

PhD Thesis

Modeling and Control of Reluctance Actuators

Edgar Ramírez Laboreo

SupervisorCarlos Sagüés BlázquizUniversidad de Zaragoza, SpainExaminersJesús Acero AceroUniversidad de Zaragoza, SpainDavid Paesa GarcíaBSH Home Appliances Spain

BSH Home Appliances Spain Eindhoven University of Technology, The Netherlands

Jorge Duarte

Zaragoza, Spain, October 18th 2019, 11:00

en Ingeniería de Aragón **Universidad** Zaragoza

What is a reluctance actuator? **ELECTRIC MACHINES** (SINGLE-COIL) RELUCTANCE **RELUCTANCE MACHINES** ACTUATORS □ High force density Coil □ Good efficiency Reduced cost □ Fault tolerance Air gap -Spring Armatur DC Motor - Faraday, 1821 □ Simple construction DC motor Compactness Alternator INFOLYTICA AC motor Perfect solution for: Transformer Stepper motor • Short-stroke actuators • Brushed machines Synchronous reluctance motor • Switch-type devices Permanent magnet machines Switched reluctance motor • Relays **Reluctance machines** Linear reluctance actuators Solenoid valves Electrostatic machines Single-coil reluctance actuators ٠ Slide 2 of 77 Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019

Why?

Collaboration agreement BSH Home Appliances Spain – Universidad de Zaragoza

B/S/H/

- Electronics
- Automatic control
- Mechanical engineering
- Materials
- Food technology
- ..

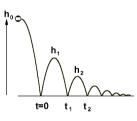
There are electromechanical relays in...

and solenoid valves in.

Gas cooktops, ovens and stoves

...because they are cheap, small and efficient, but they have some problems

Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019


Why?

Switch-type devices are designed to switch between two states (open/close)

 \rightarrow Reluctance actuator with position boundaries (~1mm, ~1ms)

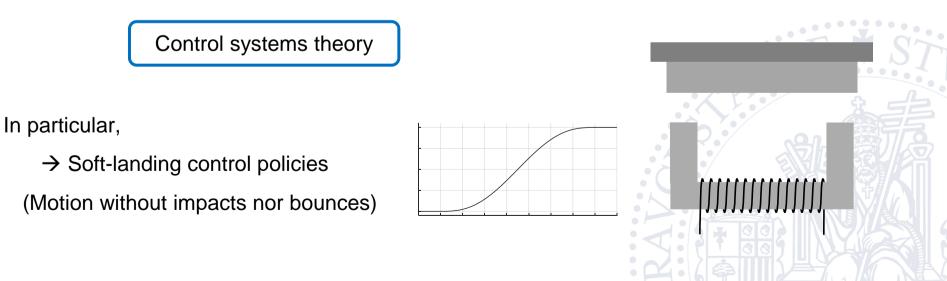
No control (constant voltage)

- → Impacts
- → Bouncing
- → Acoustic noise
- > Wear

In particular, in relays and valves...

- · Electric arc, contact welding
- Larger (and random) switching times
- Premature failure
- Poor regulation

Not present in more expensive actuators


What?

We want switch-type devices (relays and valves) which are...

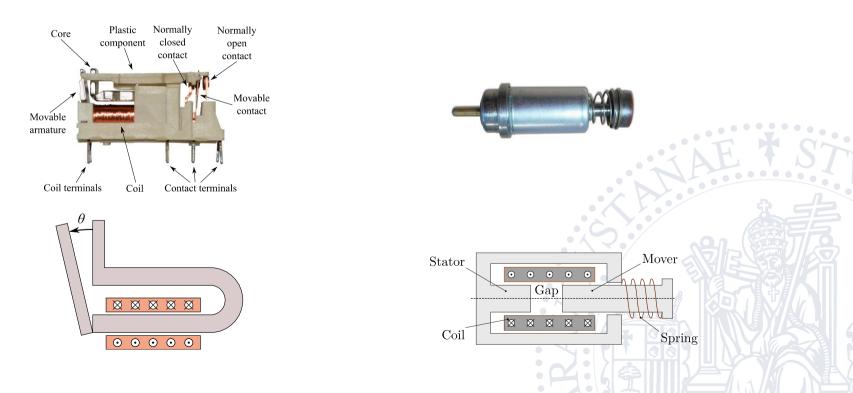
...small, efficient and cheap...

...but also silent, robust, fast and safe

How?

Thesis objectives

- 1) Design of control-oriented dynamical models for reluctance actuators
- 2) Evaluation of measurement techniques х $\dot{x} = f(x) + g(x)u$ 3) Design and analysis of estimation algorithms 4) Design and validation of control algorithms Coil Yoke Air gap Armatur Air gap 2 Spring Armature 100000000 Control



Solenoid valve

Devices under study

Switch-type devices used to illustrate the techniques presented in the thesis

Power relay

Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019

Outline

Introduction

Part I – Modeling and Experimentation

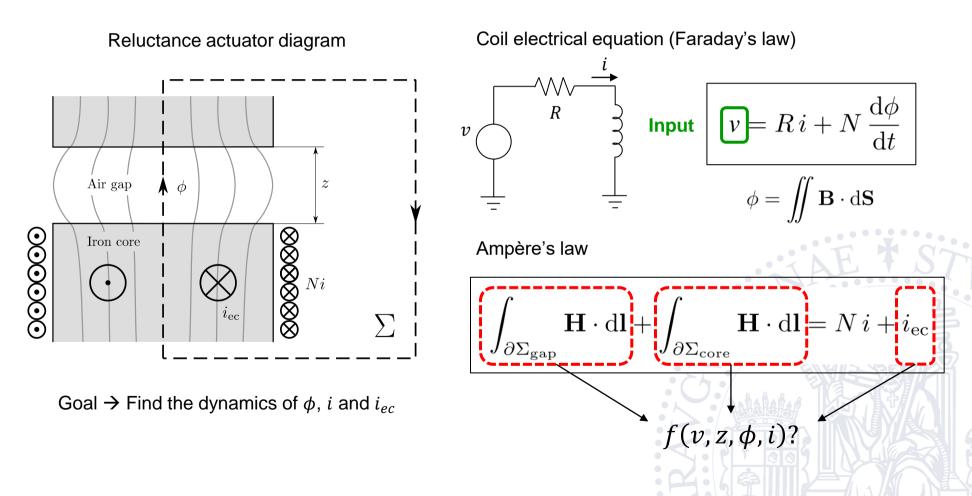
- 1. Electromagnetic Modeling
- 2. Dynamical Modeling of Reluctance Actuators
- 3. Measurement and Identification

Part II – Control and Estimation

- 4. Control
- 5. Estimation
- 6. Run-to-Run Control

Conclusions

1. Electromagnetic Modeling


- Modeling fundamentals
- Electromagnetic phenomena
- Energy balance

Departamento de Informática e Ingeniería de Sistemas Universidad Zaragoza 1543

Instituto Universitario de Investigación en Ingeniería de Aragón **Universidad** Zaragoza

Modeling fundamentals

Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019

Modeling methodologies – Magnetic equivalent circuits (MEC)

Approximate method for magnetic systems:

- Flux confined within the main paths
- Magnetic fields are uniform in the cross section

	1		

$$\mathbf{H} = \frac{\mathbf{B}}{\mu} \quad \Longrightarrow \int H \, \mathrm{d}l = \phi \, \mathcal{R} \qquad \boxed{\mathcal{R} = \int \frac{\mathrm{d}l}{\mu \, A}} \begin{cases} \text{Geometry} \\ \text{Materials} \\ \text{(Excitation)} \end{cases}$$

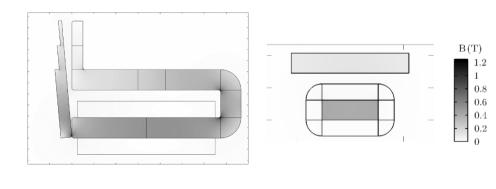
Reluctance actuators:

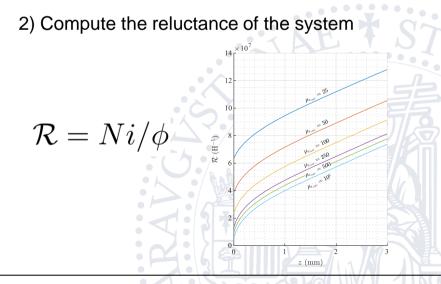
$$\int_{\partial \Sigma_{\text{gap}}} \mathbf{H} \cdot d\mathbf{l} + \int_{\partial \Sigma_{\text{core}}} \mathbf{H} \cdot d\mathbf{l} = N \, i + i_{\text{ec}} \longrightarrow \qquad \phi \left(\mathcal{R}_{\text{gap}} + \mathcal{R}_{\text{core}} \right) = N \, i + i_{\text{ec}}$$
$$\mathcal{R}_{\text{gap}} = \int_{\partial \Sigma_{\text{gap}}} \frac{dl}{\mu_0 A} \qquad \mathcal{R}_{\text{core}} = \int_{\partial \Sigma_{\text{core}}} \frac{dl}{\mu A}$$

Reluctance

Modeling methodologies – Finite element method (FEM)

Numerical method:

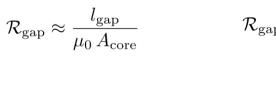

- Detailed analysis
- Computationally expensive



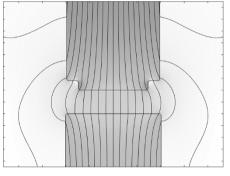
In this thesis:

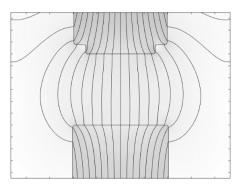
1) Verify MEC assumptions (Field uniformity)

Electromagnetic phenomena – Flux fringing


- Surroundings of air gaps
- · Magnetic flux spreads out into the air
- Transmission into a low permeable material
- Affects the reluctance of the air gap

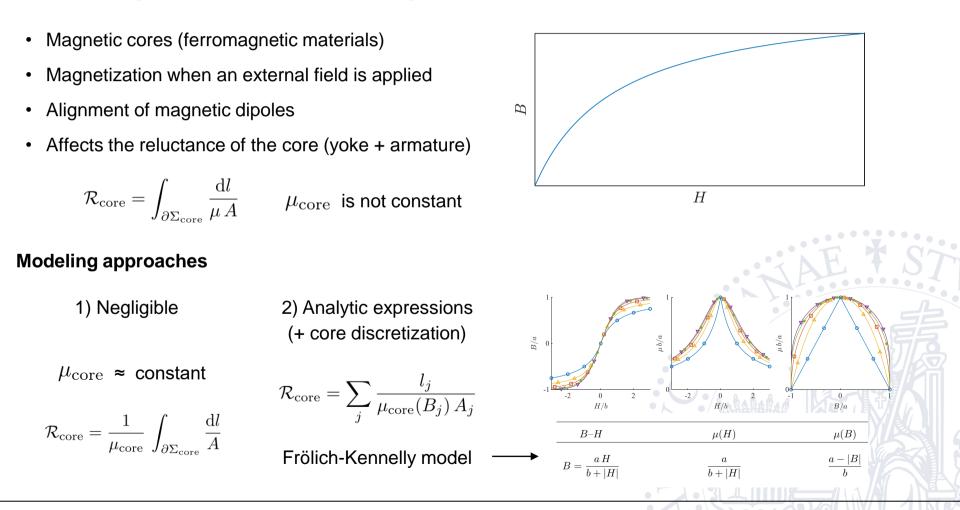
$$\mathcal{R}_{\rm gap} = \int_{\partial \Sigma_{\rm gap}} \frac{\mathrm{d}l}{\mu_0 \, A}$$


Modeling approaches


1) Negligible

2) Analytic expressions

$$\mathcal{R}_{\text{gap}} = \frac{\frac{l_{\text{gap}}}{\mu_0 A_{\text{core}}}}{1 + \frac{l_{\text{gap}}}{\sqrt{A_{\text{core}}}} \log\left(\frac{2 \, l_{\text{w}}}{l_{\text{gap}}}\right)}$$

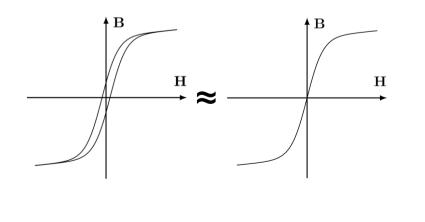


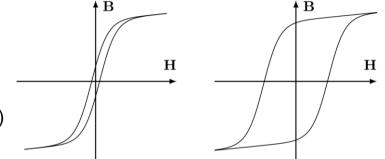
3) Finite Element Method

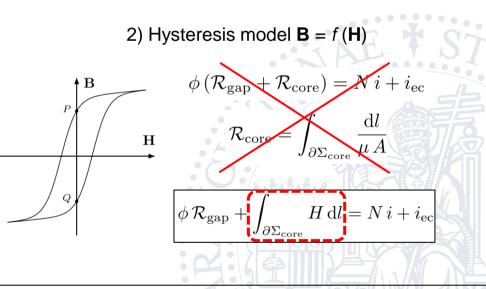
$$\mathcal{R}_{\mathrm{gap}} = \mathcal{R}_{\mathrm{gap}}(l_{\mathrm{gap}})$$

