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Abstract—Several modeling, estimation, and control
strategies have been recently presented for simple reluc-
tance devices like solenoid valves and electromagnetic
switches. In this paper, we present a new algorithm to
online estimate the flux linkage and the electrical time-
variant parameters of these devices, namely the resistance
and the inductance, only by making use of discrete-time
measurements of voltage and current. The algorithm, which
is robust against measurement noise, is able to deal with
temperature variations of the device and provides accurate
estimations during the motion of the armature. Additionally,
an integral estimator that uses the start of each operation of
the actuator as reset condition has been also implemented
for comparative purposes. The performances of both es-
timation methods are studied and compared by means of
simulations and experimental tests, and the benefits of our
proposal are emphasized. Possible uses of the estimates
and further modeling developments are also described and
discussed.

Index Terms—Actuators, electromechanical devices, es-
timation, Kalman filters, observers, switches, valves.

I. INTRODUCTION

S IMPLE non-latching reluctance devices based, e.g., on
plunger-type, pivoted-armature, or E-core actuators, are

being increasingly used in several domains mainly because
of their low cost. Thus, while the automotive industry has
recently found novel uses for solenoid valves [1], electro-
magnetic switches can be widely found in many present-day
applications, e.g., wireless power transfer systems [2], battery
chargers for electric vehicles [3], or photovoltaic modules [4].

As stated in some previous works [5], [6], the dynamics
of these devices is governed by an electromagnetic force
that increases greatly when the air gap is near zero. This
nonlinear behavior, together with physical bounds that limit
the motion, causes switches and valves to be subject to strong
shocks and wear that often result in early failures. In order
to overcome these problems and improve the performance of
the devices, several control strategies have been presented.
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See, e.g., the current-limiting method in [7], the energy-based
approach in [8], or some iterative approaches [9], [10]. The
major problem when controlling the motion is that the position
of the mover with respect to the stator cannot be measured
– at least not with affordable sensors – and therefore feedback
control can only be applied via estimation techniques. Some
works can be found concerning the position estimation, e.g., a
nonlinear sliding-mode observer is included in [1] and a fuzzy
controller is described in [11]. The underlying idea of these
proposals is that the inductance of the device depends on the
position of the armature. Hence, if an accurate model relating
these two variables were available and an inductance estimator
implemented, the motion of the device may also be estimated.

In this paper, we propose a novel algorithm for stochastic
electromagnetic estimation in reluctance actuators (SEMERA)
which is able to estimate online the inductance, the resistance
and the flux linkage of these devices, as well as additional
variables, only by using discrete-time measurements of voltage
and current. Apart from the inductance, which may be used to
estimate the position of the mover, the resistance estimation
can be used, e.g., as a temperature sensor of the device. On
the other hand, the flux linkage may allow for estimating the
magnetic force that drives the motion [6] or for detecting
magnetic hysteresis and saturation [12]. The observer is based
on the celebrated Kalman filter theory [13] and, in contrast to
some recent approaches [14], it relies only on a simple model
of a variable inductor that is not dependent on the position of
the armature. Besides, it includes a confidence interval (CI)
evaluation method that detects the instants of low signal-to-
noise ratio (SNR) and an expert rule that assigns values to the
estimated variables during these periods. On the other hand, an
efficient integral estimator, whose reset condition is based on
the cyclic operation of these devices, has been also developed
for comparative purposes. The algorithms have been validated
by simulation and then applied to two actual devices by means
of a microcontroller-based prototype. Both simulation and
experimental results are presented and analyzed.

The main contributions of the work are: (I) a robust observer
that, without requiring any model of the device, estimates the
resistance, the inductance, and the flux linkage of reluctance
actuators during the motion, even in the presence of measure-
ment noise or temperature changes, (II) an extension of the
stochastic filtering theory for online estimation of variables
and time-variant parameters, (III) an observability analysis of
the filter that provides insight into the system excitation and
justifies the selection of state variables, and (IV) a comparison
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between the algorithm and an ad hoc integral estimator based
on the cyclic operation of switches and solenoid valves.

II. ALGORITHM FORMULATION

As already stated, the SEMERA algorithm proposed in this
paper is based on the Kalman filter theory. In this section we
present the model used by the filter and provide an analysis of
the resulting equations in terms of observability. We will use
the notations x̂k/k−1 and x̂k/k to refer, respectively, to the a
priori and a posteriori estimates of the state x at step k.

A. Observation Model and Process Model

The observation model of the filter is based on the dynamic
equation of an inductor with internal resistance,

v(t) = r(t)i(t) +
dλ(t)

dt
, (1)

where v(t) is the voltage across its terminals, r(t) is the
internal electrical resistance, i(t) is the electrical current,
and λ(t) is the flux linkage. Although r may be considered
constant, it has been assumed time-dependent in order to
account for temperature changes during the operation [15].
This continuous-time equation is discretized by backward
differentiation,

vk = rkik +
λk − λk−1

∆
, (2)

where ∆ is the sampling period and the subscripts are used
to indicate the time step. First-order forward and central
difference formulas may be used as alternatives for discretizing
(1), but they result in a one-step delay in the estimation of
r. On the other hand, higher order backward-differentiation
expressions could also be utilized, but at the expense of
increasing the order of the filter and the complexity of the
model.

