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Abstract—The impact forces during switching operations of
short-stroke actuators may cause bouncing, audible noise and
mechanical wear. The application of soft-landing control strate-
gies to these devices aims at minimizing the impact velocities
of their moving components to ultimately improve their lifetime
and performance. In this paper, a novel approach for soft-landing
trajectory planning, including probability functions, is proposed
for optimal control of the actuators. The main contribution
of the proposal is that it considers uncertainty in the contact
position and hence the obtained trajectories are more robust
against system uncertainties. The problem is formulated as
an optimal control problem and transformed into a two-point
boundary value problem for its numerical resolution. Simulated
and experimental tests have been performed using a dynamic
model and a commercial short-stroke solenoid valve. The results
show a significant improvement in the expected velocities and
accelerations at contact with respect to past solutions in which
the contact position is assumed to be perfectly known.

Index Terms—Optimal control, nonlinear dynamical systems,
electromechanical systems, actuators, switches, microelectrome-
chanical systems, valves, solenoids.

I. INTRODUCTION

ELectromechanical actuators are devices with movable
parts operated by a source of electrical energy. In par-

ticular, switch-type actuators are characterized for having a
limited range of motion, e.g. reluctance actuators (solenoid
valves, relays, contactors), or microelectromechanical system
(MEMS) switches. For many of these devices, the impact
forces during switching operations cause bounces, audible
noise, or mechanical wear [1], [2]. The design of soft-landing
strategies is of great interest for these devices, as it permits
enhancing their service life, broadening their scope of appli-
cations, or replacing more complex and expensive actuators.

Regarding the control of MEMS switches, the feedback de-
sign is problematic in many cases, because sensor data is noisy
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or unavailable, and dynamics is very fast [3]. Therefore, some
works focus on designing waveforms that aim at reducing the
impact velocities [4] in an open-loop fashion. To compensate
for fabrication variability, [5] proposes to refine the design
of the waveform via reliability-based design optimization and
Monte Carlo simulations, which require great computational
effort. Alternatively, [6] proposes a simple learning control to
iteratively reduce contact bouncing.

For specific reluctance actuators, several works tackle the
soft-landing problem. One approach is to design feedback
control strategies to track a predefined position trajectory [7],
[8], [9], [10]. In the case that the position cannot be measured
in real time, some works focus on the design of estimators
of the state [11], [12] or other time-dependent variables of
interest [13]. To improve the robustness, some of them also
propose cycle-to-cycle learning-type controllers to adjust the
feedback controller [2], [14] or the feedforward signal [15],
[16], [17]. However, for certain simple low-cost reluctance
actuators, the soft-landing problem is not satisfactorily solved.
On the one hand, their dynamics are fast, and highly nonlinear,
which makes the design of position observers a challenging
task. On the other hand, their position cannot be measured in
real time, either because a sensor cannot be placed or because
it is much more expensive than the device.

The design of a tracking trajectory and its corresponding
input signal is a key point for both feedback and feedforward
control. The generation of trajectories is discussed in previous
works for different actuators, and it is common to assume that
errors in models, observers and measurements are negligible.
On that assumption, soft landing is achieved by setting as
bound conditions the final velocity and acceleration equal to
zero. Trajectory planning is therefore focused on finding feasi-
ble solutions [18] or on optimizing some particular variables,
e.g. transition time [19] or mean power consumption [20].
However, in practice, and specially for low-cost actuators, the
system representation is not perfect and therefore the generated
optimal input signals do not result in real soft landing when
the control is implemented.

In this brief paper, a novel approach for soft-landing open-
loop control is developed. The contribution of our proposal
is the addition of probability functions in the optimal control
problem for trajectory planning. Specifically, uncertainty in
the contact position is included and the soft-landing optimal
control is formulated in order to minimize the expectations
of the contact velocity and acceleration. Furthermore, the
advantages of utilizing the electrical current as the control
input for reluctance actuators are discussed and, in conse-
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quence, the optimization of the current signal is included in
the formulation of the problem. Simulated and experimental
tests have been carried out to analyze the applicability of
the designed trajectories in an open-loop controller and the
improvement due to the inclusion of uncertainty.

