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Abstract—A novel hybrid dynamical model for single-
coil, short-stroke reluctance actuators is presented in this
paper. The model, which is partially based on the princi-
ples of magnetic equivalent circuits, includes the magnetic
phenomena of hysteresis and saturation by means of the
generalized Preisach model. In addition, the eddy currents
induced in the iron core are also considered, and the flux
fringing effect in the air is incorporated by using results
from finite element simulations. An explicit solution of the
dynamics without need of inverting the Preisach model
is derived, and the hybrid automaton that results from
combining the electromagnetic and motion equations is
presented and discussed. Finally, an identification method
to determine the model parameters is proposed and ex-
perimentally illustrated on a real actuator. The results are
presented and the advantages of our modeling method are
emphasized.

Index Terms—Actuators, eddy currents, electromechani-
cal systems, hybrid dynamical systems, magnetic hystere-
sis, reluctance.

I. INTRODUCTION

Reluctance actuators are being increasingly used in several
domains because of their force density, fast response and
efficiency [1]. These features cause this type of actuators to
be the ideal solution for novel high precision devices, e.g.,
antivibration systems for vehicles [2] or aeronautical applica-
tions [3], and may even make them advantageous with respect
to classical induction motors [4]. Additionally, reluctance
actuators are also ideal for small, low-cost electromechanical
devices because of their compactness, reduced mass and low
dissipation. In particular, single-coil short-stroke reluctance
actuators are the basis of several commercial devices such as
solenoid valves or electromagnetic relays, a class of devices
that has recently received significant research attention in
search of soft-landing behavior [5]–[7].
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In contrast to Lorentz actuators, which are driven by a force
that is proportional to the coil current, the force that produces
the motion in reluctance actuators is proportional to the square
of the magnetic flux and is highly dependent on the position
of the armature. In short, this high nonlinearity makes it very
difficult to predict the force and to control the motion of
reluctance actuators, especially for single-coil devices which
can only apply magnetic force in one direction. Given that the
armature position cannot be measured in practice—at least
not with affordable sensors—many of the proposed solutions
[8]–[10] rely on dynamical models and estimation algorithms
to achieve the designed control strategy. However, there are
several electromagnetic phenomena, e.g., magnetic saturation
and hysteresis, eddy currents, and flux fringing and leakage,
that are usually neglected in the models in spite of having a
strong influence on the dynamic behavior of the device [11].

Different modeling methods have been adopted in the lit-
erature. On the one hand, the electromagnetic dynamics have
been modeled basically by means of two different approaches:
analytical parametric models based on the magnetic equivalent
circuit (MEC) theory, which reduce the complexity of the sys-
tem at the benefit of faster simulations, or numerical solutions
based on the finite element method (FEM), which in general
produce more accurate results at the expense of longer simu-
lation times. Regarding the MEC approach, see, for instance,
[12], where a permanent magnet actuator is modeled by means
of three magnetic circuits, or [13], where the authors propose
a parametric reluctance which is experimentally identified.
Alternatively, FEM models have been used, e.g., to optimize
the design of linear actuators [2] and motors [4], or to estimate
the attractive force of a circuit breaker [14], and they have been
also combined with analytical dynamical models using curve
fitting methods [15]. There are even certain works that use the
MEC approach to obtain an analytical reluctance which is then
validated or corrected by means of FEM simulations [6], [16],
and some papers comparing the results of both approaches
[17]. Mention should also be made of semianalytical methods
(see, e.g., [18] and references therein). On the other hand,
the motion dynamics have been also solved through different
approaches. For instance, a mechanical model based on the
Euler-Bernoulli theory for beams is proposed to predict the
motion of a relay in [19], where a Kelvin-Voigt viscoelastic
model is also proposed for modeling the contact bounce.
The beam theory is used in other works [17], but the most
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widespread approach is the use of spring-damper rigid-body
models with one [20] or two [13] degrees of freedom.

It is noteworthy that, given the extensive literature in the
field, there is no model including all the aforementioned
dynamic phenomena at the same time. There are several
works that consider magnetic saturation [2], [9], [13], [21],
but nevertheless only a few including hysteresis [10], [22] or
eddy currents [14], [21]. Special mention should be made of
[23], which serves as a basis for the present work and may be
considered the most comprehensive model of reluctance actu-
ators with regard to the electromagnetic dynamics. However,
neither the motion equations nor the flux fringing effect were
included in the model because the investigated actuator was
designed to work at a specific static position.

In this paper, we present a novel hybrid dynamical model for
short-stroke single-coil reluctance actuators. The model, which
includes eddy currents, magnetic saturation and hysteresis, is
based on principles of the MEC theory but relies also on
FEM simulations to describe the reluctance of the air gap.
Consequently, not only does it describe the electromagnetic
phenomena that exist within the iron, but it also accurately
models the flux fringing effect in the air. The hybrid behavior
of the model is due both to the position constraints that exist
in the mechanism and to the use of the Preisach model for
describing the magnetic hysteresis and saturation in the core.
This latter model, which has been selected for being the most
common approach in the literature, exhibits hybrid behavior
because it uses different equations according to the direction
of the magnetic field intensity.

The main purpose of the model is to be used in processes
that require a great number of accurate transient simulations,
e.g., the design and validation of new estimation and control
algorithms, where an FEM model would be impractical for
computational reasons. In this regard, the main contributions
of the research are as follows:

1) A fast but accurate dynamical model for reluctance actu-
ators including hysteresis, saturation, eddy currents, flux
fringing and the motion of the armature.