Electromagnetic phenomena – Magnetic saturation

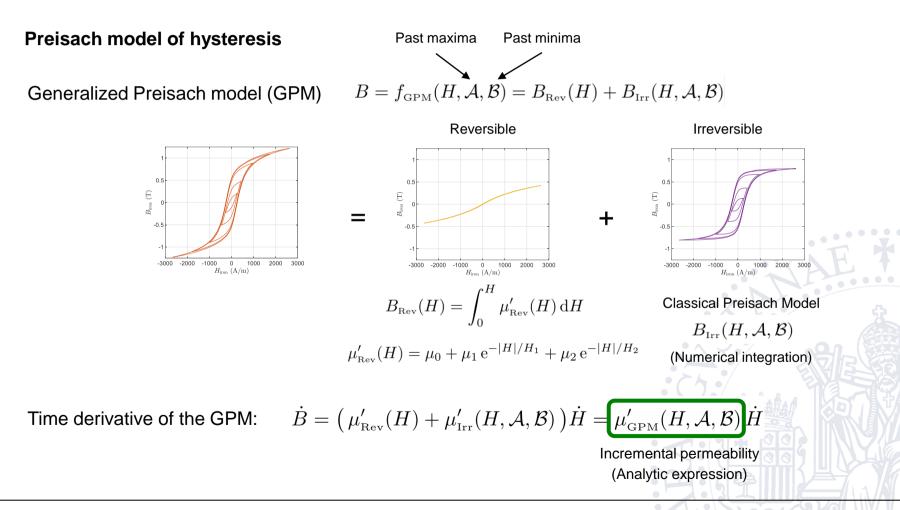
Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019




Electromagnetic phenomena – Magnetic hysteresis


- Magnetic cores (ferromagnetic materials)
- The alignment of magnetic dipoles is irreversible
- Hysteretic behavior between B and H
- Affects the magnetic behavior of the core (yoke + armature)

Modeling approaches



Electromagnetic phenomena – Magnetic hysteresis

Slide 16 of 77

en Ingeniería de Aragón **Universidad** Zaragoza

Electromagnetic phenomena – Eddy currents

• Induced currents in conductive materials due to varying magnetic fields

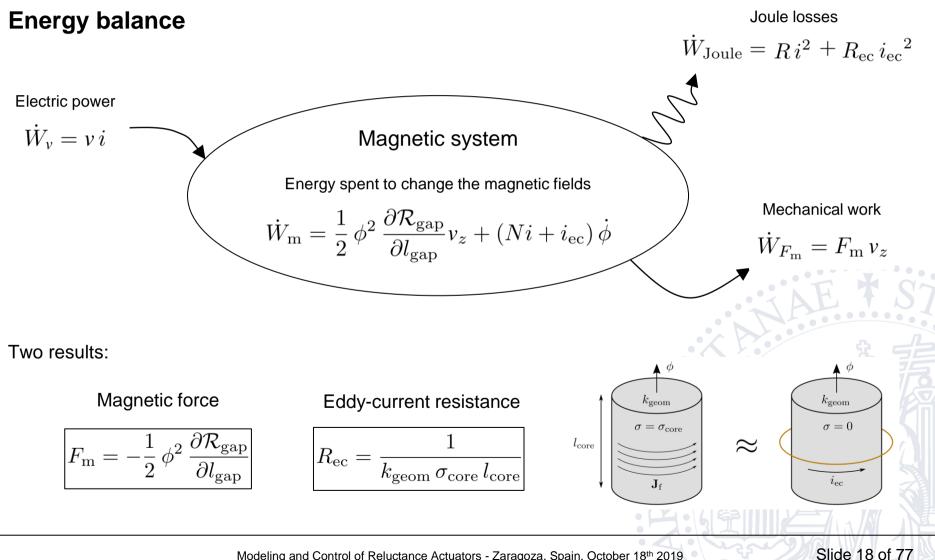
Modeling approaches

1) Negligible $i_{ec} = 0$

2) Analytic solution based on an infinite cylindrical core

$$\mathbf{B}(t,\rho) = B_{z}(t,\rho)\,\hat{\mathbf{z}} = \sum_{n=0}^{\infty} \left(b_{n}(t)\,\rho^{n}\right)\,\hat{\mathbf{z}}.$$

$$\mathbf{H} = \frac{\mathbf{B}}{\mu} \quad \mathbf{J}_{\mathrm{f}} = \sigma \mathbf{E} \quad \text{Ampère, Fourier}$$


$$\sum_{m=0}^{\infty} \left(\frac{(\mu\sigma r^{2}/4)^{m}}{m!^{2}(m+1)} \frac{\mathrm{d}^{m}i_{\mathrm{ec}}}{\mathrm{d}t^{m}}\right) = -\frac{h\sigma}{4\pi} \sum_{m=0}^{\infty} \left(\frac{(\mu\sigma r^{2}/4)^{m}}{m!^{2}(m+1)^{2}} \frac{\mathrm{d}^{m+1}\phi}{\mathrm{d}t^{m+1}}\right)$$

$$\text{First order}$$

$$approximation$$

$$i_{\mathrm{ec}} = -\frac{h\sigma}{4\pi} \frac{\mathrm{d}\phi}{\mathrm{d}t} \quad \bigoplus \quad i_{\mathrm{ec}} = -k_{\mathrm{geom}} \sigma_{\mathrm{core}} l_{\mathrm{core}} \frac{\mathrm{d}\phi}{\mathrm{d}t} \quad \bigoplus \quad i_{\mathrm{ec}} = -k_{\mathrm{ec}} \frac{\mathrm{d}\phi}{\mathrm{d}t}$$

Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019

Contributions

- Detailed time-domain analysis of electromagnetic phenomena ٠
- Time derivative of the Preisach model Incremental permeability ٠
- Analytic solution for induced currents in circular cores ٠
- Energy balance

Publications

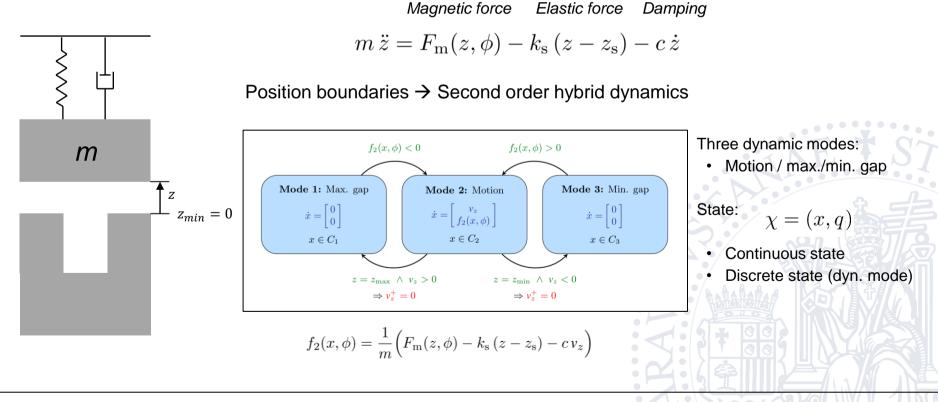
E. Ramirez-Laboreo, C. Sagues, and S. Llorente, "A new model of electromechanical relays for predicting the motion and electromagnetic dynamics", in IEEE Industry Applications Society Annual Meeting, Addison, TX, Oct. 2015, pp. 1-8.

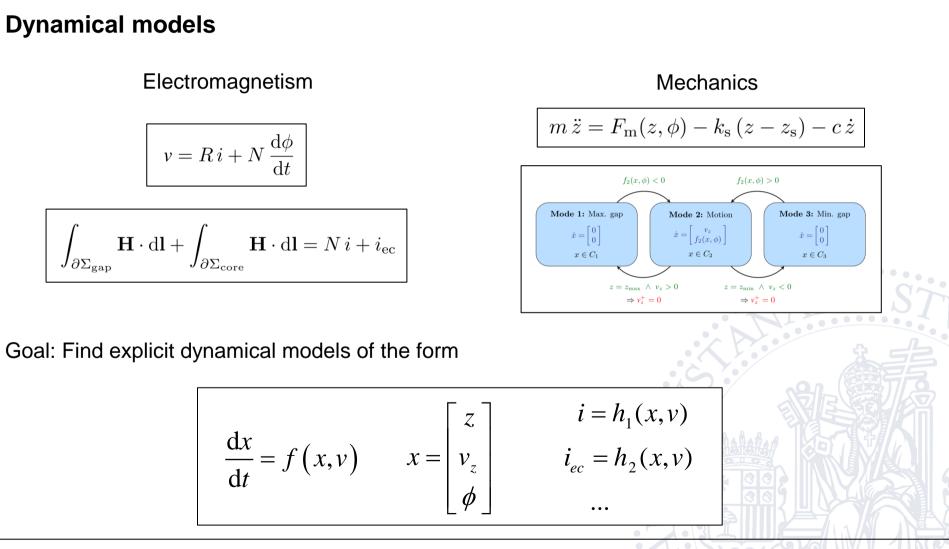
E. Ramirez-Laboreo, C. Sagues and S. Llorente, "A New Model of Electromechanical Relays for Predicting the Motion and Electromagnetic Dynamics", IEEE Transactions on Industry Applications, vol. 52, no. 3, pp. 2545-2553, May/Jun. 2016.

E. Ramirez-Laboreo, E. Moya-Lasheras and C. Sagues, "Reluctance actuator characterization via FEM simulations and experimental tests", Mechatronics, vol. 56, pp. 58-66, Dec. 2018.

E. Ramirez-Laboreo, M. G. L. Roes and C. Sagues, "Hybrid Dynamical Model for Reluctance Actuators Including Saturation, Hysteresis and Eddy Currents", IEEE/ASME Transactions on Mechatronics, vol. 24, no. 3, pp. 1396-1406, Jun. 2019.

2. Dynamical Modeling of Reluctance Actuators


- Mechanical modeling
- Explicit dynamical models for reluctance actuators


Mechanical modeling

Most reluctance actuators have one-degree-of-freedom movements

→ Mass-spring-damper system

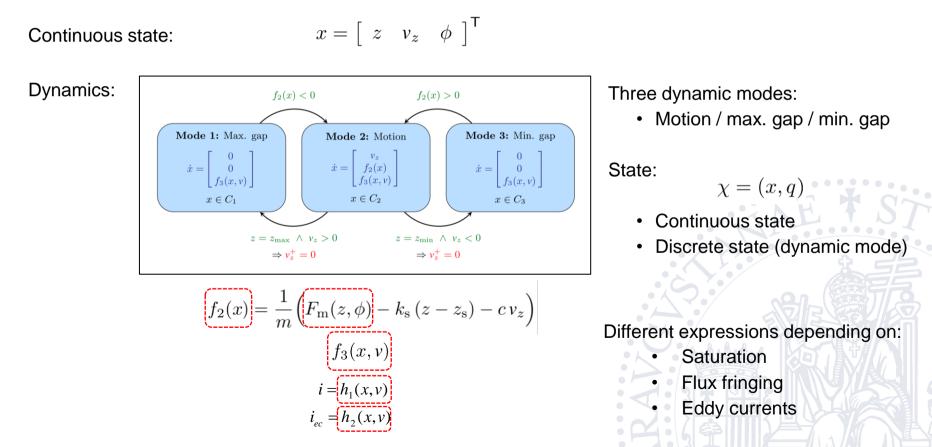
Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019

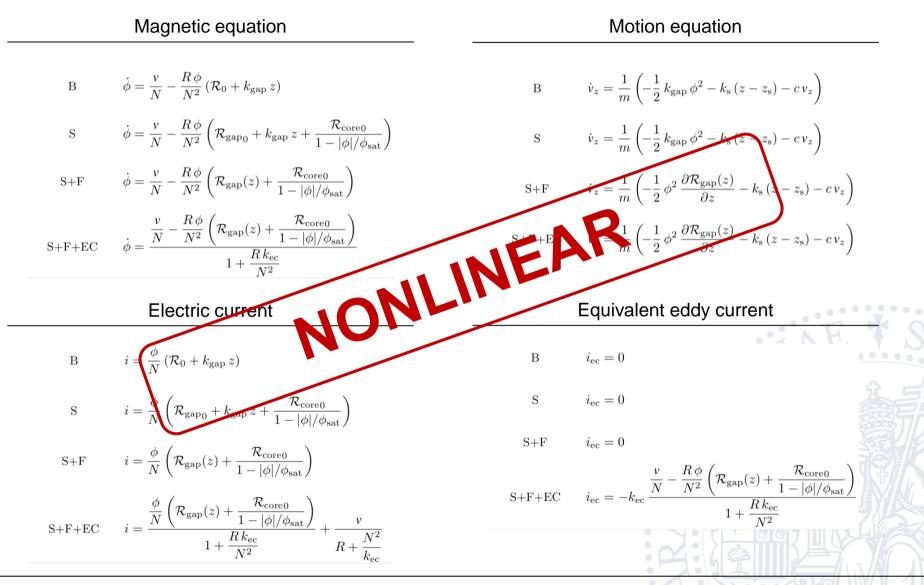
Slide 22 of 77

Dynamical models

Several possibilities (Electromagnetic phenomena, type of motion, bouncing) Explicit solutions for:

