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Abstract: Some electromagnetic actuators suffer from high velocity impacts during non-
controlled switching operations, which cause contact bouncing, mechanical wear, and acoustic
noise. Soft-landing control strategies aim at minimizing the impact velocities of these devices
to improve their performance. This paper presents a sliding-mode controller for soft landing
of single-coil reluctance actuators. It is a switching model-free controller, which results in a
very simple implementation. A generalized dynamical hybrid model of an actuator is utilized
for deriving the robustness condition, based on the Lyapunov theory. Then, the condition
is evaluated for a dynamical model, based on a commercial device, and several reference
trajectories. Finally, the controller performance is validated through simulations. The effect
of the sampling rate on the resulting impact velocities is also analyzed.
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1. INTRODUCTION

A reluctance actuator is a type of nonlinear electrome-
chanical device which generates a reluctance-based mag-
netic force to move its armature. Particularly, single-coil
actuators are used in an extensive variety of industrial
applications because of their fast response, compactness,
high energy efficiency, and low cost. Thus, there is a
great research interest concerning modeling, identification,
estimation, and control of this class of actuators.

Regarding the control, one of the main motivations and
challenges is to achieve soft landing during switching op-
erations; thus reducing contact bouncing, impact noise and
mechanical wear. In the literature, there are several con-
trol proposals for reluctance actuators, e.g., based on the
backstepping technique (Kahveci and Kolmanovsky, 2010),
energy compensation (Yang et al., 2013), a linearization
method (Katalenic et al., 2016), or cycle-to-cycle adapta-
tion (Moya-Lasheras et al., 2019), among others.

One important drawback of many mass-market single-
coil reluctance actuators is the manufacturing variability
among devices from the same ensemble. Moreover, the
identification of every unit may impose a prohibitive cost.
One major approach to deal with model uncertainties is
the sliding-mode control (SMC) theory (Slotine and Li,
1991). There are several works that take this approach.
Most commonly, the control law is divided into two terms:

? This work was partially supported by the Aragón Regional
Government, the Spanish Government, and the European Union,
under project RTC-2017-5965-6, project PGC2018-098719-B-I00
(MCIU/ AEI/FEDER, UE), research group DGA-T45 17R, schol-
arship FPU14/04171, and program FSE Aragón 2014-2020.

an equivalent and a switching control term (Lee et al.,
2015; Zhao et al., 2016). Alternatively, Eyabi and Wash-
ington (2006) proposed a SMC with only a switching
term, which is then approximated to a proportional one.
One important aspect that is omitted in these works is
the definition of the tracking trajectory, which directly
affects the robustness conditions for the SMC. Another
important issue is the influence of the sampling rate. In
general, the sliding accuracy is proportional to the square
of the switching delay (Levant, 1993). Still, its effect on
the resulting impact velocities needs to be evaluated.

This paper presents a robust SMC controller for single-
coil reluctance actuators. It is purely a switching con-
troller, which results in a very simple and computationally
inexpensive implementation. Although the resulting con-
troller is model-free—i.e. it does not depend on any model
functions or parameters—a dynamic model is required
during the design process to guarantee its robustness. The
generalized system, which presents both continuous and
discrete dynamic behavior, is modeled with a hybrid au-
tomaton. A robustness condition is derived, which depends
on the system dynamics and the position trajectory. It is
then evaluated for a specific dynamic model, based on a
commercial solenoid valve, and several trajectories. The
first contribution of the paper is the proposal of a switching
model-free SMC, which works for every discrete mode of
the system. The second contribution is the analysis of the
influence of the sampling rate on the impact velocities.

2. SYSTEM DYNAMICS

A general single-coil reluctance actuator is represented in
Fig. 1. The magnetic core is divided into two parts: a fixed



Fig. 1. Schematic representation of a single-coil reluctance
actuator.

part (stator) and a movable part (mover or armature). The
air gap between them is dependent on the position of the
mover. There are two types of operations depending on
the direction of the movement: in a making operation, the
magnetic force is large enough to attract the mover toward
the stator; whereas in a breaking operation, the magnetic
force is reduced and the passive forces (e.g. elastic or
gravity) move the armature in the opposite direction.
Moreover, the position of the mover is restricted between
a lower and an upper limit.