II. PROBLEM STATEMENT

The first step of the proposed method is the definition of the
motion dynamics of a generic device. The proposed represen-
tation is a generalized lumped parameter model, accounting
for the mechanical subsystem and any other dynamics that
influences it, e.g. electrical or magnetic. It can be expressed
as a set of two or more differential equations,

ż(t)=v(t), (1a)

v̇(t)=fv
(
z(t), v(t),α(t)

)
+Gv

(
z(t), v(t),α(t)

)
u(t), (1b)

α̇(t)=fα
(
z(t), v(t),α(t)

)
+Gα

(
z(t), v(t),α(t)

)
u(t), (1c)

where z and v are the position and velocity of the movable
part. Additional state variables are condensed in the vector
α ∈ Rn−2, being n ≥ 2 the order of the dynamical system.
The input vector u may affect directly the acceleration v̇ or
the dynamics of α, which in turn influences v̇. The model is
general enough to include a wide range of actuators. This set
of equations can be compactly expressed as

ẋ(t) = f
(
x(t)

)
+G

(
x(t)

)
u(t), (2)

where x =
[
z v αT

]
T. Secondly, the soft-landing trajec-

tory planning is formulated as a standard optimal control
problem, where the cost is a functional of a scalar function V
of the state and the input, i.e.

J =

∫ tf

0

V
(
x(t),u(t)

)
dt, (3)

where tf is the final time. The definition of V for soft landing
is specified in the following section. The optimization problem
is then solved via Pontryagin’s Minimum Principle [21]. Pro-
vided that λ is the costate vector, and that the Hamiltonian is

H
(
x(t),λ(t),u(t)

)
= V

(
x(t), u(t)

)
+λTf

(
x(t),u(t)

)
, (4)

the optimal control u∗ must satisfy the following condition,

u∗(t) = u∗(x∗(t),λ∗(t)
)

s.t.

H
(
x∗(t),λ∗(t),u∗) ≤ H

(
x∗(t),λ∗(t),u

)
, ∀u ∈ U , (5)

where x∗ and λ∗ are the optimal state and costate vectors,
and U is the set of permissible values for u. Then, the optimal
control problem is reformulated as a two-point boundary value
problem (BVP), with the differential equations for x∗ and λ∗,

ẋ∗ = f
(
x∗(t),u∗(x∗(t),λ∗(t))

)
, (6a)

λ̇∗ = −∂H
(
x∗,λ∗,u∗(x∗,λ∗)

)
/∂x∗, (6b)

subject to a set of 2n boundary conditions. The boundary
conditions for t = 0 correspond to the beginning of the
motion from initial position z0,

z(0) = z0,
dz

dt
(0) = v(0) = 0, . . . ,

dn−1z

dtn−1
(0) = 0. (7)

Given the assumption that the model is a perfect represen-
tation of the dynamical system, soft landing could be achieved
by setting to zero the final velocity v(tf), and higher position
derivatives if n > 2, as boundary conditions. However, the
model is always a simplification of the system. To account for
expected uncertainty and obtain a more conservative trajectory,
the actual contact position is assumed a random variable Zc.
Since the contact position is random, so it is the contact instant
Tc, velocity Vc and other state variables, and they cannot be
set as boundary conditions. Therefore, the boundary conditions
for t = tf correspond to a free-final state, except for the final
position, which is set to zf ,

z(tf) = zf , λ2(tf) = 0, . . . , λn(tf) = 0. (8)

As the actual contact position is unknown, the solution
does not terminate when z = Zc. Instead, the choice of zf

establishes the probability that the contact occurs before tf .
E.g., in the case that the contact position is a normal deviate
(Zc ∼ N (µz, σz

2)), the final position could be set as its expec-
tation µz , which means that there would be a 50 % probability
of Tc ≤ tf . Alternatively, setting zf = µz + 3 sgn(Vc)σz
would guarantee a contact with a 99.87 % confidence. This
is preferable because, by definition, the trajectories beyond tf
are not optimized. Note also that the differential equation (2)
represents the unconstrained system dynamics assuming the
contact has not happened yet (t < Tc). As the contact velocity
is not affected by the dynamics after that event, there is no
need to model the dynamical system for the case t > Tc.

III. SOFT-LANDING COST FUNCTIONAL

In this section, a cost J is defined to obtain an optimal
position trajectory and its correspondent input signal, given
the assumption that the contact position is random. The total
cost functional is divided into several terms Ji,

J =
∑

i

Ji =
∑

i

∫ tf

0

Vi
(
x(t),u(t)

)
dt, (9)

and the functions Vi are defined in the following subsections.
In many devices there are two asymmetrical switching oper-

ations, depending on the direction of movement. The optimal
control problem is formulated to be solved separately for each
type of operation. Nevertheless, the following reasonings and
expressions are generalized in order to be used for both.

