
This paper has been accepted for publication in IEEE Robotics and Automation Letters.

DOI: 10.1109/LRA.2017.2653359
IEEE Xplore: http://ieeexplore.ieee.org/document/7817784/

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

https://doi.org/10.1109/LRA.2017.2653359
http://ieeexplore.ieee.org/document/7817784/


Visual-Inertial Monocular SLAM with Map Reuse

Raúl Mur-Artal and Juan D. Tardós

Abstract— In recent years there have been excellent results
in Visual-Inertial Odometry techniques, which aim to compute
the incremental motion of the sensor with high accuracy
and robustness. However these approaches lack the capability
to close loops, and trajectory estimation accumulates drift
even if the sensor is continually revisiting the same place. In
this work we present a novel tightly-coupled Visual-Inertial
Simultaneous Localization and Mapping system that is able to
close loops and reuse its map to achieve zero-drift localization in
already mapped areas. While our approach can be applied to
any camera configuration, we address here the most general
problem of a monocular camera, with its well-known scale
ambiguity. We also propose a novel IMU initialization method,
which computes the scale, the gravity direction, the velocity,
and gyroscope and accelerometer biases, in a few seconds with
high accuracy. We test our system in the 11 sequences of a
recent micro-aerial vehicle public dataset achieving a typical
scale factor error of 1% and centimeter precision. We compare
to the state-of-the-art in visual-inertial odometry in sequences
with revisiting, proving the better accuracy of our method due
to map reuse and no drift accumulation.

Index Terms— SLAM, Sensor Fusion, Visual-Based Naviga-
tion

I. INTRODUCTION

Motion estimation from onboard sensors is currently a
hot topic in Robotics and Computer Vision communities,
as it can enable emerging technologies such as autonomous
cars, augmented and virtual reality, service robots and drone
navigation. Among different sensor modalities, visual-inertial
setups provide a cheap solution with great potential. On the
one hand, cameras provide rich information of the environ-
ment, which allows to build 3D models, localize the camera
and recognize already visited places. On the other hand, IMU
sensors provide self-motion information, allowing to recover
metric scale for monocular vision, and to estimate gravity
direction, rendering absolute pitch and roll observable.

Visual-inertial fusion has been a very active research
topic in the last years. The recent research is focused on
tightly-coupled (i.e. joint optimization of all sensor states)
visual-inertial odometry, using filtering [1]–[3] or keyframe-
based non-linear optimization [4]–[8]. Nevertheless these
approaches are only able to compute incremental motion
and lack the capability to close loops and reuse a map of
an already mapped environment. This implies that estimated
trajectory accumulates drift without bound, even if the sensor
is always moving in the same environment. This is due to
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Fig. 1. Estimated map and keyframes by our Visual-Inertial ORB-SLAM
in V1 02 medium from the EuRoC dataset [14]. The top view was rendered
using the estimated gravity direction. The green lines connect keyframes that
share more than 100 point observations and are a proof of the capability of
the system to reuse the map, which, in contrast to visual-inertial odometry,
allows zero-drift localization when continually revisiting the same place.

the marginalization of past states to maintain a constant
computational cost [1]–[3], [5], [6], or the use of full
smoothing [4], [7], with an almost constant complexity in
exploration but that can be as expensive as a batch method
in the presence of loop closures. The filtering method [9],
is able to close loops topologically and reuse its map, but
global metric consistency is not enforced in real-time. The
recent system [10] is able to reuse a given map, built offline,
and perform visual-inertial tracking.

Building on the preintegration of Lupton and Sukkarieh
[11], its application to the SO(3) manifold by Forster et al.
[7], and its factor graph representation by Indelman et al.
[4], we present in this paper Visual-Inertial ORB-SLAM, to
the best of our knowledge the first keyframe-based Visual-
Inertial SLAM that is able to metrically close loops in real-
time and reuse the map that is being built online. Following
the approach of ORB-SLAM [12], inspired by the work of
Klein and Murray [13], our tracking optimizes the current
frame assuming a fixed map, and our backend performs
local Bundle Adjustment (BA), optimizing a local window of
keyframes, including an outer window of fixed keyframes. In
contrast to full smoothing, this approach allows constant time
local BA, and by not marginalizing past states, we are able to
reuse them. We detect large loops using place recognition and



correct them using a lightweight pose-graph optimization,
followed by full BA in a separate thread, not to interfere
with real-time operation. Fig. 1 shows a reconstruction by
our system in a sequence with continuous revisiting.

