mechanism.

1. Introduction
An option to improve processor performance is
enlarging the issue queue (or scheduling window).
The issue queue is in charge of exposing and exploit-
ing instruction level parallelism (ILP). Instructions
wait in the issue queue until their source operands are
ready (wakeup) and appropriate execution units are
available (selection).

Both issue-queue phases (wakeup and select) con-
stitute a hardware loop, the scheduling loop, because
an instruction must be selected before waking its
dependents instructions up. This hardware loop is
critical because its latency must be only one cycle in
order to execute dependent instructions in consecu-
tive cycles (back-to-back).

Issue-queue timing directly depends on
issue-queue size. Therefore, though increasing
issue-queue size could improve IPC, issue-queue size
is determined by processor’s clock frequency.

Pipelining the scheduling logic is an option to miti-
gate this timing restriction. However, this option may
degrade IPC because back-to-back execution of
dependent instructions is impossible when the execu-
tion latency of a producer instruction is shorter than
the scheduling-loop latency. Our experimental results
with SPEC-2000 integer benchmarks in a 4-issue
processor show that pipelining the scheduling logic
over two cycles degrades IPC, on average, about 14%
with respect to an unpipelined scheduling logic. Our
results are similar to those reported by other authors
([3], [11], [18], [23]).

In order not to sacrifice the ability to execute
back-to-back dependent instructions, several works
propose to overlap the selection phase of a group of
one-cycle instructions (from now on, producer level)
with the wakeup phase of its dependent instructions
(consumer level). While some of these proposals
allow the consumer level to compete for selection
speculatively [23] and to issue speculatively [3], other
proposal does not relay on speculation [9]. Also, pro-
posals [9] and [23] require two logical wakeup matri-
ces to wakeup dependent instructions, however
proposal [3] requires only one Wakeup Matrix.

In this paper we propose the Dependence Level
Scheduler (DLS), a non-speculative mechanism that
allows pipelining the critical hardware scheduling
loop without sacrificing the ability to execute depend-
ent instructions in consecutive cycles. In DLS mecha-
nism, the selection phase of producer-level
instructions is overlapped with the wakeup phase of
the group of their dependent instructions. The group
of instructions woken up in advance will not compete
for selection until all producer-level instructions have
been selected for execution. As DLS mechanism is
not speculative, both false selections [23] and pileup
victims [3] are avoided. Moreover DLS mechanism
requires only a Wakeup Matrix as [3] in contrast with
[9] and [23] which require two.

The performance of base DLS mechanism in
SPEC-2000 integer benchmarks is within a 4.0% of
an ideal unpipelined scheduler. Also we compare
DLS mechanism with Select Free [3], which hard-
ware costs are similar, and we show that DLS outper-

forms, on average, Select-Free.
This paper is structured as follows: Section 2 out-

lines the processor model being used and motivates
the work. Section 3 describes the DLS mechanism.
Section 4 details the simulation environment.
Section 5 evaluates the base DLS mechanism.
Section 6 discusses related work and Section 7 con-
cludes this paper.

2. Baseline processor model
Figure 1 shows the pipeline of a dynamically sched-
uled processor. Each stage may take more than one
cycle.

Figure 1 Processor Pipeline. F: Fetch, D: Decode, Re:
Rename, IQ: Issue Queue, P: Read Payload, R: Read Reg-
ister File, E: Execution; WR: Write Register File, C: Commit.

In the front-end stages of the pipeline (fetch,
decode and rename stages), instructions are brought
from the instruction cache, decoded and renamed (to
remove false register dependencies). After that, the
instructions are dispatched into the issue queue. Each
instruction must wait there for the availability of its
source operands (wakeup phase). Once its required
execution resource is available, the instruction can be
selected for execution (selection phase). Then, its
payload and its source registers are read. Next, the
instruction is executed and its result is written into the
register file. Finally, the instruction waits until it is
committed in program order.

