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Abstract: Feedforward control can greatly improve the response time and control accuracy of
any mechatronic system. However, in order to compensate for the effects of modeling errors
or disturbances, it is imperative that this type of control works in conjunction with some
form of feedback. In this paper, we present a new adaptive feedforward control scheme for
electromechanical systems in which real-time measurements or estimates of the position and
its derivatives are not technically or economically feasible. This is the case, for example,
of commercial electromechanical switching devices such as solenoid actuators. Our proposal
consists of two blocks: on the one hand, a feedforward controller based on differential flatness
theory; on the other, an iterative adaptation law that exploits the repetitive operation of these
devices to modify the controller parameters cycle by cycle. As shown, this law can be fed with
any available measurement of the system, with the only requirement that it can be processed
and converted into an indicator of the performance of any given operation. Simulated and
experimental results show that our proposal is effective in dealing with a long-standing control
problem in electromechanics: the soft-landing control of electromechanical switching devices.
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1. INTRODUCTION

Feedforward control is widely used for tracking applica-
tions because it significantly outperforms other control
schemes in terms of response time and tracking accuracy.
Since this type of control does not require state infor-
mation, it is particularly useful for applications in which
sensing or estimation of the variables to be controlled is
inaccurate or unavailable. Specifically, for differentially flat
systems, it is possible to design a feedforward law that
provides the control signal from the desired output trajec-
tory without need of solving any differential equation. An
advantageous aspect of flatness-based feedforward control
(also known as exact feedforward linearization) is that it
does not suffer from the well-known robustness problems
of its feedback counterpart (exact feedback linearization)
due to model parameter uncertainty (Hagenmeyer and
Delaleau, 2003). In recent years, this type of feedforward
control has been proposed for controlling the motion of
a wide range of mechatronic systems, such as crane rota-
tors (Bauer et al., 2014), electrical drives (Stumper et al.,
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2015), electrohydraulic systems (Kim et al., 2015), quadro-
tors (Greeff and Schoellig, 2018), and electrostatic quasi-
static microscanners (Schroedter et al., 2018).

Despite the advantages of feedforward controllers, it is well
known that a control scheme based solely on a feedforward
term, i.e., open loop, is quite sensitive to disturbances and
modeling errors. Therefore, it is most usual for feedforward
control to be complemented by some form of feedback, as
in the previously cited references. This of course implies
that the state or output variables can be measured or
estimated in real time with sufficient accuracy.

Alternatively, some works propose run-to-run adaptation
laws, which are useful for devices under repetitive opera-
tion. The key idea of these approaches is that, instead of
using frequent measurements of the state or output (which
may not even be available), the adaptation law makes use
of other auxiliary variables related to the overall control
performance of each operation. For example, Blanken et al.
(2017) has presented recently a unifying framework for
run-to-run adaptation of feedforward control based on ba-
sis functions. However, this methodology is not applicable
to flatness-based feedforward controllers.

Certain mechatronic systems cannot incorporate the re-
quired sensors for real-time feedback control due to differ-
ent reasons, such as economic or space limitations. Among



these devices are switch-type electromechanical devices,
such as solenoid valves and electromagnetic relays.

Thus, for some of these cases in which feedback control is
not feasible, run-to-run learning-type adaptation laws have
been proposed. However, most of them still require some
kind of real-time feedback (Peterson and Stefanopoulou,
2004; Benosman and Ating, 2015; Moya-Lasheras and
Sagues, 2020), or use model-free input parameterization
instead of feedforward controllers (Yang et al., 2013; Mer-
corelli, 2012; Di Gaeta et al., 2015).

In this paper, we present a new control scheme for elec-
tromechanical systems that operate in a repetitive manner.
It is particularly suitable for cases in which real-time
measurements or estimates of the position are not techni-
cally or economically feasible, i.e., systems where real-time
feedback control cannot be implemented. It consists of two
separate but interconnected blocks. Firstly, a feedforward
controller based on differential flatness theory. Thanks
to the flatness property—which is satisfied by a large
number of electromechanical systems—this block can be
parameterized in terms of the physical parameters of the
model. Secondly, an iterative adaptation law that exploits
the repetitive operation of these devices to modify the
parameters of the feedforward block

cycle by cycle. As it is shown, this run-to-run law can
be fed with any available measurement of the system,
with the only requirement that it can be processed and
converted into an indicator of the performance of any given
operation. In the paper, we describe and apply this method
to a long-standing control problem in electromechanics:
the soft-landing control of electromechanical switching
devices. Simulation and experimental results are presented
in order to validate the proposal.