A. Expected contact velocity

In an elastic collision, the bouncing velocity depends on
the velocity just before contact. Therefore, in order to reduce
both impact forces and bouncing, the expected contact velocity
should be minimized. The actual contact position is assumed a
random variable Zc with a probability density function (PDF)
fZc

(z). The PDF can be of any form, provided that it is
differentiable on the time interval,

∃ ∂2fZc(z)/∂z
2, ∀ z(t) s.t. t ∈ [0, tf ]. (10)

Since the contact position is a random variable, the contact
instant Tc is also random,

Tc =
(
t | z(t) = Zc

)
. (11)
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Its probability density function fTc
(t) can be derived from

fZc(z). As an intermediate step, let us define Pc as the
probability that at an arbitrary instant t ≥ 0 the contact has
already occurred, i.e.

Pc(t) =

∣∣∣∣∣

∫ z(t)

z(0)

fZc
(z) dz

∣∣∣∣∣ . (12)

Depending on the motion direction, z(t) ≤ z(0) or z(t) ≥
z(0). The absolute value simply ensures that the probability
is non-negative for both cases. Moreover, integration by sub-
stitution permits transforming (12) into a time integral,

Pc(t) =

∫ t

0

∣∣fZc

(
z(τ)

)
ż(τ)

∣∣ dτ. (13)

The absolute value is moved inside the integral, which
is only possible under the assumption that the integrand is
always non-negative or non-positive. As the PDF fZc

(z) is
non-negative by definition, the position z must be a monotonic
function of time. This condition might seem restrictive, but it
is completely reasonable. If it is not satisfied, there would
be at least one time interval in which the movable part goes
backwards, away from the final position. This is clearly not
an expected behavior in an optimal trajectory.

From (13) and (1a), the PDF fTc
(t) can be calculated as

fTc
(t) = dPc(t)/dt = |v(t)| fZc

(
z(t)

)
. (14)

The contact velocity is a function of a random variable,
Vc = v(Tc), and thus it is unknown. However, its expected
value can be expressed as a conditional expectation,

E[Vc] = E[ v(Tc) | 0 ≤ Tc ≤ tf ], (15)

which can be calculated as

E[Vc] =

∫ tf
0
v(t) fTc

(t) dt

P (0 ≤ Tc ≤ tf)
, (16)

and, substituting (14) into (16), the final expression is

E[Vc] =

∫ tf

0

1

P (0 ≤ Tc ≤ tf)
v(t) |v(t)| fZc

(
z(t)

)
dt. (17)

Note that P ( · · · ) is a probability constant that does not de-
pend on the state trajectory. Therefore, the previous expression
has the form of a standard optimal control performance index.
Since the goal is to minimize the absolute value of the contact
velocity, the proposed cost functional J1 is proportional to the
expectation of |Vc|, and as the velocity cannot change sign, it
can be expressed as

J1 = w1 |E [Vc]| = w1 sgn(Vc) E[Vc], (18)

where w1 is a weight constant. This constant and the following
ones determine the importance of each cost functional and
should be chosen accordingly. Substituting (17) into (18) the
final expression is obtained,

J1 =

∫ tf

0

V1(x(t)) dt, V1(x(t)) =
w1 v

2(t) fZc
(z(t))

P (0 ≤ Tc ≤ tf)
.

(19)
Note that the absolute values are removed because sgn (v) =

sgn (Vc) except when v = 0, in which case V1 = 0.

B. Expected bounced acceleration
In the case that the system is second order (n = 2), the

acceleration can be directly controlled by u, and therefore it is
sufficient to minimize the expected contact velocity. However,
in most cases, n > 2 and position derivatives of higher order
(acceleration, jerk, jounce...) should be minimized as well to
achieve soft landing. The reason is that, if their sign is opposite
to the motion direction, they tend to separate the movable part
from the final position, even in a completely inelastic collision.
In this subsection, the cost functional for the minimization of
the bounced acceleration is derived. In the rare cases in which
n > 3, the same line of reasoning should be followed for
higher order derivatives of the position.