Figure 2 Diagrams of scheduling loops. a) one-cycle latency,
b) two-cycle latency. (W: Wakeup, S: Selection)

In the scheduling logic there are two phases:
wakeup and selection. The wakeup phase identifies
instructions with available source operands, which
are called ready instructions. To wakeup instructions,
the Wakeup Logic uses a wire-OR style array [3][8].
Each issue-queue entry corresponding to a ready
instruction activates a request signal in order to notify
its readiness. The selection phase picks the oldest
ready instruction taking into account available
resources in each issue port. These two phases consti-
tute a hardware loop because each instruction must be

selected before waking its dependent instructions up.
The latency of this hardware loop must be one cycle,
otherwise back-to-back execution of dependent
instructions is sacrificed. That is, instructions selected
by the Selection Logic wake their dependent instruc-
tions up in the next clock cycle (Figure 2.a). Figure
2.b shows a scheduling logic pipelined over two
stages. That is, a two-cycle latency scheduling-loop.

Figure 3 shows an example of the influence of the
scheduling-loop latency on dependent-instruction
scheduling. We consider two instructions, I1 and I2;
the instruction I2 is dependent on the instruction I1,

which execution latency is one cycle.

Figure 3 Scheduling of an one-cycle instruction and a
dependent instruction assuming several scheduling-loop

latencies: a) one cycle, b) two cycle. (W: Wakeup, S: Select).

In Figure 3-a, as the scheduling loop is unpipe-
lined, the instruction I2 can be issued one cycle after
issuing the instruction I1. In Figure 3-b, the schedul-
ing loop is pipelined over two cycles (one cycle for
each phase). In this scenario, when the instruction I1
is selected, it wakes the instruction I2 up on next
cycle. Consequently, back-to-back execution of
instructions I1 and I2 is not possible.

As a general rule, back-to-back execution is possi-
ble only if the execution latency of the producer
instruction is greater than or equal to the schedul-
ing-loop latency. Previous works [3], [11], [18] and
[23] concluded that back-to-back execution is a must
for high-performance processors.

Table 1 shows the distribution of committed
instructions in the SPEC-2000 benchmarks consider-
ing their execution latency and if the instructions
update the register file (Section 4 details benchmarks,
simulated intervals and the execution latency of the
instructions). We observe that integer benchmarks
double the amount of one-cycle instructions with
respect to floating-point benchmarks; consequently,
integer benchmarks will be more sensitive to the
scheduling-loop latency than floating-point bench-
marks.

In this paper, the baseline processor uses a
two-cycle latency scheduling loop. Then there is, at
least, a two-cycle delay between issuing an instruc-
tion and issuing its dependent instructions. In order

Front-End Back-End

F D Re IQ P R E W C

W

selected instructions

S

a) b)

W/S

selected instructions

Selection...

req0

reqn

sel0

seln

LogicWakeup

ready0

readyn

Logic
...

. . .

Selection...

req0

reqn

sel0

seln

Logic
Wakeup

ready0

readyn

Logic
...

I1 W S P R E W

I2 W S P R E W

a)

b)

I1 W / S P R E W

I2 W / S P R E W

not to degrade performance with respect to the
unpipelined scheduling logic, the pipelined schedul-
ing logic must be able to exploit ILP in the issue cycle
between issuing an one-cycle instruction and issuing
its dependent instruction. For multi-cycle producer
instructions (greater than one-cycle latency), pipelin-
ing the scheduling logic does not degrade perform-
ance with respect to an unpipelined scheduling logic.

3. Dependence-Level Scheduler
In this section, we describe the Dependence-Level
Scheduler (DLS), a non-speculative mechanism that
allows pipelining over two cycles the critical schedul-
ing loop without sacrificing the ability to execute
back-to-back one-cycle instructions and their depend-
ent instructions.

The idea is overlapping the selection phase of pro-
ducer-level instructions with the wakeup phase of
their dependent instructions. That is, dependent
instructions are woken up before their producer
instructions have been selected for issuing. Moreover,
in order to avoid an speculative selection phase,
woken up in advance instructions will not compete
for selection until all producer-level instructions have
been issued. The goal of DLS mechanism is to look
for opportunities for back-to-back execution of
dependent instructions. Note that the execution
latency of multi-cycle instructions hides the schedul-
ing-loop latency and therefore back-to-back execu-
tion with their dependents instructions is possible.