The motion dynamics is given by Newton’s second law,
with two forces,

v̇ = fv(z, v, φ) =
1

m

(
Fpas(z, v) + Fmag(z, φ)

)
, (1)

where z, v, and v̇ are the position, velocity and acceleration
of the mover; Fpas, and Fmag are the passive and magnetic
forces; φ is the magnetic flux; and m is the moving
mass. Note that the dynamic function of v is expressed
compactly as fv. The force that can be controlled—albeit
indirectly—is Fmag, which is defined as (Ramirez-Laboreo
et al., 2016)

Fmag = −1

2
R′g(z)φ2, R′g(z) =

∂Rg(z)

∂z
, (2)

where Rg is the gap reluctance. Note that R′g > 0, and
therefore Fmag ≤ 0, for all z ∈ [zmin, zmax] (i.e. the
magnetic force is always attractive).

Then, φ can be related to the current through the coil icoil

in terms of the total reluctance, given Ampère’s circuital
law,

N icoil + ieddy =
(
Rc(φ) +Rg(z)

)
φ, (3)

where N is the number of coil turns, Rc is the core
reluctance, and ieddy is the net eddy current through the
core. Assuming that the magnetic flux density is constant
across the section, ieddy is proportional to the magnetic
flux derivative (Ramirez-Laboreo et al., 2019),

ieddy = −ke φ̇. (4)

Most commonly, the voltage is treated as the system input
u, because it can be directly supplied to the device. The
dynamics of the magnetic flux is given by the electrical
circuit equation,

u = R icoil +N φ̇, (5)

where R is the coil resistance. Then, substituting (3) into

(5) and solving for φ̇, the dynamic function is derived as

φ̇ = fφ(z, φ) +Bφ u

= −
R
(
Rg(z) +Rc(φ)

)
φ

N2 +Rke
+

N

N2 +Rke
u, (6)

where the function fφ depends on the position and mag-
netic flux, and Bφ is a constant.

ż = v
v̇ = fv(z, v, φ)

φ̇ = fφ(z, φ) +Bφ u

ż = 0
v̇ = 0

φ̇ = fφ(z, φ) +Bφ u

ż = 0
v̇ = 0

φ̇ = fφ(z, φ) +Bφ u

Motion (q=2):

Lower limit (q=1):

Upper limit (q=3):

z = zmin ∧ v < 0 ⇒ v+ = 0

z = zmax ∧ v > 0 ⇒ v+ = 0

fv(z, v, φ) ≥ 0

fv(z, v, φ) ≤ 0

Fig. 2. Hybrid automaton that models the dynamics of
reluctance actuators with a limited range of motion.

The complete system dynamics can be described through
a state-space representation with three state variables (z,
v, and φ). As the motion is constrained, z and v must be
static if the mover reaches one of the two limits. Thus, the
system is modeled with a hybrid automaton, with three
discrete modes, as illustrated in Fig. 2. Each transition is
accompanied by its guard condition. There is also a reset
function when transitioning to one of the position limits:
v+ = 0.

3. CONTROL DESIGN

3.1 Trajectory planning

The first critical aspect of the soft-landing tracking control
is the definition of the position trajectory zref , for all time
t ∈ [t0, tf ]. For a given operation, the initial position is z0

and the desired final position is zf .

Let tland be the intended instant in which the armature
reaches the final position. For a perfect soft landing, zref

should satisfy

zref(tland) = zf , vref(tland) = 0, aref(tland) = 0, (7)

where

vref(t) = żref(t), aref(t) = v̇ref(t). (8)

Equivalently, in order to start the motion smoothly, zref

should satisfy

zref(ttakeoff) = z0, vref(ttakeoff) = 0, aref(ttakeoff) = 0, (9)

where ttakeoff is the take-off instant.