For non-latching devices, i.e., devices without permanent
magnets, λ can be expressed as the product of the apparent
inductance l and the electrical current, λ = li. Hence, the
previous equation is transformed into

vk = rkik +
lkik − lk−1ik−1

∆
, (3)

where the inductance l is considered a time-dependent variable
because, in any reluctance-based device, it changes with the
motion of the mechanism. A different discrete version of (1)
may be obtained if the derivative of λ is first expanded,

v(t) = r(t)i(t) +
dl(t)

dt
i(t) + l(t)

di(t)

dt
, (4)

and then the derivatives of l and i are replaced by their
backward discrete approximations. Although in this paper we
will use (1) to derive the equations of the filter, it can be shown
that both approximations have discretization errors O(∆) and
provide similar results.

Experimental measurements of voltage and current are
required by the filter at each time step. Since measurement

processes always add noise to the actual variables, let us define
the voltage observation, u, and the current observation, ι, as

uk = vk + vvk, (5)
ιk = ik + vik, (6)

where vv and vi are additive noises that affect, respectively,
the voltage measurement and the current measurement. Hence,
combining (3)-(6) and reorganizing terms, we obtain

uk = ιkrk +
ιklk − ιk−1lk−1

∆
+

+ vvk − vik (rk + lk/∆) + vik−1lk−1/∆. (7)

It is easy to see now that (7) can be used as the observation
equation of the filter,

zk = Hkxk + vk, (8)

where zk is the observed output, Hk is the observation matrix,
xk is the filter state vector, and vk is the observation noise at
time step k, simply by selecting these variables as

zk = uk, (9)

xk =
[
rk lk lk−1

]T
, (10)

Hk =
[
ιk ιk/∆ −ιk−1/∆

]
, (11)

vk = vvk − vik (rk + lk/∆) + vik−1lk−1/∆. (12)

This structure may resemble the equations used for real-time
identification of autoregressive models [16], but note that the
elements of xk are not independent parameters because lk and
lk−1 are time-connected. Note also that the observation noise
vk depends on the state and may be rewritten as

vk = vvk − Vikxk, (13)

Vik =
[
vik vik/∆ −vik−1/∆

]
. (14)

Then, assuming that {vvk} and {vik} are independent random
processes with zero mean and known variances, var(vvk) = σ2

v
and var(vik) = σ2

i , it can be shown that {vk} is also a zero-
mean process with variance given by

Rk = var (vk) = σ2
v + xTk


σ2
i

σ2
i

∆
0

σ2
i

∆

σ2
i

∆2
0

0 0
σ2
i

∆2

xk, (15)

On the other hand, the process model used by the filter is

xk+1 = Fxk +Gwk, (16)

where F and G are the discrete-time state and input matrices
with proper dimensions, and wk is the input, or process, noise.
This structure leads to the prediction model

x̂k+1/k = Fx̂k/k. (17)

Given the dynamic behavior of the system, we propose to
approximate r as a constant parameter and l as a variable
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having a linear evolution in time. This leads to the predictions

x̂
(1)
k+1/k = r̂k+1/k ≈ r̂k/k = x̂

(1)
k/k, (18)

x̂
(2)
k+1/k = l̂k+1/k ≈ l̂k/k +

(
l̂k/k − l̂k−1/k

)
=

= 2x̂
(2)
k/k − x̂

(3)
k/k, (19)

x̂
(3)
k+1/k = l̂k/k = x̂

(2)
k/k, (20)

and, consequently, to a state transition matrix as follows

F =

 1 0 0
0 2 −1
0 1 0

 . (21)

Note that this model differs from those usually used in
adaptive Kalman filtering [17]. Apart from not assuming a
constant inductance, the main difference is that our process
model does not include the dynamics of the actual system;
the only equation linking the filter to the actuator is the obser-
vation equation. In this way, the algorithm can be applied to
any variable reluctance device independently of its particular
design.

