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Abstract
Electromagnetic switching devices such as electromechanical relays and solenoid valves suffer from
impacts and mechanical wear when they are activated using a constant-voltage policy. This paper
presents a new control approach that aims at achieving soft landing in these devices, i.e., a
movement without neither impacts nor bouncing. The hybrid nonlinear dynamics of the sys-
tem is firstly described taking into account the limited range of motion that characterizes this
class of devices. Then, the nonlinear expression of the control law is derived and a method
to design a soft-landing reference trajectory is proposed. It is shown that, when certain con-
ditions are met, the design methodology presented in the paper results in a controller that
achieves perfect tracking of the reference trajectory and, hence, soft landing is accomplished. The
theoretical analysis is validated by simulation using a dynamical model of a specific switching device.

Keywords: Actuators, Differential Flatness, Dynamic modeling, Feedback linearization, Tracking,
Trajectory planning.

1 Introduction
Reluctance actuators are electromechanical
devices that feature high force density, good
efficiency, and high tolerance to faults. These
features make these actuators a promising choice
for high-speed high-precision applications [1]
such as antivibration systems [2] or equipment
for the semiconductor manufacturing industry
[3], among others. On the other hand, they are
also the ideal actuation system for commercial
switching devices that require a modest per-
formance [4] because of their compactness, low
cost, and low energy consumption. In particular,
electromechanical relays and solenoid valves are

devices whose operation is based on the force
created by a small single-coil reluctance actuator
with a limited range of motion.

Essentially, a single-coil reluctance actuator
is an electromagnet with a specifically designed
moving component commonly known as arma-
ture (see Fig. 1). When the coil is energized, the
magnetic force that appears in the air gap pulls
the armature towards the yoke. Since this force
is always attractive, the opposing force is gener-
ally produced by a spring. Commonly, commercial
switching devices are activated using a constant
voltage. This policy, however, leads to a continu-
ously accelerated motion which ultimately results
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Fig. 1 Diagram of a single-coil reluctance actuator

in impacts, bouncing, mechanical wear, and a
clicking noise that may be undesirable in some
applications.

Several control methods have been already
applied to improve the performance of electrome-
chanical switching devices. Starting with the early
works of the 1990s [5–7], the literature contains
proposals based on sliding-mode control [7–9],
optimal open-loop control [10, 11], or iterative
techniques [12, 13], among others. The common
goal of all these works is to achieve soft landing,
i.e., a controlled movement by which the armature
reaches the final position with zero velocity [14],
thus avoiding impacts and bouncing. The benefits
of this strategy are evident: the devices would suf-
fer less degradation and therefore have a longer
service life, and they would also be quieter. The
solution, however, is far from obvious, as these
actuators exhibit hybrid, nonlinear and very fast
dynamics.

In this work, a new control approach to
achieve soft landing in electromechanical switch-
ing devices is presented. The main contribution
is the joint design of the feedback controller and
the soft-landing trajectory, which includes a pre-
movement stage to deal with the hybrid dynamics
of the system. The controller is based on feedback
linearization, a common approach for nonlinear
systems that has been successfully applied to
single-coil [15], double-coil [16], and permanent-
magnet [17] electromagnetic actuators. Despite
these works, there is still scope of improvement
in the design of the reference trajectory and
its effects on the controller performance. In the
paper, a hybrid dynamical model of the sys-
tem including magnetic saturation, eddy currents,
flux fringing and the bouncing phenomenon is
firstly presented. Then, the equations of the con-
trol law are derived and the design method for
the reference trajectory, based on optimal control
theory, is described. Finally, the proposal is val-
idated through several simulations, in which we
compare both the controller and the trajectory

designs with other alternatives from the literature.
It is assumed that measurements of all the state
variables are available. State observers [18, 19]
could be used to address the problem if only elec-
trical measurements—voltage and current—are
available.

2 System dynamics
A diagram of a reluctance actuator is represented
in Fig. 2. This figure, which shows the coil, part
of the core, and the air gap of a generic single-
coil linear-motion actuator, will be used to explain
the model presented in this section. The position
of the armature is defined by the gap length, z,
which is physically limited between zmin and zmax,
0 ≤ zmin < zmax. The coil is wrapped around
the iron core and has N turns. When it is sup-
plied with power, the electrical current i that flows
through the wire creates the magnetic flux φ and
the equivalent eddy current iec. Note that this
diagram can be used to describe most geometric
designs, such as E-core or plunger-type actuators.