During motion (q=2), the acceleration is determined from
(1). Therefore, in order to start moving immediately at t =
ttakeoff , φ should be φtakeoff , such that fv(z0, 0, φtakeoff) =
0. Note that there are two symmetrical solutions of φtakeoff

(positive and negative), because fv is an even function with
respect to φ. Note also that the controller should decrease
|φ| if q = 1, or increase it if q = 3, until it reaches φtakeoff .
Thus, prior to moving, a static interval is defined,

zref(t) = z0, ∀t ∈ [t0, ttakeoff ]. (10)

where ttakeoff − t0 should be large enough to let the
magnetic flux reach φtakeoff before ttakeoff .

In the second interval (from ttakeoff to tland), a position
trajectory must be defined to reach zf smoothly. Thus, zref

should be a function of time t, for all t ∈ [ttakeoff , tland],



with boundary conditions (9) and (7). In the third interval
(from tland to tf), the mover must be kept in the desired
final position, so

zref(t) = zf , ∀t ∈ [tland, tf ]. (11)

Once a trajectory is defined, its feasibility should be
checked. First, the position must be kept inside its bounds,

zref(t) ∈ [zmin, zmax], ∀t. (12)

Secondly, the required magnetic force F ∗mag should be cal-
culated, and ensure that it is always nonpositive, because
repelling magnetic forces are not physically possible (see
(2)),

F ∗mag(t) = maref(t)− Fpas(zref(t), vref(t)) ≤ 0, ∀t. (13)

Moreover, magnetic saturation must also be taken into
account. Given the saturated value of the magnetic flux
φsat, the required magnetic force should also satisfy

F ∗mag(t) ≥ −1

2
R′g(zref(t))φ

2
sat, ∀t. (14)

3.2 Control for motion dynamics

The controller is initially designed based on the dynamic
equations of the motion mode (q = 2), which can be
expressed compactly as

ẋ = f(x) + B u, (15)

where

x =

[
z
v
φ

]T
, f(x) =

[
v

fv(z, v, φ)
fφ(z, φ)

]
, B =

[
0
0
Bφ

]
. (16)

As stated in the introduction, our proposal relies on
an SMC. It is assumed that the position z, velocity
v, and acceleration a can be obtained either through
measurement or estimation. The proposed sliding surface
is defined in terms of their errors,

s =

(
λ1 +

d

dt

) (
λ2 +

d

dt

)
z̃

= ã+ (λ1 + λ2) ṽ + λ1 λ2 z̃, (17)

where λ1 and λ2 are positive constants; and z̃, ṽ, and ã
are the position error and its derivatives,

z̃ = z − zref , ṽ = v − vref , ã = a− aref . (18)

To analyze the convergence to the sliding surface s = 0,
the following Lyapunov function is defined,

V =
1

2
s2. (19)

Thus, to ensure that s converges to zero in finite time, we
impose the following condition,

V̇ = s ṡ ≤ −η |s|, (20)

where η is a strictly positive constant that determines the
convergence speed (|ṡ| ≥ η).

Then, by deriving (17) and substituting into (20),

V̇ = s
(
j − jref + (λ1 + λ2) ã+ λ1 λ2 ṽ

)
, (21)

where j = ȧ is the jerk and jref = ȧref is the reference
jerk. The jerk j can be derived from fv and the dynamic
equation (15) as

j =
dfv(x)

dt
=
∂fv(x)

∂x
f(x) +

∂fv(x)

∂x
B u. (22)

Note that j depends on u. Thus, the convergence condition
(20) can be expressed in terms of the control u,

s (fj − jref + ε−Bj u) ≤ −η |s|, (23)

where

ε = ε(ṽ, ã) = (λ1 + λ2) ã+ λ1 λ2 ṽ, (24)

fj = fj(x) =
∂fv(x)

∂x
f(x)