Substituting (21) in (16), solving for Gwk, and approximat-
ing according to the Taylor series, we obtain the expression
for the input term of the process model,

Gwk =

 rk+1 − rk
lk+1 − 2lk + lk−1

0

 ≈
 ṙk ∆

l̈k ∆2

0

 , (22)

where ṙ and l̈ are, respectively, the first derivative of r and
the second derivative of l with respect to time. Hence, in order
to distinguish between constants and variables, wk and G are
selected as

wk =

[
ṙk
l̈k

]
, G =

 ∆ 0
0 ∆2

0 0

 . (23)

Then, assuming that {ṙk} and {l̈k} are independent, zero-mean
random processes with known variances, var (ṙk) = σ2

ṙ and
var(l̈k) = σ2

l̈
, the covariance matrix of the process noise, Q,

is given by

Q =

[
σ2
ṙ 0

0 σ2
l̈

]
. (24)

Finally, let us assume that the initial values of resistance
and inductance, r0 and l0, are also random processes with
known expected values, E (r0) = r̄0 and E (l0) = l̄0, and
known variances, var(r0) = σ2

r0 and var(l0) = σ2
l0

. Hence,
considering that l−1 = l0, the expected value of the initial
state, x̄0, and the initial covariance matrix, P0, are given by

x̄0 = E (x0) =
[
r̄0 l̄0 l̄0

]T
, (25)

P0 = var (x0) =

 σ2
r0 0 0

0 σ2
l0

σ2
l0

0 σ2
l0

σ2
l0

 . (26)

B. Observability and Convergence
The observability of the proposed model has to be analyzed

to confirm the feasibility of the estimator. In this regard

it should be noted that, since observability is a structural
property, in this case it cannot be analyzed through the
observation equation of the filter, (8), because Hk depends on
the measurement noise. Instead, the structural output equation,

yk = Ckxk, (27)

where yk is the true output (not to be confused with the
observation, zk) and Ck is the output matrix at step k, has to be
considered. Given that the model output is the voltage through
the coil, yk = vk, and that the state vector has been already
selected in (10), the output matrix is obtained from (3) as

Ck =
[
ik ik/∆ −ik−1/∆

]
. (28)

Note that, according to (6) and (11),

Hk = Ck + Vik. (29)

Now, since the model (16), (27) is linear, the observability
can be analyzed by means of the observability matrix. Strictly
speaking, the presented time-variant model is observable on
the interval t ∈ [ k∆, (k + n)∆ ] if and only if the matrix

O[k, k+n] =


Ck

Ck+1F
...

Ck+nF
n

 (30)

is full rank. Given the arbitrary size of the previous ma-
trix, let us analyze the observability on the interval t ∈
[ k∆, (k + 2)∆ ], which, given the size of the state vector,
is the shortest possible interval of observability. In this case,
the observability matrix is given by

O[k, k+2] =


ik

ik
∆

− ik−1

∆

ik+1
2ik+1 − ik

∆
− ik+1

∆

ik+2
3ik+2 − 2ik+1

∆

ik+1 − 2ik+2

∆

 , (31)

and the model is observable provided that the determinant,

det
(
O[k, k+2]

)
=
(
2ik−1ik+1

2 + 2ik
2ik+2 − ik2ik+1

− ikik+1
2 − ik−1ikik+2 − ik−1ik+1ik+2

)
/∆2, (32)

is different from zero. Thus, the previous polynomial provides
a method to analyze the time-dependent observability of the
proposed model and shows that, with a proper excitation, it is
possible to find an interval where the state is observable.

Regarding the possible types of excitation, it is noteworthy
the case of linear evolution of i, i.e., ik+j = ik + jd with
j ∈ N and constant d ∈ R. In this case, the observability
can be analyzed considering that the output matrix can be
expressed, for any time step, in terms of ik,

Ck+j =

[
ik + jd

ik + jd

∆
− ik + (j − 1) d

∆

]
, (33)

and that the jth power of F is given by

F j =

[
1 0 0
0 j + 1 −j
0 j 1− j

]
. (34)
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Then, it can be showed that, starting from the third, the jth
row of the observability matrix is a linear combination of the
two previous ones,

Ck+j−1F
j−1 = 2Ck+j−2F

j−2 − Ck+j−3F
j−3, (35)

so that the rank of O[k, k+n] is equal or less than two
independently of the value of n. This leads to the conclusion
that no information can be extracted from intervals where i has
a linear evolution over time. Note that steady state periods also
meet this property with d = 0.

Let us now discuss the choice of using the inductance as
state variable. Since one of the focuses of this work is to
estimate the flux linkage, it might seem that (2) is a better
choice than (3) to be used as output equation of the model.
Actually, if the state vector is selected as

x∗k =
[
rk λk λk−1

]T
, (36)

an alternative output equation can be obtained from (2),

yk = C∗
kx

∗
k, (37)

C∗
k =

[
ik 1/∆ −1/∆

]
. (38)

Then, assuming a prediction model of constant r and constant
increment of λ, i.e., a model whose state matrix is also
given by (21), the jth row of the observability matrix of the
alternative filter would be equal to

C∗
k+j−1F

j−1 =
[
ik+j−1 1/∆ −1/∆

]
. (39)

Since this shows that the second and third columns of this
observability matrix are proportional, the alternative model
would never be observable independently of the system ex-
citation and of the length of the observation interval. Conse-
quently, we can conclude that this version of the filter is not
feasible and, therefore, the selection of the inductance as state
variable instead of the flux linkage is clearly justified.