2) The use of the coil voltage, which is the standard output
of power sources, as input of the dynamical model instead
of the current.

3) An explicit dynamical solution of the Preisach model
without need of model inversion.

4) The proposal of a new class of hybrid dynamical systems
[24] whose state consists not only of scalar variables, but
also of sets of constants with varying cardinality.

The paper is organized as follows. First, in Section II,
the Preisach model for magnetic hysteresis and saturation
is described and its corresponding incremental permeability,
which is later used in the model of the actuator, is obtained.
Then, in Section III, both the explicit dynamic solution of
the Preisach model and the hybrid automaton that models the
entire actuator are presented and discussed. In Section IV, an
experimental setup including a real actuator is described and
then used to identify the unknown parameters and to validate
the proposed model. Finally, the conclusions of the research
are presented in Section V.

II. HYSTERESIS AND SATURATION MODEL

A. Classical Preisach Model

The classical Preisach model (CPM) [25], [26] is based
on an infinite set of basic hysteresis operators also known as
hysterons (see Fig. 1). Each hysteron is characterized by two
threshold values, α and β, which describe the output of the
operator in terms of the time-dependent input u = u(t) as

γ
(
α, β, u, upast

)
=

 +1, if u ≥ α
−1, if u ≤ β

γpast, if β < u < α
(1)

where upast is the last extremum of u outside the interval
(β, α) and γpast is the hysteron output for that value. Con-
sidering α and β as coordinates, the infinite hysterons are
usually represented as points in the so-called Preisach plane
(see Fig. 2). Since α is always greater than β, all of them are
in fact located in the α > β half-plane.

The output of the CPM is then given by the sum of the
outputs of the infinite number of hysteresis operators,

fCPM (u,U) =

∫
α>β

P (α, β) γ
(
α, β, u, upast

)
dα dβ, (2)

where U = U(t) = {u(τ) | τ < t } contains the history of u,
from which upast can be obtained for each hysteron, and
P (α, β) is the Preisach function, which may be interpreted
either as a weight function for an infinite set of homogeneously
distributed hysterons or as a density function describing a non-
homogeneous distribution of hysterons in the Preisach plane.
Assuming that the input is bounded between two constants
β0 and α0, β0 ≤ u(t) ≤ α0 ∀ t, the Preisach function can
be considered equal to zero outside the triangle with vertices
(β0, α0), (α0, α0), and (β0, β0) (see Fig. 2a).

In particular, due to the wiping-out property of the CPM
[26], the history of any arbitrary input u(t) is fully charac-
terized by a set of previous maxima, A = A(t), and a set of
previous minima, B = B(t), such that

A(t) = {α0} ∪ {u(τ) | τ < t, u̇(τ) = 0, ü(τ) < 0,

maxB(τ) < u(s) < u(τ) ∀s ∈ (τ, t)} , (3)
B(t) = {β0} ∪ {u(τ) | τ < t, u̇(τ) = 0, ü(τ) > 0,

u(τ) < u(s) < minA(τ) ∀s ∈ (τ, t)} (4)

That is, a maximum (minimum) of u at time τ is part of
A (B ) at time t if and only if all u after τ and before t
has been contained between that maximum (minimum) and
the immediately preceding minimum (maximum). Assuming
that u is initialized from its minimum possible value, i.e.,
u(−∞) = β0, we have that |B| = |A| for increasing input
and |B| = |A| − 1 for decreasing input, where the operator
| · | denotes the cardinality of the set. We use the notation
αi and βj to refer respectively to the ith largest element of
A \{α0} and the jth smallest element of B \{β0}. As shown
in Fig. 3, the previous sets divide the Preisach plane into two
regions, S+(u,A,B) and S−(u,A,B), in which the output of
the hysterons are respectively equal to +1 and −1. Hence, the
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Fig. 1. Hysteron operator with threshold values α and β.

(a) (b)

Fig. 2. Preisach plane in the (a) β–α and (b) hm–hc coordinate
systems.

(a) (b)

Fig. 3. Preisach plane division for (a) increasing input and (b) decreas-
ing input. The input is assumed to start at its minimum possible value β0.

integral (2) can be partitioned into the positive and negative
regions,

fCPM(u,A,B)=

∫∫
S+

P (α, β) dα dβ−
∫∫

S−
P (α, β) dα dβ. (5)

Additionally, defining the integral of the Preisach function over
the triangle of vertices (βj , αi), (αi, αi) and (βj , βj) as

T (αi, βj) =

∫ αi

βj

∫ αi

β

P (α, β) dα dβ, (6)

the output of the CPM can be computed by addition and
subtraction of triangle integrals. Hence, given n = |A \{α0}|,
the output of the model for an increasing input (see Fig. 3a)
is given by

fCPM,incr(u,A,B) =− T (α0, β0) + 2
n∑
k=1

T (αk, βk−1)

− 2
n∑
k=1

T (αk, βk) + 2T
(
u, βn

)
, (7)

while, for a decreasing input (see Fig. 3b), is equal to

fCPM,decr(u,A,B) =− T (α0, β0) + 2
n∑
k=1

T (αk, βk−1)

− 2
n−1∑
k=1

T (αk, βk)− 2T
(
αn, u

)
. (8)

Several analytical functions have been used in the literature
as Preisach functions [23]. The most general approach to
construct such a function is to assume that P can be expressed
as the product of two univariate probability density functions
depending on hc = (α − β)/2 and hm = (α + β)/2 (see
Fig. 2b), i.e.,

P (α, β) = f1(hc) f2(hm) = f1

(
α− β

2

)
f2

(
α+ β

2

)
. (9)

In this case, the surface integral (6) can be evaluated in the
hm–hc coordinate system and transformed analytically into a
numerically less expensive line integral,

T (αi, βj) = 2

∫ (αi−βj)/2

0

f1(hc)
[
F2(hm)

]αi−hc

βj+hc

dhc, (10)

where the factor of 2 is the Jacobian of the transformation
from β–α to hm–hc and F2(hm) is the cumulative distribution
function corresponding to f2(hm).