Figure 4 shows an example of the scheduling of an
instruction sequence, in which we assume that only
one instruction can be issued per cycle. The IQ label
means that the instruction is waiting to be ready in the
issue queue. The W and WA labels mean, respec-
tively, that the instruction wakes up and that the
instruction wakes up in advance. The RI label sym-
bolizes that the instruction is ready and it is compet-
ing for selection. The ARI (advanced ready
instruction) label means that the instruction has been
waken up in advance but does not compete yet for
selection. Finally, the S label means that the instruc-
tion is selected for execution.

In Figure 4, the source operands of instructions 1
and 2 are available in cycle 1. Both instructions wake
up and become the current producer level. In cycle 2,
the current producer level competes for selection, and
also it wakes up in advance its dependents. Conse-
quently, instruction 3 is woken up in advance in cycle
2, and it becomes the consumer level. This consumer
level will not compete for selection until the current
producer level is completely scheduled. At the end of
cycle 3, the producer level has been completely
scheduled. Then in cycle 4, the consumer level
(instruction 3) will be allowed to compete for selec-
tion, and consequently, it becomes the current pro-
ducer level. Also in cycle 4, the current producer level
wakes its consumer level (instruction 4) up in
advance. Because in cycle 4 the current producer
level is completely scheduled, in cycle 5 the current
consumer level will be allowed to compete for selec-
tion.

Figure 4 Scheduling example of the DLS mechanism. A bar
between cycles indicates that all producer-level instructions

have been issued, then consumer level can compete for
selection next cycle.

DLS mechanism is equivalent to an one-cycle
scheduling-loop if, every cycle, all producer-level
instructions are scheduled. In this scenario,
back-to-back execution is performed and oldest-first
selection policy is observed. Otherwise, if pro-
ducer-level instructions require several cycles to be
scheduled and their woken up in advance consumer
instructions are prevented from competing for selec-
tion, then oldest-first selection policy is not always
observed and DLS performance depends on whether
the available ILP can maintain the throughput of
issued instructions. A harmful performance scenario
takes place when issue width is not fully exploited
and there are woken up in advance instructions pre-
vented from competing for selection whose pro-
ducer-level instructions have been scheduled in
previous cycles.

3.1. Hardware Design

Next, we describe the implementation of DLS by
extending the base two-cycle scheduling logic

Table 1 Distribution of committed instructions according to the
execution latency in SPEC-2000 benchmarks.

update the register file do not
update the
register file

execution latency

one-cycle multi-cycle

Integer benchmarks 44.3% 32.0% 23.7%

Floating Point benchmarks 23.6% 62.4% 14.0%

Cycles 1 2 3 4 5

1. add r1←r2, r3 W S

2. add r4←r5, r6 W RI S

3. sub r9←r1, r7 IQ WA ARI S

4. sub r10←r9, r8 IQ IQ IQ WA S

(Section 2). Main differences of DLS with respect to
a Base two-cycle scheduling logic are:
 • In the Base model, each instruction wakes its

dependent instructions up only after being
selected. In DLS, one-cycle instructions wake
their dependent instructions up before being
selected. They wake their dependent instructions
up in advance using the one-cycle scheduling
loop shown in Figure 5.

 • In the Base model, instructions start competing
for selection the cycle after becoming ready. In
DLS, the selection phase of ready instructions
dependent on producer-level instructions may be
delayed. This is necessary to prevent them from
being selected speculatively. In Figure 5,
D-Logic and ZDL are in charge of this task.

Figure 5 Base DLS design.

In DLS instructions are classified according to
two criteria: attending to their own execution latency
and attending to their producers’ execution latency.

In decode phase, instructions are classified attend-
ing to their execution latency. One-cycle instructions
are classified as wakeup in advance; multi-cycle
instructions are classified as wakeup in selection. In
Figure 5, wakeup signals to Wakeup Logic come
from one-cycle and two-cycle latency scheduling
loops. Only one loop is significant for each instruc-
tion to wake its dependent instructions up. The
wakeup signal is selected by a multiplexer controlled
by the classification of the instruction.