- Rectilinear 1 DOF motion with purely inelastic collisions
- Five models depending on the electromagnetic phenomena considered

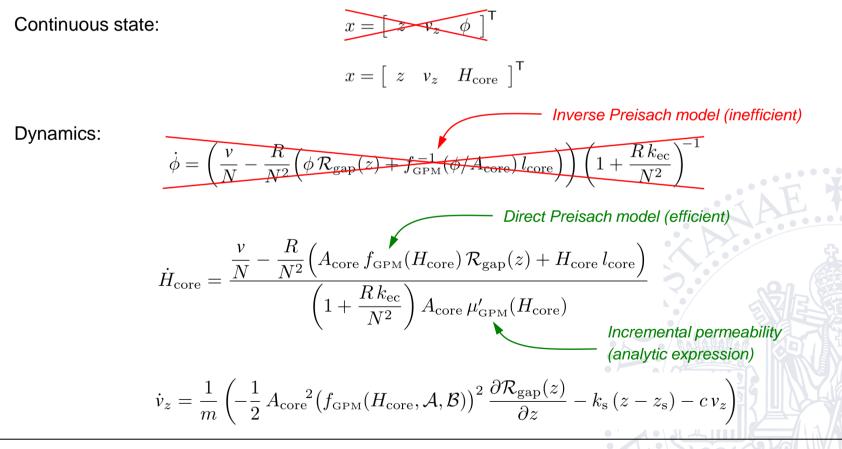

#	Model	Saturation	Flux fringing	Eddy currents	Hysteresis	F ¥ 57
0	В	X	X	X	x	
1	S	\checkmark	X	x	x	
2	S+F	\checkmark	\checkmark	х	X	
3	S+F+EC	\checkmark	\checkmark	\checkmark	C x	
4	S+H+F+EC	\checkmark	\checkmark	\checkmark		+ Complexity



Dynamical models without magnetic hysteresis (Models #0 to #3)

Common structure:

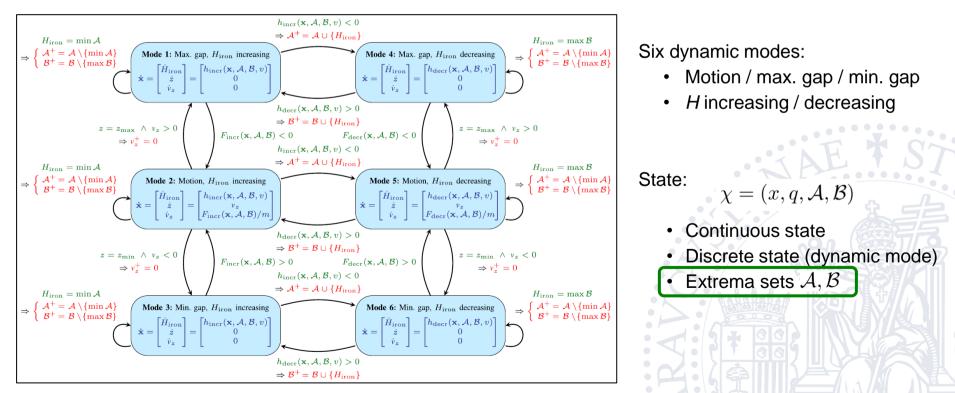
Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019


Slide 25 of 77

Dynamical model including magnetic hysteresis (Model #4)

Model #4 includes the Preisach model of hysteresis

Slide 26 of 77



Dynamical model including magnetic hysteresis (Model #4)

The hysteresis model depends on the direction of H_{core} and the extrema sets \mathcal{A}, \mathcal{B}

Hybrid automaton:

Contributions

- Model including saturation, hysteresis, eddy currents, flux fringing and the armature motion
- Efficient dynamical solution of the Preisach model of hysteresis
- New class of hybrid systems

Publications

<u>E. Ramirez-Laboreo</u>, C. Sagues, and S. Llorente, "A new model of electromechanical relays for predicting the motion and electromagnetic dynamics", in *IEEE Industry Applications Society Annual Meeting*, Addison, TX, Oct. 2015, pp. 1-8.

<u>E. Ramirez-Laboreo</u>, C. Sagues and S. Llorente, "A New Model of Electromechanical Relays for Predicting the Motion and Electromagnetic Dynamics", *IEEE Transactions on Industry Applications*, vol. 52, no. 3, pp. 2545-2553, May/Jun. 2016.

<u>E. Ramirez-Laboreo</u>, M. G. L. Roes and C. Sagues, "Hybrid Dynamical Model for Reluctance Actuators Including Saturation, Hysteresis and Eddy Currents", *IEEE/ASME Transactions on Mechatronics*, vol. 24, no. 3, pp. 1396-1406, Jun. 2019.

3. Measurement and Identification

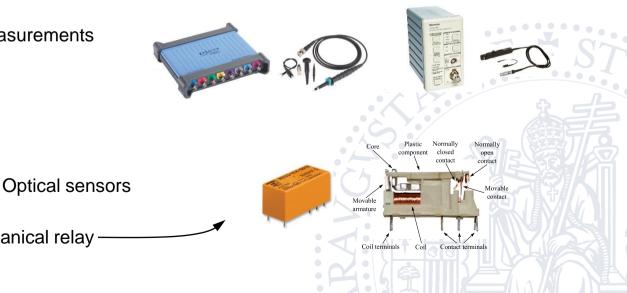
- Position measurement
- Other measurements
- Model identification

A.	Departamento de Informática e Ingeniería de Sistemas	As.	Ins et
542	Universidad Zaragoza		U

Measurements in reluctance actuators

Purposes:

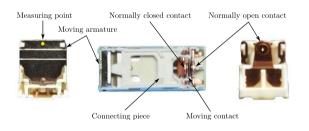
- Check modeling assumptions
- Parameter estimation
- Control / Estimation


Electromagnetic variables:

- Voltage and current → Direct measurements
- Magnetic flux → Estimation

Position:

- Specifications: 50 µm, 10 kHz
- No interference
- · Evaluation using the electromechanical relay -



Position measurements

Laser sensor

- Real-time measurement
- Captures bouncing
- Accessibility problems

Line scan camera

Moving armature Normally closed contact Normally open contact Connecting piece Moving contact Observed line

High speed camera

- Captures any component
- Requires processing
- Lighting limits performance

Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019

Captures all components

Requires (hard) processing

Lighting limits performance

•

•

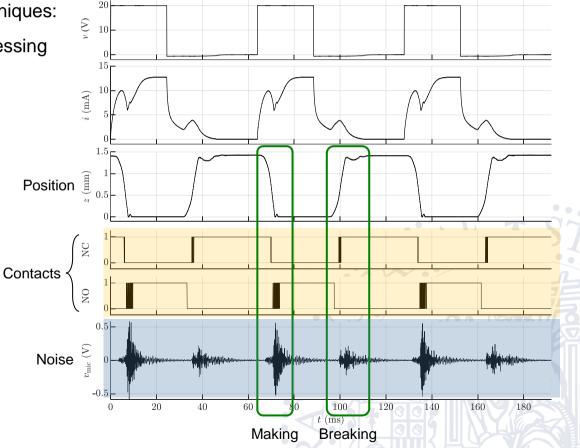
Departamento de Informática e Ingeniería de Sistemas Universidad Zaragoza

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

Other measurements

Drawbacks of position measurement techniques:

- Accessibility / lighting conditions / processing
- Requires disassembling the device

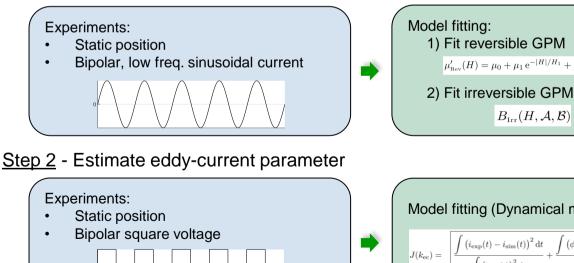


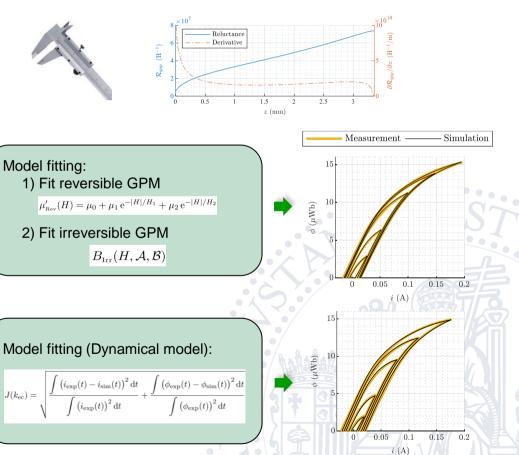
• <u>High cost</u> (x10,000-100,000 switches)

Alternative measurements?

Electrical contacts (only relays) / Noise:

- Easily obtainable
- · Linked to the armature motion


Identification

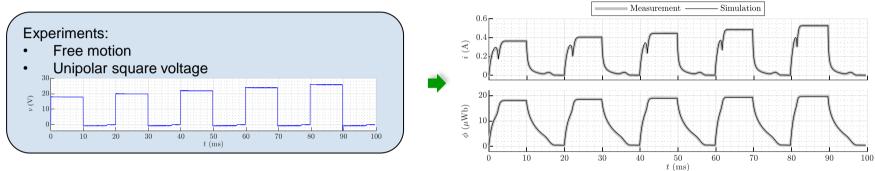

Identification procedure (Complete model):

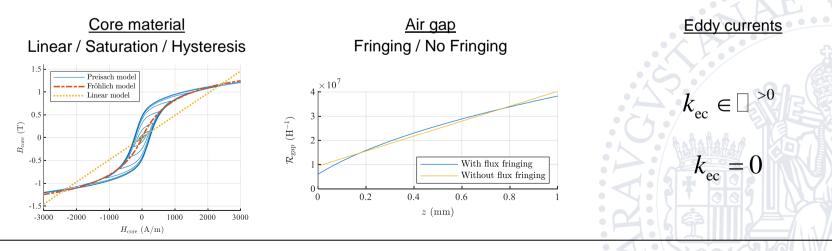
<u>Step 0</u>

0a. Obtain geometry and electrical parameters 0b. Model air reluctance (FEM, Analytical)

Step 1 - Estimate hysteresis parameters

Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019


Departamento de Informática e Ingeniería de Sistemas Universidad Zaragoza


Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

Identification

Step 3 - Validation

Similar identification procedures can be applied to all the models

Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019

Slide 34 of 77

Departamento de Informática e Ingeniería de Sistemas Universidad Zaragoza

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

Contributions

- Analysis of position measuring instruments
- Use of alternative measurements
- Parameter estimation procedure / Extension to simpler models

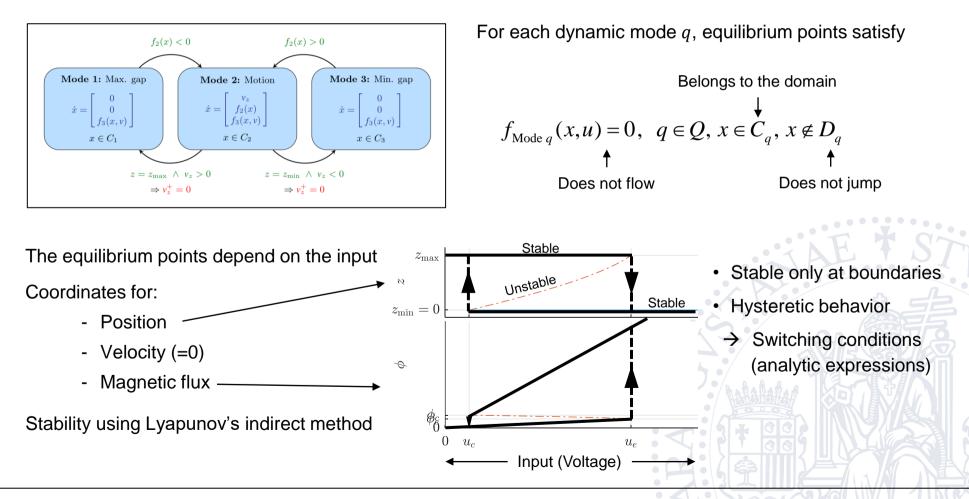
Publications

<u>E. Ramirez-Laboreo</u>, E. Moya-Lasheras and C. Sagues, "Reluctance actuator characterization via FEM simulations and experimental tests", *Mechatronics*, vol. 56, pp. 58-66, Dec. 2018.