The Cauchy distribution is known to be the best fit to
most of the ferromagnetic materials [27]–[29]. Its probability
density and cumulative distribution functions are respectively
given by

fCauchy(x |mx, sx) =
1

πsx

(
1 +

(
x−mx

sx

)2
) , (11)

FCauchy(x |mx, sx) =
1

2
+

1

π
arctan

(
x−mx

sx

)
, (12)

where mx and sx are the parameters that specify the location
and shape of the distribution. Consequently, in this work we
approximate both f1 and f2 by means of this distribution:

f1(hc) = fCauchy(hc |mhc
, shc

), (13)
f2(hm) = fCauchy(hm |mhm

, shm
). (14)

Note that, in order to obtain a symmetrical major hysteresis
loop about the origin, mhm must be equal to zero, mhm =0.
Hence, the proposed Preisach distribution only depends on
three parameters: mhc

, shc
and shm

.

B. Limitations and Generalization

When applied to modeling magnetic hysteresis, the CPM
has two major drawbacks, namely the zero magnetic perme-
ability in the reversal points and the non-saturating behavior
of the magnetization M . These are solved in the so-called
generalized Preisach model (GPM) [30] by modeling the
magnetic flux density B as the sum of two terms depending
on the magnetic field intensity H ,

B = fGPM(H,A,B) = BRev(H) +BIrr(H,A,B), (15)
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where BRev is the reversible part, which is only dependent on
the instantaneous value of H , and BIrr is the irreversible part,
which depends also on the past maxima, A, and minima, B,
of H . This latter part is obtained by means of the CPM,

BIrr(H,A,B) = B̂Irr

fCPM(H,A,B)

T (α0, β0)
, (16)

where B̂Irr is the saturation level of the irreversible part,
T (α0, β0) acts as normalization factor, and fCPM represents
either fCPM,incr or fCPM,decr depending on the direction of H .

On the other hand, the reversible component, which pro-
vides the non-zero permeability at the reversal points, is
commonly expressed as the integral with respect to H of an
incremental reversible permeability,

BRev(H) =

∫ H

0

µ′Rev(H) dH, (17)

where µ′Rev(H) is usually modeled by an analytical expres-
sion which is fitted to measurements. Based on the double
exponential function used in [23], in this work we propose to
model this permeability as

µ′Rev(H) = µ0 + µ1 e−|H|/H1 + µ2 e−|H|/H2 , (18)

where µ0 is the vacuum permeability and µ1, µ2 ∈ R and
H1, H2 ∈ R+ are the parameters to identify. This expression
leads to a reversible flux density equal to

BRev(H) =µ0H + sgn(H)µ1H1

(
1− e−|H|/H1

)
+ sgn(H)µ2H2

(
1− e−|H|/H2

)
. (19)

Note that, while the use of the absolute value provides symme-
try about the origin, the addition of the vacuum permeability
in (18) is what guarantees that M saturates. In this regard,
considering that the magnetization modeled by the GPM is
M =

(
fGPM(H,A,B)/µ0−H

)
and that limH→∞BIrr = B̂Irr,

the saturation level is easily obtained as

lim
H→∞

M =
µ1H1 + µ2H2 + B̂Irr

µ0
. (20)

This can be used, for instance, to set physically meaningful
initial values for the parameters to identify.

C. Time Derivative of the GPM

In order to use the GPM in a dynamical model, the time
derivative of B is obtained from (15) as

Ḃ =

(
∂BRev

∂H
+
∂BIrr

∂H

)
Ḣ. (21)

According to (17), ∂BRev/∂H = µ′Rev(H). Thus, an incremen-
tal irreversible permeability may be analogously defined as

µ′Irr(H,A,B) =
∂BIrr

∂H
=

B̂Irr

T (α0, β0)

∂fCPM(H,A,B)

∂H
, (22)

and therefore (21) may be expressed as

Ḃ = µ′GPM(H,A,B) Ḣ, (23)

where µ′GPM(H,A,B) is the incremental permeability of the
GPM, which is equal to the sum of the reversible and irre-
versible permeabilities,

µ′GPM(H,A,B) = µ′Rev(H) + µ′Irr(H,A,B). (24)

Then, to calculate µ′Irr(H,A,B), the partial derivative of
fCPM(H,A,B) with respect to H is obtained from (7)–(8) as

∂fCPM(H,A,B)

∂H
=


+2

∂ T (H,βn)

∂H
, if Ḣ ≥ 0

−2
∂ T (αn, H)

∂H
, if Ḣ < 0,

(25)

where the partial derivatives of T (H,βn) and T (αn, H) can
be calculated from (6) by applying Leibniz’s integral rule,

∂ T (H,βn)

∂H
= +

∫ H

βn

P (H,β) dβ, (26)

∂ T (αn, H)

∂H
= −

∫ αn

H

P (α,H) dα. (27)

It must be pointed out that, when using the Cauchy-based
Preisach distribution proposed in Section II-A, these integrals
can be analytically solved and, consequently, the computation
of µ′GPM(H,A,B) is not numerically expensive. The resulting
expressions, which may be obtained by means of any symbolic
computation software, have been omitted from the paper due
to space constraints.