As stated in (1b), the acceleration v̇ may depend on the
velocity, which can change abruptly in the contact instant.
Thus, the bounced acceleration ab after contact should be
calculated from the bounced velocity vb,

ab

(
z(t), vb(t),α(t),u(t)

)
= fv

(
z(t), vb(t),α(t)

)

+Gv
(
z(t), vb(t),α(t)

)
u(t). (20)

It is assumed that the delay between the impact and the
bouncing is negligible, i.e., the elasto-plastic dynamics of the
contact are much faster than the dynamics of the armature
during unconstrained motion. Then, if contact occurs at t, the
bounced velocity, in the most general form, is a function of
the state and the input at that instant. The function depends
on the loss of kinetic energy at impact, so the boundaries
are vb = −v (no energy loss) and vb = 0 (complete energy
loss). In the case there is no accurate model of the bouncing
phenomenon, it is possible to conservatively estimate vb as

v̂b

(
x(t),u(t)

)
= arg max

vb

−sgn(Vc) ab

(
z(t), vb,α(t),u(t)

)

s.t. vb v(t) ≤ 0, |vb| ≤ |v(t)| . (21)

It is important to notice that the bounced acceleration is only
detrimental in the direction that separates the armature from
the final position, i.e. in the opposite direction of the velocity.
Taking that into account, the saturated bounced acceleration
ab,sat is defined as an auxiliary variable, in the case of contact,

ab,sat

(
x(t),u(t)

)
=

{
ab, ab Vc ≤ 0, (take off)
0, ab Vc > 0. (hold) (22)

Note that the saturation is required for calculating the cost
functional, the unconstrained acceleration v̇ is still calculated
from (1b). Furthermore, to numerically solve the problem,
ab,sat is recommended to be differentiable, condition not met
in (22). A smooth saturation function should be used instead.

The bounced acceleration at contact depends on the contact
instant, which was defined in the previous subsection,

Ac = ab,sat

(
x(Tc),u(Tc)

)
. (23)

As was the case for the contact velocity, E[Ac] is defined as
a conditional expectation,

E[Ac] = E[ ab,sat

(
x(Tc),u(Tc)

)
| 0 ≤ Tc ≤ tf ], (24)

which can be computed as

E[Ac] =

∫ tf

0

|v(t)| ab,sat

(
x(t),u(t)

)
fZc

(
z(t)

)

P (0 ≤ Tc ≤ tf)
dt. (25)
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In this case, the objective is to minimize the absolute value
of Ac. In consequence, the cost functional term should be

J2 = w2 |E[Ac]| = −w2 sgn(Vc) E[Ac], (26)

where w2 is another weight term. Substituting (25) into (26),
the final expression is obtained,

J2 =

∫ tf

0

V2(x(t),u(t)) dt,

V2(x(t),u(t))=−w2 v(t) ab,sat

(
x(t),u(t)

)
fZc

(
z(t)

)

P (0 ≤ Tc ≤ tf)
.

(27)

C. Regularization term

Up until this point, the Hamiltonian (4) is linear in u be-
cause V1 does not depend on u, and V2 is linear in u—except
when saturating (22). Thus, the optimal control (5) has discon-
tinuities, which means the problem is ill-defined, complicating
its numerical resolution. To circumvent this, it is common to
add as a regularization term a quadratic expression with respect
to u, making the optimal control continuous. We propose

J3 =

∫ tf

0

V3(t) dt, V3 = w3

(
dh
(
x(t)

)

dt

)2

, (28)

where w3 is an additional weight term and h is an arbitrary
signal whose quadratic derivative is minimized. The cost
functional V3 can be expressed as

V3(x(t),u(t))=w3

(
∂h(x)

∂x

(
f
(
x(t)

)
+G

(
x(t)

)
u(t)

))2

,

(29)
which is quadratic in u, and thus serves as a regularization
term to avoid solving an ill-defined optimal control.

In particular, for reluctance actuators, h(x) can be the cur-
rent through the coil, as reducing its derivative is advantageous
in the case the system is going to be controlled by using the
optimal current signal as reference or input (the motivation for
this decision is discussed in the following section). The current
signal obtained this way is less steep and therefore easier
to follow accurately in the implementation. Therefore, V3 is
not only useful for the numerical resolution of the problem,
because reducing the current derivative is also desirable from
a purely theoretical standpoint. However, it is not possible
to minimize simultaneously the current derivative and the
expected contact velocity and acceleration, so there is a trade-
off which depends on the chosen cost weights.