Both our tracking and local BA fix states in their opti-
mizations, which could potentially bias the solution. For this
reason we need a reliable visual-inertial initialization that
provides accurate state estimations before we start fixing
states. To this end we propose to perform a visual-inertial
full BA that provides the optimal solution for structure,
camera poses, scale, velocities, gravity, and gyroscope and
accelerometer biases. This full BA is a non-linear optimiza-
tion that requires a good initial seed to converge. We propose
in Section IV a divide and conquer approach to compute this
initial solution. We firstly process a few seconds of video
with our pure monocular ORB-SLAM [12] to estimate an
initial solution for structure and several keyframe poses, up
to an unknown scale factor. We then compute the bias of the
gyroscope, which can be easily estimated from the known
orientation of the keyframes, so that we can correctly rotate
the accelerometer measurements. Then we solve scale and
gravity without considering the accelerometer bias, using an
approach inspired in [11]. To facilitate distinguishing be-
tween gravity and accelerometer bias, we use the knowledge
of the magnitude of the gravity and solve for accelerometer
bias, refining scale and gravity direction. At this point it is
straightforward to retrieve the velocities for all keyframes.
Our experiments validate that this is an efficient, reliable
and accurate initialization method. Moreover it is general,
could be applied to any keyframe-based monocular SLAM,
does not assume any initial condition, and just require a
movement of the sensor that make all variables observable
[15]. While previous approaches [15]–[17] jointly solve
vision and IMU, either ignoring gyroscope or accelerometer
biases, we efficiently compute all variables by subdividing
the problem in simpler steps.

II. VISUAL-INERTIAL PRELIMINARIES

The input for our Visual-Inertial ORB-SLAM is a stream
of IMU measurements and monocular camera frames. We
consider a conventional pinhole-camera model [18] with a
projection function π : R3 → Ω, which transforms 3D points
XC ∈ R3 in camera reference C, into 2D points on the image
plane xC ∈ Ω ⊂ R2:

π(XC) =

[
fu

XC

ZC
+ cu

fv
YC

ZC
+ cv

]
, XC = [XC YC ZC]

T (1)

where [fu fv]
T is the focal length and [cu cv]

T the principal
point. This projection function does not consider the distor-
tion produced by the camera lens. When we extract keypoints
on the image, we undistort their coordinates so that they can
be matched to projected points using (1).

The IMU, whose reference we denote with B, measures
the acceleration aB and angular velocity ωB of the sensor
at regular intervals ∆t, typically at hundreds of Hertzs.
Both measurements are affected, in addition to sensor noise,

by slowly varying biases ba and bg of the accelerometer
and gyroscope respectively. Moreover the accelerometer is
subject to gravity gW and one needs to subtract its effect
to compute the motion. The discrete evolution of the IMU
orientation RWB ∈ SO(3), position WpB and velocity WvB, in
the world reference W, can be computed as follows [7]:

Rk+1
WB = Rk

WB Exp
((
ωkB − bkg

)
∆t
)

Wv
k+1
B = Wv

k
B + gW∆t+ Rk
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)
∆t
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k
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k
B∆t+

1

2
gW∆t

2 +
1

2
Rk

WB

(
akB − bka

)
∆t2

(2)
The motion between two consecutive keyframes can be

defined in terms of the preintegration ∆R, ∆v and ∆p from
all measurements in-between [11]. We use the recent IMU
preintegration described in [7]:

Ri+1
WB = Ri

WB∆Ri,i+1Exp
((

Jg∆Rbig
))

Wv
i+1
B = Wv

i
B + gW∆ti,i+1

+ Ri
WB

(
∆vi,i+1 + Jg∆vb

i
g + Ja∆vb

i
a

)
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i
B + Wv

i
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1

2
gW∆t

2
i,i+1

+ Ri
WB

(
∆pi,i+1 + Jg∆pb

i
g + Ja∆pb

i
a

)
(3)

where the Jacobians Ja(·) and Jg(·) account for a first-order
approximation of the effect of changing the biases without
explicitly recomputing the preintegrations. Both preintegra-
tions and Jacobians can be efficiently computed iteratively
as IMU measurements arrive [7].