III. HYBRID DYNAMICAL MODEL

Fig. 4 depicts the air gap and part of the core and the coil
of a typical linear reluctance actuator. This diagram is used to
explain our modeling methodology. The position of the mover
in this actuator is defined by the length of the air gap, z. A
coil of N turns, carrying an electrical current i, is wrapped
around the core. It generates a magnetic flux φ and induces
an equivalent eddy current iec in the iron. This description is
a valid representation for almost any armature arrangement,
e.g., plunger-type, E-core, or C-core devices, and can also be
applied to devices with rotary motion simply by using the
equivalent angular variables.

The dynamical model of this actuator in state space form
has three continuous state variables: an average value of the
magnetic field intensity in the iron core, Hiron, and the position
and velocity of the movable armature, given by the length of
the air gap, z, and its derivative, vz = ż. Hence, the continuous
state vector is

x = [Hiron z vz ]
T
. (28)

A. Electromagnetic dynamics

The electromagnetic part of the model is based on two
equations. First, the electrical equation of the coil,

v = R i+Nφ̇, (29)

where v is the voltage applied across its terminals, R is the
internal resistance and the other variables have been previously
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Fig. 4. Reluctance actuator diagram showing an air gap and part of the
iron core. The arrows indicate the sign convention for φ, i and iec.

defined. Secondly, the application of Ampère’s law over the
surface Σ (see Fig. 4),∮

∂Σ

H · dl =

∫∫
Σ

J · dS, (30)

where ∂Σ is the contour of Σ, defined by the closed-loop
path of the magnetic flux. The circulation of the magnetic
field intensity H can be divided into two terms corresponding
to the iron and the air. On the other hand, the surface integral
of the current density J is equal to the sum of N times the coil
current plus the eddy currents. Thus, (30) is converted into∫

Iron

H · dl +

∫
Air

H · dl = Ni+ iec. (31)

Regarding the iron term, we take the usual assumption that
the magnetic field intensity within the core can be approxi-
mated by an average value Hiron, so that∫

Iron

H · dl = Hiron liron, (32)

where liron is the length of the iron core which, depending on
the armature arrangement, is either a constant or a function
of the length of the air gap. In addition, the magnetic flux
is assumed equal to the product of an average magnetic flux
density, Biron, and an average cross-sectional area, Airon,

φ = BironAiron. (33)

The relation between Biron and Hiron is then modeled by
means of the GPM, i.e., Biron = fGPM(Hiron). For the sake
of clarity, in this part of the paper we omit the explicit
dependence of fGPM on the extrema sets A and B.

The integral term corresponding to the air is modeled
through the concept of reluctance,∫

Air

H · dl = φRair, (34)

whereRair is the reluctance of the gap which, given that the air
is a magnetically linear material, is a function only of z. This
reluctance may be obtained by several approaches, but it is
highly recommended to use a method that accurately describes

the effects of flux fringing [31]. FEM models [2], [14] and
analytical expressions [32] are valid options to consider.

Finally, the eddy currents are modeled assuming that the
magnetic flux is uniform within the section of the iron core.
In this case, it can be shown [23] that the net induced current
is proportional to the derivative of the flux,

iec = −kec φ̇, (35)

where kec depends on the geometry and the electrical conduc-
tivity of the iron core. While for most actuators it can be as-
sumed a positive constant, in some cases it might be necessary
to model its dependence on the position. As an alternative to
(35), the dynamic effects within the iron could also be modeled
by means of rate-dependent Preisach models [33].

Assuming that v is the input of the model, the dynamic
equation for the magnetic flux can be obtained using (29)–
(35),

φ̇ =

N

R
v − φRair − f −1

GPM(φ/Airon) liron

N2

R
+ kec

, (36)

but, as shown, it requires the inversion of the GPM. This
problem has been widely treated in the literature [34]–[37]
and the proposed solutions involve either the use of a modified
version of the Preisach model that allows for explicit inversion
or the numerical inversion of the forward model by means of
an iterative method. As stated in [36], this latter approach is
particularly inefficient in terms of computation.

Nevertheless, considering that the derivatives of Biron and
Hiron are linked together by the incremental permeability of
the GPM, Ḃiron = µ′GPM(Hiron) Ḣiron, the previous set of
equations can be used to solve the dynamics of the magnetic
field intensity Hiron, instead of that of φ,

Ḣiron =

N

R
v −Airon fGPM(Hiron)Rair −Hiron liron(

N2

R
+ kec

)
Airon µ′GPM(Hiron)

. (37)

In contrast to (36), this expression does not require the in-
version of the GPM and, consequently, the numerical solution
of Hiron is far more efficient because it requires only one
evaluation of fGPM and µ′GPM per integration step. Given that
these two functions depend not only on Hiron, but also on its
direction and on the sets A and B, and considering that Rair

is a function of z, let us express (37) symbolically as

Ḣiron =

hincr(x,A,B, v), if Hiron is increasing

hdecr(x,A,B, v), ifHiron is decreasing.
(38)