IV. RELUCTANCE ACTUATOR

To analyze the optimal control proposal, a real reluctance
actuator and its dynamic model is used for simulations and ex-
periments. To improve the readability, from this point forward
the time dependence of the variables is omitted.

A. Description of actuator and dynamic model

The device is a simple solenoid valve (Fig. 1), which
consists in a cylindrically symmetrical steel core, divided into
a fixed component and a movable armature. The gap between
the armature and the fixed core is constrained between a

Fig. 1. Linear-travel short-stroke solenoid valve (left) and experimental setup
with the valve, a micrometer to limit the maximum gap and an electret
microphone to measure the impact noise (right).

minimum and a maximum value. It has a single coil and a
spring, which generate forces in opposing directions: in the
making operation, the gap is closed via a magnetic force;
whereas in the breaking operation, the gap is opened by
reducing the magnetic force and allowing the spring to move
the armature. The state-space functions and constants from (1)
are particularized for this device as follows,

fv(x) =
1

m

(
ks(zs − z)− cf v −

1

2

∂Rg(z)

∂z
α2

)
, (30a)

Gv = 0, (30b)

fα(x) = −
(
R
(
Rc(α) +Rg(z)

)
α
)
/(N2 +Rkec), (30c)

Gα = N/(N2 +Rkec), (30d)

where α is the magnetic flux, and the parameters are described
and specified in Table I.

Although not required for the optimal control problem, a
complete model must also consider the position constrains
between zmin and zmax. This is accomplished by defining
a hybrid automaton, which is described in [11], along with
the magnetic reluctance expressions. Furthermore, the eddy
current phenomenon is taken into account via the addition of
the constant kec [22].

To justify the use of the current as the control input (see
Subsection III-C), notice that the dynamic equation of the
magnetic flux α with voltage as input (30c) depends on the
internal resistance R, which in turn depends greatly on tem-
perature. Typically, the resistance dependence on temperature
is negligible during an operation, but not after a large number
of operation cycles. This makes the control with the voltage
as input non-robust, i.e. a supplied voltage signal that achieves
the desired behavior at a certain temperature is not guaranteed
to work when that temperature changes. On the other hand,
the relation between the current and the state of the device is
not dependent on the resistance,

i = h(z, α, α̇) =
(
Rc(α) +Rg(z)

)
α/N + kec α̇. (31)

Therefore, we propose to control the actuator by applying
an optimal current signal. It is important to remark that the
optimal control problem is still solved with the voltage as the
control signal. The optimal current signal can then be easily
calculated. Notice that the current derivative depends on α̈ so,
in order to accurately calculate it, an auxiliary variable α2 = α̇
should be added to the state vector x. Alternatively, it can be
approximated by setting kec = 0. As the effect of the eddy
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TABLE I
SOLENOID VALVE PARAMETERS

Parameter Description Value Units

R Resistance 50 Ω

N Coil turns 1.20× 103 1

m Movable mass 1.63× 10−3 kg

ks Spring stiffness coefficient 6.18× 101 N/m

zs Spring equilibrium position 1.92× 10−2 m

cf Damping friction coefficient 8.06× 10−1 Ns/m

k1 Reluctance constant 4.41× 106 H−1

k2 Reluctance constant 3.80× 104 Wb−1

kec Eddy currents constant 1.63× 103 Ω−1

zmin Minimum position 3.99× 10−4 m

zmax Maximum position 1.60× 10−3 m

currents is neglected, the solution is suboptimal. The error of
the approximation will be illustrated in the following section.
Note that this only affects this cost, for the rest of the problem
kec is nonzero.

B. Model identification

The parameters are fitted with the following procedure:
Firstly, the actuator is supplied with 26 square-wave voltage
signals. Each one consists in 15 ms of a positive voltage
(25, 26, . . . , 50 V) for the making operation, followed by
15 ms of 0 V for the breaking operation. The measured voltage
and current signals, uexp and iexp, are sampled at 1 MHz.
Secondly, the resistance R and flux linkage λexp are estimated
from uexp and iexp according to the method explained in [11].
Thirdly, the parameters are optimized by minimizing

26∑

j=1

(
(tc,sim,j − tc,exp,j)

2

tscale
2 +

∑
k(isim,jk − iexp,jk)2

∑
k iexp,jk

2

)
, (32)

where the tc,sim,j and tc,exp,j are the experimental and simu-
lated contact instants for the jth making operation, isim,jk and
iexp,jk are the kth sample of the jth cycle of the experimental
and simulated current signals, and tscale = 3 ms is a scaling
constant of the first addend.

