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Abstract— This paper deals with the design and analysis of
open-loop soft-landing control policies for a class of nonlinear
actuators. A third-order nonlinear parametric model is firstly
presented and the particularities of the systems under study are
highlighted. Then, time-optimal and energy-optimal trajectories
are analytically derived by means of the Pontryagin principle.
Numerical solutions are obtained for a nominal model and the
robustness of the obtained open-loop input profiles on perturbed
systems is studied via Monte Carlo simulations. The results
show that the impact velocities are efficiently reduced with any
of the proposed strategies and, consequently, that open-loop
control could be a practical and cost-effective approach for
improving the performance of these actuators.

I. INTRODUCTION
Electromagnetic reluctance actuators are a class of non-

linear systems which are being increasingly used because of
their force density, fast response and reduced cost [1]. These
actuators can be found, e.g., in vehicles [2] or in aeronautical
applications [3]. In contrast to Lorentz actuators, which are
driven by a force which is proportional to the coil current, the
motion in reluctance actuators is related to a change in the
magnetic energy stored in the system. As a consequence, the
force producing the motion is nonlinear and highly dependent
on the position of the mover. The behavior of this force,
which is higher the smaller the air gap, together with the
absence of any type of control, causes these actuators to
suffer from severe impacts and wear in each operation.

In this regard, several modeling, estimation and control pa-
pers can be found in the literature dealing with the aforemen-
tioned problems. Starting with the early works of the 1960s
[4], many different approaches have been adopted to analyze
the dynamics and improve the performance of reluctance ac-
tuators. Dynamic modeling, for instance, has been faced via
analytical [5], numerical [6] and combined [7], [8] methods,
but all the models lead to similar conclusions: reluctance
actuators are high-speed systems with rich and complex
dynamics. Many other works have focused on finding control
strategies to achieve-soft landing, i.e., controllers that force
the actuator to reach the final position with zero velocity
[9]. Given that the mover position cannot be measured in
practice—at least not with affordable sensors—some of the
solutions rely on estimations [10], [11], [12] to perform
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the designed control policy. However, the estimation models
are usually too complex to be implemented in real time or
neglect some electromagnetic phenomena, like hysteresis or
eddy currents, which have a strong influence on the dynamic
behavior of the device [13]. A practical approach to increase
the robustness of these solutions is the use of cycle-to-cycle
learning-type strategies that adjust the feedback controller
[14] or the feedforward signal [15], [16].

Designing a feasible trajectory considering input con-
straints is one of the key aspects to achieve soft landing.
In this connection, some previous works have applied opti-
mal control theory to find feasible [17], time-optimal [18]
or energy-optimal solutions [19]. However, disturbances or
modeling errors are commonly neglected in the solutions
and, therefore, the generated input profiles do not result in
soft landing when applied in open loop to the actual device.
Despite that, the high speed nonlinear dynamics of reluctance
actuators, as well as the difficulty in measuring or estimating
interest variables, motivates the search of open-loop control
policies which can be easily implemented in practice. For
these reasons, in this paper we present and compare five
different optimal control policies to achieve soft landing on
reluctance actuators. The main contribution of the work is an
analysis of the open-loop application of these strategies on
perturbed systems, i.e., systems which are different from the
nominal model used to design the controller. This analysis is
carried out via Monte Carlo simulations. The obtained results
show that the impact velocities are efficiently reduced with
any of the presented policies and, consequently, that open-
loop control could be a practical and cost-effective approach
to increase the service life of this type of actuators.

II. SYSTEM DYNAMICS
Reluctance actuators are electromechanical devices where

the force that produces the motion is due to a change in
the magnetic energy of the system. In particular, single-coil
reluctance actuators have a coil wrapped around an iron core
with a fixed and a moving part. When the coil is energized, a
magnetic flux is generated, flowing through both the iron and
the air gap between the stator and the mover. This produces a
magnetic force which pulls the mover towards the stator and
closes the gap, an operation which is usually called making.
The opposite motion, which is commonly known as breaking,
is driven by the elastic force produced by a spring which
generally cannot be controlled. Fig. 1 schematically depicts
a plunger-type reluctance actuator.

The dynamics of these actuators are governed by three
basic equations. First, the electrical equation of the coil,

u = R i+Nφ̇, (1)



where u is the voltage across the terminals, R is the
resistance, i is the current, N is the number of turns of the
coil and φ is the magnetic flux. Secondly, a relation between
the current and the magnetic flux, which is usually provided
by Hopkinson’s law [20]

Ni = φR(z, φ), (2)

where R(z, φ) is the reluctance of the magnetic circuit and z
is the position of the actuator. Considering the great number
of reluctance models in the literature [7], this variable is
considered as an arbitrary function of z and φ. Finally, the
motion dynamics is governed by Newton’s second law,

m z̈ = −ks(z − zs)− c ż + Fmag(z, φ), (3)

where m is the moving mass, ks is the spring stiffness, zs
is the actuator position at the spring equilibrium length, c is
the damping coefficient (often assumed zero) and Fmag is
the magnetic force, given by [21, p. 151]