Note that, in order to have an unambiguous definition of the
direction of Hiron, the functions hincr and hdecr must have the
same sign for any value of the inputs. Considering (37), this is
achieved if µ′GPM is strictly positive; a condition which, on the
other hand, ensures the physical meaning of the permeability.
Since the irreversible term µ′Irr is always greater than or equal
to zero (see Section II-C), a sufficient solution consists in
fitting the reversible model (18) using the constraint that µ′Rev

is strictly positive for any value of Hiron.
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B. Motion dynamics
The motion of the actuator is governed by Newton’s second

law,
F = m z̈ = m v̇z, (39)

where m is the mass of the movable armature and F is the net
force acting on this component. This force is modeled as the
sum of the magnetic force produced by the actuator, the elastic
force of the return spring and a damping term that accounts
for friction, i.e.,

F = Fmag − ks (z − zs)− c vz, (40)

where ks and zs are respectively the spring stiffness constant
and the gap length at its equilibrium position, and c is the
damping coefficient. Considering the concept of reluctance,
the magnetic force Fmag can be expressed [13] as

Fmag = −1

2
φ2 ∂Rair

∂z
, (41)

which, given (33) and the relation provided by the GPM, leads
to

Fmag = −1

2
Airon

2
(
fGPM(Hiron,A,B)

)2 ∂Rair

∂z
. (42)

Then, as shown by (40) and (42), the net force is a function of
the three continuous state variables and, given that it relies on
the GPM, also of the past extrema and the direction of Hiron.
Hence, we can symbolically express it as

F =

Fincr(x,A,B), if Hiron is increasing

Fdecr(x,A,B), ifHiron is decreasing.
(43)

This force drives the motion of the actuator whenever the
position z is between zmin and zmax. These two constants
represent respectively the minimum and maximum positions
of the movable armature allowed by the mechanical design of
the device. Since this position is described in our model by
the length of the air gap, zmin will be equal to zero when
modeling most linear reluctance actuators.

C. Hybrid Automaton
Considering the described motion and similarly as in [38],

the position of the movable armature defines by itself three
different dynamic modes: two corresponding to the two po-
sition boundaries and another one for the motion between
them. These three modes are then doubled by the fact that the
GPM uses different expressions depending on the direction of
its input, which leads to the hybrid functions (38) and (43).
Consequently, the proposed hybrid dynamical model has six
different dynamic modes, which correspond to:

1) Maximum gap and Hiron increasing.
2) Motion between boundaries and Hiron increasing.
3) Minimum gap and Hiron increasing.
4) Maximum gap and Hiron decreasing.
5) Motion between boundaries and Hiron decreasing.
6) Minimum gap and Hiron decreasing.
The complete state of the system, χ, is composed of the

dynamic mode, which will be denoted by the discrete variable

q ∈ {1, 2, 3, 4, 5, 6}, the already defined continuous state x,
and, as a particular feature of our model, also the extrema
sets A and B. Hence, by a slight misuse of notation,

χ = (q,x,A,B) . (44)

The dynamic modes are then connected by the correspond-
ing guard and reset maps, leading to the hybrid automaton
shown in Fig. 5. In this figure, each transition is described by
its guard condition (in green) and its reset function (in red),
respectively before and after a right arrow (⇒). The superscript
+ is used to specify the values of the continuous variables and
the extrema sets after the jump. The reset function is explicitly
shown only for those variables that change during the jump;
if the transition does not imply a jump of x, A, or B, only the
guard condition is presented. Note that the continuous state x
may flow and occasionally jump, but the dynamic mode q and
the extrema sets A and B change by their nature only during
jumps.

Regarding the motion, the model operates as follows. If the
armature is moving and reaches any of the position boundaries,
the automaton jumps to the corresponding static position mode
and the velocity is reset to zero. Then, when the force F has
the correct sign to start the motion, the automaton gets back to
the motion mode. For simplicity, no bouncing phenomenon has
been included in the model, but it may be easily incorporated
by means of any of the well-known techniques [19].

On the other hand, two types of jumps may arise due to the
electromagnetic dynamics. First, those related to the wiping
out property of the Preisach model. If the magnetic field varies
inside a minor loop, bounded between the maximum value of
the minima set, maxB, and the minimum value of the maxima
set, minA, and then it reaches one of the boundaries, the
complete loop is wiped out from the history of the model.
When this happens, the automaton jumps from its present
mode to itself, and during the jump both maxB and minA are
removed from the extrema sets. The system also jumps when
Hiron reaches an extrema. In this regard, if the magnetic field
increases and then changes direction, the automaton jumps to
the corresponding decreasing mode and the present value of
Hiron is incorporated to the maxima set. Analogously, if the
field first decreases and then increases, the automaton changes
mode and the minima set is expanded with the new minimum.
It should be noted that, since hincr and hdecr always have the
same sign, the automaton will not switch infinitely many times
between the increasing and the decreasing modes in a single
time instant. Thus, the Zeno phenomenon [24] is prevented.

IV. EXPERIMENTS AND RESULTS

A model of an actual reluctance actuator has been built to
show the applicability of the proposed modeling technique.
In this section, we present the device and the setup used in
the experiments, explain the identification process required to
determine the values of the unknown parameters and, finally,
provide and discuss the main results.