Fig. 2 Diagram of a single-coil linear-motion reluctance
actuator. The sign convention adopted for i, φ, and iec is
indicated by arrows

2.1 Free motion dynamics
When the armature is moving between the two
position boundaries, i.e., zmin < z < zmax
the dynamics of the system can be described
by a set of continuous nonlinear differential
equations. Two fundamental equations describe
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the electromagnetic dynamics. Firstly, the electri-
cal equation of the coil,

u = R i+Nφ̇, (1)

where u is the voltage applied to the coil
terminals—and input of the system— and R is the
internal resistance. Recall that the magnetic flux
is the integral of the flux density B on the cross
section of the magnetic circuit.

φ =
∫∫

B · ds (2)

The second equation results from applying
Ampère’s law on the surface Σ (see Fig. 2),∮

∂Σ
H · dl =

∫∫
Σ

J · ds, (3)

where H is the magnetic field intensity, J is
the current density, and ∂Σ is the contour of
Σ, selected to match the main path of the flux.
Assuming that the relation between the field
intensity and the flux density can be described
by means of the magnetic permeability µ as
H = B/µ, the previous equation can be simplified
[20] into

φR(z, φ) = N i+ iec, (4)
where R(z, φ) is the reluctance of the magnetic
system, which is in general a function of the
armature position and the magnetic flux. Sev-
eral methodologies can be used to obtain such
function, including numerical methods [2] and
analytical expressions [21]. Without loss of gener-
ality, the reluctance of a single-coil actuator can
be divided into two terms,

R(z, φ) = Rgap(z) +Rcore(φ), (5)

where Rgap is the air gap component, which only
depends on z, and Rcore is the iron core part,
depending only on φ. In this paper, these two
terms are modeled by means of the following
analytical expressions,

Rgap(z) =

z

µ0Acore

1 + z√
Acore

log
(

2 lw
z

) , (6)

Rcore(φ) = Rcore0
1− |φ| /φsat

, (7)

where Acore, lw, Rcore0, and φsat are positive
parameters and µ0 is the magnetic permeability
of vacuum. The air gap reluctance is based on the
correction factor proposed by McLyman [22] in
order to account for flux fringing effects. In addi-
tion, magnetic saturation is incorporated to the
model by using the Fröhlich-Kennelly relation [21]
in the expression of Rcore.

In order to model the currents induced in the
iron, it is assumed that the magnetic flux den-
sity is uniform across the core section. Under this
assumption, the equivalent eddy current is pro-
portional to the time derivative of the magnetic
flux [3],

iec = −kec φ̇, (8)
where kec > 0 depends on the electrical conductiv-
ity and the geometry of the core. As a result, the
presented model includes most of the electromag-
netic phenomena that may appear in reluctance
actuators [3, 20], i.e., eddy currents, flux fringing,
and magnetic saturation.

The armature motion is described by Newton’s
second law,

m z̈ = Fmag(z, φ)− F (z, ż), (9)

where m is the armature mass, Fmag(z, φ) is the
magnetic force that produces the motion, and
F (z, ż) describes the spring, friction, and grav-
ity forces. The simplest approach to describe this
latter force is to consider a linear spring-damper
model,

F (z, ż) = ks z + c ż + F0, (10)
where ks is the spring stiffness constant, c is the
damping coefficient, and F0 accounts for gravity
and the spring preload force. If necessary, more
sophisticated models can be found in the litera-
ture [23] that could also be used. On the other
hand, the magnetic force can be expressed in
terms of the reluctance [21] as

Fmag(z, φ) = −1
2 φ

2R′gap(z), (11)

where
R′gap(z) = ∂Rgap(z)

∂z
(12)

is in general a strictly positive function of z for all
z ≥ 0. In particular, when Rgap is modeled using
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(6), its partial derivative with respect to z is given
by

R′gap(z) =

1
µ0Acore

(
1 + z√

Acore

)
(

1 + z√
Acore

log
(

2 lw
z

))2 . (13)