In rename phase, producer instructions of every
instruction are identified. DLS also classifies instruc-
tions according to the latency of their producer
instructions. Instructions that depend on at least an
one-cycle instruction are classified as woken up in
advance. Instructions that do not depend on any

one-cycle instruction are classified as woken up in
selection. This later class also contains instructions
whose source operands are available in rename phase.

In Figure 5, the Wakeup Logic sets ready bits
(ready0 ... readyn) for those instructions that have

been waken up. Ready woken up in selection instruc-
tions will compete for selection next cycle after wak-
ing up. However, ready woken up in advance
instructions must be prevented from competing for
selection until selecting all one-cycle instructions cur-
rently competing for selection (req0 ... reqn). Zero

Detection Logic (ZDL) and D-Logic determine if
ready woken up in advance instructions can compete
for selection next cycle. Every cycle, ZDL determines
if all requesting wakeup in advance instructions have
been selected. If this condition is met, then load input
in D-Logic is set. Consequently, D-Logic lets woken
up in advance instructions compete for selection next
cycle; otherwise, D-Logic will retain woken up in
advance instructions at least one more cycle (Figure
6).

Figure 6 D-Logic. Slice corresponding to one issue-queue
entry. “ready” stands for a request signal of Wakeup Matrix.

Figure 7 shows an slice of ZDL. Non continuous
box contains the logic which is replicated for every
issue-queue entry. For every requesting instruction in
the issue queue, ZDL checks if they have been
selected the current cycle. Moreover, either instruc-
tions selected in previous cycles or classified as
woken in selection are not accounted by ZDL.

Figure 7 ZDL. Slice corresponding to one issue-queue entry

4. Simulation Environment

4.1. Processor model

We have modified SimpleScalar 3.0d [1] to model a
Re-Order Buffer and separate issue queues (IQ). We
assume an out-of-order processor with eight stages
from Fetch to IQ and two stages between IQ and Exe-
cution. Table 2 details other processor and memory
parameters.

Wakeup Selection

ZDL

...
...

ready0

readyn

...
LogicLogic

two-cycle scheduling loop

wakeup select

one-cycle instructions

multi-cycle instructions

load

D
-L

og
ic

Muxes

req0

reqn

sel0

seln

one-cycle scheduling loop

load signal from ZDL

0: woken in advance
1: woken in selection

classificationi

readyi reqi

0: woken in advance
1: woken in selection

classificationi

load signal

previous cycle: seli

reqi

seli

issue queue entryi

...

...

to D-Logic

Our processor splits store instructions into two
instructions: STA (store address computation) and
STD (store data). Two issue-queue entries are allo-
cated to each store instruction.

Table 3 lists the instruction latencies assumed in
this work. ALU label stands for: integer add, integer
subtract, logical operations and branches.

A load instruction can be issued only after issuing
all the STA instructions corresponding to the store
instructions older than the load instruction. Conse-
quently, the processor makes each load instruction
dependent on all its older STA instructions.

Load instructions are variable-latency instruc-
tions. To cope with this variability, load instructions
are blindly predicted to hit L1 and their dependent
instructions are scheduled accordingly. To deal with
misschedulings, our processor implements a delayed
selective replay mechanism that replays the miss-
cheduled instructions from the Issue Queue [13]. A
register scoreboard keeps the status of each register
(dependent or independent on a misscheduling). Each
load instruction that misses L1 marks its destination
register as unavailable. Each issued instruction
accesses, in register-read stage, the scoreboard to
check the status of their source registers and propa-
gates the status to its destination register. To recover

from misschedulings, each instruction remains in the
issue queue until verifying that it is not dependent on
misschedulings. Instructions dependent on missched-
ulings are replayed from the issue queue after resolv-
ing the cache miss.

4.2. Workload

We use SPECInt-2000 integer benchmarks compiled
into Alpha ISA. We simulate a contiguous run of
100M-instruction from SimPoints [22] after a warm-
ing-up of 100M-instruction. Table 4 shows input data
sets.