=
1

m

(
∂Fpas

∂z
(z, v) v +

∂Fpas

∂v
(z, v) a

− 1

2
R′′g(z)φ2 v −R′g(z)φ fφ(z, φ)

)
, (25)

Bj = Bj(x) = −∂fv(x)

∂x
B =

R′g φBφ
m

. (26)

Then, with some manipulations,

sgn(s)Bj u ≥ sgn(s) (fj − jref + ε) + η. (27)

Note that, assuming R′g > 0 for all z ∈ [zmin, zmax], it is
obtained that sgn(Bj) = sgn(φ). Thus, the control u must
satisfy the following condition,

sgn(s) sgn(φ)u ≥ sgn(s) (fj − jref + ε) + η

|Bj |
. (28)

We propose this model-free control,

umotion = umax sgn(s) sgn(φ), (29)

where umax is a constant that, in order to ensure the
convergence to s = 0, must satisfy

umax ≥ max

(
|fj − jref + ε|+ η

|Bj |

)
. (30)

3.3 Control for hybrid dynamics

In the previous section, we have proposed a controller and
proved its convergence for the motion dynamics (q = 2).
Now, we ensure that it works for the complete hybrid
system. For that, we propose a slight modification of the
Lyapunov function,

V =
1

2
σ2, (31)

where σ is a generalization of s. It is defined as

σ = fv(z, v, φ)− aref + (λ1 + λ2) ṽ + λ1 λ2 z̃. (32)

Note that σ is equal to s in the case of motion, because
a = fv. On the other hand, before the start of motion
(t ≤ ttakeoff), σ = fv. Therefore, σ = 0 implies that
φ = φtakeoff . As a result, if σ = 0, the system behaves
as desired both before and after the start of motion.

Following the same line of reasoning as in Section 3.2,
convergence to σ = 0 requires

sgn(σ) sgn(φ)u ≥ sgn(σ) (fj − jref + ε) + η

|Bj |
. (33)

To keep the controller model-free, the proposal cannot
depend on fv. Instead, it should be a function of s. We
generalize the proposed control (29),

uhybrid = umax sgn(φ) sgn∗(s), (34)



where

sgn∗(s) =


−1, if s < 0,
+1, if s > 0,
−1, if s = 0 ∧ q = 1,
+1, otherwise.

(35)

Under the assumption that (30) is satisfied, a sufficient
condition for convergence is

sgn∗(s) = sgn(σ). (36)

Then, convergence is studied in three separate cases. First,
if q = 2, the convergence condition is directly guaranteed
because s = σ.

Secondly, if z = zref = zmax or z = zref = zmin, s is always
zero, but σ may be not. Note that aref = ṽ = z̃ = 0. Then,

sgn(σ) = sgn(fv). (37)

Note also that fv < 0 if q = 1 and fv > 0 if q = 3,
otherwise the hybrid system would make a transition to
q = 2 (see guard conditions in Fig. 2). Therefore,

sgn(σ) = sgn(fv) =

{
−1, if q = 1,
+1, if q = 3.

(38)

Then, given the proposed definition of sgn∗(s), condition
(36) holds, so convergence is still guaranteed.

Thirdly, we still need to check the convergence of the
controller in the case that the position is in one of the
limits (q 6= 2), but the reference is not. In that event, (32)
is simplified into

σ = fv + s, (39)

where

s = −aref − (λ1 + λ2) vref − λ1 λ2 (z − zref). (40)

Assuming that the position trajectory is defined smoothly
at the start of the movement, condition (36) is satisfied
because, when z0 = zmin (breaking operation),

fv < 0 and (zref − z0), vref , aref ≥ 0. (41)

Equivalently, when z0 = zmax (making operation),

fv > 0, and (zref − z0), vref , aref ≤ 0. (42)

On the other hand, at the end of movement, if z has
reached the limit but zref not yet, the condition is not
necessarily satisfied. This may seem like a limitation but,
if the mover has reached the final position prematurely, it
is actually preferable to fix it instead of separating it to
continue following the trajectory. Thus, expert rules are
added to the controller so the mover is kept at zf = zmin

(making operation) or zf = zmax (breaking operation),

u =

{
umax sgn(φ) if z = zf = zmin,
0, if z = zf = zmax,
umax sgn∗(s) sgn(φ), otherwise.