Camera and IMU are considered rigidly attached and the
transformation TCB = [RCB|CpB] between their reference
systems known from calibration [19].

III. VISUAL-INERTIAL ORB-SLAM

The base of our visual-inertial system is ORB-SLAM
[12], [20]. This system has three parallel threads for Track-
ing, Local Mapping and Loop Closing. The system is de-
signed to work on large scale environments, by building
a covisibility graph that allows to recover local maps for
tracking and mapping, and by performing lightweight pose-
graph optimizations at loop closure. In addition ORB-SLAM
allows to build a map of an environment and switch to
a less CPU-intensive localization-only mode (i.e. mapping
and loop closing are disabled), thanks to the relocalization
capability of the system. ORB-SLAM is open-source1 and
has been extensively evaluated on public datasets achieving
top performing results. In this section we detail the main
changes in the Tracking, Local Mapping and Loop Closing
threads with respect to the original system. The visual-
inertial initialization is presented in Section IV.

A. Tracking

Our visual-inertial tracking is in charge of tracking the
sensor pose, velocity and IMU biases, at frame-rate. This
allows us to predict the camera pose very reliably, instead of
using an ad-hoc motion model as in the original monocular

1https://github.com/raulmur/ORB_SLAM2

https://github.com/raulmur/ORB_SLAM2


Pi Pj

vi vj

bi bj

Map Points

Pj

vj

bj

Pj Pj+1

vj vj+1

bj bj+1

Map Points

Pj+1

vj+1

bj+1

a) Tracking Frame j
(Map changed)

c) Tracking Frame j+1
(Map unchanged)

Pj+1 Pj+2

vj+1 vj+2

bj+1 bj+2

Map Points

Pj+2

vj+2

bj+2

e) Tracking Frame j+2
(Map unchanged)

. . .

. . .b) Prior
(optimization result) 

d) Prior
(marginalization) 

f) Prior
(marginalization) 

if map changes (Local BA, Loop Closure)

Fixed 
To marginalize
Reproj. error
Prior
IMU error
Pose
Velocity
Biases
Last keyframe
Frame index

P
v
b
i
j

Fig. 2. Evolution of the optimization in the Tracking thread. (a) We start optimizing the frame j linked by an IMU constraint to last keyframe i. (b)
The result of the optimization (estimation and Hessian matrix) serves as prior for next optimization. (c) When tracking next frame j + 1, both frames
j and j + 1 are jointly optimized, being linked by an IMU constraint, and having frame j the prior from previous optimization. (d) At the end of the
optimization, the frame j is marginalized out and the result serves as prior for following optimization. (e-f) This process is repeated until there is a map
update from the Local Mapping or Loop Closing thread. In such case the optimization links the current frame to last keyframe discarding the prior, which
is not valid after the map change.

system. Once the camera pose is predicted, the map points in
the local map are projected and matched with keypoints on
the frame. We then optimize current frame j by minimizing
the feature reprojection error of all matched points and an
IMU error term. This optimization is different depending on
the map being updated or not by the Local Mapping or the
Loop Closing thread, as illustrated in Fig. 2.

When tracking is performed just after a map update (Fig.
2a) the IMU error term links current frame j with last
keyframe i:

θ =
{

Rj
WB, Wp

j
B, Wv

j
B,b

j
g,b

j
a

}
θ∗ = argmin

θ

(∑
k

Eproj(k, j) + EIMU(i, j)

)
(4)

where the feature reprojection error Eproj for a given match
k, is defined as follows:

Eproj(k, j) = ρ
((

xk − π(Xk
C )
)T

Σk

(
xk − π(Xk

C )
))
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W − Wp
j
B

)
+ CpB

(5)

where xk is the keypoint location in the image, Xk
W the map

point in world coordinates, and Σk the information matrix
associated to the keypoint scale. The IMU error term EIMU

is:
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(6)

where ΣI is the information matrix of the preintegration
and ΣR of the bias random walk [7], and ρ is the Huber

robust cost function. We solve this optimization problem with
Gauss-Newton algorithm implemented in g2o [21]. After the
optimization (Fig. 2b) the resulting estimation and Hessian
matrix serves as prior for next optimization.