Fmag(z, φ) = −1

2
φ2

∂R(z, φ)

∂z
. (4)

Then, selecting the position, the velocity and the magnetic
flux as state variables,

x =
[
x1 x2 x3

]T
=
[
z ż φ

]T
, (5)

the following state-space representation of the system is
obtained

ẋ = f(x, u) =
[
f1(x) f2(x) f3(x, u)

]T
, (6)

where the voltage u is the model input and

f1(x) = x2, (7)

f2(x) =
1

m

(
Fmag (x1, x3)− ks (x1 − zs)− c x2

)
, (8)

f3(x, u) =
u

N
− Rx3R(x1, x3)

N2
. (9)

Except for some particular reluctance models that consider
magnetic hysteresis [13], generally it can be assumed that

R(z, φ) = R(z,−φ) > 0, (10)

which implies that Fmag(z, φ) = Fmag(z,−φ), i.e., that the
sign of the magnetic force does not depend on the sign of the
flux. Thus, although (9) indicates that the flux may increase
or decrease according to u, the magnetic force for a particular
position always acts in the same direction, which clearly
limits the control possibilities. Furthermore, the condition
in (10) implies also that

f1

(
[ z ż − φ ]

T
)

= f1

(
[ z ż φ ]

T
)
, (11)

f2

(
[ z ż − φ ]

T
)

= f2

(
[ z ż φ ]

T
)
, (12)

f3

(
[ z ż − φ ]

T
,−u

)
= −f3

(
[ z ż φ ]

T
, u
)
. (13)

These equations show that given u(t)=fu(t) and φ(t0)=φ0,
where t0 is an arbitrary time, identical position and velocity
trajectories would be obtained for all t ≥ t0 if u(t)=−fu(t)
and φ(t0)=−φ0.

Mover

Coil Spring

Stator

Gap

Fig. 1. Schematic representation of a plunger-type reluctance actuator.

III. OPTIMAL TRAJECTORY DESIGN
The soft-landing strategies presented in this paper are

specifically designed for actuators whose position is bounded
between two values zmin and zmax, where zmin < zmax. In
this section, the model (7)–(9) is used to derive optimal soft-
landing trajectories from zmin to zmax and vice versa.

A. Problem Formulation and Solution Method

The problem of finding a bounded time-dependent input
u(t) which achieves a soft-landing trajectory for the actuator
is formulated as follows:

min.
u(t)

J =

∫ tf

t0

V
(
x(t), u(t)

)
dt, (14)

s. t. ẋ(t) = f
(
x(t), u(t)

)
, (15)

α ≤ u(t) ≤ β, (16)
φ(t) ≥ 0 (17)

x(t0) = x0 =
[
z0 0 φ0

]T
, (18)

x(tf) = xf =
[
zf 0 φf

]T
, (19)

where J is the performance index, t0 and tf are the initial
and final times, V is a scalar function, α and β are the lower
and upper bounds of u and x0 and xf are the initial and final
states, respectively. It is assumed that α < 0 < β.

The trajectory must start at the initial position,
x1(t0) = z0, at rest, x2(t0) = 0. Considering the system
under study, z0 corresponds to either zmin (breaking opera-
tion) or zmax (making operation). The takeoff occurs when
the net force is equal to zero,

f2

([
z0 0 φ0

]T)
= 0, (20)

which results in a condition for the initial flux φ0. At the
end of the motion, the actuator must reach the final position,
x1(tf) = zf , which is either zmax (breaking operation) or
zmin (making operation), with zero velocity, x2(tf) = 0.
Additionally, in order to maintain that position, the final
acceleration must also be set equal to zero,

f2

([
zf 0 φf

]T)
= 0, (21)

which provides the condition for the final flux φf .
A solution of the problem (14)–(19) can be found by

following the Pontryagin method. In this regard, it should
be noted that (17) is not explicitly handled in the procedure;
it is simply used to rule out redundand solutions with the
same mechanical trajectories (see the previous section). The
optimal input is obtained by building the Hamiltonian

H (x,λ, u) = V (x, u) + λT f(x, u), (22)



where λ = [λ1 λ2 λ3 ]
T is the costate, and then applying

the Pontryagin principle,

H (x∗,λ∗, u∗) ≤ H (x∗,λ∗, u) ∀u ∈ [α, β] , (23)

where x∗, λ∗ and u∗ are the optimal state, costate and input,
respectively. This step results in the input expressed as a
function of the state and the costate.

u∗ = h(x∗,λ∗) (24)

The dynamics of the Hamiltonian system are subsequently
obtained as

ẋ∗(t) = +
∂H∗

∂λ∗
, λ̇

∗
(t) = −∂H

∗

∂x∗
, (25)

where H∗ = H
(
x∗,λ∗, h (x∗,λ∗)

)
, and the trajectory is

numerically computed using (18) and (19) as boundary
conditions. Finally, the optimal open-loop policy is obtained
by replacing x∗ and λ∗ in (24) by their numerical values.