2. CONTROL-ORIENTED DYNAMICAL MODEL

Electromechanical switch-type devices are based on a
single-coil reluctance actuator. Schematic diagrams of this
kind of actuators with different shapes are represented in
Fig. 1. They all have a fixed core, which is magnetized
by a coil current, and a movable core, which is generally
attached to a spring or other elastic components. The
purpose of the fixed magnetic core is to act as an elec-
tromagnet that attracts the movable magnetic core (i.e.,
armature), closing the gap between them. Given that the
single coil is only able to generate magnetic force in one
direction, elastic and other passive uncontrollable forces
are necessary to move the armature away from the fixed
core when the coil current is reduced and the electromag-
net is de-energized. In the case of switch-type actuators,
the armature position is constrained between two limits.

The system dynamics is as follows. Firstly, the dynamics
of the magnetic flux linkage X is derived from the electrical
and magnetic equivalent circuits. On the one hand, the coil
electrical circuit equation is given by Ohm’s law, Faraday’s
law and Kirchhoff’s voltage law, resulting in

u=Ri+\, (1)

where u, R and 7 are respectively the coil voltage, internal
resistance and current. On the other hand, the current is
related to the flux linkage through the magnetic equivalent

Fig. 1. Schematic representation of single-coil reluctance
actuators

circuit equation given by Hopkinson’s law and Ampere’s
circuital law,

i=TRA\, (2)
where R is the magnetic reluctance per turn squared or,
equivalently, the inverse of the inductance of the coil.
Generally, the reluctance can be defined as a function of
the flux linkage (due to magnetic saturation in the core)
and the armature position z (due to its dependence on the
air gap length in the flux path). A convenient approach is
to separate the reluctance into two functions,

R =Rc(A) + Rg(2), (3)
corresponding to the reluctance contributions of the core,
7A€C7 and the gap, ﬁg. Note that there are many possible
definitions of these functions, considering different actua-
tors and electromagnetic phenomena. Since their specific
expressions are not needed to explain the controller design,
in this and the following section we consider them to be
arbitrary functions.

Then, the flux linkage dynamics can be derived from (1)-
(3), resulting in the following equation:

A= —R(Re(\) + Rg(2)) A + u. (4)

Secondly, the position dynamics during motion is de-
scribed by Newton’s second law,

mZ = Fpas(2, 2) + Fnag(2, A), (5)

where m is the armature mass, and Flas and Fi,. are
the force functions. The passive forces are encompassed in
the function Fp,s which, in a generalized manner, depends
on the position (e.g. elastic forces) and the velocity (e.g.
viscous friction). The magnetic force, on the other hand,
depends on the magnetic flux, which can be indirectly
controlled from the coil voltage u, as seen in (4). More
specifically, the magnetic force is given by the function
Finag, defined as follows (Ramirez-Laboreo et al., 2016):

1Ry o
35, A% (6)

Frag(z,A) =

To summarize: the motion dynamics can be described with
a state-space representation in which the state variables
are the position, z, its derivative, Z, and the flux linkage,
A; the input is the coil voltage, u; and the state dynamics
is given by the differential equations (4) and (5). These
equations are valid in the domain given by

z e [Zmim Zmax]a Ze R, AE (_/\sata /\sat)a (7)
where zpin and zpax correspond to the physical limits of

the mechanism and Agy¢ is the maximum flux linkage due
to magnetic saturation.
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Fig. 2. Control diagram. The superscript n denotes variables of the nth operation. The voltage signal uq is computed
by the feedforward controller as a function of the desired position trajectory zq and its derivatives. The run-to-
run adaptation law uses the operation cost J—computed using the system measurable output y—to update the
parameter vector p of the feedforward controller only once per operation

3. CONTROLLER DESIGN

The proposed controller is schematized in Fig. 2. It in-
cludes a flatness-based feedforward controller that com-
putes the voltage signal ugq based on the desired position
trajectory zq. The voltage signal is fed to the actuator to
perform an operation, and a cost or performance index J
is calculated. The run-to-run adaptation law adapts the
model parameters used in the feedforward controller in
order to reduce the cost in the subsequent operations.