Assuming no map update (Fig. 2c), the next frame j + 1
will be optimized with a link to frame j and using the prior
computed at the end of the previous optimization (Fig 2b):

θ =
{

Rj
WB,p

j
W,v

j
W,b

j
g,b

j
a,R

j+1
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g ,bj+1
a

}
θ∗ = argmin

θ

(∑
k

Eproj(k, j + 1) + EIMU(j, j + 1)

+Eprior(j)
)

(7)
where Eprior is a prior term:

Eprior(j) = ρ
([

eTR eTv eTp eTb
]
Σp

[
eTR eTv eTp eTb

]T)
eR = Log

(
R̄j
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j
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)
ev = Wv̄

j
B − Wv

j
B

ep = Wp̄
j
B − Wp

j
B eb = b̄j − bj

(8)

where (̄·) and Σp are the estimated states and Hessian matrix
resulting from previous optimization (Fig. 2b). After this
optimization (Fig. 2d), frame j is marginalized out [5]. This
optimization linking two consecutive frames and using a
prior is repeated (Fig. 2e-f) until a map change, when the
prior will be no longer valid and the tracking will link again
the current frame to the last keyframe (Fig. 2a). Note that
this is the optimization, Fig 2 (e-f), that is always performed
in localization-only mode, as the map is not updated.

B. Local Mapping

The Local Mapping thread performs local BA after a new
keyframe insertion. It optimizes the last N keyframes (local
window) and all points seen by those N keyframes. All other
keyframes that share observations of local points (i.e. are
connected in the covisibility graph to any local keyframe),
but are not in the local window, contribute to the total cost but
are fixed during optimization (fixed window). The keyframe
N+1 is always included in the fixed window as it constrains
the IMU states. Fig. 3 illustrates the differences between
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local BA in original ORB-SLAM and Visual-Inertial ORB-
SLAM. The cost function is a combination of IMU error
terms (6) and reprojection error terms (5). Note that the
visual-inertial version, compared to the vision only, is more
complex as there are 9 additional states (velocity and biases)
to optimize per keyframe. A suitable local window size has
to be chosen for real-time performance.

The Local Mapping is also in charge of keyframe manage-
ment. The original ORB-SLAM policy discards redundant
keyframes, so that map size does not grow if localizing
in a well mapped area. This policy is problematic when
using IMU information, which constrains the motion of
consecutive keyframes. The longer the temporal difference
between consecutive keyframes, the weaker information IMU
provides. Therefore we allow the mapping to discard re-
dundant keyframes, if that does not make two consecutive
keyframes in the local window of local BA to differ more
than 0.5s. To be able to perform full BA, after a loop closure
or at any time to refine a map, we do not allow any two
consecutive keyframes to differ more than 3s. If we switched-
off full BA with IMU constraints, we would only need to
restrict the temporal offset between keyframes in the local
window.

C. Loop Closing

The loop closing thread aims to reduce the drift accu-
mulated during exploration, when returning to an already
mapped area. The place recognition module matches a recent
keyframe with a past keyframe. This match is validated
computing a rigid body transformation that aligns matched
points between keyframes [22]. Finally an optimization is

carried out to reduce the error accumulated in the trajectory.
This optimization might be very costly in large maps, there-
fore the strategy is to perform a pose-graph optimization,
which reduces the complexity, as structure is ignored, and
exhibits good convergence as shown in [12]. In contrast
to the original ORB-SLAM, we perform the pose-graph
optimization on 6 Degrees of Freedom( DoF) instead of 7
DoF [23], as scale is observable. This pose-graph ignores
IMU information, not optimizing velocity or IMU biases.
Therefore we correct velocities by rotating them according to
the corrected orientation of the associated keyframe. While
this is not optimal, biases and velocities should be locally
accurate to continue using IMU information right after pose-
graph optimization. We perform afterwards a full BA in a
parallel thread that optimizes all states, including velocities
and biases.

IV. IMU INITIALIZATION
We propose in this section a method to compute an initial

estimation for a visual-inertial full BA of the scale, gravity
direction, velocity and IMU biases, given a set of keyframes
processed by a monocular SLAM algorithm. The idea is to
run the monocular SLAM for a few seconds, assuming the
sensor performs a motion that makes all variables observable.
While we build on ORB-SLAM [12], any other SLAM could
be used. The only requirement is that any two consecutive
keyframes are close in time (see Section III-B), to reduce
IMU noise integration.