A third-order state-space model can then be
obtained by combining all the previous equations.
If the state is selected as

x =
[
z v φ

]T
, (14)

where v = ż is the velocity of the armature, the
explicit dynamical equations of the system are

ż = ϕ1(x) = v, (15)

v̇ = ϕ2(x) = − φ2

2m R
′
gap(z)− F (z, v)

m
(16)

φ̇ = ϕ3(x, u) = −RφR(z, φ)
N kN

+ u

kN
, (17)

where

kN = N + Rkec

N
. (18)

Assuming that φ is bounded due to magnetic satu-
ration, i.e., φ ∈ (−φsat, φsat), where φsat>0 is the
saturation flux, the previous dynamical equations
are valid in the domain

D = [zmin, zmax]× R× (−φsat, φsat) . (19)

2.2 Dynamics of switching devices
Reluctance actuators used in high-precision appli-
cations [1] operate generally in the continu-
ous regime. However, electromechanical switch-
ing devices are specifically designed to switch
between zmin and zmax. In that case, the con-
straints imposed by the position limits lead to
hybrid dynamics, i.e., dynamics that combine
both continuous and discrete events.

The dynamics of the system when considering
these limits can be modeled by the hybrid automa-
ton of Fig. 3. Each transition between dynamic
modes is described by its corresponding guard
condition (in blue) and reset map (in green),

respectively before and after an arrow (⇒). The
reset map is explicitly presented only for the veloc-
ity, which is the only state that may change during
jumps. For those transitions that do not imply
jumps, only the guard condition is shown. The
value of the velocity after a jump is indicated by
the use of the superscript +. Functions ϕ1(x),
ϕ2(x), and ϕ3(x, u) are those in (15)–(17).

Fig. 3 Hybrid automaton that models the dynamics of an
electromechanical switching device

The operation of the automaton is as follows.
If the armature is moving (Mode 2) and hits any
of the limit positions with a low impact velocity
(0 ≤ |v| ≤ vε), the model jumps to the cor-
responding non-motion dynamic mode (Mode 1
or 3) and v is reset to zero. Then, when ϕ2(x) has
the right sign to start the movement, the automa-
ton returns to the motion mode. If, on the other
hand, the impact occurs with a greater kinetic
energy (|v| > vε), the armature bounces as defined
by the coefficient of restitution γ. The threshold
parameter vε allows for controlling the level of
detail of the bouncing phenomenon in simulation,
ranging from vε = 0 for full bouncing to vε = ∞
for no bounces.

3 Design of the controller
As stated, the controller proposed in this work is
based on exact feedback linearization. This section
presents the design of the linearizing law and
the tracking controller. For generalization pur-
poses, no particular model of the force F or the
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reluctance R is considered in the design of the
controller.

3.1 Linearizing law
The system (15)–(17) is a single-input affine
dynamical system, i.e., it has the form

ẋ = f(x) + g(x)u, (20)

with x ∈ D ⊂ R3 given by (14), domain D as
defined in (19), and vector fields f and g equal to

f(x) =


v

− φ2

2m R
′
gap(z)− F (z, v)

m

−RφR(z, φ)
N kN

 , (21)

g(x) =

 0
0

1/kN

 . (22)

In order to be feedback linearizable, there must
exist an output function h : D → R such that the
system has relative degree three. That is, we must
be able to find a function h that satisfies

Lg h(x) = 1
kN

∂h

∂φ
(x) = 0, (23)

Lg Lf h(x) = −
φR′gap(z)
mkN

∂h

∂v
(x) = 0, (24)

Lg L2
f h(x) = −

φR′gap(z)
mkN

∂h

∂z
(x) 6= 0, (25)

where Lf and Lg denote the Lie derivatives with
respect to f and g, respectively, and L2

f = LfLf .
Assuming that R′gap(z) is strictly positive for

all z ∈ [zmin, zmax], two conclusions can be drawn
from the previous expressions. Firstly, that the
system cannot be feedback linearized when φ =
0 because (25) is not satisfied in that case. And
secondly, that the output function h must satisfy

∂h

∂φ
(x) = 0, ∂h

∂v
(x) = 0, ∂h

∂z
(x) 6= 0, (26)

i.e., it must depend only on z.