5. Evaluation of DLS
In this section we evaluate the performance of DLS.
For comparison purposes three more models are eval-
uated.

First, a baseline model (B) with a two-cycle
scheduling loop that sacrifices the execution of
dependent instructions in consecutive cycles if pro-
ducer instructions are one-cycle instructions.

Second, an ideal model (ID) with an one-cycle
scheduling loop. Dependent instructions can be
scheduled back-to-back. However, in order to remove
the effect of a branch-misprediction penalty shorter
than in the other models, its pipeline depth is kept
consistent with them by adding to the ID model one
extra stage in the processor-pipeline front-end.

The third model has been proposed by M. D.
Brown et al. in [3] and it is named Select-Free (SF).
They propose to remove the Selection Logic from the
critical scheduling loop. Ready instructions wake
their dependent instructions up, that is, the selection
phase of each producer instruction is overlapped with
the wakeup phase of its consumer instructions. Thus,
all woken up instructions compete speculatively for
selection. Contention for issue ports may produce
misspeculations because a consumer instruction may
be selected at the same time as its producer instruc-
tions. SF checks the availability of the source oper-
ands of each issued instruction before execution
stage. In our simulations we model the SF mechanism
on a two-cycle scheduling loop; SF checks the availa-

Table 2 Processor and memory parameters

Processor model Memory hierarchy
Fetch and Decode

width
4 L1 I-cache

L1
D-cache

32KB, 4-way, 2
cycles

Branch predictor:
hybrid (bimodal,

gshare)

16 bits Line size 32 B

ROB size 128 L2 Unified
Cache

256 KB, 4-way,
12 cyclesLSQ size 64

Issue-queue size:
Integer / Floating

point

32 / 20 Line size 32 B

Functional Units:
Integer / Floating

point

4 / 2 L2-Main
memory
bus

8bytes / 2 cycles

Memory access
ports

2 Main mem-
ory latency

100 cycles

Issue width: Inte-
ger / Floating point

4/2 Load
latency
prediction

Blind (always L1
hit)

Table 3 Execution latency (in cycles) of the instructions.

Latency Latency

ALU 1 FP (+,*) 4 fully pipelined

Load 3 FP (/) 15 unpipelined

Integer (*,/) 10 /15 unpipelined FP (sqrt) 24 unpipelined

Table 4 Simulated benchmarks and their input data set.

Bench Data set Bench Data set Bench Data set

bzip2 program-ref gzip program-ref twolf ref

crafty ref mcf ref vortex one-ref

eon rushmeier-ref parser ref vpr route-ref

gcc 166-ref perl diffmail-ref

bility of source operands in register-read stage using
the scoreboard structure previously described to
check latency misspeculations.

Table 5 shows, for each benchmark, the IPC
achieved by B model in a 4-way processor (Table 2).
Figure 8 shows the speedup of the other models with
respect to the B model. We present individual results
for each SPEC-2000 integer benchmark and two har-
monic average values: HM (including all bench-
marks) and HM-mcf (including all benchmarks but
mcf due to its biased memory behaviour).

Figure 8 shows the speedup of ID, DLS and SF
with respect to B model. The ID model outperforms
B model from 24.8% in parser to 6.3 in mcf, and on
average the ID model outperforms the B model
around 10% (HM). However, excluding mcf from the
average, then the improvement reaches a 14%. These
results remark the importance of back-to-back execu-
tion of dependent instructions.

Figure 8 Speedup of ID, DLS and SF models with respect to
B model.

On average, DLS model performs within a 3.6%
(HM) and 4.0% (HM-mcf) of ID model. Performance
degradation with respect to ID model is due to con-
servatively preventing woken in advance instructions
from competing for selection despite their producer
instructions have already been selected. This is
caused by producer-level instructions whose schedul-
ing takes more than one cycle.