The initialization is divided in simpler subproblems: (1)
gyroscope bias estimation, (2) scale and gravity approxima-
tion, considering no accelerometer bias, (3) accelerometer
bias estimation, and scale and gravity direction refinement,
and (4) velocity estimation.

A. Gyroscope Bias Estimation

Gyroscope bias can be estimated just from the known
orientation of two consecutive keyframes. Assuming a neg-
ligible bias change, we optimize a constant bias bg , which
minimizes the difference between gyroscope integration and
relative orientation computed from ORB-SLAM, for all pairs
of consecutive keyframes:

argmin
bg

N−1∑
i=1

∥∥∥Log
(

(∆Ri,i+1Exp (Jg∆Rbg))
T

Ri+1
BW Ri

WB

)∥∥∥2

(9)
where N is the number of keyframes. R

(·)
WB = R

(·)
WCRCB

is computed from the orientation R
(·)
WC computed by ORB-

SLAM and calibration RCB. ∆Ri,i+1 is the gyroscope in-
tegration between two consecutive keyframes. We solve (9)
with Gauss-Newton with a zero bias seed. Analytic jacobians
for a similar expression can be found in [7].

B. Scale and Gravity Approximation (no accelerometer bias)

Once we have estimated the gyroscope bias, we can
preintegrate velocities and positions, rotating correctly the
acceleration measurements compensating the gyroscope bias.

The scale of the camera trajectory computed by ORB-
SLAM is arbitrary. Therefore we need to include a scale



factor s when transforming between camera C and IMU B

coordinate systems:

WpB = s WpC + RWC CpB (10)

Substituting (10) into the equation relating position of
two consecutive keyframes (3), and neglecting at this point
accelerometer bias, it follows:

s Wp
i+1
C = s Wp

i
C + Wv

i
B∆ti,i+1 +

1

2
gW∆t

2
i,i+1

+ Ri
WB∆pi,i+1 +

(
Ri

WC −Ri+1
WC

)
CpB

(11)

The goal is to estimate s and gW by solving a linear system
of equations on those variables. To avoid solving for N
velocities, and reduce complexity, we consider two relations
(11) between three consecutive keyframes and use velocity
relation in (3), which results in the following expression:[

λ(i) β(i)
] [ s

gW

]
= γ(i) (12)

where, writing keyframes i, i+ 1, i+ 2 as 1, 2, 3 for clarity
of notation, we have:

λ(i) =
(
Wp

2
C − Wp

1
C

)
∆t23 −

(
Wp

3
C − Wp

2
C

)
∆t12

β(i) =
1

2
I3×3

(
∆t212∆t23 + ∆t223∆t12

)
γ(i) =

(
R2

WC −R1
WC

)
CpB∆t23 −

(
R3

WC −R2
WC

)
CpB∆t12

+ R2
WB∆p23∆t12 + R1

WB∆v12∆t12∆t23

−R1
WB∆p12∆t23

(13)
We stack then all relations of three consecutive keyframes

(12) into a system A3(N−2)×4 x4×1 = B3(N−2)×1 which
can be solved via Singular Value Decomposition (SVD) to
get the scale factor s∗ and gravity vector g∗

W . Note that we
have 3(N−2) equations and 4 unknowns, therefore we need
at least 4 keyframes.

C. Accelerometer Bias Estimation, and Scale and Gravity
Direction Refinement

So far we have not considered accelerometer bias when
computing scale and gravity. Just incorporating accelerome-
ter biases in (12) will heavily increase the chance of having
an ill-conditioned system, because gravity and accelerometer
biases are hard to distinguish [15]. To increase observability
we introduce new information we did not consider so far,
which is the gravity magnitude G. Consider an inertial
reference I with the gravity direction ĝI = {0, 0,−1}, and
the already computed gravity direction ĝW = g∗

W/‖g∗
W‖. We

can compute rotation RWI as follows:

RWI = Exp(v̂θ)

v̂ =
ĝI × ĝW

‖ĝI × ĝW‖
, θ = atan2 (‖ĝI × ĝW‖, ĝI · ĝW)

(14)

and express now the gravity vector as:

gW = RWI ĝIG (15)

where RWI can be parametrized with just two angles around
x and y axes in I, because a rotation around z axis, which

is aligned with gravity, has no effect in gW. This rotation can
be optimized using a perturbation δθ:

gW = RWIExp(δθ) ĝIG

δθ =
[
δθTxy 0

]T
, δθxy = [δθx δθy]