The convergence of the filter has also been studied. Con-
sidering that (16), (27) is a time-varying discrete-time linear
model, a sufficient condition for exponential stability of the
filter is that the pairs (F, G) and (F, Ck) are, respectively,
uniformly controllable and uniformly observable [18]. Since
(F, G) is time-invariant, controllability and uniform con-
trollability are equivalent and guaranteed by the full rank
of the controllability matrix

[
G FG F 2G

]
. On the other

hand, the pair (F, Ck) is uniformly observable on the interval
t ∈ [ k∆, (k + n)∆ ] if the observability Gramian,

WO [k, k+n] =
k+n∑
i=k

(
CiF

i−k)T CiF i−k, (40)

satisfies, for some constants β1 and β2,

0 < β1I ≤WO [k, k+n] ≤ β2I, (41)

where I is the identity matrix with proper dimensions. Given
(21), (28), and (40), it is easy to see that β2 exists whenever
the current i is bounded – a condition which is always met in
practice. Then, in order to ensure the uniform observability of
the system and, hence, the exponential stability of the filter,
it is only necessary to check that the current excitation is

such that it guarantees the existence of β1. Finally, it must
be recalled that, since WO [k, k+n] =

(
O[k, k+n]

)TO[k, k+n],
then

rank
(
O[k, k+n]

)
= 3 ⇔ WO [k, k+n] > 0, (42)

which, together with (41), shows that observability is a nec-
essary condition for uniform observability.

C. Algorithm equations
The operations performed by the SEMERA estimator are

summarized in Algorithm 1, where Σk/k−1 and Σk/k are,
respectively, the covariance matrices of the a priori and a pos-
teriori state estimates. For more insight into the equations of
lines 8–12, see the original paper by Kalman [13] or the excel-
lent book of Anderson and Moore [16]. It must be noted that,
when considering the probability of xk conditioned to zk, the
Kalman gain is obtained as Kk = cov (xk, zk)

(
var (zk)

)−1
.

Thus, for the usual case of deterministic Hk, it is equal
to Kk = Σk/k−1H

T
k

(
HkΣk/k−1H

T
k +Rk

)−1
. However, in

this particular case Hk is not deterministic but stochastic,
so Kk takes a different value. Given (8), (13), and (29),
zk may be expressed as zk = Ckxk + vvk, which leads to
Kk = Σk/k−1C

T
k

(
CkΣk/k−1C

T
k + σ2

v

)−1
. Since Ck is not

available in practice, the SEMERA algorithm computes an
estimate of Kk, K̂k, by using Hk instead of Ck,

K̂k = Σk/k−1H
T
k

(
HkΣk/k−1H

T
k + σ2

v

)−1
. (43)

Then, the estimates of the coil resistance and inductance, r̂
and l̂, are extracted from the first and second elements of the
a posteriori state estimate of the filter, provided that the SNRs
of ιk and ιk−1, which are used to calculate Hk, are sufficiently
large. This condition is checked in practice by a detector
based on a CI that discards, with a certain probability, that the
current measurements are noise-only. Hence, the a posteriori
estimates at step k are considered valid only if the values
of ιk and ιk−1 are outside the interval [−nσσi, nσσi], where
nσ is set according to the selected confidence. Otherwise, the
measurements are regarded as mostly noise and the estimates
are calculated as r̂k = r̂k−1 and l̂k = l̄0, i.e., the resistance
estimation is kept constant and the inductance is estimated to
be equal to the expected initial value. This latter estimation,
which may be regarded as an expert rule, is justified by the fact
that non-latching electromagnetic devices always return to the
initial position when the excitation is cut off. Consequently, the
filter initial state must correspond to the resting position of the
device. Finally, the estimate of the flux linkage is calculated
as λ̂ = l̂ι.

Additional estimates can be obtained if the number of turns
of the coil, N , is known. First, given that the flux linkage is
equal to the product of the magnetic flux through the core,
φ, and the number of turns of the coil, N , the flux can be
estimated as φ̂ = λ̂/N = l̂ι/N . On the other hand, the
magnetic reluctance R may also be estimated as R̂ = N2/l̂.