A. Actuator and Experimental Setup
The device utilized in the tests is a solenoid valve designed

for low-pressure gas lines (see Fig. 6). It is basically a plunger-
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Mode 1: Max. gap, Hiron increasing

ẋ =

Ḣiron

ż
v̇z

=

hincr(x,A,B, v)
0
0



Mode 2: Motion, Hiron increasing

ẋ =

Ḣiron

ż
v̇z

=

hincr(x,A,B, v)
vz

Fincr(x,A,B)/m



Mode 3: Min. gap, Hiron increasing

ẋ =

Ḣiron

ż
v̇z

=

hincr(x,A,B, v)
0
0



Mode 4: Max. gap, Hiron decreasing

ẋ =

Ḣiron

ż
v̇z

=

hdecr(x,A,B, v)
0
0



Mode 5: Motion, Hiron decreasing

ẋ =

Ḣiron

ż
v̇z

=

hdecr(x,A,B, v)
vz

Fdecr(x,A,B)/m



Mode 6: Min. gap, Hiron decreasing

ẋ =

Ḣiron

ż
v̇z

=

hdecr(x,A,B, v)
0
0



hincr(x,A,B, v) < 0

⇒ A+ = A ∪ {Hiron}

hincr(x,A,B, v) < 0

⇒ A+ = A ∪ {Hiron}

hincr(x,A,B, v) < 0

⇒ A+ = A ∪ {Hiron}

hdecr(x,A,B, v) > 0

⇒ B+ = B ∪ {Hiron}

hdecr(x,A,B, v) > 0

⇒ B+ = B ∪ {Hiron}

hdecr(x,A,B, v) > 0

⇒ B+ = B ∪ {Hiron}

Hiron = minA

⇒
{
A+ = A \{minA}
B+ = B \{maxB}

Hiron = minA

⇒
{
A+ = A \{minA}
B+ = B \{maxB}

Hiron = minA

⇒
{
A+ = A \{minA}
B+ = B \{maxB}

Hiron = maxB

⇒
{
A+ = A \{minA}
B+ = B \{maxB}

Hiron = maxB

⇒
{
A+ = A \{minA}
B+ = B \{maxB}

Hiron = maxB

⇒
{
A+ = A \{minA}
B+ = B \{maxB}

Fincr(x,A,B) < 0
z = zmax ∧ vz > 0

⇒ v+z = 0

z = zmin ∧ vz < 0

⇒ v+z = 0
Fincr(x,A,B) > 0

Fdecr(x,A,B) < 0
z = zmax ∧ vz > 0

⇒ v+z = 0

z = zmin ∧ vz < 0

⇒ v+z = 0
Fdecr(x,A,B) > 0

Fig. 5. Hybrid automaton modeling the dynamics of the reluctance actuator.

type reluctance actuator, with the coil wrapped around the
plunger and an iron housing that serves both as returning path
for the flux and protective cover. A helical spring outside the
magnetic circuit ensures that the plunger returns to its original
position once the core is demagnetized. The material of the
core is unknown and, hence, the parameters of the reversible
part of the GPM (µ1, µ2, H1, and H2) and those corresponding
to the irreversible part (B̂Irr, mhc

, shc
, and shm

) as well as
the eddy current parameter (kec) will be determined by means
of experimental tests and identification procedures. The rest of
the parameters are known and can be found in Table I (note
that mechanical damping is assumed negligible). In addition,
the reluctance of the air gap and its partial derivative with
respect to the gap length have been obtained from an FEM
model implemented in COMSOL Multiphysics (see Figs. 7
and 8). In this connection, other modeling approaches can be
found in [31]. As shown, the reluctance increases rapidly for
small values of the gap length and then grows approximately
linearly up to the maximum gap. The reluctance value for zero
gap is not zero because there exists a secondary annular gap
between the movable core and the housing (see Fig. 6).

The experimental setup used in the tests is shown in Fig. 9
and consists of the following equipment: a Toellner TOE 7621
four-quadrant voltage and current amplifier, a Picoscope 4824
USB oscilloscope that also features an arbitrary waveform
generator, a Tektronix TCP312A current probe and its cor-
responding TCPA300 amplifier, a personal computer with
Matlab and the Instrument Control Toolbox and, finally, the
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Fig. 6. Solenoid valve and its geometry.

TABLE I
MODEL PARAMETERS

Parameter Value
R 49 Ω

N 1200
liron 55 mm
Airon 12.57 mm2

Parameter Value
m 1.6 g
ks 55 N/m
zs 15 mm
c 0 Ns/m

valve, which can also be seen in the picture, wrapped in orange
electrical tape. The operation of the setup is as follows. First,
a current or voltage waveform is designed and programmed in
Matlab. When the code is executed, the reference signal is sent
to the generator, amplified by the power supply and applied
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Fig. 7. Magnetic flux lines in the air gap. Results from FEM simulations
at gap lengths of 1, 2, and 3 mm, respectively. The FEM model is only
used to characterize the air gap reluctance.
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Fig. 8. Air gap reluctance of the solenoid valve and partial derivative
with respect to the gap length. Results from FEM simulations.

to the valve. At the same time, the oscilloscope measures,
registers, and sends the values of voltage, v, and current, i,
back to the computer. Finally, the data are processed and the
magnetic flux, φ, is estimated as described in [39].