<u>E. Ramirez-Laboreo</u>, E. Moya-Lasheras and C. Sagues, "Real-Time Electromagnetic Estimation for Reluctance Actuators", *IEEE Transactions on Industrial Electronics*, vol. 66, no. 3, pp. 1952-1961, Mar. 2019.

<u>E. Ramirez-Laboreo</u>, M. G. L. Roes and C. Sagues, "Hybrid Dynamical Model for Reluctance Actuators Including Saturation, Hysteresis and Eddy Currents", *IEEE/ASME Transactions on Mechatronics*, vol. 24, no. 3, pp. 1396-1406, Jun. 2019.

÷ P


Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

4. Control

- Control systems properties
- Feedback control
- Open-loop control

Control systems properties – Stability

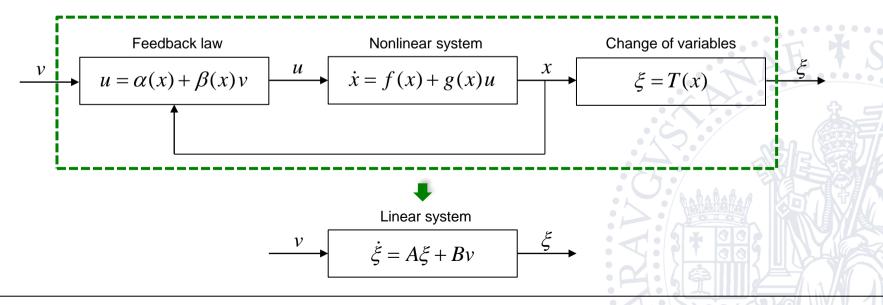
Control systems properties – Controllability and observability

System	<u>Controllability</u>	<u>Observability</u>
$\dot{x} = A x + B u$ $y = C x$	$\operatorname{rank} (\mathcal{C}) = n$ $\mathcal{C} = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$	$\operatorname{rank}(\mathcal{O}) = n \qquad \mathcal{O} = \begin{bmatrix} C \\ CA \\ CA^{2} \\ \vdots \\ CA^{n-1} \end{bmatrix}$
$\dot{x} = \varphi(x, u) = f(x) + g(x)u$ $y = h(x)$	$\exists k : \operatorname{rank} \left(\mathcal{C}_k(x) \right) = n$ $\mathcal{C}_k(x) = \left[g(x), \operatorname{ad}_f g(x), \dots, \operatorname{ad}_f^{k-1} g(x) \right]$ (Lie theory)	$\exists k : \operatorname{rank} (\mathcal{O}_k(x)) = n$ $\mathcal{O}_k(x) = \begin{bmatrix} \frac{\partial h}{\partial x} \\ \frac{\partial (\mathcal{L}_{\varphi} h)}{\partial x} \\ \vdots \\ \frac{\partial (\mathcal{L}_{\varphi}^{k-1} h)}{\partial x} \end{bmatrix}$
Reluctance actuator $\dot{z} = f_1(x) = v_z,$ $\dot{v}_z = f_2(x) = \frac{1}{m} \left(-\frac{1}{2} k_{gap} \phi^2 - k_s (z - v_z) \right)$ $\dot{\phi} = f_3(x, u) = \frac{u}{N} - \frac{R}{N^2} \phi (\mathcal{R}_0 + k_{gap})$		Observable (Observable for all x , except for $\phi=0$)

Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019

Slide 38 of 77

State-of-the-art

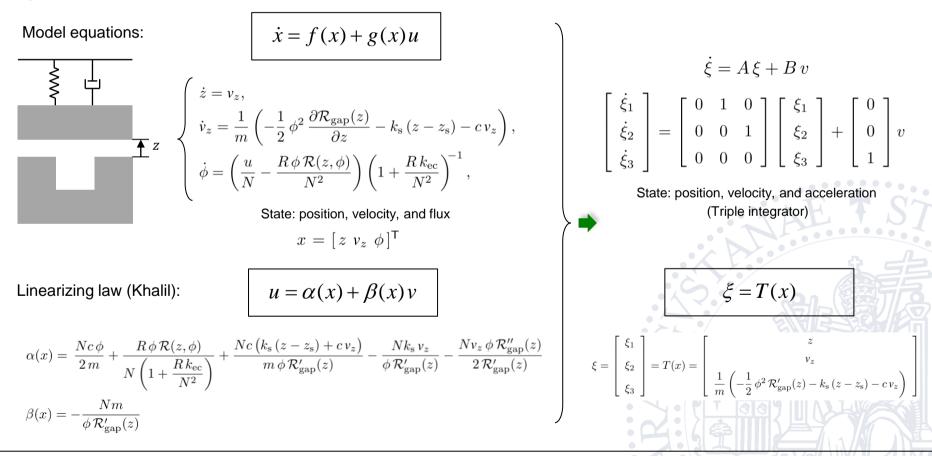

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

Feedback control

Soft-landing of reluctance actuators \rightarrow Nonlinear position control of electromechanical system:

- Lyapunov-based methods (sliding mode control)
- Linearization, Gain scheduling

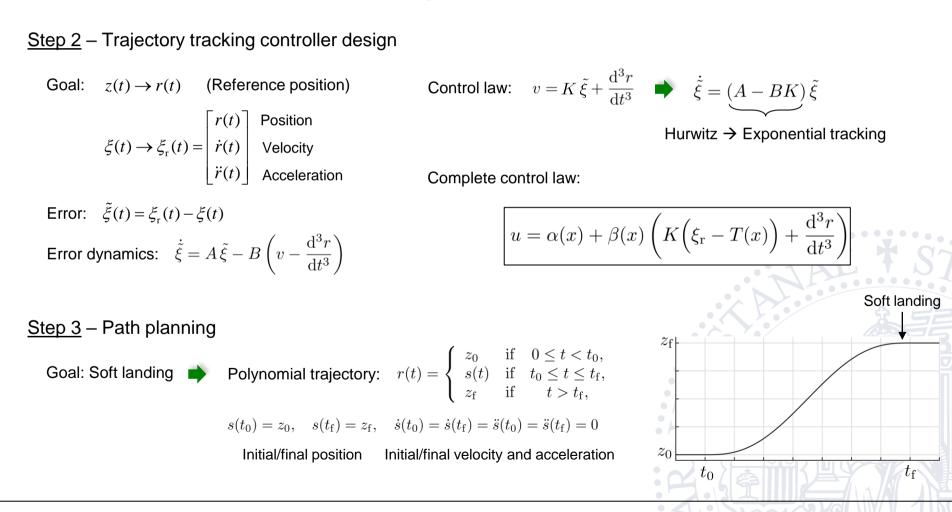
What is feedback linearization?



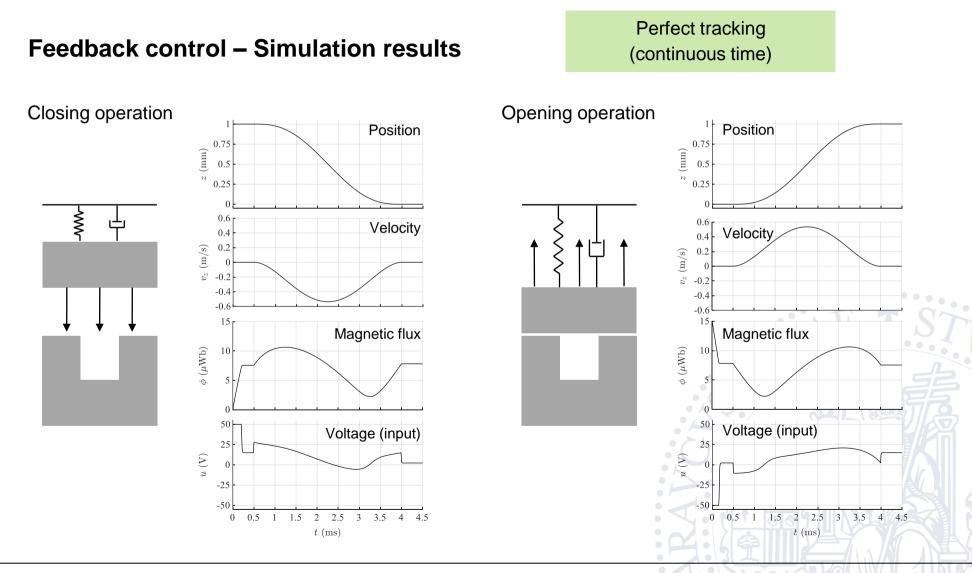
Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019

Feedback control – Controller design

Step 1 – Feedback linearization

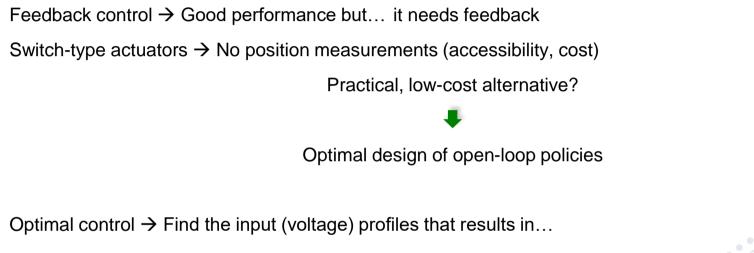


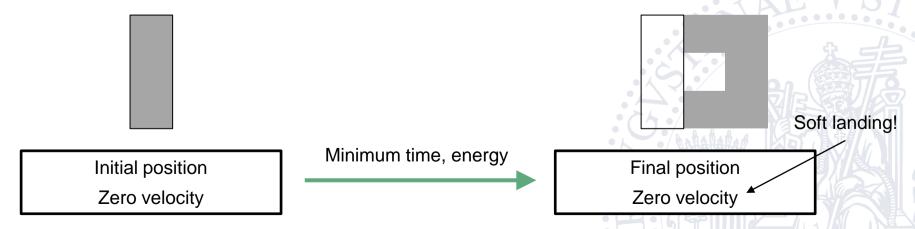
Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019


en Ingeniería de Aragón Universidad Zaragoza

Feedback control – Controller design

Slide 41 of 77





Open-loop control

Open-loop control – Optimal policy design

1) Problem formulation

Dynamic optimization problem

$\min_{u(t)}$	$J = \int_{t_0}^{t_{\rm f}} V(\mathbf{x}(t), u(t)) \mathrm{d}t$
s.t.	$\dot{\mathbf{x}}(t) = \mathbf{f}\left(\mathbf{x}(t), u(t)\right)$
	$\alpha \le u(t) \le \beta$
	$\phi(t) \ge 0$
	$\mathbf{x}(t_0) = \mathbf{x}_0 = \begin{bmatrix} z_0 & 0 & \phi_0 \end{bmatrix}^{\mathrm{T}}$
	$\mathbf{x}(t_{\mathrm{f}}) = \mathbf{x}_{\mathrm{f}} = \begin{bmatrix} z_{\mathrm{f}} & 0 & \phi_{\mathrm{f}} \end{bmatrix}^{\mathrm{T}}$
	$F_{\rm mag}(z_0,\phi_0) - k_{\rm s}(z_0 - z_{\rm s}) = 0$
	$F_{\rm mag}(z_{\rm f},\phi_{\rm f}) - k_{\rm s}(z_{\rm f}-z_{\rm s}) = 0$

2) Solution method	
Pontryagin method	
Hamiltonian	
$\mathbf{H}(\mathbf{x},\boldsymbol{\lambda},\boldsymbol{u}) = V(\mathbf{x},\boldsymbol{u}) + \boldsymbol{\lambda}^{\mathrm{T}} \mathbf{f}(\mathbf{x},\boldsymbol{u}),$	
Optimal input	
$u^* = \min_{u \in [\alpha,\beta]} H(\mathbf{x}, \lambda, u) \longrightarrow H^*(\mathbf{x}, \lambda) = H(\mathbf{x}, \lambda, u^*)$	
Optimal trajectory	
$\begin{cases} \dot{\mathbf{x}}(t) = + \frac{\partial \mathbf{H}^*}{\partial \boldsymbol{\lambda}^*} \\ \dot{\boldsymbol{\lambda}}(t) = -\frac{\partial \mathbf{H}^*}{\partial \mathbf{x}} \\ \mathbf{x}(t_0) = \mathbf{x}_0 = \begin{bmatrix} z_0 & 0 & \phi_0 \end{bmatrix}^{\mathrm{T}} \\ \mathbf{x}(t_{\mathrm{f}}) = \mathbf{x}_{\mathrm{f}} = \begin{bmatrix} z_{\mathrm{f}} & 0 & \phi_{\mathrm{f}} \end{bmatrix}^{\mathrm{T}} \end{cases}$	