D. Integral Estimator
In addition to the SEMERA algorithm, an integral estimator

has been also developed for comparison purposes. The basic
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Algorithm 1 SEMERA algorithm.
Require: x̄0, P0, F , G, Q, σ2

v , σ2
i , ∆, nσ

1: x̂1/0 := x̄0; . Initialize a priori state estimate
2: Σ1/0 := P0; . Initialize a priori state covariance
3: Register ι0 and start time counter.
4: for k := 1 to ∞ do
5: Wait until t = k∆; Register uk and ιk;
6: zk := uk;
7: Hk := [ ιk ιk/∆ − ιk−1/∆ ];
8: K̂k := Σk/k−1H

T
k

(
HkΣk/k−1H

T
k + σ2

v

)−1
;

9: x̂k/k := x̂k/k−1 +Kk

(
zk −Hkx̂k/k−1

)
;

10: Σk/k := (I −KkHk) Σk/k−1;
11: x̂k+1/k := Fx̂k/k;
12: Σk+1/k := FΣk/kF

T +GQGT;
13: if |ιk| > nσσi & |ιk−1| > nσσi
14: then r̂k := x̂

(1)
k/k; l̂k := x̂

(2)
k/k;

15: else r̂k := r̂k−1; l̂k := l̄0;
16: λ̂k := l̂kιk;
17: end for

idea of this algorithm consists in transforming (1) into integral
form, so that the flux linkage can be expressed as

λ(t) = λ(t0) +

∫ t

t0

[
v(τ)− r(τ)i(τ)

]
dτ, (44)

where t0 is an arbitrary reference of known flux. Expressed
in discrete time, it becomes

λk = λ0 + ∆

k∑
j=1

(
vj − rjij

)
, (45)

where λ0 = λ(t0). Based on this equation, the calculation
of λ would be immediate if perfect measurements of v, r,
and i were available. However, given that only measurements
of voltage and current can be obtained, a constant average
value of resistance, r̄, is used during the calculations instead
of the time-dependent variable. Then, replacing v and i by
their respective experimental measurements, u and ι, the flux
linkage is estimated as

λ̂k = λ0 + ∆

 k∑
j=1

uj − r̄
k∑
j=1

ιj

 . (46)

Since this estimate relies on an open-loop integration, even
the slightest error in r̄ would lead to significant cumulative
errors in λ̂. Thus, it becomes necessary to establish a condition
in which the two integrals of the estimator are set to zero.
Given that electromechanical devices like relays and valves
operate periodically and always return to the same state at the
end of the activation-deactivation cycle, the reset event may
be established at the beginning of each energizing operation,
this being understood as each time the device is supplied with
voltage to start the motion. Note that, at that initial point,
since there is no magnetic field generated by the coil, the flux
has a known constant value λ0 which, in addition, is equal to
zero for devices without permanent magnets. Besides, for an
operation beginning at step n and lasting m sampling periods,

the estimator should achieve λ̂n = λ̂n+m, which, using (46),
provides an adaptive rule for recalculating the resistance at the
reset events,

r̄ =

∑n+m
j=n+1 uj∑n+m
j=n+1 ιj

. (47)

Note that, since only one resistance value is obtained for
each operation, the integral estimator cannot account for rapid
variations of r. However, this should not represent a significant
problem because changes in resistance are mainly due to
temperature variations with slow dynamics [15].

Once the estimate of the flux linkage is obtained, an estimate
of the inductance is also calculated as

l̂k = λ̂k/ιk. (48)

In order to avoid divisions by zero and prevent from high esti-
mation errors when the SNR is low, the algorithm makes use of
the same CI-detector than the SEMERA estimator. Hence, the
previous expression is used at step k only when the absolute
values of ιk and ιk−1 are higher than nσ times the standard
deviation of the current measurement noise. Otherwise, the
inductance is considered equal to l̄0. The operations performed
by the integral estimator are summarized in Algorithm 2.

Algorithm 2 Integral estimator.
Require: r̄0, l̄0, λ0, σ2

i , ∆, nσ
1: r̄ := r̄0; . Initialize parameter r̄
2: Su := 0; Sι := 0; . Initialize integrals
3: for k := 1 to ∞ do
4: Wait until t = k∆; Register uk and ιk;
5: Su := Su + uk; Sι := Sι + ιk;
6: λ̂k := λ0 + ∆ (Su − r̄Sι);
7: if |ιk| > nσσi & |ιk−1| > nσσi
8: then l̂k := λ̂k/ιk;
9: else l̂k := l̄0;

10: if start of energizing operation
11: then r̄ := Su/Sι; Su := 0; Sι := 0;
12: r̂k := r̄;
13: end for

III. SIMULATION

In order to analyze the performance of the proposed esti-
mators, a dynamic model of an electromagnetic actuator has
been developed and some simulations have been carried out.

A. Model equations
The model presented in this section corresponds to a linear

solenoid plunger-type actuator (see Fig. 1). Nevertheless, if
needed, it could be easily adapted to other types of devices
such as pivoted-armature or E-core actuators with minor mod-
ifications. In order to improve the readability of the equations,
the explicit dependence of variables on time is omitted within
the section.