3.1 Trajectory design

Firstly, the desired position trajectory is defined, consid-
ering that the objective is to reduce the impact velocities.
This paper proposes a soft-landing trajectory with the
following boundary conditions:

za(to) = 20, Za(to) =0, Za(to) =0, (8)

Zd(tf) = Zf, Zd(tf) = 07 Zd(tf) = 07
where tg and t¢ are the initial and final user-defined times
of the switching operations, and zy and z; are the initial
and final positions, which respectively correspond to zmax
and zpi, for the closing operations, or to zyi, and zyax for
the opening operations. The trajectory is then designed as
a bth-degree polynomial, because its six coefficients can be
fitted from the six boundary conditions (8). The resulting
trajectory is represented in a generalized manner in Fig. 3.

3.2 Flatness-based feedforward controller

The next step is the design of the feedforward controller,
which uses the desired position trajectory to compute
a voltage control signal applicable to the actuator. The
proposed controller is based on the flatness property of the
nonlinear dynamical system. This structural property can
be interpreted as an extension of Kalman’s controllability
of linear systems (a linear system is flat if and only if it
is controllable). Proving that a system is flat simplifies
greatly the design of many types of controllers. Regarding
feedforward control, the flatness property implies that
both the state and input variables can be expressed
as functions of the output and a finite number of its
derivatives (Fliess et al., 1995). This is extremely useful if
the variable to be controlled is a flat output, because the
input can be calculated without solving any differential
equation. Fortunately, the position is a differentially flat
output in a large number of electromechanical systems.
Thus, we believe that our proposal might be of general
use in the design of controllers in the mechatronic field.

It can be easily verified that the position z is a flat output
of the presented model: the position and velocity evidently
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Fig. 3. Desired soft-landing trajectory (general form)

depend on the output and its derivative, whereas the flux
and voltage can be expressed as functions of the output
and its derivatives by simple manipulations of the model
equations. Specifically, the flux can be derived from (5) as

i3 — 2 (Fpas(z,z’) —mé)
A=X(z,2,2) = i\/ 87A2g/8z ) (9)

Then, the system input w can be obtained in a similar
manner from (4),

w=u(z%% %) =R (fag(z) + fzc(A)) A+ A,

(10)

where A must be replaced by the expression (9). The
function for A can be obtained by calculating the time
derivative of (5) and solving for A.

N —1
R A aRg 8-Fpas . 6Fpas -
A_A(Z’Z’Z’Z)_G 82) (82 et

Note that, for the system to be flat, F},,s must be differ-
entiable and ﬁg twice differentiable.

The previous equations, which demonstrate the flatness
property of the presented system, also serve to design the
feedforward control term. In particular, the input signal
uq to achieve the desired trajectory is obtained simply by
replacing z with zq in (10).

3.3 Run-to-run adaptation

As already stated, the feedforward controller is very sen-
sitive to modeling errors if it is not accompanied by some
form of feedback. Ideally, real-time measurements of the
position would be used as feedback to close the loop, but in
many cases this is technically or economically unfeasible.
Run-to-run control can be seen as an alternative approach
when real-time feedback loops are not an option. It is
useful for devices that operate in a repetitive manner,



and for which auxiliary measurements can be obtained for
evaluating the performance of each operation.

For these reasons, we propose to incorporate a run-to-
run adaptation law to the control scheme. Its purpose
is to modify the model-based feedforward parameters so
as to minimize a certain cost, J, which is calculated in
each operation. In particular, for the given example, the
control objective is to achieve soft-landing trajectories
when switching the devices. Thus, the ideal cost would
be the absolute value of the impact velocity v..

J = o] (12)
In practical scenarios where the impact velocities cannot
be directly measured or estimated, other concepts related

to these but more easily obtainable can be used, e.g. the
impact sound or the bouncing duration.

The run-to-run adaptation task can therefore be regarded
as a black-box optimization problem. Since the feedfor-
ward term is parameterized as a function of the physical
parameters of the model, the underlying idea is to find
values of these parameters that minimize the cost J. In this
regard, note that the goal of the adaptation law is not to
estimate the model parameters, but to reduce the impact
velocity. Thus, there is no guarantee that the adapted
values converge to the true ones, but simply to a set of
values that minimize the cost. The selected optimization
method is the one presented in Ramirez-Laboreo et al.
(2017). It is based on the Pattern Search method, which
is a widely used and studied direct-search optimization
method (Lewis and Torczon, 2000). Its convergence prop-
erties are directly applicable, so it can be guaranteed that
at least a local minimum will be reached provided that the
cost function is deterministic.