Three different sets of experiments have been performed,
each having a specific purpose and based on a particular type
of waveform which is repeated at several levels of excitation.
The first group of tests is used to determine the values of the
parameters of the GPM and have been carried out with the
plunger fixed at zero gap (z = 0). These use a low-frequency
(10 Hz) sinusoidal current input, which minimizes the induced
currents and, consequently, improves the identifiability of the
hysteresis model. Once the GPM parameters are determined,
the second group of experiments is utilized to identify the
value of kec. In these tests the position is also externally set
at z = 0, but, instead of the sinusoidal current, a symmetric
square wave voltage is used to induce transient eddy currents
in the iron core. Finally, the third set, which is only for
validation purposes, consists of a series of normal operating
cycles of the valve at different voltages. That is, the plunger is
released, the valve is inserted into its corresponding gas faucet,
which limits the motion of the plunger from zmin = 0 mm
up to zmax = 0.9 mm, and finally the device is activated
using a unipolar square wave voltage. Table II sums up the
described sets of experiments. It must be noted that, in order
to start the tests from a known initial state, a decreasing sine
wave current has been applied to the valve before each group
of experiments to obtain a demagnetized state in the core
(degaussing process).

B. Parameter Identification

The identification process of the GPM is similar to that
presented in [23] and is carried out using the data from the first

Fig. 9. Experimental setup used during the tests.

TABLE II
SETS OF EXPERIMENTS

Set Input wave Levels Purpose
1 Current, sinusoidal 8 (25-500 mA) GPM identification
2 Voltage, bipolar square 8 (1-18 V) kec identification
3 Voltage, unipolar square 5 (18-26 V) Validation

set of tests. Considering the measured current i and estimated
flux φ, the magnetic flux density is first obtained from (33)
as Biron =φ/Airon. On the other hand, the magnetic field
intensity is calculated using (31), (32) and (34), and assuming
that the induced currents are negligible, i.e.,

Hiron =
(
Ni− φRair(z = 0)

)
/ liron. (45)

The reversible part of the model is identified firstly. For this
purpose, measurements of µ′Rev are obtained as the slope
∂Biron/∂Hiron at the reversal points of 64 minor loops at
eight different excitation levels. Then, the resulting points are
used to fit the model proposed for the reversal permeability,
(18), by minimizing the root-mean-square error (RMSE). The
measured points and the fitted model response are shown in
Fig. 10.

Once the parameters of the reversible part are determined,
the rest of the GPM is identified. In order to match the
demagnetized state of the valve, the model also has to be
first demagnetized, which is simply achieved by setting proper
initial values for the sets A and B. The selection of the
number of elements in these sets is a trade-off between model
accuracy and computational time. In this case, we use two
symmetric sets composed of a hundred elements in the interval
[−104, +104] A/m, which is the expected range for the
magnetic field Hiron.

A(0) =
{
αk = +104 − 100k A/m | k = 0, 1, ..., 99

}
(46)

B(0) =
{
βk = −104 + 100k A/m | k = 0, 1, ..., 99

}
(47)

As explained in Section II-A and given that |B(0)| = |A(0)|,
Hiron is assumed to increase at t = 0. The GPM, (15),
is then computed using as input the experimental values
of Hiron obtained from (45), and fitted by minimizing the
RMSE between the simulated and the measured values of
Biron. Fig. 11 shows the measured hysteresis curves and the
simulated response of the GPM after the identification process,
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Fig. 10. Measured values of the reversible part of the incremental
permeability and least-squares fit to equation (18).

Fig. 11. Measured hysteresis curves and simulated output of the GPM.

Fig. 12. Measured response of the system under the presence of hys-
teresis and eddy currents and simulated output of the hybrid dynamical
model.

TABLE III
IDENTIFIED GPM PARAMETERS

Parameter Value
µ1 168.8 µ0
µ2 64.13 µ0
H1 1262 A/m
H2 8821 A/m

Parameter Value
B̂Irr 0.8103 T
mhc 227.9 A/m
shc 154.9 A/m
shm 138.0 A/m

in both the Biron –Hiron and φ – i planes. Note that, although
eight different excitation levels have been used to fit the
model, only the smallest five cycles are represented for clarity
reasons. All the identified parameters of the GPM are shown
in Table III.

The second group of tests is subsequently used to determine
the value of the eddy current parameter, kec, which is assumed

constant. During this stage of the identification, the complete
hybrid dynamical model is utilized instead of only the GPM.
However, since the position of the plunger is externally set to
z=zmin =0 mm, only the dynamic modes 3 and 6 are active.
The aim of the identification is to minimize the following
weighted RMSE,√∑

k (ik,exp − ik,sim)
2∑

k ik,exp
2 +

∑
k (φk,exp − φk,sim)

2∑
k φk,exp

2 , (48)

where the subscript k denotes the time step and “exp” and
“sim” refer respectively to the values measured in the experi-
ments and those obtained by simulating the model. The result
of the optimization leads to a value of kec equal to 1637 A/V.
The responses of both the system and the model under the
presence of hysteresis and eddy currents are shown in Fig. 12.
Note that, while the Biron –Hiron relation remains unchanged
because it is only affected by hysteresis and saturation, the
φ – i cycle becomes wider due to the effect of eddy currents.