3) Numerical solutions

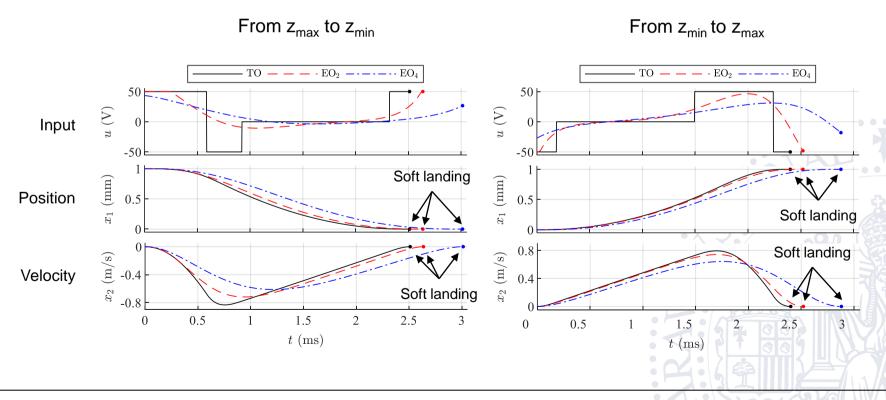
a) Time-optimal solution

 $V(\mathbf{x}, u) = 1$

Fastest possible movement

b) Energy-optimal solutions

$$V(\mathbf{x},u) = u^2$$


Larger duration, but less ٠ energy consumption

Open-loop control – Simulation results

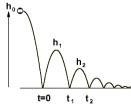
Nominal system

Results corresponding to the time-optimal solution and two energy-optimal policies

4. Control

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

Open-loop control – Simulation results


Perturbed system

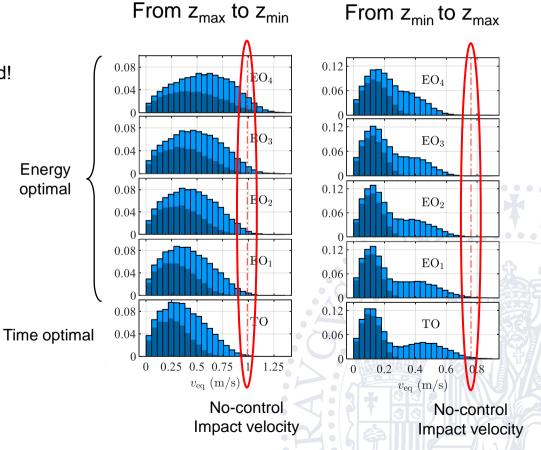
Monte Carlo analysis

Nominal parameter set
$$\mathbf{p} \longrightarrow \mathbf{p}_{pert} \sim N(\mathbf{p}, \Sigma^2), \quad \Sigma = \text{diag}(0.01\mathbf{p})$$

For any given simulation:

Equivalent impact velocity
$$\longrightarrow v_{eq} = +\sqrt{\frac{m_{pert}}{m}\sum_{i} (v_z(t_i))^2}$$

Takes into account the bouncing phenomenon (if there are bounces)



Open-loop control – Simulation results

Analysis of impact velocities

Soft-landing is not always achieved...

...but impact velocities are greatly reduced!

Contributions

- Stability, controllability and observability analysis Explanation of switching behavior
- Application of feedback linearization to reluctance actuators
- Robustness analysis of optimal soft-landing open-loop policies

Publications

<u>E. Ramirez-Laboreo</u>, E. Moya-Lasheras and C. Sagues, "Optimal Open-Loop Control Policies for a Class of Nonlinear Actuators", in 2019 European Control Conference (ECC), Napoli, Italia, Jun. 2019.

E. Moya-Lasheras, E. Ramirez-Laboreo and C. Sagues, "Probability-Based Control Design for Soft Landing of Short-Stroke Actuators", IEEE Transactions on Control Systems Technology, in press, 2019.

5. Estimation

- Electromagnetic estimation
- Position estimation

Electromagnetic estimation

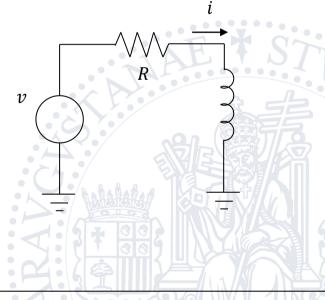
Estimation of electromagnetic variables on reluctance actuators

<u>Magnetic flux / Flux linkage</u> $\lambda = N\phi$

- Parameter estimation / System identification
- Force prediction

$$F_{\rm m} = -\frac{1}{2} \, \phi^2 \, \frac{\partial \mathcal{R}_{\rm gap}}{\partial l_{\rm gap}}$$

- Great variations with temperature \rightarrow Temperature sensor
- Fault detection


Inductance/Reluctance L =

• Depends on the armature position \rightarrow Position estimation

$$\mathcal{R} = \int \frac{\mathrm{d}l}{\mu \, A}$$

Voltage and current can be easily measured

$$v = R \, i + N \, \frac{\mathrm{d}\phi}{\mathrm{d}t}$$

Electromagnetic estimation – SEMERA Algorithm

Stochastic Electromagnetic Estimation for Reluctance Actuators Based on Kalman filtering theory

 $1 \setminus \langle \rangle$

Observation model

Based on the electrical equation of an inductor

$$v(t) = R(t) i(t) + \frac{d\lambda(t)}{dt}$$
$$\downarrow$$
$$\bar{y}_k = H_k x_k + v_k$$

 $\begin{array}{ll} \text{Observation} & \bar{y}_k = \bar{v}_k, \\ \text{Obs. matrix} & H_k = \left[\begin{array}{cc} \bar{i}_k & \bar{i}_k / \Delta & -\bar{i}_{k-1} / \Delta \end{array} \right], \\ \text{State} & x_k = \left[\begin{array}{cc} R_k & L_k & L_{k-1} \end{array} \right]^{\mathsf{T}}, \\ \text{Obs. noise} & v_k = \tilde{v}_k - \tilde{i}_k \left(R_k + L_k / \Delta \right) + \tilde{i}_{k-1} L_{k-1} / \Delta. \end{array}$

Process model

- Constant resistance
- Constant variation of L

$$\hat{R}_{k+1/k} = \hat{R}_{k/k}$$

$$\hat{L}_{k+1/k} = \hat{L}_{k/k} + \left(\hat{L}_{k/k} - \hat{L}_{k-1/k}\right)$$

$$\mathbf{x}_{k+1} = F \, \mathbf{x}_k + G \, \mathbf{w}_k$$

$$F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 1 & 0 \end{bmatrix} \quad G \mathbf{w}_k = \begin{bmatrix} \dot{R}_k \, \Delta \\ \ddot{L}_k \, \Delta^2 \\ 0 \end{bmatrix}$$

 $H_k = \begin{bmatrix} \bar{i}_k & \bar{i}_k/\Delta \end{bmatrix}$

Electromagnetic estimation – SEMERA Algorithm

In addition...

Observability analysis

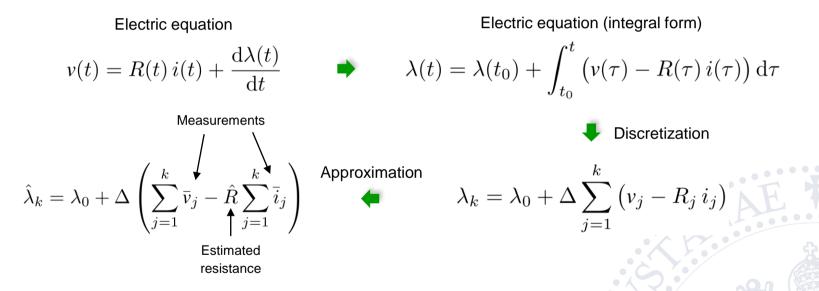
- Explains the selection of state variables
- Not observable for constant variation of i ($i_{k+j} = i_k + jd$ $j \in \mathbb{N}$ $d \in \mathbb{R}$)

Convergence analysis

• Excitation conditions $0 < \beta_1 I \le W_{O[k, k+n]} \le \beta_2 I$

Expert rule

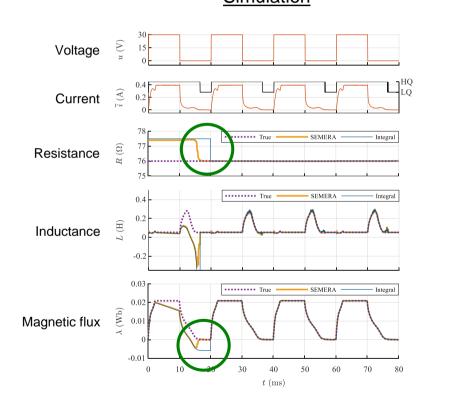
- The observation matrix depends on current measurements
- When i_k is close to zero, the signal-to-noise ratio is very poor...


...but we know that the actuator returns to the original position $\Rightarrow \hat{L}_k = \mu_{L_0}$

Slide 52 of 77

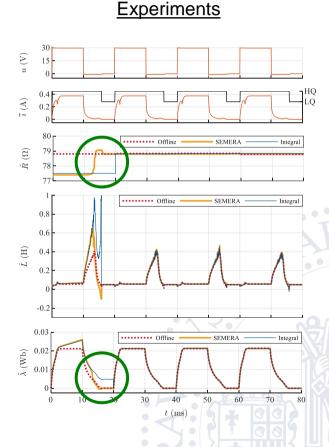
Electromagnetic estimation – Integral observer

Computationally-inexpensive observer



How to update the value of \hat{R} ? \rightarrow Switch-type actuators operate periodically

$$\hat{\lambda}_n = \hat{\lambda}_{n+m} \quad \Longrightarrow \quad \hat{R} = \sum_{j=n+1}^{n+m} \bar{v}_j \left(\sum_{j=n+1}^{n+m} \bar{i}_j\right)^{-1}$$


At the reset events, \hat{R} is recalculated and the integrals are reset

Simulation

Position estimation

Position measurements in switch-type actuators are not viable (cost, accessibility, processing)

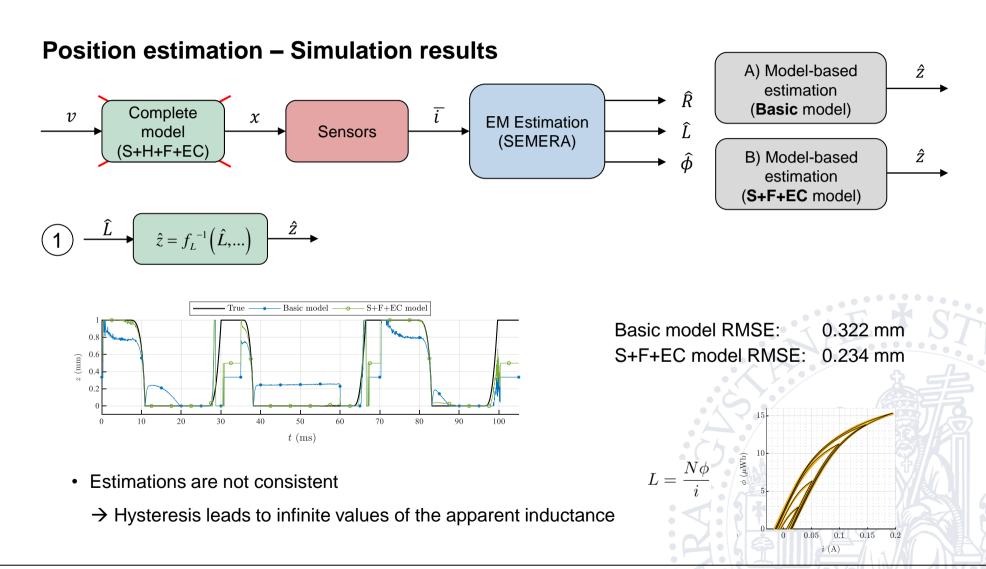
How to perform feedback control? \rightarrow Position estimation

In the literature:

- Inductance method (Inductance estimation + Inductance-position model)
- Sliding-mode observers (Models without hysteresis)

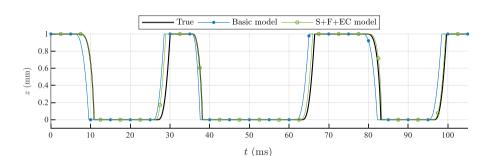
In this thesis:

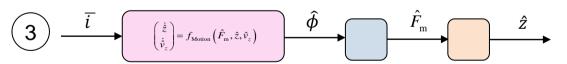
- Evaluate the inductance-based estimation method
- Analyze the effects of magnetic hysteresis
- Compare different estimation approaches

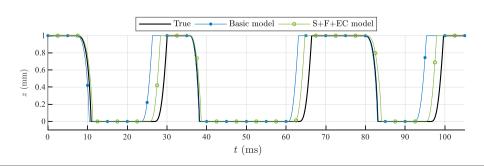


Position estimation – Estimation approaches

Current situation:




1543


Instituto Universitario de Investigación en Ingeniería de Aragón **Universidad** Zaragoza

Position estimation – Simulation results

$$2 \xrightarrow{\hat{\phi}} \hat{F}_{m} = F_{m}\left(\hat{\phi},...\right) \xrightarrow{\hat{F}_{m}} \left(\begin{pmatrix} \dot{z} \\ \dot{z} \\ \dot{v}_{z} \end{pmatrix} = f_{Motion}\left(\hat{F}_{m},\hat{z},\hat{v}_{z}\right) \xrightarrow{\hat{z}}$$

BEST POLICY Basic model RMSE: 0.190 mm S+F+EC model RMSE: 0.078 mm

- Estimations are consistent •
- Precision is not high enough for control ٠

Basic model RMSE: 0.297 mm S+F+EC model RMSE: 0.177 mm

Estimations are consistent ٠

• Results are worse than using

Slide 58 of 77

Contributions

- Real-time estimation of resistance, inductance and flux \rightarrow No need of additional sensors
- Influence of hysteresis on position estimation algorithms → Do not use inductance-based methods

Publications / Patents

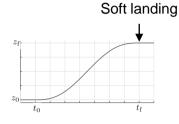
E. Moya-Lasheras, C. Sagues, <u>E. Ramirez-Laboreo</u>, and S. Llorente, "Nonlinear Bounded State Estimation for Sensorless Control of an Electromagnetic Device", in *56th IEEE Conference on Decision and Control*, Melbourne, Australia, Dec. 2017.