T
(16)

with a first-order approximation:

gW ≈ RWI ĝIG−RWI (ĝI)×G δθ (17)

Substituting (17) in (11) and including now the effect of
accelerometer bias, we obtain:

s Wp
i+1
C = s Wp

i
C + Wv

i
B∆ti,i+1 −

1

2
RWI (ĝI)×G∆t2i,i+1 δθ

+ Ri
WB

(
∆pi,i+1 + Ja∆pba

)
+
(
Ri

WC −Ri+1
WC

)
CpB

+
1

2
RWI ĝIG∆t2i,i+1

(18)
Considering three consecutive keyframes as in (12) we can

eliminate velocities and get the following relation:

[
λ(i) φ(i) ζ(i)

]  s
δθxy
ba

 = ψ(i) (19)

where λ(i) remains the same as in (13), and φ(i), ζ(i), and
ψ(i) are computed as follows:

φ(i) =

[
1

2
RWI (ĝI)×G

(
∆t212∆t23 + ∆t223∆t12

)]
(:,1:2)

ζ(i) = R2
WBJ

a
∆p23∆t12 + R1

WBJ
a
∆v23∆t12∆t23

−R1
WBJ

a
∆p12∆t23

ψ(i) =
(
R2

WC −R1
WC

)
CpB∆t23 −

(
R3

WC −R2
WC

)
CpB∆t12

+ R2
WB∆p23∆t12 + R1

WB∆v12∆t12∆t23

−R1
WB∆p12∆t23 +

1

2
RWI ĝIG∆t2ij

(20)
where [ ](:,1:2) means the first two columns of the ma-
trix. Stacking all relations between three consecutive
keyframes (19) we form a linear system of equations
A3(N−2)×6 x6×1 = B3(N−2)×1 which can be solved via
SVD to get the scale factor s∗, gravity direction correction
δθ∗xy and accelerometer bias b∗

a. In this case we have
3(N − 2) equations and 6 unknowns and we need again
at least 4 keyframes to solve the system. We can compute
the condition number (i.e. the ratio between the maximum
and minimum singular value) to check if the problem is
well-conditioned (i.e. the sensor has performed a motion
that makes all variables observable). We could relinearize
(17) and iterate the solution, but in practice we found that a
second iteration does not produce a noticeable improvement.

D. Velocity Estimation
We considered relations of three consecutive keyframes in

equations (12) and (19), so that the resulting linear systems
do not have the 3N additional unknowns corresponding
to velocities. The velocities for all keyframes can now be
computed using equation (18), as scale, gravity and bias are
known. To compute the velocity of the most recent keyframe,
we use the velocity relation in (3).



E. Bias Reinitialization after Relocalization

When the system relocalizes after a long period of time,
using place recognition, we reinitialize gyroscope biases by
solving (9). The accelerometer bias is estimated by solving
a simplified (19), where the only unknown is the bias, as
scale and gravity are already known. We use 20 consecutive
frames localized with only vision to estimate both biases.

V. EXPERIMENTS

We evaluate the proposed IMU initialization method,
detailed in Section IV and our Visual-Inertial ORB-SLAM
in the EuRoC dataset [14]. It contains 11 sequences recorded
from a micro aerial vehicle (MAV), flying around two
different rooms and an industrial environment. Sequences
are classified as easy, medium and difficult, depending on
illumination, texture, fast/slow motions or motion blur. The
dataset provides synchronized global shutter WVGA stereo
images at 20Hz with IMU measurements at 200Hz and
trajectory ground-truth. These characteristics make it a really
useful dataset to test Visual-Inertial SLAM systems. The
experiments were performed processing left images only, in
an Intel Core i7-4700MQ computer with 8Gb RAM.