The most straightforward way to identify the mechanical
subsystem is to minimize the position errors [23]. Unfortu-
nately, there is no sensor to measure the position. Nonetheless,
if the voltage is constant, the contact instant tc,exp,j of each
making operation is easily obtained from the current signal.
It corresponds to the instant in which the current derivative
changes abruptly from negative to positive. The breaking con-
tact instants cannot be precisely derived, so they are not used.
On the other hand, the simulated contact instants tc,sim,j are
obtained directly from the simulated position zsim and velocity
vsim which, for a set of parameters, are calculated by solving
the differential equations (1a), (1b), and utilizing as input of
this subsystem α = λexp/N . In those simulated or experimen-
tal cases where the generated magnetic force is insufficient to
move the armature, their contact instants are set to zero.

For the identification of the electromagnetic subsystem, the
simulated magnetic flux is obtained by solving (1c), using

Fig. 2. Experimental and simulated results for voltage pulses of 25, 30 and
50 V. In the first one, the valve does not move.

z = zsim, v = vsim and u = uexp as input signals. Then the
current isim is calculated according to (31).

Fig. 2 depicts the measurements for three different voltage
pulses, used for identification. For comparison purposes, the
simulated results after the identification are also displayed. In
the first pulse, the 25 V is not enough to move the valve.
In the following ones the contact instants, both experimental
and simulated, are shown. Notice the great difference between
both: one contact instant is delayed 13 ms from the start of
the voltage pulse, and the other only 3 ms.

V. ANALYSIS

In this section, simulated and experimental tests are per-
formed to compare our proposal, the probability-based optimal
solution, with a state-of-the-art optimal solution in which the
position randomness is not taken into account. The trajectories
are obtained by solving the BVP with the MATLAB function
bvp4c [24], integrating with an adaptive step size.

A. Optimal voltage signal

According to (5), the optimal control u∗ for this particular
case is defined as

u∗(x∗,λ∗) = arg min
u−≤u≤u+

H(x∗,λ∗, u), (33)

where u− and u+ are the lower and upper limits of the optimal
voltage input. In the case the voltage is used as the input in the
implementation, they could be set directly to umin and umax

respectively, which would be the minimum and maximum
supply voltage. However, if the current is used as input, the
real voltage changes with the resistance, as noted in Subsection
IV-A. This means that the values of u− and u+ must be
selected conservatively to guarantee that the designed current
is actually obtainable with a voltage between umin and umax

and a real resistance Rreal ranging from Rmin to Rmax. Given
the electrical circuit equation,

u = R i+N α, (34)

it is possible to determine the worst-case scenarios,

−Rreal i+ umin ≤ −R i+ u∗ ≤ −Rreal i+ umax, (35)

being R the resistance used in the optimal control equations.
Then, the conditions for bounding the optimal input are

u+≤ umax + min
(
(R−Rreal) i

)
, (36)

u−≥ umin + max
(
(R−Rreal) i

)
, (37)
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Provided that the current is bounded such that i ∈ [0, imax],
the maximum value can be defined conservatively as imax =
u+/R. In that case,

u+≤ umaxR/Rmax, (38)
u−≥ umin + u+(R−Rmin)/R. (39)

To solve (33) algebraically, an auxiliary variable is defined,

q∗(x∗,λ∗) = arg min
u

H(x∗,λ∗, u)

= u s.t. ∂H(x∗,λ∗, u)/∂u = 0, (40)

which is unique because ∂H/∂u is linear in u. Then, u∗ can
be obtained by simply saturating q∗ between the control limits,

u∗(x∗,λ∗) =




q∗(x∗,λ∗), u− ≤ q∗(x∗,λ∗) ≤ u+,

u−, q∗(x∗,λ∗) < u−,
u+, q∗(x∗,λ∗) > u+.