4. SIMULATION RESULTS

In this section, we present results obtained by simulation,
using a specific model presented below. The main reason
for performing model-based simulations is to be able
to analyze the convergence of the adapted parameters
with respect to their nominal values. In other words,
the simulations provide a way of testing whether the
adaptation law identifies the true parameter values or if,
on the contrary, it only finds a set of values that achieve
the proposed control objective.

4.1 Actuator and simulation model

The controller presented in the previous section has been
derived for a model with arbitrary reluctance functions
Rc(A) and Rg(2). In order to perform the simulations, the
following expressions have been used:
A [{/1
Re(N) = ————,
‘N =T
~ R4 Z
Re(2z) =k ,
5(2) 8 1+ k52 In(ke/2)
where the parameters ki1, ..., kg are positive constants.
This model, which has been extracted from Moya-Lasheras
and Sagues (2020), includes magnetic saturation in the
core and flux fringing in the air gap. These are the two
most significant magnetic phenomena that appear in this
class of actuators.

(13)

(14)

Table 1. Model parameter values.

Parameter Value Parameter Value
K1 1.35H1 Zmin 0
Ko 0.0229 Wb Zmax 103 m
K3 3.88H! m 1.6 x 103 kg
K4 7.67TH™1/m ks 55N/m
K5 1320m—1 Zs 0.15m
K6 9.73-10"3m R 500

Furthermore, the function Fj,s, which encompasses the
passive forces, is defined assuming an ideal spring and
negligible friction and gravity forces,

Foas = —ks (2 — 25), (15)

where ks and zg are respectively the spring stiffness con-
stant and resting position.

The nominal model parameters used in the simulations are
presented in Table 1.

4.2 Description of the simulated experiments

In the simulations, it is assumed that the dynamics of the
system is completely described by the model equations pre-
viously presented. That is, the model acting in the role of
the real system and the feedforward controller are based on
exactly the same equations. However, in order to analyze
the convergence of the algorithm, it is assumed that there
is some uncertainty in the parameter values initially used
by the controller. More specifically, the magnetic parame-
ters, K1, ..., kg, are perturbed following continuous uniform
probability distributions whose bounds are 5% of the
nominal values. In essence, these distributions model the
errors that might typically be encountered in a parametric
estimation process. On the other hand, the mechanical
parameters, i.€., Zmin, Zmax, M, ks and zg, as well as the
electrical resistance R, are assumed to be perfectly known,
as these can usually be measured or estimated with rea-
sonable accuracy. Accordingly, the parameter vector that
is iteratively adapted is p = [Kk1 -+ K¢, while the rest of
the parameters are kept constant.

For the sake of brevity, the simulations have been focused
on the closing operation, i.e., the motion from z = zyax to
2z = Zmin- Nonetheless, the control process of the opening
operation is completely equivalent. The duration of the
soft landing trajectory, tf — tg, is a parameter that allows
to control how aggressive the controller is. In this case it
has been set to 3.5 ms, which, for the nominal values of
the parameters, ensures that the magnetic flux does not
saturate and that the voltage levels are not too demanding.

A total of 10000 different experiments have been simu-
lated. For each one of them, the initial parameter vector
used by the feedforward controller has been randomly
generated according to the rules described above. This
way, we analyze the convergence from a large number of
initial situations, thereby avoiding incorrect conclusions
associated to the results of certain particular cases. Then,
the control algorithm has been run for 250 switching oper-
ations, searching for a parameter vector that minimizes the
impact velocities. As a consequence, a total of 2.5 million
switching operations have been simulated, allowing us to
deeply analyze the performance of the method.



4.8 Results and discussion

The control results are summarized in Fig. 4, which rep-
resents the obtained distribution of costs, J = |v.|, with
respect to the switching operation, n. To show the control
effectiveness, the graph also displays the cost of a conven-
tional switching operation (specifically, with a 30 V con-
stant activation). As shown, the randomness introduced
in the initial parameter vector results in a large variability
in the impact velocities of the first switching operations.
Despite that, note that the initial impact velocities are
in all cases lower than that of the uncontrolled scenario.
Then, the control results improve greatly as the number
of iterations increases, which shows the importance of the
adaptation law. It takes about 100 switching operations to
achieve a cost that is half that of the uncontrolled scenario,
and about 200 to make it one tenth.