<u>E. Ramirez-Laboreo</u>, E. Moya-Lasheras and C. Sagues, "Real-Time Electromagnetic Estimation for Reluctance Actuators", *IEEE Transactions on Industrial Electronics*, vol. 66, no. 3, pp. 1952-1961, Mar. 2019.

S. Llorente Gil, C. Sagues Blazquiz, <u>E. Ramirez Laboreo</u>, E. Moya Lasheras, "Domestic Appliance Device", international patent application WO 2019/106488 (A1).

6. Run-to-Run Control

- Introduction
- Controller design
- Experimental results


то

1 1.25

In previous chapters...

Feedback control: Good performance, but it needs feedback

- \rightarrow Position measurements are not viable
- \rightarrow Estimations are (still) not accurate enough

Open-loop control: Practical and cost effective solution to reduce impact velocities... ...but soft landing only in a few cases

Noise measurements (and electrical contacts) contain useful information Measurement:

Estimation (Integral observer): Estimation benefits from the repetitive operation of switch-type devices

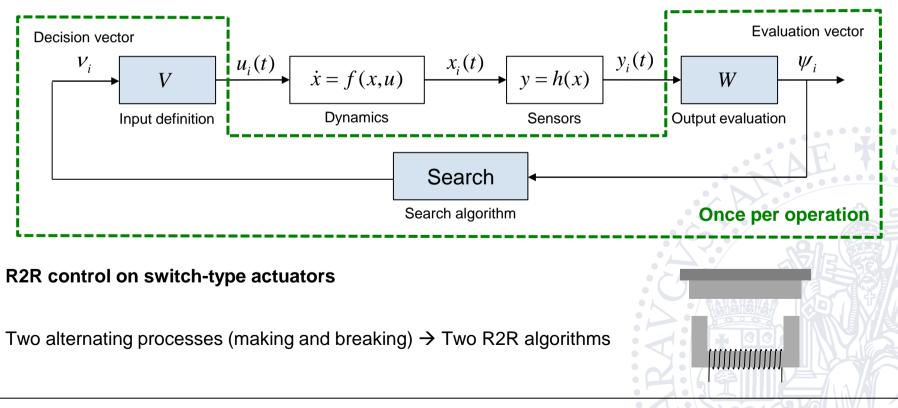
How to improve the robustness of open-loop policies?

How to use noise (and electrical contacts) measurements?

How to exploit the repetitive operating mode of relays and valves?

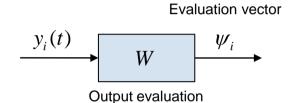
0.25

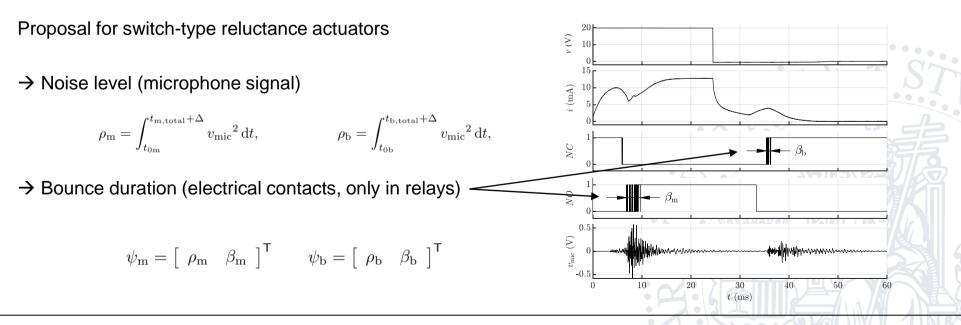
0.5 0.75


 $v_{\rm eq} ({\rm m/s})$

What is (implicit) Run-to-Run control?

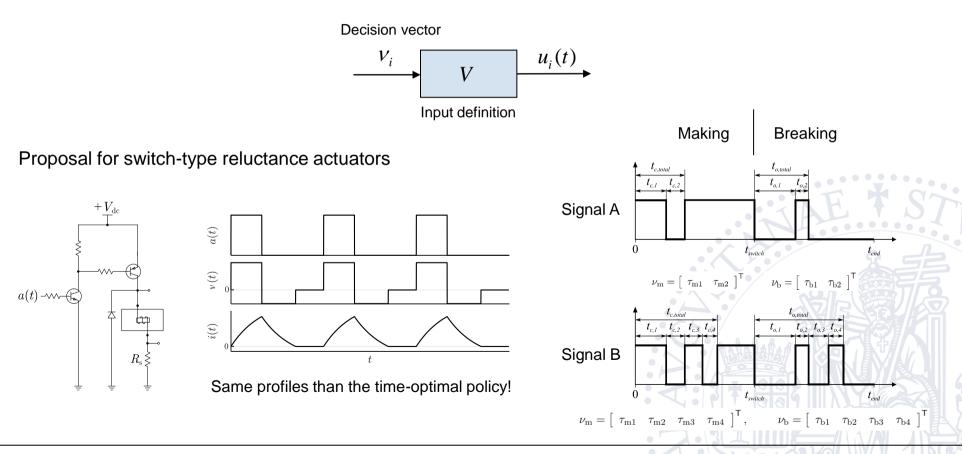
Control method for repetitive processes with offline information


Basic idea: Transform the dynamic system into a black box and use an optimization/search algorithm



Controller design – Output evaluation

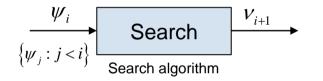
Evaluation of a given operation by means of a finite set of evaluation variables



Controller design – Input definition

Definition of the input profile in terms of a finite set of decision variables

Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019


Slide 64 of 77

Controller design – Search algorithm

Looks for the new decision variables using the evaluation variables

Similar to an optimization algorithm, but it runs endlessly

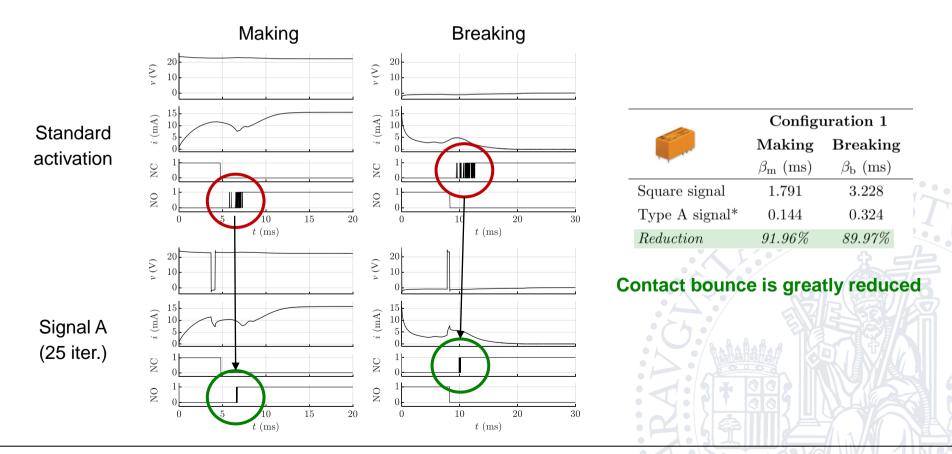
Cost function is nonconvex, non-smooth, and stochastic

 \rightarrow Avoid gradient-based algorithms

Proposal: Pattern search R2R algorithm

Modifications for R2R control:

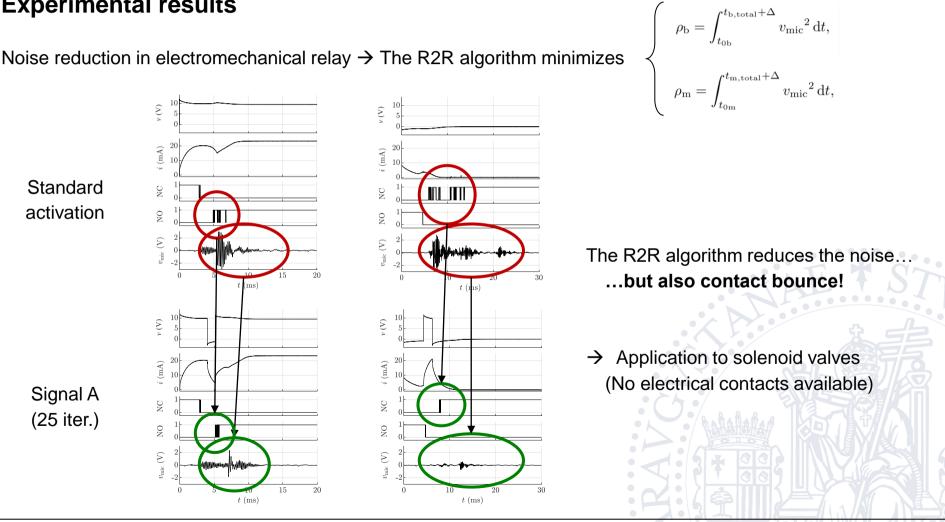
- Reevaluation of pattern centroid
- · Saturation of the mesh size