(41)

To prove it, notice that q∗ is the global minimum of H and
∂2H/∂u2 does not depend on u. Therefore, ∂H/∂u > 0 for
any u < q∗ and ∂H/∂u < 0 for any u > q∗. Thus, for any
u ∈ (u−, u+) and q∗ 6∈ [u−, u+],

q∗>u+>u ⇒ H(·, ·, u+)<H(·, ·, u) ⇒ u∗ = u+, (42a)
q∗<u−<u ⇒ H(·, ·, u−)<H(·, ·, u) ⇒ u∗ = u−. (42b)

Analogously to the acceleration in Subsection III-B, the
saturation of q∗ should be approximated with a differentiable
function.

B. Optimization specifications

The parameters that specify the optimal control solution are
summarized in Table II. They correspond to a making opera-
tion, in which z(t0) > z(tf). To account for the uncertainty,
the contact position Zc is considered a normal deviate, with a
mean µz and a variance σz2. To analyze the probability-based
optimal solutions (POS), they are compared with an energy-
optimal solution (EOS) for soft landing with no uncertainty
considerations. For the latter case, there are essentially two
differences: in the boundary conditions for tf , which forces
the velocity and acceleration to be zero,

fv(x
∗(tf)) = 0, v∗(tf) = 0; (43)

and in the cost functional, which corresponds to an energy-
optimal control problem,

J =

∫ tf

0

u2(t) dt. (44)

To make a fair comparison between both cases, we set zf =
µz. This means there is a 50 % probability of no contact in
the simulated time interval, i.e.,

P (0 ≤ Tc ≤ tf) = 0.50. (45)

Furthermore, the bounced velocity—needed only for the
calculation of the expected bounced acceleration—is chosen
conservatively. From (30a), it is easy to see that the accel-
eration increases if the velocity decreases, so the worst-case
scenario corresponds to vb = 0.

TABLE II
OPTIMIZATION PARAMETERS

Parameter Description Value Units

[u−, u+] Voltage bounds [−45, 45] V

z0 Initial position 1.60× 10−3 m

zf Final position 3.99× 10−4 m

tf Final time 3.5× 10−3 s

µz Expected contact position 3.99× 10−4 m

σz2 Contact position variance 4× 10−10 m2

{w1, w2, w3} Cost weights {106, 103, 1} 1

C. Comparison via simulation

The simulated results of our proposal and state-of-the-
art optimal solutions are presented in Fig. 3. Although our
trajectory-optimal proposal presents a term for the minimiza-
tion of the current derivative, its weight is purposely set to
be much smaller than the others, in order to prioritize the
minimization of the expected contact velocity and acceleration.
For that reason, the current (Fig. 3b) signal, as well as the
voltage (Fig. 3a), are steeper than the ones from EOS. Note
also that both voltage signals are saturated to u+ = 45 V.

Note that the model takes into account the eddy currents,
but it is neglected in the calculation of V3 (29). In Fig. 3c,
the approximated current derivative—where kec = 0—is also
displayed. There is a noticeable, albeit small, error.

As seen in Fig. 3f, the position of the EOS has a steadier
transition than POS, which shifts abruptly toward the final po-
sition, but slows down quickly when the probability of contact
stops being negligible. The expectations of the velocity and
acceleration in the case of contact are therefore smaller. This
improvement comes at the expense of an energy consumption
increase. The EOS consumption is 47.0 mJ, better than POS,
52.8 mJ, which is 12 % larger.

To better comprehend the advantage of minimizing the
expected contact velocity and acceleration, it is useful to
visualize the velocity v and acceleration ab,sat trajectories with
respect to position z, as in the state planes presented in Figs.
3g and 3h. The arrows show the direction of their evolution
over time, as z approaches zf . Notice that, instead of showing
the complete trajectory, the horizontal z-axis is limited to
5× 10−4 m because larger positions have a negligible proba-
bility of contact. Note also that acceleration ab,sat cannot be
negative, as explained in Subsection III-B. These graphics rep-
resent the contact velocity and acceleration for every possible
contact position. The probability density function of the con-
tact position is also presented in Fig. 3i. The EOS velocity and
acceleration are exactly zero in the expected contact position,
z = µz = 3.99×10−4 m, but their values change steeply as the
position does. POS, instead, keeps a small and steady velocity
and acceleration in the position interval in which the proba-
bility of contact is significant. This behavior results in consid-
erably better expected contact velocities and accelerations.