As stated, the electromagnetic dynamics of the system is
governed by (1). Additionally, a constitutive relation between
electric current and magnetic linkage has to be established.
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Considering the magnetic equivalent circuit (MEC) approach,
this relation is given by Hopkinson’s law, Ni = φR, which,
considering that λ = Nφ, transforms into

N2i = λR. (49)

The reluctance of the MEC, R, can be expressed as the
sum of the reluctances of the air gap, Rair, and of the iron
core, Riron. For simplicity of the model, the air reluctance is
assumed proportional to the gap length, i.e., flux fringing ef-
fects are neglected. However, since magnetic saturation should
never be considered negligible in this type of devices, the iron
reluctance does account for this phenomenon by means of
the well-known Fröhlich-Kennelly saturation model, as in [6].
These assumptions lead to a reluctance of the form

R = Rair +Riron = kairh+
Riron0

1− |λ| /λsat
, (50)

where kair is the proportionality constant of the air reluctance,
h is the gap length (see Fig. 1), Riron0 is the iron reluctance
for zero flux, and λsat is the flux linkage saturation level.
Combining (1) with (49) and (50), the dynamic equation of
the flux linkage is finally obtained as

dλ

dt
= fλ (λ, h, u) = u− rλ

N2

(
kairh+

Riron0

1− |λ| /λsat

)
. (51)

On the other hand, the linear movement of the plunger, of
mass m, is directed by Newton’s second law. The net force
driving the motion, Ftotal, is the sum of the magnetic force,
the elastic force exerted by the return spring, and a damping
term to account for friction forces, i.e.,

Ftotal = Fmag − ks (h− hs)− c
dh

dt
, (52)

where ks is the stiffness constant of the spring, hs is the gap
length for zero spring force, c is the damping coefficient and
Fmag is given [6] by

Fmag = −1

2
φ2
∂R
∂h

= −1

2

λ2

N2

∂R
∂h

= −λ
2kair
2N2

. (53)

Considering that the motion of the plunger is restricted
by mechanical constraints, h ∈ [hmin, hmax], the system is
modeled as a hybrid system with three dynamic modes, one
for the mechanical movement and another two corresponding
to the boundaries (see Fig. 2).

B. Simulation results and discussion

The values of the model parameters used in the simulations
are presented in Table I. These correspond to the actual valve
depicted in Fig. 1b and have been determined by both direct
inspection and experimental identification procedures. On the
other hand, the parameters used by the estimator are shown in
Table II. The variances and expected values of r0 and l0 have
been set according to real measurements of several valves in
their resting positions from an impedance analyzer. Besides,
we have carried out some preliminary simulations of the
actuator under a square wave input and we have analyzed the
dynamic behavior of the inductance to set a proper value for
σl̈. On the contrary, r is not expected to have great variations

h

(a) (b)

Fig. 1. (a) Schematic diagram of a linear solenoid actuator and (b) actual
actuator (solenoid valve). The movable core is pulled towards zero gap
by reluctance force. The opposite motion is driven by a spring force.

Fig. 2. Hybrid automaton to model the actuator dynamics. The motion
of the plunger is restricted to h ∈ [hmin, hmax]. Variable vh represents
the velocity of the plunger along the gap direction.

in reality, so σṙ has been set to an arbitrary small value.
In addition, we have analyzed some measurements from the
voltage and current sensors that are used in the experiments,
so the values of σv and σi used in the simulations are realistic.
The probability of the CI has been set to a conservative value
of 99.9% because we consider that, even if SNRι is high
enough, it is always preferable to use the expert rule with
small values of ιk. The sampling period, which is ∆ = 50 µs,
has been optimized by simulation to minimize the estimation
error.

The simulation results are presented in Fig. 3 and cor-
respond to a series of activations and deactivations of the
actuator at supply voltage of 30 V. In total, four cycles of
20 ms are represented in the figures. The first two plots
show respectively the simulated measurements of voltage and
current, i.e., the variables used by the estimators. The result
of the CI-based noise detector, which classifies the current
measurements as high-quality (HQ) or low-quality (LQ), is
also represented in the second plot. Then, the three following
graphs show the estimations of resistance, inductance and flux
linkage together with their respective true values. Note that
the simulated value of resistance has been deliberately set to
a value other than the initial value of the filters, r̄0, so that the
transient response could be analyzed. The sixth and seventh
graphs show, respectively, the SNRs of the voltage measure-
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TABLE I
MODEL PARAMETERS

Parameter Value
N 1200

kair 2.7·1010 H−1/m
Riron0 3.25·106 H−1

λsat 0.024 Wb
m 1.6 g

Parameter Value
ks 37 N/m
hs 22.5 mm
c 0.4 Ns/m

hmin 0 mm
hmax 0.9 mm

TABLE II
FILTER PARAMETERS (VALVE CASE)

Parameter Value
r̄0 77.5 Ω

σr0 1 Ω

l̄0 50 mH
σl0 5 mH
- -

Parameter Value
σṙ 1 Ω/s
σl̈ 108 H/s2

σv 15 mV
σi 1 mA
nσ 3.29 (99.9% CI)

ment and of the current measurement, which are calculated as
SNRu = 20 log10 (u/vv) and SNRι = 20 log10 (ι/vi). Finally,
the last plot represents, for each time-instant, the number of
time steps since the last observable state. Note that, according
to the size of the state vector, the minimum number of time
steps required for a state to be observable is two.