A. IMU Initialization

We evaluate the IMU initialization in sequence
V2 01 easy. We run the initialization from scratch every time
a keyframe is inserted by ORB-SLAM. We run the sequence
at a lower frame-rate so that the repetitive initialization does
not interfere with the normal behavior of the system. The
goal is to analyze the convergence of the variables as more
keyframes, i.e. longer trajectories, are processed by the
initialization algorithm. Fig. 4 shows the estimated scale and
IMU biases. It can be seen that between 10 and 15 seconds
all variables have already converged to stable values and
that the estimated scale factor is really close to its optimal
value. This optimal scale factor is computed aligning the
estimated trajectory with the ground-truth by a similarity
transformation [22]. Fig. 4 also shows the condition number
of (19), indicating that some time is required to get a
well-conditioned problem. This confirms that the sensor has
to perform a motion that makes all variables observable,
especially the accelerometer bias. The last row in Fig. 4
shows the time spent by the initialization algorithm, which
exhibits a linear growth. This complexity is the result of
not including velocities in (12) and (19), which would
have resulted in a quadratic complexity when using SVD
to solve these systems. Subdividing the initialization in
simpler subproblems, in contrast to [15], [17], results in a
very efficient method.

The proposed initialization allows to start fusing IMU
information, as gravity, biases, scale and velocity are reli-
ably estimated. For the EuRoC dataset, we observed that
15 seconds of MAV exploration give always an accurate
initialization. As a future work we would like to investigate
an automatic criterion to decide when we can consider an
initialization successful, as we observed that an absolute
threshold on the condition number is not reliable enough.
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Fig. 4. IMU initialization in V2 01 easy.

B. SLAM Evaluation and Comparison to State-of-the-Art

We evaluate the accuracy of our Visual-Inertial ORB-
SLAM in the 11 sequences of the EuRoC dataset. We start
processing the sequences when the MAV starts exploring.
The local window size for the local BA is set to 10 keyframes
and the IMU initialization is performed after 15 seconds from
monocular ORB-SLAM initialization. The system performs
a full BA just after IMU initialization. Table I shows the
translation Root Mean Square Error (RMSE) of the keyframe
trajectory for each sequence, as proposed in [24]. We use the
raw Vicon and Leica ground-truth as the post-processed one
already used IMU. We observed a time offset between the
visual-inertial sensor and the raw ground-truth of −0.2s in
the Vicon Room 2 sequences and 0.2s in the Machine Hall,
that we corrected when aligning both trajectories. We also
measure the ideal scale factor that would align optimally the
estimated trajectory and ground-truth. This scale factor can
be regarded as the residual scale error of the trajectory and
reconstruction. Our system successfully processes all these
sequences in real-time, except V1 03 difficult, where the



TABLE I
KEYFRAME TRAJECTORY ACCURACY IN EUROC DATASET (RAW GROUND-TRUTH)

Visual-Inertial ORB-SLAM Monocular ORB-SLAM
No Full BA Full BA No Full BA Full BA

RMSE (m) Scale RMSE(m) RMSE (m) Scale RMSE (m) RMSE(m) RMSE(m)
Error (%) GT scale∗ Error (%) GT scale∗ GT scale∗ GT scale∗

V1 01 easy 0.027 0.9 0.019 0.023 0.8 0.016 0.015 0.015
V1 02 medium 0.028 0.8 0.024 0.027 1.0 0.019 0.020 0.020
V1 03 difficult X X X X X X X X

V2 01 easy 0.032 0.2 0.031 0.018 0.2 0.017 0.021 0.015
V2 02 medium 0.041 1.4 0.026 0.024 0.8 0.017 0.018 0.017
V2 03 difficult 0.074 0.7 0.073 0.047 0.6 0.045 X X

MH 01 easy 0.075 0.5 0.072 0.068 0.3 0.068 0.071 0.070
MH 02 easy 0.084 0.8 0.078 0.073 0.4 0.072 0.067 0.066
MH 03 medium 0.087 1.5 0.067 0.071 0.1 0.071 0.071 0.071
MH 04 difficult 0.217 3.4 0.081 0.087 0.9 0.066 0.082 0.081
MH 05 difficult 0.082 0.5 0.077 0.060 0.2 0.060 0.060 0.060

∗GT scale: the estimated trajectory is scaled so that it perfectly matches the scale of the ground-truth. These columns are included for comparison purposes
but do not represent the output of a real system, but the output of an ideal system that could estimate the true scale.