Additionally, to make a more complete comparison, multiple
simulations are performed by modifying the contact position
variance, for both operations, while the rest of the parameters
are kept as stated in the previous subsection. As the range of
standard deviations utilized in the simulations is very wide, the
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(a) Voltage. (b) Current.

(c) Current derivative. (d) Magnetic force.

(e) Magnetic flux. (f) Position.

(g) Contact velocity as a function of the contact position. EOS:
E[Vc] = −0.0998 m/s. POS: E[Vc] = −0.0468 m/s.

(h) Contact acceleration as a function of the contact position. EOS:
E[Ac] = 357.40 m/s2. POS: E[Ac] = 76.52 m/s2.

(i) Contact position probability density function.

Fig. 3. Comparison of simulated results from EOS and POS.

horizontal axis is presented in logarithmic scale. The results,
displayed in Fig. 4, show a persistent improvement of POS in
the expected velocities and accelerations with respect to EOS,

(a) (b)

(c) (d)

Fig. 4. Absolute values of expected contact velocity (top) and acceleration
(bottom) in making (left) and breaking (right) operations, for different σz .

for both types of operations. Unsurprisingly, as the uncertainty
decreases, i.e. σz is reduced, the expectations of velocity and
acceleration in the contact tend to zero for both solutions.
This is more prominent in the case of the expected contact
velocities, which are very close to zero for both methods if
σz < 10−7 m (see Figs. 4a and 4b). However, the expected
accelerations from the EOS solutions are still substantial for
small values of σz , whereas the ones from the proposed
solutions are insignificant (see Figs. 4c and 4d).

D. Comparison via experimentation

To validate the improvement in a real application, the
optimal solutions are applied to the presented solenoid valve.
The lack of a position sensor is an important limitation for the
experimental testing, but instead it is possible to measure the
impact noises with an electret microphone (Fig. 1).

Three different current signals for the making operation are
alternately applied to the valve, 500 times each. The first one
is simply set to 0.8 A (no control), and serves as a reference
for the other two. The second and third ones are the generated
EOS and POS current signals, which were also used in the
simulations (see Fig. 3b). For each one, there is a constant-
slope transition from 0 A to the initial current value in 2 ms
and another constant-slope transition from the final current
value to 0.8 A in 2 ms. The current is then kept at 0.8 A for
a sufficiently long period of time to ensure the commutation
and to completely measure the audio with the microphone. We
focus only on the making operations, which present the most
notable impact noises in this device.

To process the voltage signals from the microphone, the
following energy is obtained for each one,

Es =

∫ t0+∆t

t0

uaudio
2(t) dt, (46)

where t0 is established as the first instant t where uaudio(t) >
max(uaudio)/5 and ∆t = 0.01 s. The energies are then
normalized by dividing each one by 1.52× 10−3 V2s, which
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Probability-based optimal solution

Energy-optimal solution

Fig. 5. Relative frequency histograms of the normalized energies from the
audio signals. Comparison between EOS and POS.

is the average of the 500 ones with no control (its relative
standard deviation is 0.1561).

The results from the optimal control solutions are condensed
in the histograms shown in Fig. 5. Both reduce considerably
the impact sound with respect to the average operation with
no control. The results from POS are appreciably better, with
an average of 0.161 and a standard deviation of 0.0795, in
contrast with the average of 0.2242 and standard deviation of
0.0947 from the energy-optimal solution.

VI. CONCLUSIONS

In this paper, we have proposed a new optimal approach to
design soft-landing trajectories of actuators, specifically simple
short-stroke devices that are difficult to accurately control. For
the case of reluctance actuators, the advantage of using the
current as input was discussed and a term was added to the cost
functional to minimize the square of the current derivative. It is
also possible to include additional terms to the cost functional
if it is required to optimize other concepts, e.g. the contact
time or the power consumption.

Although the contact position is considered a random vari-
able, the system dynamics is still defined as a deterministic
model, which permits formulating and solving a regular opti-
mal control problem. In practice, the random contact position
deviation can be magnified to compensate for uncertainty of
the model. The experimental results show the improvement of
considering uncertainty in the contact position, even though
there are other sources of uncertainty that are not directly taken
into account. Also, they help to highlight how challenging
these types of devices are to soft-landing control when there
is no position sensor or observer. Notice that, even though the
same current signal is applied to the device repeatedly, the
resulting impact noise has a great dispersion.
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