(43)

4. ANALYSIS AND DISCUSSION

4.1 Robustness analysis

For the given dynamic model, it is impossible to guarantee
robustness in general, for any feasible state. As a clear
counterexample, setting φ = 0 makes Bj = 0, and umax ≥
∞ (see (30)). Therefore, the robustness must be studied
for a given trajectory. To illustrate this, the robustness is
analyzed for three different scenarios.

Fig. 3. Solenoid valve: schematic representation (left) and
photo (right).

Table 1. Parameters of the solenoid valve.

Param. Value

m 0.0016 kg

ks 61.8 N/m

zs 0.019 m

c 0.8 Ns/m

zmin 0 m

zmax 0.001 m

Param. Value

N 1200

R 50 Ω

ke 1630 Ω−1

Rc,0 4.41× 106 H−1

φsat 2.6× 10−5 Wb

Then, three position trajectories are defined. Each one of
them consists of a making operation, followed by a break-
ing operation. The motion intervals are defined with a 5th
degree polynomial, satisfying the boundary conditions (7),
(9). Moreover, for the sake of simplicity, the time intervals
are defined in terms of the motion duration (τmov),

tland − ttakeoff = τmov, (44)

ttakeoff − t0 = tf − tland = τmov/4, (45)

where τmov is 3, 4 or 5 ms, for each case.

The actuator model is particularized to a commercial
solenoid valve, depicted in Fig. 3, whose estimated pa-
rameters are presented in Table 1. The passive force is
generated by the spring and friction. It is modeled as a
mass-spring-damper system,

Fpas = ks (zs − z)− c v, (46)

where ks is the spring constant, zs is the spring resting
position, and c is the damping coefficient. Moreover, the
core reluctance is given by a parametric expression that
takes into account magnetic saturation (Moya-Lasheras
et al., 2017),

Rc =
Rc,0

1− φ/φsat
, (47)

where Rc,0 is the core reluctance for φ = 0, and φsat is the
saturated value of the magnetic flux.

The gap reluctance, on the other hand, is highly nonlin-
ear with respect to the position. Instead of a parametric
expression, a look-up table is used (see Fig. 4). Its data
has been obtained from finite element analysis and exper-
imentation (Ramirez-Laboreo and Sagues, 2018).

In Fig. 5, the desired position and its derivatives (zref ,
vref , aref) are displayed. Three additional useful signals
are calculated and shown in Fig. 5: the required magnetic
force (as described in Section 3.1), the required action u∗,
and Bj . The required action is the absolute value of u to
be able to track zref in an ideal scenario (no perturbations
or errors),

u∗ =
|fj − jref |
|Bj |

. (48)



Fig. 4. Gap reluctance and its derivative with respect to
the gap length.

Note that, if τmov = 3 ms, F ∗mag is positive in a small
interval in the breaking operation (around t/τmov = 2).
Thus, this trajectory is infeasible. This can be checked as
well in u∗, which tends to infinity as F ∗mag approaches zero.
Then, as the motion duration increases, the requirements
are less demanding, because vref and aref are reduced.
Therefore, the maximum values of u∗ are also reduced.