1:function SEARCH(i, $\mathcal{V}_i, \mathcal{J}_i, \{M, \alpha_0, \alpha_{\min}, \alpha_{\max}, \epsilon, \nu_0, \nu_{\min}, \nu_{\max}\})$ 2:Internal: $k, c, \alpha, p, P, new_poll$ > Internal vari3:if $i = 0$ then> Initialization (first opera4: $c := \nu_0;$ > Poll cent5: $\alpha := \alpha_0;$ > Poll cent6: $p := \operatorname{ncols}(M);$ > Poll cent7: $P := 1_p \otimes c + \alpha M;$ > Poll cent8: $k := 1;$ > Index of the next cand9: $new_poll :=$ false;> New poll10:end if> If a new poll needs to be gener11:if new_poll then> If there is an improve12: $c := \nu_q;$ > Update cent14: $\alpha := \operatorname{sat} (\alpha \epsilon, \alpha_{\min}, \alpha_{\max});$ > Expand is15:else> If there is no improve16: $\alpha := \operatorname{sat} (\alpha/\epsilon, \alpha_{\min}, \alpha_{\max});$ > Contract is17:end if> Index of the next cand19: $k := 1;$ > New poll candid10: $k := 1;$ > New poll candid10: $else$ > Index of the next cand10: $\alpha := \operatorname{sat} (\alpha/\epsilon, \alpha_{\min}, \alpha_{\max});$ > Contract is10: $\alpha := \operatorname{sat} (\alpha/\epsilon, \alpha_{\min}, \alpha_{\max});$ > New poll candid11: $if k = p + 1$ then> Poll cont12: $else$ > Poll cont13: $c := \omega_poll := \operatorname{true};$ > Activate new poll14: $\alpha := \operatorname{sat} (\operatorname{col}(k, P), \nu_{\min}, \nu_{\max});$ > Return cand15: $else$ > Poll cont16: $p := 1_p \otimes c + \alpha M;$ > Poll cont17: end	
3:if $i = 0$ then> Initialization (first operation of the section of the sec	ables
4: $c := \nu_0;$ \triangleright Poll cent5: $\alpha := \alpha_0;$ \triangleright Mesh size f6: $p := \operatorname{ncols}(M);$ \triangleright Poll candid7: $P := 1_p \otimes c + \alpha M;$ \triangleright Poll candid8: $k := 1;$ \triangleright Index of the next cand9: $new_poll :=$ false; \triangleright New poll10:end if \triangleright If a new poll needs to be gener11:if new_poll then \triangleright If a new poll needs to be gener12:if $\exists q \in [i - p, i - 1] : J_q < J_i$ then \triangleright If there is an improve13: $c := \nu_q;$ \triangleright Update cent14: $\alpha := sat (\alpha \langle \epsilon, \alpha_{\min}, \alpha_{\max});$ \triangleright Expand is15: $else$ \triangleright If there is no improve16: $\alpha := sat (\alpha / \epsilon, \alpha_{\min}, \alpha_{\max});$ \triangleright Contract is17:end if \triangleright Index of the next cand18: $P := 1_p \otimes c + \alpha M;$ \triangleright New poll candid19: $k := 1;$ \triangleright Index of the next cand10: $new_poll :=$ false; \triangleright Index of the next cand18: $P := 1_p \otimes c + \alpha M;$ \triangleright Index of the next cand19: $k := 1;$ \triangleright Index of the next cand10: $new_poll :=$ false; \triangleright Poll cont11: $if k = p + 1$ then \triangleright Activate new poll12: $v_{i+1} := c;$ \triangleright Activate new poll12: $v_{i+1} := sat (col(k, P), v_{min}, v_{max});$ \triangleright Return cand12: $v_{i+1} := sat (col(k, P), v_{min}, v_{max});$ \triangleright Index of the next cand12: $v_{i+1} := sat (col(k, P), v_{min}, v_{max});$ \triangleright Index of the next cand <th></th>	
6: $p := ncols(M);$ \triangleright Pol7: $P := 1_p \otimes c + \alpha M;$ \triangleright Poll candid8: $k := 1;$ \triangleright Index of the next cand9: $new_poll :=$ false; \triangleright New pol10:end if \triangleright If a new poll needs to be generation11:if $\exists q \in [i - p, i - 1] : J_q < J_i$ then \triangleright If there is an improve13: $c := \nu_q;$ \triangleright Update cent14: $\alpha := sat (\alpha \epsilon, \alpha_{min}, \alpha_{max});$ \triangleright Expand15:else \triangleright If there is no improve16: $\alpha := sat (\alpha/\epsilon, \alpha_{min}, \alpha_{max});$ \triangleright Contract17:end if \triangleright New poll candid18: $P := 1_p \otimes c + \alpha M;$ \triangleright New poll candid19: $k := 1;$ \triangleright Index of the next cand10: $new_poll :=$ false; \triangleright Index of the next cand11:end if \triangleright Re-evaluate cent12:end if \models Return cand13: $\nu_{i+1} := c;$ \triangleright Return cand14: $\nu_{i+1} := sat (col(k, P), \nu_{min}, \nu_{max});$ \triangleright Return cand	
7: $P := 1_p \otimes c + \alpha M;$ \triangleright Poll candid8: $k := 1;$ \triangleright Index of the next cand9: $new_poll :=$ false; \triangleright New poll10:end if \triangleright If a new poll needs to be generation11:if new_poll then \triangleright If a new poll needs to be generation12:if $\exists q \in [i - p, i - 1] : J_q < J_i$ then \triangleright If there is an improve13: $c := \nu_q;$ \triangleright Update centric14: $\alpha := sat (\alpha \epsilon, \alpha_{\min}, \alpha_{\max});$ \triangleright Expand15:else \triangleright If there is no improve16: $\alpha := sat (\alpha / \epsilon, \alpha_{\min}, \alpha_{\max});$ \triangleright Contract17:end if \triangleright New poll candid18: $P := 1_p \otimes c + \alpha M;$ \triangleright New poll candid19: $k := 1;$ \triangleright Index of the next cand10: $new_poll :=$ false; \triangleright Index of the next cand11:end if $\lor P := 1$ \triangleright Re-evaluate centric12:end if $\models P + 1$ then \triangleright End of13: $\nu_{i+1} := c;$ \triangleright Re-evaluate centric14: $new_poll :=$ true; \triangleright Activate new poll15:else \triangleright Poll contt16: $\nu_{i+1} := sat (col(k, P), \nu_{min}, \nu_{max});$ \triangleright Return cand17: $k := k + 1;$ \triangleright Index of the next cand	actor
8: $k := 1;$ > Index of the next cand 9: $new_poll := false;$ > New pol 10: end if > If a new poll needs to be generation in the second secon	l size
8: $k := 1;$ > Index of the next cand 9: $new_poll := false;$ > New pol 10: end if > If a new poll needs to be generation in the second secon	dates
andend if> If a new poll needs to be gener11:if new_poll then> If a new poll needs to be gener12:if $\exists q \in [i - p, i - 1] : J_q < J_i$ then> If there is an improve13: $c := \nu_q;$ > Update cen14: $\alpha := sat (\alpha \epsilon, \alpha_{min}, \alpha_{max});$ > Expand15:else> If there is no improve16: $\alpha := sat (\alpha / \epsilon, \alpha_{min}, \alpha_{max});$ > Contract17:end if> New poll candid18: $P := 1_p \otimes c + \alpha M;$ > New poll candid19: $k := 1;$ > Index of the next cand10: $new_poll := false;$ end if11:if $k = p + 1$ then> End of12: $\nu_{i+1} := c;$ > Re-evaluate cen13: $\nu_{i+1} := sat (col(k, P), \nu_{min}, \nu_{max});$ > Return cand14: $\nu_{i+1} := sat (col(k, P), \nu_{min}, \nu_{max});$ > Return cand15: $else$ > Poll cont16: $\nu_{i+1} := sat (col(k, P), \nu_{min}, \nu_{max});$ > Return cand17: $k := k + 1;$ > Index of the next cand	idate
ififnew_poll then> If a new poll needs to be generation in provesif $\exists q \in [i - p, i - 1] : J_q < J_i$ then> If there is an improveis: $c := \nu_q;$ > Update centric is no improveif: $\alpha := sat (\alpha \epsilon, \alpha_{\min}, \alpha_{\max});$ > Expand isif:else> If there is no improveif: $\alpha := sat (\alpha / \epsilon, \alpha_{\min}, \alpha_{\max});$ > Contract isif:end if> New poll candideif: $P := 1_p \otimes c + \alpha M;$ > New poll candideif: $k := 1;$ > Index of the next candif:end if> End ofif: $k = p + 1$ then> End ofif: $\nu_{i+1} := c;$ > Re-evaluate centricif: $\nu_{i+1} := sat (col(k, P), \nu_{\min}, \nu_{max});$ > Return candif: $\nu_{i+1} := sat (col(k, P), \nu_{min}, \nu_{max});$ > Return candif: $k := k + 1;$ > Index of the next cand	l flag
12:if $\exists q \in [i - p, i - 1]$: $J_q < J_i$ then> If there is an improve13: $c := \nu_q;$ > Update cen14: $\alpha := \operatorname{sat} (\alpha \epsilon, \alpha_{\min}, \alpha_{\max});$ > Expand is15:else> If there is no improve16: $\alpha := \operatorname{sat} (\alpha / \epsilon, \alpha_{\min}, \alpha_{\max});$ > Contract is17:end if18: $P := 1_p \otimes c + \alpha M;$ > New poll candid19: $k := 1;$ > Index of the next cand10: $new_poll := \text{ false};$ 11:end if> End of12:if $k = p + 1$ then> End of13: $\nu_{i+1} := c;$ > Re-evaluate cen14: $new_poll := \text{ true};$ > Activate new pol15:else> Poll cont16: $\nu_{i+1} := \operatorname{sat} (\operatorname{col}(k, P), \nu_{\min}, \nu_{\max});$ > Return cand17: $k := k + 1;$ > Index of the next cand	
33: $c := \nu_q;$ \triangleright Update cen 44: $\alpha := \operatorname{sat} (\alpha \epsilon, \alpha_{\min}, \alpha_{\max});$ \triangleright Expand if 45: else \triangleright If there is no improve 46: $\alpha := \operatorname{sat} (\alpha / \epsilon, \alpha_{\min}, \alpha_{\max});$ \triangleright Contract if 47: end if \triangleright New poll candid 48: $P := 1_p \otimes c + \alpha M;$ \triangleright New poll candid 49: $k := 1;$ \triangleright Index of the next cand 40: $new_poll :=$ false; end if 41: end if \triangleright End of 42: end if \triangleright Re-evaluate cen 43: $\nu_{i+1} := c;$ \triangleright Re-evaluate cen 44: $new_poll :=$ true; \triangleright Activate new pol 45: else \triangleright Poll cont 46: $\nu_{i+1} := \operatorname{sat} (\operatorname{col}(k, P), \nu_{\min}, \nu_{\max});$ \triangleright Return cand 47: $k := k + 1;$ \triangleright Index of the next cand	rated
44: $\alpha := \operatorname{sat} (\alpha \epsilon, \alpha_{\min}, \alpha_{\max});$ \triangleright Expand :45:else \triangleright If there is no improve46: $\alpha := \operatorname{sat} (\alpha/\epsilon, \alpha_{\min}, \alpha_{\max});$ \triangleright Contract :47:end if \triangleright New poll candid48: $P := 1_p \otimes c + \alpha M;$ \triangleright New poll candid49: $k := 1;$ \triangleright Index of the next cand40: $new_poll :=$ false;end if42:end if \triangleright Re-evaluate cen43: $\nu_{i+1} := c;$ \triangleright Re-evaluate cen44: $new_poll :=$ true; \triangleright Activate new pol45:else \triangleright Poll cont46: $\nu_{i+1} := \operatorname{sat} (\operatorname{col}(k, P), \nu_{\min}, \nu_{\max});$ \triangleright Return cand47: $k := k + 1;$ \triangleright Index of the next cand	ment
als: else > If there is no improve als: $\alpha := \operatorname{sat} (\alpha/\epsilon, \alpha_{\min}, \alpha_{\max});$ > If there is no improve als: $P := 1_p \otimes c + \alpha M;$ > New poll candid als: $P := 1_p \otimes c + \alpha M;$ > New poll candid als: $P := 1_p \otimes c + \alpha M;$ > New poll candid als: $P := 1_p \otimes c + \alpha M;$ > New poll candid als: $P := 1_p \otimes c + \alpha M;$ > New poll candid als: $P := 1_p \otimes c + \alpha M;$ > New poll candid als: $P := 1_p \otimes c + \alpha M;$ > New poll candid als: $p := 1_i$ > End of als: $p = 1_i$ > End of als: $\nu_{i+1} := c;$ > Re-evaluate cent $new_poll := true;$ > Activate new poll als: $\nu_{i+1} := \operatorname{sat} (\operatorname{col}(k, P), \nu_{\min}, \nu_{\max});$ > Return cand bildex of the next cand > Index of the next cand $\nu_{i+1} := k + 1;$ > Index of the next cand	itroid
6: $\alpha := \operatorname{sat} (\alpha/\epsilon, \alpha_{\min}, \alpha_{\max});$ \triangleright Contract is 77: end if \triangleright New poll candid 88: $P := 1_p \otimes c + \alpha M;$ \triangleright New poll candid 9: $k := 1;$ \triangleright Index of the next cand 20: $new_poll := \text{false};$ \triangleright End of 21: end if \triangleright End of 22: if $k = p + 1$ then \triangleright End of 23: $\nu_{i+1} := c;$ \triangleright Re-evaluate cen 24: $new_poll := \text{true};$ \triangleright Activate new poll 25: else \triangleright Poll cont 26: $\nu_{i+1} := \operatorname{sat} (\operatorname{col}(k, P), \nu_{\min}, \nu_{\max});$ \triangleright Return cand 27: $k := k + 1;$ \triangleright Index of the next cand	mesh
InterviewInterview17:end if18: $P := 1_p \otimes c + \alpha M;$ 19: $k := 1;$ 19: $k := 1;$ 20: $new_poll := false;$ 21:end if22:if $k = p + 1$ then23: $\nu_{i+1} := c;$ 24: $new_poll := true;$ 25:else26: $\nu_{i+1} := sat (col(k, P), \nu_{min}, \nu_{max});$ 26: $\nu_{i+1} := sat (col(k, P), \nu_{min}, \nu_{max});$ 27: $k := k + 1;$	ment
18: $P := 1_p \otimes c + \alpha M;$ \triangleright New poll candid 19: $k := 1;$ \triangleright Index of the next cand 20: $new_poll :=$ false; \triangleright Index of the next cand 21: end if \triangleright End of 22: if $k = p + 1$ then \triangleright End of 23: $\nu_{i+1} := c;$ \triangleright Re-evaluate cen 24: $new_poll :=$ true; \triangleright Activate new pol 25: else \triangleright Poll cont 26: $\nu_{i+1} :=$ sat (col(k, P), ν_{min}, ν_{max}); \triangleright Return cand 27: $k := k + 1;$ \triangleright Index of the next cand	mesh
19: $k := 1;$ \triangleright Index of the next cand 20: $new_poll := false;$ \triangleright Index of the next cand 21: end if \triangleright End of 22: if $k = p + 1$ then \triangleright End of 23: $\nu_{i+1} := c;$ \triangleright Re-evaluate cen 24: $new_poll :=$ true; \triangleright Activate new pol 25: else \triangleright Poll cont 26: $\nu_{i+1} :=$ sat (col(k, P), ν_{min}, ν_{max}); \triangleright Return cand 27: $k := k + 1;$ \triangleright Index of the next cand	
20: $new_poll := false;$ 21: end if 22: if $k = p + 1$ then \triangleright End of 23: $\nu_{i+1} := c;$ \triangleright Re-evaluate cen 24: $new_poll :=$ true; \triangleright Activate new pol 25: else \triangleright Poll cont 26: $\nu_{i+1} :=$ sat (col(k, P), ν_{min}, ν_{max}); \triangleright Return cand 27: $k := k + 1;$ \triangleright Index of the next cand	dates
end if \triangleright End ofif $k = p + 1$ then \triangleright End ofiif $k = p + 1$ then \triangleright Re-evaluate ceniii $\nu_{i+1} := c;$ \triangleright Re-evaluate ceniii $new_poll :=$ true; \triangleright Activate new poliiielse \triangleright Poll contiii $\nu_{i+1} :=$ sat (col(k, P), ν_{min}, ν_{max}); \triangleright Return candiii $k := k + 1;$ \triangleright Index of the next cand	idate
if $k = p + 1$ then \triangleright End of33: $\nu_{i+1} := c;$ \triangleright Re-evaluate cen44: $new_poll :=$ true; \triangleright Activate new pol55:else \triangleright Poll cont66: $\nu_{i+1} :=$ sat (col(k, P), ν_{\min}, ν_{\max}); \triangleright Return cand77: $k := k + 1;$ \triangleright Index of the next cand	
23: $\nu_{i+1} := c;$ \triangleright Re-evaluate cen24: $new_poll :=$ true; \triangleright Activate new pol25:else \triangleright Poll cont26: $\nu_{i+1} :=$ sat (col(k, P), ν_{\min}, ν_{\max}); \triangleright Return cand27: $k := k + 1;$ \triangleright Index of the next cand	
eta: new_poll := true; \triangleright Activate new pol25:else \triangleright Poll cont26: ν_{i+1} := sat (col(k, P), ν_{\min}, ν_{\max}); \triangleright Return cand27: $k := k + 1$; \triangleright Index of the next cand	f poll
else $\nu_{i+1} := \operatorname{sat} (\operatorname{col}(k, P), \nu_{\min}, \nu_{\max});$ \triangleright Return cand $k := k+1;$ \triangleright Index of the next cand	itroid
26: $\nu_{i+1} := \operatorname{sat} \left(\operatorname{col}(k, P), \nu_{\min}, \nu_{\max} \right);$ 27: $k := k+1;$ \triangleright Index of the next cand	l flag
$k := k + 1; \qquad \qquad \triangleright \text{ Index of the next cand}$	inues
28: end if	idate