As can be seen, the performances of the two estimators
during the first activation-deactivation cycle are considerably
different. Since the integral estimator does not modify the
resistance value until the first reset event, the small errors
in r̂ (less than 2%) lead to much higher errors (greater than
100%) when estimating both the inductance and the flux
linkage. Actually, the inductance estimation of the integral
estimator goes far beyond the limits of the graph (it has not
been completely represented for clarity reasons). On the other
hand, the SEMERA algorithm has a similar behavior at the
beginning, but it is able to correct the estimates during the
operation and achieves much lower estimation errors, near
to zero, before the end of the first cycle. This is partially
due to the fact that the flux linkage is estimated through
the inductance, which forces λ̂ to decrease rapidly when the
current measurement approaches zero.

Then, after the first cycle, the estimations present a different
behavior. As can be seen, the resistance and flux linkage
estimations given by both estimators are almost equal to the
true values, so it can be concluded that the two filters achieve a
very good performance with respect to these variables. On the
other hand, the inductance estimations are also very close to
the true values except during two periods for each operation:
a short transient after the voltage positive step (t = 20, 40,
and 60 ms), and a period after the current drops close to zero
(t = 35, 55, and 75 ms). Note that, while the first periods
are intrinsic to the dynamics of the estimators, the second
ones are related to a low SNR of the current measurement. In
fact, it can be seen that the noisy behavior starts when SNRι

falls approximately below 30 dB, and that the problem is later
detected and overcome by means of the CI-based detector,
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Fig. 3. Valve simulation results. Four activation-deactivation cycles.
From top to bottom: voltage measurement, current measurement (with
CI-based classification), resistance estimation, inductance estimation,
flux linkage estimation, voltage SNR, current SNR, time steps since the
last observable state.
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TABLE III
ESTIMATION ERRORS DURING THE FIRST OPERATION (t < 20 ms).

Algorithm RMSE ( r̂ ) RMSE ( l̂ ) RMSE ( λ̂ )

SEMERA 1.244 Ω 0.1022 H 3.602 mWb
Integral 1.500 Ω 0.2512 H 4.645 mWb
Ratio (S/I) 0.8296 0.4069 0.7756

TABLE IV
ESTIMATION ERRORS AFTER THE FIRST OPERATION (t > 20 ms).

Algorithm RMSE ( r̂ ) RMSE ( l̂ ) RMSE ( λ̂ )

SEMERA 4.199 mΩ 5.022 mH 0.1136 mWb
Integral 10.30 mΩ 5.158 mH 0.1445 mWb
Ratio (S/I) 0.4077 0.9735 0.7866

which acts approximately for SNRι < 20 dB.
It is also noteworthy that there is no need to design a specific

activation signal to provide observability; the standard square-
wave usually employed to activate these devices provides
minimum-time observability except during the steady-state
periods. In this regard, note that the current being constant is
simply a particular case of linear evolution over time, ik+j =
ik + jd, with d = 0. Hence, the results are in accordance with
the observability analysis presented in Section II-B.

Finally, the root-mean-square errors (RMSE) of the esti-
mates during the simulation have been calculated and are
presented in Tables III and IV. Regarding the errors during
the first operation (Table III), it is showed that the SEMERA
estimator performs better, particularly for the inductance esti-
mation. Then, after the first cycle, once the estimators have
converged, the errors (Table IV) are one or two orders of
magnitude smaller, but in any case the SEMERA performance
is still better for the three variables.

IV. EXPERIMENTAL EVALUATION

Once the performance of the estimators has been studied
and compared by simulations, in this section we analyze
their operation under real conditions. For this purpose, both
filters have been implemented on a low-cost ARM-Cortex
M3 microcontroller and tested on two different devices: the
solenoid valve presented in the previous section (see Fig. 1b)
and a single-pole double-throw (SPDT) power relay based on
a pivoted-armature actuator (see Fig. 4). Both devices have
been activated and deactivated periodically at supply voltage
of 30 V, as in the simulations and as they are usually operated.
When applied to the valve, the parameters employed by the
filters are those already presented in Table II. On the other
hand, Table V shows the parameters for the case of the power
relay, which presents very different values of inductance and
resistance. The value of σi is also different because a different
current sensing method has been used on this latter device. The
sampling period, which is ∆=50 µs as in the simulations, is
enough to run both algorithms in 32 bit floating point (time
per iteration, approximately, SEMERA: 38 µs, Integral: 2 µs).

In addition, since the true values of resistance, inductance
and flux linkage are not accessible in reality, an offline

θ

(a) (b)

Fig. 4. SPDT power relay. (a) Schematic diagram of the reluctance
actuator and (b) actual relay.