Direct Stereo Visual-Inertial Odometry Visual-Inertial ORB-SLAM (Mono)
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Fig. 5. Relative Pose Error [25] comparison between our approach and the state-of-the-art direct stereo visual-inertial odometry [6]. The error for our
SLAM system does not grow for longer paths, due to map reuse, in contrast to the visual-inertial odometry method where drift cannot be compensated.
Note that [6] uses stereo, while our results are monocular.

movement is too extreme for the monocular system to survive
15 seconds. Our system is able to recover motion with metric
scale, with a scale error typically below 1%, achieving a
typical precision of 3cm for 30m2 room environments and
of 8cm for 300m2 industrial environments. To show the loss
in accuracy due to scale error, we also show the RMSE if
the system would be able to recover the true scale, see GT
scale columns. We also show that the precision and scale
estimation can be further improved by performing a visual-
inertial full BA at the end of the execution, see Full BA
columns. The reconstruction for sequence V1 02 medium can
be seen in Fig. 1, and in the accompanying video2.

To contextualize our results, we include as baseline the re-
sults of our vision-only system in Table I. Our visual-inertial
system is more robust as it can process V2 03 difficult, it is

2https://youtu.be/rdR5OR8egGI

able to recover metric scale and does not suffer scale drift.
The accuracy of the visual-inertial system is similar to the
accuracy that would obtain the vision-only version if it could
ideally recover the true scale. However the visual-inertial
bundle adjustment is more costly, as explained in Section III-
B, and the local window of the local BA has to be smaller
that in the vision-only case. This explains the slightly worse
results of the GT scaled visual-inertial results without full
BA. In fact the visual-inertial full BA typically converges
in 15 iterations in 7 seconds, while the vision-only full BA
converges in 5 iterations in less than 1 second.

In order to test the capability of Visual-Inertial ORB-
SLAM to reuse a previous map, we run in a row all sequences
of the same environment. We process the first sequence and
perform a full BA. Then we run the rest of the sequences,
where our system relocalizes and continue doing SLAM. We

https://youtu.be/rdR5OR8egGI


then compare the accumulated keyframe trajectory with the
ground-truth. As there exists a previous map, our system is
now able to localize the camera in sequence V1 03 difficult.
The RMSE in meters for V1, V2 and MH environments are
0.037, 0.027 and 0.076 respectively, with an scale factor error
of 1.2%, 0.1% and 0.2%. A final full BA has a negligible
effect as we have already performed a full BA at the end of
the first sequence. These results show that there is no drift
accumulation when revisiting the same scene, as the RMSE
for all sequences is not larger than for individual sequences.

Finally we have compared Visual-Inertial ORB-SLAM to
the state-of-the-art direct visual-inertial odometry for stereo
cameras [6], which also showed results in Vicon Room 1
sequences, allowing for a direct comparison. Fig. 5 shows
the Relative Pose Error (RPE) [25]. To compute the RPE
for our method, we need to recover the frame trajectory, as
only keyframes are optimized by our backend. To this end,
when tracking a frame we store a relative transformation to
a reference keyframe, so that we can retrieve the frame pose
from the estimated keyframe pose at the end of the execution.
We have not run a full BA at the end of the experiment. We
can see that the error for the visual-inertial odometry method
grows with the traveled distance, while our visual-inertial
SLAM system does not accumulate error due to map reuse.
The stereo method [6] is able to work in V1 03 difficult,
while our monocular method fails. Our monocular SLAM
successfully recovers metric scale, and achieves comparable
accuracy in short paths, where the advantage of SLAM is
negligible compared to odometry. This is a remarkable result
of our feature-based monocular method, compared to [6]
which is direct and stereo.

VI. CONCLUSIONS

We have presented a novel tightly coupled Visual-Inertial
SLAM system, that is able to close loops in real-time and
localize the sensor reusing the map in already mapped areas.
This allows to achieve a zero-drift localization, in contrast
to visual odometry approaches where drift grows unbounded.
The experiments show that our monocular SLAM recovers
metric scale with high precision, and achieves better accuracy
than the state-of-the-art in stereo visual-inertial odometry
when continually localizing in the same environment. We
consider this zero-drift localization of particular interest for
virtual/augmented reality systems, where the predicted user
viewpoint must not drift when the user operates in the same
workspace. Moreover we expect to achieve better accuracy
and robustness by using stereo or RGB-D cameras, which
would also simplify IMU initialization as scale is known.
The main weakness of our proposed IMU initialization is
that it relies on the initialization of the monocular SLAM.
We would like to investigate the use of the gyroscope to
make the monocular initialization faster and more robust.
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