Select Free performs within the 4.6% (HM) of ID
model. Performance degradation with respect to ID
model is caused by the re-scheduled instructions due
to misspeculated selections. Table 6 shows the per-
centage of issued instructions which are re-scheduled
in SF due to misspeculated selections. Note that SF
will degrade performance only if another ready

instruction with available source operands can be exe-
cuted instead of the misspeculated one.

DLS outperforms, on average, SF. Only in bzip2
and vpr, SF outperforms DLS (at most 2% in bzip2).
By comparing the number of issued instructions, SF
counts, on average, a 3.9% more than DLS.

Figure 9 shows the performance impact of varying
the latency between selection stage and execution
stage from one cycle to three cycles, since two cycles
is the default value in our evaluations. All models
show a performance degradation if the latency
increases, because both the branch-misprediction
penalty and the load-instruction shadow [13]
increase. However, the performance degradation
observed in SF model is greater than in the other
models because the misspeculated-selection penalty
increases with the latency.

Figure 9 Performance impact of the latency between selec-
tion and execution stages in ID, DLS, B and SF models.

6. Related works
In order to reduce the scheduling latency, Palach-

arla et al. [18] proposed dispatching chains of
dependent instructions into FIFO queues; the only
instructions considered to be issued are the head
instruction of each queue. Other works preschedule
the instructions taking advantage of the fact that most
instruction latencies are known at decode time ([4],
[5], [7] [16] [20]). At dispatch time, instructions are
sorted into a buffer according to their predicted issue
cycle. The schemes mainly differ in the mechanism
that deals with variable-latency instructions, e.g. load
instructions, and their chains of dependent instruc-
tions; a structure like an issue queue is used for these
cases. The structure is placed before the buffer in [4]
and it tracks the availability of source data. In other
works the structure is placed after the buffer in order

Table 5 IPC of the baseline model (B).

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

1.36 1.92 2.15 1.84 1.44 1.68 0.13 1.05 1.47 0.91 2.22 0.78

-5

0

5

10

15

20

25

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er
pe

rl
tw

olf

vo
rte

x
vp

r
HM

ID DLS SF% Speed-up

HM
-m

cf

Table 6 Percentage of issued instructions rescheduled by SF.

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

0.9 2.1 0.4 2.2 0.7 3.4 3.3 4.3 0.5 1.6 1.2 0.3

HM-mcf(IPC)

1.3

1.4

1.5

1.6

1 cycle 2 cycle 3 cycle

ID

B

SF
DLS

to schedule all instructions [16] or just the mispre-
dicted instructions and their dependent chains of
instructions [5]. Ernst et al. [7] proposed organizing
the buffer as a countdown cyclic queue. The instruc-
tions are scheduled from this buffer in order and, a
latency-mispredicted instruction requires re-inserting
into the queue its chain of dependent instructions. All
these techniques require estimating the issue cycle of
the instructions before inserting them in the buffer
structure. This is a challenging task for wide-issue
processors, although it can be approximated. Moreo-
ver, most prescheduling works also use an issue
queue to deal with variable-latency instructions and
their dependent instructions.

Some proposals exploit the fact that most regis-
ter-writing instructions have, at most, one dependent
instruction currently in the issue queue. Based on this
observation, the proposed designs have structures that
keep track of one or several instructions that consume
a produced register value. So, in order to wake
instructions up, associative searches are replaced by
indexing. S. Weiss and J. Smith proposed, in a sin-
gle-issue processor, a scheme named Direct Tag
Search where each instruction has a pointer to its
dependent instruction in order to waking it up directly
[24]. The basic scheme can not implement direct
wakeup in case of instructions with several consum-
ers. Several alternatives have been proposed to over-
come this restriction: linking the consumer
instructions [17], using an associative structure to
keep track of the consumers [5], using an issue queue
with few entries [4][5], or using a register scoreboard
to check the availability of the register values [21].
These techniques require additional hardware support
for branch-misprediction recovery unless the recov-
ery is initiated only when the branch instruction
becomes the oldest instruction in flight.

Goshima et al. used two RAM bitmap arrays, one
for each source operand, to identify all the successors
of each instruction in the issue queue [10]. That is,
this mechanism supports indexing-based wakeup for
all instructions regardless of their number of depend-
ent instructions. A new design that reduces the area
cost for large issue queues was proposed by K. Hsiao
and C. Chen in [12].