TABLE V
FILTER PARAMETERS (RELAY CASE)

Parameter Value
r̄0 1560 Ω

σr0 100 Ω

l̄0 1 H
σl0 250 mH
- -

Parameter Value
σṙ 20 Ω/s
σl̈ 5·109 H/s2

σv 15 mV
σi 0.05 mA
nσ 3.29 (99.9% CI)

non-causal version of the integral estimator has been also
implemented to provide a deeper analysis. Unlike the online
version, which uses data of each operation to recalculate the
resistance and estimate the variables of the following one, this
estimator firstly computes the resistance of each and every
operation and then estimates the rest of the variables. Hence,
although it also assumes a constant value between reset events,
the most accurate value possible of r̄ is utilized.

The results corresponding to the valve and the relay are
respectively presented in Figs. 5 and 6. Considering the offline
estimates as the most accurate, it can be seen that the dynamics
of the online estimations are very close to the simulation
results already presented. It is showed that the highest errors
occur during the first activation-deactivation cycle, when the
small resistance estimation error leads to high errors in l̂,
although the SEMERA estimations converge much faster to
the true values. The two estimators behave similarly once the
first cycle has finished; they provide very good estimations of
r, l, and λ. The noisy behavior of l̂ during the periods of low
SNRι, which has been already observed in the simulations,
can also be noticed here in the relay test (around t = 85, 135,
and 185 ms), although it is almost unnoticeable in the valve
experiment. Nevertheless, the CI-based classifier is able to
detect the problem and the expert rule corrects the estimation
when SNRι is very low.

Regarding the evolution of the variables, it can be firstly
seen that the resistances of both devices keep an almost
constant value during the experiments, which is the expected
behavior. The same applies to the flux linkage, which oscillates
between zero and a maximum steady value. Finally, the
inductance behavior shows that, as already stated in the model
section, this variable depends both on the position of the
mechanism and on the magnetic flux. In this regard note that,
if the inductance only depended on the position, it would
oscillate strictly between two values corresponding to the
bounds of the motion, which is clearly not the case.
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Fig. 5. Valve experimental results. From top to bottom: voltage measure-
ment, current measurement (with CI-based classification), resistance
estimation, inductance estimation, flux linkage estimation.

In order to provide more insight into the relation between
electric current and magnetic flux, an additional experiment
has been performed with the valve. The plunger has been
locked at the zero-gap position and the coil has been supplied
with a 30 V square wave as in the previous tests. Then, the
flux linkage has been obtained by means of the SEMERA
algorithm and the results, once the estimation has converged,
have been represented in the λ–i plane (see Fig. 7). Two
conclusions can be drawn from the graph: one, that magnetic
saturation exists and has a great impact in the dynamics of the
device, and second, that the relation between i and λ for any
given position is not static but depends on past values. This,
as explained in some previous works [19], [20], is due both
to magnetic hysteresis and to eddy currents.
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Fig. 6. Relay experimental results. From top to bottom: voltage mea-
surement, current measurement (with CI-based classification), resis-
tance estimation, inductance estimation, flux linkage estimation.

V. CONCLUSIONS

In this paper, we have presented a novel stochastic observer
for reluctance actuators, SEMERA, which is able to estimate
the magnetic linkage and the time-variant electrical parameters
of these devices, i.e., the resistance and the inductance, even
under temperature variations and measurement noise. As has
been shown, the algorithm has proved to be highly accurate
and able to handle long unobservable periods and poor SNRs.
Besides, the experimental results show that it is fully applica-
ble to any reluctance actuator, independently of the shape, the
materials, or the mechanical design, because it only relies on
the electrical equation of a variable inductor. In this regard,
it is much more versatile than other model-based estimators
recently presented.

Additionally, we have also designed an ad hoc integral
estimator to provide a comparative analysis. This estimator,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIE.2018.2838077

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

0 0.1 0.2 0.3 0.4

0

5

10

15

20
10-3

Fig. 7. Path-dependent relation between flux linkage and electric cur-
rent. The behavior is due to both magnetic hysteresis and eddy currents.

which makes use of the repetitive operating mode of valves
and switches, has also showed a good precision while requiring
simpler calculations. However, an application problem may
be encountered with this latter approach: if the time between
operations is long enough that the temperature changes con-
siderably, the corresponding change in the electrical resistance
may lead to high transient errors that will not be reduced until
the end of a complete operation.

Apart from the aforementioned variables, additional esti-
mates might be derived from the SEMERA observer. The
resistance may be used, e.g., to estimate the temperature of the
device or to detect faults, and the magnetic linkage estimation
allows for characterizing the dynamic behavior between flux
and current. In addition, it is known in the literature that
the inductance is related to the position of the device and,
consequently, that it may be used to control its motion.
Nevertheless, we have showed that, prior to performing the
estimation, it is imperative that the phenomena of magnetic
hysteresis and eddy currents are included into the models.
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