Since the variable to be controlled is in fact
the position of the armature, z, let the output
function h be simply selected as

y = h(x) = z. (27)

Note that, by simple inspection of the equations
(15)–(17) it can be seen that z is indeed a flat out-
put of the system. Firstly, if z and its derivatives
are known, (16) constitutes a differential equation
from which φ can be obtained. Then, using (17),
the input u of the system could also be calculated
in terms of the position, velocity, acceleration, and
jerk of the armature. Thus, all the time-dependent
variables of the system can be parameterized in
terms of z and its derivatives up to order three.

As a remark note that, using (27) as output
function, the system satisfies the conditions (23)–
(25) in the regions

D+
0 = {x ∈ D | φ > 0} , (28)

D−0 = {x ∈ D | φ < 0} , (29)

i.e., for all x ∈ D such that φ 6= 0. Thus, it is
feedback linearizable in either D+

0 or D−0 . In this
paper, D+

0 is arbitrarily chosen as the working
domain.

The existence of an output function h that
satisfies conditions (23)–(25) implies that the
dynamics of the system can be expressed as

d3z

dt3 = L3
f h(x) + Lg L2

f h(x)u, (30)

where L3
f = LfL2

f . Besides, since Lg L2
f h(x) 6= 0,

it is possible to define a feedback linearizing law

u = α(x) + β(x)w, (31)

where

α(x) =−
L3

f h(x)
Lg L2

f h(x) , β(x) = 1
Lg L2

f h(x) , (32)

that transforms the system into a third order
integrator,

d3z

dt3 = w. (33)
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Considering (21), (22), and (27), the functions α
and β of the linearizing control law are given by

α(x) = RφR(z, φ)
N

−
kN v φR′′gap(z)

2R′gap(z)

− kN Fz(z, v) v
φR′gap(z) + kN Fv(z, v)φ

2m

+ kN Fv(z, v)F (z, v)
mφR′gap(z) , (34)

β(x) =− mkN

φR′gap(z) , (35)

where
R′′gap(z) = ∂2Rgap(z)

∂z2 , (36)

Fz(z, v) = ∂F (z, v)
∂z

, Fv(z, v) = ∂F (z, v)
∂v

. (37)
The feedback law (31) results in the LTI sys-

tem (33), which can be expressed in Brunovsky
canonical form, i.e.,

ξ̇ = Aξ +Bw, (38)

where w ∈ R is the input, ξ consists of the posi-
tion, velocity, and acceleration of the armature,

ξ =
[
ξ1 ξ2 ξ3

]T =
[
z

dz
dt

d2z

dt2

]T
, (39)

and the state and input matrices are

A =

 0 1 0
0 0 1
0 0 0

 , B =

 0
0
1

 . (40)

The linearizing state is related to the original
state (14) by the change of coordinates

ξ = T (x) =

 z
v

− φ
2

2m R
′
gap(z)− F (z, v)

m

. (41)

Furthermore, considering that x ∈ D+
0 , the

inverse transformation is given by

x = T−1(ξ) =


ξ1

ξ2√
−2
(
mξ3 + F (ξ1, ξ2)

)
R′gap(ξ1)

, (42)

and it has no singularities given that R′gap > 0.

3.2 Trajectory tracking controller
Once the system (15)–(17) is linearized and trans-
formed into an equivalent LTI system, position
controllers can be designed using classical lin-
ear techniques. In particular, the main goal is
to design a controller such that the position of
the armature follows a predefined soft-landing
reference trajectory zr(t). Since the linearizing
state ξ is composed of the position, velocity, and
acceleration of the armature, the desired position
trajectory can be used to define a time-dependent
reference for the entire state vector. This state ref-
erence, ξr(t), is composed of zr(t) and its first two
time derivatives.

ξr(t) =
[
zr(t) żr(t) z̈r(t)

]T (43)

Let the tracking error be defined as ξ̃ = ξr − ξ.
Considering (38), the error dynamics is given by

˙̃ξ = ξ̇r − ξ̇ = ξ̇r +A ξ̃ −Aξr −Bw. (44)

Since the equivalent LTI system is a chain of inte-
grators, with A and B in the form of (40), it can
be shown that

ξ̇r −Aξr = B z(3)
r , (45)

where
z(3)

r = d3zr

dt3 . (46)

Consequently, the error dynamics can be reformu-
lated as

˙̃ξ = A ξ̃ −B
(
w − z(3)

r

)
. (47)

Then, by using the feedback-feedforward control
law

w = K ξ̃ + z(3)
r , (48)

where K ∈ R1×3, the closed-loop error dynamics
becomes

˙̃ξ = (A−BK) ξ̃. (49)
By choosing K such that A − BK is Hurwitz,
the error dynamics can be made exponentially
asymptotically stable at the origin and, thus, the
actuator will track the predefined trajectory with
an exponentially decreasing error.