Departamento de Informática e Ingeniería de Sistemas Universidad Zaragoza

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

Experimental results


Bounce reduction in electromechanical relay \rightarrow The R2R algorithm minimizes the bounce duration

Experimental results

Noise reduction in electromechanical relay \rightarrow The R2R algorithm minimizes

Contributions

- Adaptation of Run-to-Run control to switch-type reluctance actuators ٠
- Practical advice on inputs, outputs and search algorithm ٠
- State-of-the-art bounce-reduction algorithm for electromechanical relays ٠

Publications / Patents

E. Ramirez-Laboreo, C. Sagues and S. Llorente, "A New Run-to-Run Approach for Reducing Contact Bounce in Electromagnetic Switches", IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 535-543, Jan. 2017.

E. Moya-Lasheras, E. Ramirez-Laboreo and C. Sagues, "A novel algorithm based on Bayesian optimization for run-to-run control of short-stroke reluctance actuators", in 2019 European Control Conference (ECC), Napoli, Italia, Jun. 2019.

D. Anton Falcon, S. Llorente Gil, D. Puyal Puente, E. Ramirez Laboreo and C. Sagues, "A home appliance device and a method for operating a home appliance device", international patent application WO 2017/163114 (A1).

Departamento de Informática e Ingeniería de Sistemas Universidad Zaragoza

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

Conclusions

Modeling and Control of Reluctance Actuators - Zaragoza, Spain, October 18th 2019

Slide 69 of 77

Departamento de Informática e Ingeniería de Sistemas Universidad Zaragoza

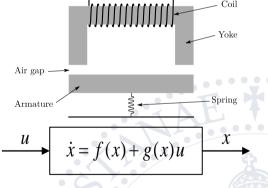
Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

Conclusions

Focus on modeling and control of switch-type devices...

...but most of the findings are valid for any reluctance actuator

Dynamical modeling


Electromagnetic modeling approaches

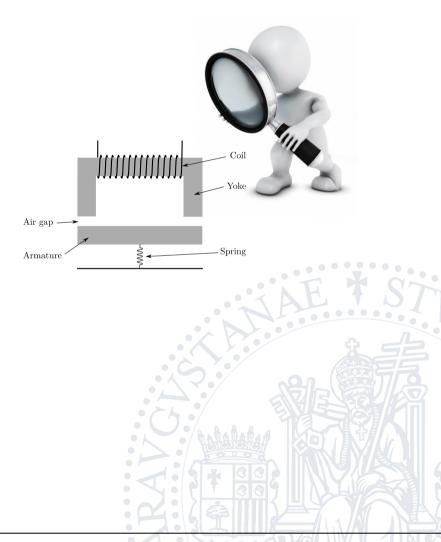
- MEC → Fast transient simulations
- FEM → Useful for some particular aspects

Limited range of motion \rightarrow Hybrid dynamics

Electromagnetic phenomena \rightarrow Tradeoff Precision - Computational requirements

- Complete model \rightarrow Fast offline simulations (analysis, control/estimation design/validation)
- S+F+EC model \rightarrow Fast online calculations (still not valid for position estimation)

Slide 70 of 77

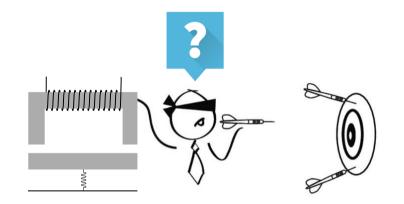

Measurement

Position measurements

- Switch type devices are usually encapsulated
 - → Measurements are impractical
- Restrictive specifications (Fast and accurate)
 - \rightarrow Measurements are expensive
- Lack of flexibility

Alternative measurements (Noise and electrical contacts)

- Easily obtainable
- Simple but powerful information

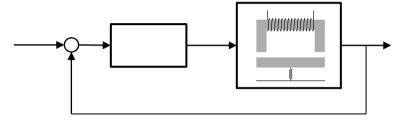

Estimation

Electromagnetic estimation

- Algorithms using only voltage and current measurements
 - \rightarrow No need for additional sensors
- Magnetic flux \rightarrow Identification, Force prediction
- Resistance and inductance → Further uses

Position estimation

- Inductance method should not be used if hysteresis is present
- Best policy: Flux estimation + Force prediction + Motion model
- However... Still not accurate enough for position control



Control

Control properties

- Stability → Switching conditions
- Observable and controllable

Classical control

- Feedback linearization \rightarrow Almost perfect tracking, but requires feedback
- Open-loop optimal control → Practical low-cost alternative

Run-to-Run control

- Benefits from the repetitive operating mode of switch-type actuators
- Easy implementation and good results
- Further improvements

International high-impact journals

- [1] <u>E. Ramirez-Laboreo</u>, C. Sagues and S. Llorente, "A New Model of Electromechanical Relays for Predicting the Motion and Electromagnetic Dynamics", *IEEE Transactions on Industry Applications*, vol. 52, no. 3, pp. 2545-2553, May/Jun. 2016.
- [2] <u>E. Ramirez-Laboreo</u>, C. Sagues and S. Llorente, "A New Run-to-Run Approach for Reducing Contact Bounce in Electromagnetic Switches", *IEEE Transactions on Industrial Electronics*, vol. 64, no. 1, pp. 535-543, Jan. 2017.
- [3] <u>E. Ramirez-Laboreo</u>, E. Moya-Lasheras and C. Sagues, "Reluctance actuator characterization via FEM simulations and experimental tests", *Mechatronics*, vol. 56, pp. 58-66, Dec. 2018.
- [4] <u>E. Ramirez-Laboreo</u>, E. Moya-Lasheras and C. Sagues, "Real-Time Electromagnetic Estimation for Reluctance Actuators", IEEE Transactions on Industrial Electronics, vol. 66, no. 3, pp. 1952-1961, Mar. 2019.
- [5] <u>E. Ramirez-Laboreo</u>, M. G. L. Roes and C. Sagues, "Hybrid Dynamical Model for Reluctance Actuators Including Saturation, Hysteresis and Eddy Currents", *IEEE/ASME Transactions on Mechatronics*, vol. 24, no. 3, pp. 1396-1406, Jun. 2019.
- [6] E. Moya-Lasheras, <u>E. Ramirez-Laboreo</u> and C. Sagues, "Probability-Based Control Design for Soft Landing of Short-Stroke Actuators", IEEE Transactions on Control Systems Technology, in press, 2019.

International peer-reviewed conferences

- [1] <u>E. Ramirez-Laboreo</u>, C. Sagues, and S. Llorente, "A new model of electromechanical relays for predicting the motion and electromagnetic dynamics", in *IEEE Industry Applications Society Annual Meeting*, Addison, TX, Oct. 2015, pp. 1-8.
- [2] E. Moya-Lasheras, C. Sagues, <u>E. Ramirez-Laboreo</u>, and S. Llorente, "Nonlinear Bounded State Estimation for Sensorless Control of an Electromagnetic Device", in *56th IEEE Conference on Decision and Control*, Melbourne, Australia, Dec. 2017.
- [3] E. Moya-Lasheras, <u>E. Ramirez-Laboreo</u> and C. Sagues, "A novel algorithm based on Bayesian optimization for run-to-run control of short-stroke reluctance actuators", in 2019 European Control Conference (ECC), Napoli, Italia, Jun. 2019.
- [4] <u>E. Ramirez-Laboreo</u>, E. Moya-Lasheras and C. Sagues, "Optimal Open-Loop Control Policies for a Class of Nonlinear Actuators", in 2019 European Control Conference (ECC), Napoli, Italia, Jun. 2019.

International patent applications

- D. Anton Falcon, S. Llorente Gil, D. Puyal Puente, <u>E. Ramirez Laboreo</u> and C. Sagues, "A home appliance device and a method for operating a home appliance device", international patent application WO 2017/163114 (A1).
- [2] S. Llorente Gil, E. Moya Lasheras, <u>E. Ramirez Laboreo</u>, C. Sagues Blazquiz, "Domestic Appliance Device", international patent application WO 2019/106488 (A1).

Students supervision

- [1] J. Anzola Trevijano, "Técnicas de sensorización para caracterización y control de dispositivos electromecánicos", Bachelor's thesis, Universidad de Zaragoza, 2015.
- [2] S. Nogueras Ona, "Modelado, análisis y control de electroválvula de seguridad de encimera de gas", Bachelor's thesis, Universidad de Zaragoza, 2016.
- [3] C. Campos Martínez, "Técnicas de optimización Run-to-Run para dispositivos electromecánicos", Master's thesis, Universidad de Zaragoza, 2016.
- [4] A. Guillén Asensio, "Análisis del movimiento de un relé electromecánico en conmutación", Bachelor's thesis, Universidad de Zaragoza, 2017.

Three-month research stay

E. Ramirez-Laboreo, M. G. L. Roes and C. Sagues, "Hybrid Dynamical Model for Reluctance Actuators Including Saturation, Hysteresis and Eddy Currents", *IEEE/ASME Transactions on Mechatronics*, vol. 24, no. 3, pp. 1396-1406, Jun. 2019.

PhD Thesis

Modeling and Control of Reluctance Actuators

Edgar Ramírez Laboreo

SupervisorCarlos Sagüés BlázquizUniversidad de Zaragoza, SpainExaminersJesús Acero AceroUniversidad de Zaragoza, SpainDavid Paesa GarcíaBSH Home Appliances Spain

BSH Home Appliances Spain Eindhoven University of Technology, The Netherlands

Jorge Duarte

Zaragoza, Spain, October 18th 2019, 11:00

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u> or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