As explained, it is the parameter adaptation law which
causes the impact velocities to be reduced over the course
of the operations. The evolution of the parameter values
as a function of the number of switching operations is
represented in Fig. 5. This graph shows the distribution
of values of the six parameters that are modified by the
adaptive law, as well as their nominal values. It can be
seen that the parameters are initially in the +5% range
defined earlier. Then, for each simulated experiment, the
adaptation law searches the space of parameters until it
reaches virtually stable values from iteration 200 onward.
The point to note is that the parameters do not converge to
their nominal values, but instead each experiment results
in a different final set of parameters. In this sense, our run-
to-run adaptive law behaves like most real-time adaptive
techniques. That is, the algorithm manages to control the
system (in this case, to minimize the impact velocities)
as if the true parameters were known. However, it does
not guarantee that the adapted parameters converge to
the true values. This distinction is important because, as
already mentioned, our algorithm should not be seen as a
parametric estimation method.

5. EXPERIMENTAL RESULTS

Lastly, experimental tests have been also performed to
validate the proposal in a real system. In particular, the
control has been applied to ten commercial single-pole
double-throw power relays of the same family. Ten exper-
iments have been performed with each relay, resulting in
a total of a hundred trials. Note that these devices are
based on a small switching actuator and, thus, they suffer
from the aforementioned problems, i.e., impacts, noise and
premature failure. The control objective is thus identical
to the simulations: to achieve a soft landing trajectory.
However, given that the impact velocities cannot be easily
measured or estimated in these devices, an alternative
cost is calculated using an audio signal from a low-cost
microphone placed near the device. The key is to realize
that the higher the impact velocity, the greater the amount
of sound generated in the switching. More specifically, let
Umic be the voltage signal generated by the microphone.
Then, the performance index of a given operation can be

computed as
te+At
J :/ Umicz(t) dt,
to

(16)
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Fig. 4. Simulation results. Cost as a function of the number
of switching operations. The graph shows the median
(ps0) and the 10th and 90th percentiles (p19 and pgo,
respectively) of the distribution of values obtained for
the 10000 simulated experiments. The cost without
control is also represented
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Fig. 5. Simulation results. Parameter values as a function
of the number of switching operations. The graphs
show the median (psp) and the 10th and 90th per-
centiles (p1g and pgg, respectively) of the distribution
of values obtained for the 10000 simulated experi-
ments. The nominal values are also represented
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Fig. 6. Experimental results. Cost as a function of the
number of switching operations. The graph shows the
median (psp) and the 10th and 90th percentiles (pio
and pgg, respectively) of the distribution of values ob-
tained for the 100 real experiments. The cost without
control is also represented

where At is large enough to capture all the acoustic noise
generated during (and after) the switching.

The experimental results are presented in Fig. 6. For
clarity, the control costs are normalized with respect to the
cost of an uncontrolled scenario. Similarly to the simulated
case, it can be seen that the initial costs vary significantly.
However, all the experiments have used initially the same
controller parameters, so in this case the variability must
be due to differences between the ten relays or variations
in environmental conditions. Then, the adaptation law
manages to reduce the costs as the number of operations
increases. Note that, although the convergence is slower
than in the simulated experiments, all relays behave better
than in the uncontrolled case after the 250 operations.
Therefore, we can conclude that our proposal is also
effective in a practical scenario.

6. CONCLUSION

In this paper, we have presented a new feedforward con-
trol scheme for electromechanical systems in which real-
time measurements or estimates are difficult, expensive or
simply impossible to obtain. Therefore, the fundamental
difference with other adaptive or feedforward methods in
the literature is that it does not use real-time feedback.
Instead, it includes a run-to-run adaptation law that can
use virtually any type of measurement. As has been shown
through simulations and experiments, the only necessary
condition is that these measurements can be processed to
obtain a performance index for any given operation.

As an application example, the scheme has been applied
to the soft-landing control of electromechanical switching
devices. However, the proposal is sufficiently versatile
to be applied to nearly any mechatronic system that
performs a repetitive task. Future work will be focused
on improving the convergence speed of the method, for
example by modifying the search algorithm or by applying
dimensionality reduction techniques to the parameter set.
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