This final step completes the design of the
nonlinear controller for the actuator via feedback
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linearization. The complete control law to track
the reference zr(t) can be obtained by combining
all the previous expressions.

u(x, t) = α(x)+β(x)
(
K
(
ξr(t)− T (x)

)
+ z(3)

r (t)
)

(50)

4 Design of the trajectory
The soft-landing reference trajectory proposed for
the actuator has the form

zr(t) =


z0, if 0 ≤ t < t0,

zm(t), if t0 ≤ t ≤ tf ,
zf , if t > tf ,

(51)

where z0 is the initial position, zf is the final
position, and zm(t) is the position trajectory for
the movement stage. Two different cases are con-
sidered: the trajectory for the closing operation,
where z0 = zmax and zf = zmin, and that for the
opening, where z0 =zmin and zf =zmax.

In order to achieve soft landing at t = tf , the
reference trajectory must be such that

zm(tf) = zf , żm(tf) = 0, z̈m(tf) = 0, (52)

i.e., it must arrive at z = zf at t = tf with zero
velocity and acceleration. Note that the accel-
eration condition is necessary in order for the
mover to stay at the final position for t > tf (see
Fig. 3). Assuming that the armature is at rest at
z=z0 and t= t0—a logical assumption in switch-
ing devices—it is advantageous that the reference
trajectory also satisfies

zm(t0) = z0, żm(t0) = 0, z̈m(t0) = 0. (53)

In that case, the tracking error at t = t0 will
be identically zero, i.e., ξ̃(t0) = [ 0 0 0 ]T. Thus,
considering that the error dynamics is given by
(49), where A−BK is Hurwitz by design, the
tracking error will be equal to zero during the
entire trajectory. As a consequence, the controller
will achieve perfect tracking in the nominal case,
unless the input saturates or the state moves out
of the linearizable region.

When perfect tracking is accomplished, ξ(t)=
ξr(t) ∀ t. Thus, if the input u is limited between
umin and umax, where umin < umax, the condition

to avoid input saturation during the motion can
be derived from (31) and (38)–(40) as

umin ≤ α(xr) + z(3)
m β(xr) ≤ umax, ∀ t ∈ [t0, tf ] ,

(54)
where

xr = xr(t) = T−1(ξr(t)
)

(55)
is the reference trajectory in the original state
space. The conditions to keep the state inside the
linearizable region D+

0 can be also obtained by
means of the inverse transformation. Using (19)
and (28), these are given by

− φ 2
sat
2 <

m z̈m + F
(
zm, żm

)
R′gap

(
zm

) < 0, ∀ t ∈ [t0, tf ] ,

(56)
zmin ≤ zm ≤ zmax, ∀ t ∈ [t0, tf ] . (57)

Several approaches can then be used to find
a trajectory that satisfies all the previous condi-
tions. The simplest alternative is to define zm(t)
as a fifth degree polynomial whose coefficients are
chosen such that the trajectory satisfies the con-
ditions in (52) and (53). Without much difficulty,
it can be shown that the resulting polynomial is
monotone in [t0, tf ], so the condition in (57) is
directly met. The conditions in (54) and (56), on
the other hand, can be satisfied by a proper choice
of the length of the interval [t0, tf ]. Polynomial
trajectories are indeed the standard solution in the
design of soft-landing feedback controllers for elec-
tromechanical devices [17, 24–26]. In this paper,
however, an energy-optimal reference trajectory
is obtained using optimal control theory [10, 27].
Considering the model (15)–(17), the dynamic
optimization problem is formulated as

min.
u(t)

J =
∫ tf

t0

u2 dt, (58)

s. t. ẋr = [ ϕ1(xr) ϕ2(xr) ϕ3(xr, u) ]T , (59)
umin ≤ u ≤ umax, (60)
xr(tf ) = T−1 ( [ zf 0 0 ]T