The observation that many instructions already
have one or two ready source operands at dispatch
time has been used to reduce the load capacitance of
the wakeup tag bus in schedulers that use CAM
schemes to wakeup; consequently, the wakeup

latency may be reduced. D. Ernst and T. Austin used
specialized issue queues and prediction of the
last-arriving input operand [6]; consequently, it is a
speculative mechanism. I. Kim and M. Lipasti pro-
posed a sequential wakeup mechanism; while the pre-
dicted last-arriving operand is placed into a
fast-wakeup entry, the other operand is placed into a
slow-wakeup entry. Each selected instruction notifies
the availability of its result to the fast-wakeup entries
and, on next cycle, to the slow-wakeup entries [14].
The observation that the distance between dependent
instructions is generally short is used in [10] to nar-
row the implementation of the issue queue with
dependence matrices that supports indexing-based
wakeup.

Brekelbaum et al. proposed a hierarchical sched-
uling window [2]. While critical instructions are
placed in a small issue queue, latency-tolerant
instructions are placed in a buffer that does not use
power-hungry CAM logic, but it requires a longer
latency for the wakeup operation. Hrishikesh et al. in
[11] proposed a segmented issue queue to reduce
scheduling latency; issue-queue entries are com-
pacted after extracting the instructions. The instruc-
tion wakeup is pipelined among the segments and
each segment has a different scheduling priority. In
this mechanism, the scheduling loop must still be
evaluated in a single cycle for a subset of instructions
in the issue queue or instructions in a particular parti-
tion/segment of the window.

Several works overlap the selection phase of a
producer instruction with the wakeup phase of their
dependent instructions. J. Stark et al. [23] proposed to
speculatively wake instructions up by their grand-par-
ents in order to tolerate the scheduling logic latency.
By using an additional Wakeup Logic driven by par-
ent instructions, it is confirmed if each selected
instruction has their source operands available. R.
Gran et al. [9] proposed to add another Wakeup Logic
to a base two-cycle scheduling logic. This additional
Wakeup Logic is also driven by parent instructions,
the difference is that they are competing for selection.
Instructions that depends on one-cycle instructions
are allocated in the additional Wakeup Logic. Some
instructions included in additional Wakeup Logic will
be woken up in Wakeup Logic of the base scheduling
logic and they will compete for selection when this
occurs. Other instructions will be woken up in
advance by additional Wakeup Logic and they will be
allowed to compete for selection when the group of

parent instructions has been selected, thus overlap-
ping the selection of parents instruction with wakeup
of their dependent instructions. The former proposal
[23] is speculative. Both proposals use two Wakeup
Logic which duplicate the cost.

M.D. Brown et al. [3] proposed a design of the
scheduling loop, named Select-Free in which Wakeup
Logic forms a single cycle loop and the Selection
Logic is removed from the critical scheduling loop.
Thus, instructions, that compete for selection, specu-
latively wake their dependent instructions up, these
instructions also speculatively compete for selection
and they speculatively wakeup their dependent
instructions. The mechanism wastes energy due to
re-schedulings. However, DLS mechanism is not
speculative and it outperforms Select-Free.

7. Conclusions
In high performance processors the scheduling

loop is a critical loop. Pipelining this loop without
significantly downgrading performance may allow to
increase clock frequency and/or to enlarge the issue
queue. We have proposed a mechanism (DLS) that
tolerates the latency of a pipelined scheduling loop
and it also boosts performance with respect to a pipe-
lined scheduling logic. The idea of DLS is to look for
opportunities to execute dependent instructions in
consecutive cycles by overlapping selection phase of
producer instructions with wakeup of dependent
instructions. Key differences of DLS with respect to
previous proposals that tolerate the latency in a pipe-
lined scheduling logic is that DLS is non-speculative
and it does not duplicate Wakeup Logic hardware
cost.