C. Model Validation and Analysis
The performance of the hybrid dynamical model is evalu-

ated using the data of the third set of experiments. It should be
recalled that, unlike in the other two sets of tests, in this case
the plunger is allowed to move freely between zmin = 0 mm
and zmax = 0.9 mm. Thus, all the dynamic modes of the
hybrid automaton (see Fig. 5) may be reached. The results
of the validation process are shown in Fig. 13. Five different
square wave voltage pulses (see the first plot of the figure) have
been used as input of both the real actuator and the dynamical
model. The second and third plots show the measured and
simulated values of current and flux. It can be seen that the
dynamic response of the model matches very well with the
measurements. In this regard, the RMSE of the current is
5.337 mA, which represents about 2.46% of the mean value of
i, and the RMSE of the flux is 1.225·10−7 Wb, which is about
1.13% of the mean value of φ. Therefore, it can be concluded
that the predictions given by the model are very accurate, even
though the presented 100 millisecond simulation takes less
than 4 seconds of computation on a fourth generation Intel i7
processor.

Additionally, Fig. 13 also represents the simulated values
of the magnetic field intensity within the iron, the position
of the plunger and the dynamic mode of the automaton. As
shown, the behavior of the system during the five pulses is
qualitatively similar. The plunger is initially at rest at z=zmax

(dynamic mode 1) and, once the voltage pulse is applied,
both the current and the flux begin to increase rapidly. After
some time, the magnetic flux reaches a value such that the
magnetic force given by (41) exceeds the spring force and,
consequently, the plunger starts moving (q = 2). Although
depending on the applied voltage, the motion is always very
fast and the minimum gap position is reached within the
next 2 ms. Since mechanical bouncing has not been modeled,
the position remains static (q = 3) while the electromagnetic
variables evolve towards a stationary state. Then, when the
voltage is cut off, Hiron starts to decrease and the automaton
jumps to dynamic mode 4. The system remains at z = zmin
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Fig. 13. Validation of the hybrid dynamical model. From top to bottom,
voltage (input), measured and simulated current, measured and sim-
ulated flux, simulated magnetic field intensity, simulated position, and
simulated dynamic mode.

until the magnetic force is not large enough to maintain the
position. At that moment, the model jumps to q= 5 and the
plunger starts the backward motion, which lasts about 2.6 ms
independently of the excitation level. Finally, the position
reaches z = zmin, the automaton jumps to q = 6, and the
flux and the current return again to the initial state.

V. CONCLUSIONS

This paper presents a novel dynamical model for short-
stroke reluctance actuators that considers magnetic hysteresis
and saturation, eddy currents, flux fringing and the motion
of the armature. This model, which is computationally inex-
pensive compared to FEM simulations, relies on an explicit
dynamic solution of the generalized Preisach model which
has been derived in the paper by means of the concept of
incremental permeability. In this regard, it is shown that the
selection of the magnetic field intensity as a state variable,
instead of the magnetic flux, is the key to obtain a solution
which does not require the inversion of the GPM.

The structure of the Preisach model, whose output depends
on the direction of the input, together with the fact that the mo-
tion of the armature is limited by both upper and lower bounds,
causes the system to exhibit hybrid behavior. Consequently, the
actuator is modeled by means of a hybrid automaton with six
different dynamic modes. An innovative feature of the model
is that, in addition to the continuous variables (magnetic field,
position, and velocity) and the dynamic mode, it also has two
sets of scalars as state variables. These sets, which collect the
previous maxima and minima of the magnetic field, are inputs
of the GPM and evolve at discrete instants when past extrema
are wiped out or new extrema are encountered.

The modeling methodology has been illustrated using a
solenoid valve as an application example. The identification
procedure has been thoroughly described so that it can be
used to dynamically model any other reluctance actuator. The
validation experiments have shown that the model is fast and
provides very accurate predictions, which makes it particularly
well suited for designing estimation and control algorithms.
The parametric nature of the model can be exploited, e.g., to
improve the design of an actuator or to perform sensitivity
analyses of the parameters.
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[25] F. Preisach, “Über die magnetische nachwirkung,” Zeitschrift für physik,
vol. 94, no. 5-6, pp. 277–302, May 1935.

[26] I. Mayergoyz, “Mathematical models of hysteresis,” IEEE Trans. Magn.,
vol. 22, no. 5, pp. 603–608, Sep. 1986.

[27] L.-L. Rouve, T. Waeckerle, and A. Kedous-Lebouc, “Application of
preisach model to grain oriented steels: comparison of different charac-
terizations for the preisach function p(α,β),” IEEE Trans. Magn., vol. 31,
no. 6, pp. 3557–3559, Nov. 1995.

[28] B. Azzerboni, E. Cardelli, G. Finocchio, and F. La Foresta, “Remarks
about preisach function approximation using lorentzian function and its
identification for nonoriented steels,” IEEE Trans. Magn., vol. 39, no. 5,
pp. 3028–3030, Sep. 2003.

[29] P. Pruksanubal, A. Binner, and K. H. Gonschorek, “Determination of
distribution functions and parameters for the preisach hysteresis model,”
in 17th Int. Zurich Symp. Electromagnetic Compatibility. IEEE, Feb.
2006, pp. 258–261.

[30] I. Mayergoyz and G. Friedman, “Generalized preisach model of hys-
teresis,” IEEE Trans. Magn., vol. 24, no. 1, pp. 212–217, Jan. 1988.

[31] E. Ramirez-Laboreo and C. Sagues, “Reluctance actuator characteriza-
tion via fem simulations and experimental tests,” Mechatronics, vol. 56,
pp. 58 – 66, Dec. 2018.

[32] C. W. T. McLyman, Transformer and inductor design handbook. CRC
press, 2016.
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