)
, (61)

xr(t0) = T−1 ( [ z0 0 0 ]T
)
. (62)

Note that the two last conditions are equiva-
lent to (52) and (53). A solution is then found
by means of the Pontryagin method. Firstly, the
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Hamiltonian is built as

H(x, p, u) = u2+p1 ϕ1(x)+p2 ϕ2(x)+p3 ϕ3(x, u) ,
(63)

where p = [ p1 p2 p3 ]T is the costate. Then, the
expression for the optimal input is obtained by
applying the Pontryagin principle,

H (x∗r , p∗, u∗) ≤ H (x∗r , p∗, u) ∀u ∈ [umin, umax] ,
(64)

where x∗r , p∗ and u∗ are respectively the optimal
trajectory, costate, and input. By using (63) and
(15)–(17), the expression for the optimal input is
obtained.

u∗ = u∗(x∗, p∗) = arg min
u∈[umin,umax]

(
u2 + p∗3 u

kN

)

=


umax if p∗3 < −2 kN umax

− p∗3
2 kN

if −2 kN umax ≤ p∗3 ≤ −2 kN umin

umin if p∗3 > −2 kN umin
(65)

Note that, since ϕ3(x, u) is input-affine, the
Hamiltonian is convex in u, which makes u∗

the global minimum of H. The equations of the
Hamiltonian system are then obtained as

ẋ∗r(t) = +∂H∗

∂p∗
, ṗ∗(t) = −∂H

∗

∂x∗r
, (66)

where H∗ = H
(
x∗, p∗, u∗(x∗, p∗)

)
and, finally, the

trajectory is numerically computed solving the
boundary value problem (BVP) with (61) and
(62) as boundary conditions.

A remaining issue in the design of the trajec-
tory (51) is the purpose of the interval [0, t0). In
this regard, it must be noted that the system has
hybrid dynamics and it is assumed to be initially
at either Mode 1 or Mode 3 (see Fig. 3). Thus, the
linearizing state ξ3 at t = 0 does not actually rep-
resent the armature acceleration, which is equal to
zero. Instead, as described by (41), it is the sum of
the magnetic, elastic, friction, and gravity forces
divided by the armature mass. In other words, it
does not include the contact force that appears at
the limit positions. The goal of the aforementioned
period is that, regardless of the initial magnetic
flux, the controller forces the system to reach a
stationary state at some t < t0 such that Fmag and

F are in balance at t = t0, i.e., ξ3(t0) = ξ̃3(t0) = 0.
By a proper choice of t0, this interval prepares the
actuator for takeoff and allows the movement to
start immediately at t = t0. Otherwise, ξ̃3(t0) may
be nonzero and thus perfect tracking would not be
guaranteed. An alternative procedure to overcome
this problem [17] consists in designing a reference
trajectory for ξ3 during the pre-movement stage,
but the proposal of this paper is simpler and leads
to very similar results.

5 Results and discussion
In this section, the nonlinear soft-landing con-
troller is validated by simulation. With the aim of
incorporating the effects of the position limits, the
evaluation is performed using the hybrid automa-
ton of Fig. 3. Table 1 presents the parameter
values used in the simulations. The voltage is lim-
ited between umin = −24 V and umax = +24 V.
The simulations have been carried out for the
two possible operations—closing and opening—of
any electromechanical switching device. In all the
cases, the proportional gain K of the controller
has been selected to achieve a settling time of 1
ms.

Table 1 Model parameters

ine R 75 Ω
N 1200
kec 1500 A/V
Acore 20 mm2

lw 15 mm
Rcore0 3·106 H−1

φsat 25 µWb
ine

ine m 2 g
ks 50 N/m
c 0.1 Ns/m
F0 −0.75 N
γ 0.5
vε 1·10−3 m/s

[zmin, zmax] [0, 1] mm
ine

5.1 Nominal results
We first analyze the results in the nominal case,
i.e., when the controller and trajectory proposed
in the previous sections are jointly applied to con-
trol the actuator motion. The trajectory used in
this case corresponds to t0 = 1 ms and tf = 6 ms
and has been obtained by solving the BVP using
the MATLAB function bvp4c [28]. This function
implements a collocation method that requires an
initial solution. For this purpose, we take advan-
tage of the fact that the Hamiltonian system is
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Fig. 4 Results corresponding to closing (left) and open-
ing (right) operations using the designed energy-optimal
reference trajectory. From top to bottom, linearizing states
(ξ1 =z, ξ2 =v, and ξ3), magnetic flux φ, and input u