A necessary condition for convergence to s = 0 is umax >
max(u∗(t)). This condition is sufficient for perfect tracking
in the ideal case, in which ε = 0. Otherwise, in general,
a sufficient condition for convergence can be derived from
(30),

umax ≥ max(u∗) +
max

(
|ε|
)

+ η

min
(
|Bj |

) , (49)

where ε is bounded, assuming that ṽ and ã are bounded,

max
(
|ε|
)
≤ ε
(

max(|ṽ|), max(|ã|)
)
. (50)

Some assumptions must be made about the bounds of
errors ṽ and ã to satisfy the previous condition. As an
example, the controller constants are set as

λ1 = λ2 = 2000, η = 105. (51)

And, for the sake of simplicity, very conservative assump-
tions are made about the error bounds,

|ṽ| ≤ 0.2 max(|vref |), |ã| ≤ 0.2 max(|aref |). (52)

Thus, from (49) and (50), the robustness condition is
umax ≥ 39.13 V (if τmov = 4 ms), or umax ≥ 31.29 V (if
τmov = 5 ms). As expected, the condition is less restrictive
when the motion duration is increased.

Note that, in order for the controller to be robust to mod-
eling disturbances, the model parameters used to derive
the robustness criteria (49) should represent the worst-case
scenario, assuming the bounds of each model parameter
are known. In practice, however, determining the combi-
nation of parameters that results in the worse-case scenario
may be too cumbersome, due to the immense number
of possibilities. Alternatively, a Monte-Carlo evaluation
could be performed, permuting all parameters inside their
bounds, and then selecting umax such that (49) holds for
every case.

4.2 Sampling rate analysis

We have proved that robustness can be guaranteed under
some reasonable operating conditions. Still, the sampling
rate may be a limiting factor, and its influence should
be analyzed. Thus, the proposed controller is tested with
different sampling periods Ts. As reference, the second
position trajectory from Section 4.1 is used (τmov = 4 ms).
The controller constants are set as in Section 4.1, with

Fig. 5. Simulation results. Note that the time axis is
normalized with respect to τmov.

umax = 40 V. The dynamic system is simulated using the
hybrid automaton from Fig. 2 and the model parameters
from Table 1.

The impact velocities are calculated for different sampling
periods and depicted in Fig. 6, separating the making and
breaking operations. With a sampling rate of 100 kHz,
the results are very good, specially in the making opera-
tion. For larger sampling periods, the results increasingly
worsen. Still, with a sampling rate of only 10 kHz, the im-
pact velocities are better than the ones in a non-controlled
scenario. For reference, using a square voltage of 40 V and
0 V, the impact velocities are −2.2 and 0.9 m/s, for the
making and breaking operations respectively (which are
beyond the graph limits).

Fig. 7 presents the resulting state variables for three
representative sampling periods. With a sampling rate of



Fig. 6. Impact velocities in making (left) and breaking
(right) operations, as functions of the sampling pe-
riod.

Fig. 7. Simulated state variables using the controller with
three different sampling periods Ts.

1 MHz, the tracking is almost perfect. With a sampling
rate of 100 kHz, there is a slight error in the position
(almost imperceptible in the graphic), but the impact
velocities are appreciably larger. Still, the performance is
very good. With a sampling rate of 10 kHz, the results are
much worse. The high ripple of the magnetic flux is filtered,
but leads to significant tracking errors. Even though the
position errors may seem small, the velocity errors and,
more importantly, the impact velocities are much larger
than in the other cases.

5. CONCLUSIONS

We have addressed the soft-landing control of single-coil
reluctance actuators, presenting a sliding-mode controller
which does not use any information about the dynamic
system. We have also derived the convergence criteria,
based on a generalized dynamical model. This controller
requires to know the position and its derivatives, as well
as the sign of φ. Alternatively, the current through the
coil can be restricted to nonnegative values. That way,
the magnetic flux is always nonnegative, simplifying the
control.

Due to the fast dynamics, the sampling rate must be large
enough to track the predefined position and achieve low
impact velocities. Note that the position errors may be

small with reasonably low sampling rates, but the resulting
impact velocities are significant. Anyway, if a faster control
cannot be implemented, the results are still better than in
non-controlled scenarios.

In many devices the position is not measurable in real
time. Thus, further investigation is required concerning
the real-time position estimation from easily measurable
signals, e.g. voltage and current, and the evaluation of the
controller robustness with respect to estimation errors.
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