Our evaluations have shown that DLS performs,
on average, within a 4.0% (HM-mcf) of an ideal
(unpipelined) scheduler. Also, on average, it outper-
forms SF proposal, which is speculative, and this dif-
ference increases with the number of stages between
issue and execution due to SF speculation.

Acknowledgements
This work has been supported by the Ministry of Edu-
cation and Science of Spain under the contract
TIN-2004-07739-C02-01, the grant AP2003-4621
and the HiPEAC European Network of Excellence.

References
[1] D.C. Burger and T.M. Austin, “The SimpleScalar Tool
Set, Version 2.0,” UW Madison Computer Science T. R. #1342,
June 1997.

[2] E. Brekelbaum et al. Hierarchical Scheduling Windows.
Micro-2002, p. 27-36.
[3] M. Brown et al. Select-Free Instruction Scheduling Logic.
Micro-2001, p. 204-213.
[4] R. Canal and A. González. A Low-Complexity Issue
Logic. ICS-2000, p. 327-335.
[5] R. Canal and A. González. Reducing the Complexity of
the Issue Logic. ICS-2001, p. 312-320.
[6] D. Ernst and T.M. Austin. Efficient Dynamic Scheduling
through Tag Elimination. ISCA-2002, p. 37-46.
[7] D. Ernst et al. Cyclone: A Broadcast-Free Dynamic
Instruction Scheduler with Selective Replay. ISCA-2003, p.
253-262.
[8] J.A. Farrel and T.C Fischer. Issue Logic for a 600 Mhz
Out-of-order Execution Microprocessor. IEEE Journal of
Solid-State Circuits, Vol 33(5), pp 707-712, 1998.
[9] R. Gran et al. An Enhancement for a Scheduling Logic
Pipelined over Two-Cycles. ICCD-2006. p. 203-209.
[10] M. Goshima et al. A High-Speed Dynamic Instruction
Scheduling Scheme for Superscalar Processors. Micro-2001, p.
225-236.
[11] M. Hrishikesh et al. The Optimal Logic Depth Per
Pipeline Stage is 6 to 8 FO4 Inverter Delays. ISCA-2002, p.
14-24.
[12] K. S. Hsiao and C.H. Chen. An Efficient Wakeup Design
for Energy Reduction in High-Performance Superscalar
Processors. Conf. on Computing frontiers, 2005, p. 353-360.
[13] I. Kim and M.H. Lipasti. Understanding scheduling
replay schemes. HPCA-2004, p. 138-147.
[14] I. Kim and M.H. Lipasti. Half-Price Architecture.
ISCA-2003, p. 28-38.
[15] J. Leenstra, et al.. A 1.8-GHz instruction window buffer
for an out-of-order microprocessor core. IEEE Journal of
Solid-State Circuits, Vol. 36, 11, Nov. 2001 p. 1628 - 1635
[16] P. Michaud and A. Seznec. Data-flow Prescheduling for
Large Instruction Windows in Out-of-Order Processors.
HPCA-2001, p. 27-36.
[17] S. Önder and R. Gupta. Superscalar Execution With
Dynamic Data Forwarding. PACT-1998, p. 130-135.
[18] S.Palacharla et al. Quantifying the Complexity of
Superscalar Processors. T.R. University of
Wisconsin-Madison. Nov 1996.
[19] E. Perelman et al.. Picking Statistically Valid and Early
Simulation Points. PACT-2003, p. 244-255.
[20] S. E. Raasch et al. A Scalable Instruction Queue Design
Using Dependence Chains. ISCA-2002, p. 318-330.
[21] T. Sato et al, "Revisiting Direct Tag Search Algorithm on
Superscalar Processors". WCED-2001.
[22] T. Sherwood et al., “Automatically Characterizing Large
Scale Program Behaviour,” ASPLOS-2002, p. 45-57.
[23] J. Stark et al. On Pipelining Dynamic Instruction
Scheduling Logic. Micro-2000, p. 57-66.
[24] S. Weiss and J.E. Smith. Instruction Issue Logic in
Pipelined Supercomputers. IEEE Transactions on Computers,
33: p.1013-1022, November 1984.