differentially flat in z [26], which allows us to pro-
pose an initial sub-optimal soft-landing trajectory
for the position and, from this, to obtain the cor-
responding trajectory for all the remaining state
variables. Thanks to the initially supplied solu-
tion, the algorithm requires less than 2 seconds
of computation on a 9th generation Intel Core i5
processor. In order to highlight the advantages
of optimally-designed trajectories over polynomial
ones, the optimal arcs have been obtained for an
input bounded between -20 V and +20 V. This
results in a more robust design, since there is
still an available 4-volt band that can be used
by the feedback term of the controller to correct
deviations with respect to the nominal situation.

As shown in Fig. 4, the results are in accor-
dance with the theoretical analysis of the previous
section: The controller achieves perfect tracking
of the proposed trajectory and soft landing is
achieved. The errors in the position (z = ξ1)
and velocity (v = ξ2) are identically zero during
the entire simulation. By contrast, an initial error
has been considered in ξ3 in order to analyze the
performance of the controller during the interval
[0, t0). Note that, although the position error is
zero for all t < t0, the controller still forces the

magnetic flux to reach a value for which Fmag and
F are in equilibrium. Since t0 is large enough,
the tracking error at t = t0 is equal to zero and
thus the motion starts immediately. In this regard,
any available information about the initial value
of φ could be used to estimate the initial error
ξ̃3(0) and, hence, to set a proper value for t0. As
expected, the state stays inside the linearizable
region D+

0 .

5.2 Trajectory comparison
In order to emphasize the importance of a proper
trajectory design, Figs. 5 and 6 present additional
results of cases where the conditions to ensure
perfect tracking are not satisfied. In these simula-
tions, piecewise polynomial functions are used as
reference trajectories. For comparative purposes,
these have been also defined between t0 = 1 ms
and tf = 6 ms. On the one hand, Fig. 5 presents
two cases where the condition (54) does not hold,
i.e., the input saturates in some parts of the inter-
val [t0, tf ]. As can be seen, the desired trajectories
require high variations of the acceleration which
cannot be given by the controller and, thus, track-
ing errors appear during the motion. On the other
hand, the results of Fig. 6 correspond to cases
where perfect tracking is lost because the state
escapes from the linearizable region. More specif-
ically, the condition (56) does not always hold
because the acceleration required in some parts
of the desired trajectory is incompatible with the
physics of the system. Note that, as the magnetic
flux approaches zero, the action given by (50)
increases and results in input saturation, so (54)
is not met either during these periods. Further-
more, when φ reaches and crosses the zero level,
the state jumps between the linearizable regions
D+

0 and D−0 . As a result, the control adopts a
high-frequency switching behavior between umin
and umax (shaded region in the figure), similarly
as in a sliding-mode controller.

The results presented in these two latter
figures show that the loss of perfect tracking may
lead to two different scenarios with regard to soft
landing. When it occurs at the beginning of the
motion, the controller may be able to eliminate
the error before the end of the trajectory and thus
soft landing may still be accomplished (see the
closing operation in Fig. 5, and the opening oper-
ation in Fig. 6). However, if the tracking error
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Fig. 5 Results corresponding to closing (left) and opening
(right) operations using a piecewise polynomial reference
trajectory. In this case, the input u saturates in the interval
[t0, tf ] = [1, 6] ms, which results in loss of perfect tracking

Fig. 6 Results corresponding to closing (left) and opening
(right) operations using a piecewise polynomial reference
trajectory. In this case, the state escapes from the lineariz-
able regionD+

0 , which results in loss of perfect tracking and
input chattering (shaded region, the solid line indicates the
average value)

appears near the end of the trajectory, the actua-
tor will probably arrive to the final position with a
nonzero impact velocity and bouncing will appear
(opening operation in Fig. 5, and closing operation
in Fig. 6). Thus, in order to achieve soft landing
in reluctance actuators, it can be concluded that
it is advantageous to define reference trajectories
which are less demanding—in terms of control—as
the armature approaches the final position.

5.3 Controller comparison
Besides the trajectory design, the other criti-
cal part of the proposed control is the feedback
linearization technique. In order to show the
advantage of this method, it is compared with
an alternative controller. It follows the general
structure of the sliding-mode controller previously
proposed in [8] for reluctance actuators.

Firstly, the sliding surface is defined by the
scalar equation s = 0, where, for a third-order
system, s is

s = (d/dt+ λ)2 (zr − z), (67)

in which λ is a constant that determines the set-
tling time of the position when s = 0. Then, the
control law is defined as

u = −U sgn(s), (68)

where U is another constant, which must be
large enough to ensure that the sliding surface is
reached in finite time. In order to be consistent
with the specification of the feedback linerariza-
tion, the constants are selected so that the settling
time is 1 ms and the maximum voltage is 24 V
(i.e., λ = 4745 s−1, U = 24 V).

Both controllers are tested and compared for
different sampling rates. To evaluate the tracking
performance, the root mean square error of the
position during motion is obtained as follows:

RMSEz = 1
tf − t0

∫ tf

t0

(
z(t)− zr(t)

)2 dt. (69)

Given the soft landing objective, another impor-
tant performance index are the impact velocities.
Thus, for each operation, an equivalent velocity is
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Fig. 7 Control performance comparison as a function of
the sampling period: root-mean-square errors of the tracked
position (top) and equivalent velocities (bottom) in closing
(left) and opening (right) operations

calculated as

veq =
√∑

i

vi
2, (70)

where {vi} is the set of impact velocities. Note
that it corresponds to the same kinetic energy as
the combination of every impact velocity. Thus, it
accounts for multiple impacts caused by bouncing.

The main results are presented in Fig. 7. It
depicts the root mean square errors and equiv-
alent velocities for different sampling periods Ts
ranging from 1 to 100 µs. Notice the logarithmic
scale in the plots. The proposed controller based
on feedback linearization proves to track better
the desired position for every tested sampling
rate, as the root mean square errors are con-
sistently smaller. Consequently, the soft-landing
performance is better, as the equivalent velocities
demonstrate.

In order to further illustrate the improve-
ment of the proposed solution with respect to the
sliding-mode controller, the full control results are
shown for a particular case. The worst-case sce-
nario of the studied cases has been chosen, which
corresponds to a sampling period of 100 µs. Fig. 8
presents the results using our proposal. In this sce-
nario, the input saturates frequently, which causes
tracking errors in the linearizing states and the
magnetic flux. Still, the tracking performance is
very good, particularly at the end of the opera-
tions. Thus, the impact velocities are very small.
In contrast, Fig. 9 presents the results using the

Fig. 8 Results corresponding to closing (left) and opening
(right) operations using our control proposal with a sam-
pling rate of 10 kHz (Ts = 100 µs)

Fig. 9 Results corresponding to closing (left) and opening
(right) operations using the alternative sliding-mode con-
troller with a sampling rate of 10 kHz (Ts = 100 µs). Note
the impact velocity and the big bounce at the end of the
closing operation
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sliding-mode controller. In this case, the tracking
errors are appreciably larger, which leads to sig-
nificant impact velocities, especially in the closing
operation.

6 Conclusion
This paper has considered the design of a non-
linear feedback controller to achieve soft landing
in electromechanical switching devices. As shown,
the controller is able to track the reference tra-
jectory with zero error thanks to the joint design
of the tracking controller and a soft-landing tra-
jectory that satisfies certain conditions also given
in the paper. As a result, the device is able to
switch between the two possible states without
impacts or bounces. Special attention has been
paid to emphasize the importance of the trajec-
tory design. It has been shown that, even when
working with a nominal model, a wrong design
of the desired trajectory may lead to undesired
results with respect to soft landing. Apart from
minimizing the energy required for the motion,
the use of optimal control theory is also advan-
tageous because it permits more flexibility in the
design of the trajectory. The controller has been
designed for a generic reluctance actuator inde-
pendently of its specific design or final application,
so it may also be applied to control the motion—
or the force—of other reluctance actuators used
in high-precision systems. Future work will focus
on the evaluation of the controller on perturbed
systems and the use of state observers based only
on measurements of the electrical variables.
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