B. Time-Optimal Policy

The time-optimal control policy is the one that minimizes
the time taken by the actuator to go from x0 to xf . In order
to find such solution, the function V is selected as

V (x, u) = 1, (26)

which results in J = tf − t0 and in the Hamiltonian

H (x,λ, u) = 1 + λ1 f1(x) + λ2 f2(x) + λ3 f3(x, u) . (27)

Using (7)–(9) to apply the Pontryagin principle leads to

λ∗3 u
∗ ≤ λ∗3 u ∀u ∈ [α, β] , (28)

which allows for obtaining h as a piecewise function of λ∗3.

h(x∗,λ∗) = argmin
u∈[α,β]

(λ∗3 u) =

{
β if λ∗3 < 0
α if λ∗3 > 0

(29)

Note however that h is not defined for λ∗3 = 0, which
suggests that the time-optimal control problem is singular.
This can be easily avoided by redefining V as

V (x, u) = 1 + ε u2, (30)

where ε > 0 is an infinitely small number. Then, applying
the Pontryagin principle with the regularized version of V
leads to

h(x∗,λ∗) = argmin
u∈[α,β]

(
ε u2 + λ∗3 u

)
=

 β if λ∗3 < 0
0 if λ∗3 = 0
α if λ∗3 > 0

(31)

which is defined for all values of λ∗3 and, consequently, will
not lead to singularity intervals.

Since tf is free (it is the variable to minimize) an addi-
tional boundary condition is needed to solve the problem.
The necessary conditions for optimality obtained from the
classical theory of the calculus of variations [22, p. 65] [23,
p. 188] provide such extra condition as

H
(
x∗(tf),λ

∗(tf), h
(
x∗(tf),λ

∗(tf)
))

= 0. (32)

C. Energy-Optimal Policy

The time-optimal solution determines the minimum
amount of time required by the system to follow a soft-
landing trajectory. Trajectories lasting longer than that limit
can be obtained, e.g., by solving an energy-optimal problem.
For that, the function V is selected as

V (x, u) = u2, (33)

which results in the Hamiltonian

H(x,λ, u) = u2+λ1 f1(x)+λ2 f2(x)+λ3 f3(x, u) . (34)

In this case, the Pontryagin principle states that

u∗2 + λ∗3 u
∗/N ≤ u2 + λ∗3 u/N ∀u ∈ [α, β] (35)

and, consequently, the energy-optimal policy h is given by

h(x∗,λ∗) = argmin
u∈[α,β]

(
u2 + λ∗3 u/N

)
=

=


β if λ∗3 < −2Nβ

− λ∗3
2N

if −2Nβ ≤ λ∗3 ≤ −2Nα

α if λ∗3 > −2Nα

(36)

which is defined for all values of λ∗3.

IV. SIMULATION AND RESULTS
In this section, we present and compare different soft-

landing optimal solutions for the making and breaking opera-
tions of a particular reluctance actuator model. The simulated
dynamic model assumes a reluctance of the form

R(z, φ) = k1 z +
k2

1− |φ| /k3
, (37)

where k1, k2 and k3 are constants. This reluctance results
from the sum of an air component which is proportional to
the gap length and an iron component that includes magnetic
saturation by means of the Fröhlich-Kennelly model [5].

In order to analyze the effects of the position boundaries,
the control policies are evaluated using the hybrid model
presented in Fig. 2. In this figure, each transition is described
by its guard condition (in green) and its reset function (in
red), respectively before and after a right arrow (⇒). The
superscript + is used to specify the values of the states after
the jump. The reset function is explicitly shown only for
those variables that change during the jump; if the transition
does not imply a jump, only the guard condition is presented.
The model operates as follows. If the mover is in motion and
reaches any of the position boundaries, the automaton jumps
to the corresponding non-motion dynamic mode and the
velocity is reset to zero. Then, when the acceleration given
by (8) would produce motion away from the bounds, the
automaton gets back to the motion mode. For simplicity, the
collisions are assumed perfectly inelastic, i.e., all the kinetic
energy is dissipated at impacts. Note however that bounces
will still exist when the impact velocity and the sum of the
magnetic and spring forces at that moment have opposite
signs. The nominal values of the parameters are presented
in Table I. The voltage is bounded between α = −50 V and
β = 50 V.



TABLE I
MODEL PARAMETERS

Parameter Value
R 75 Ω
N 1200
k1 2.7·1010 H−1/m
k2 3.25·106 H−1

k3 25 µWb

Parameter Value
m 1.6 g
ks 55 N/m
zs 15 mm
c 0 Ns/m

[zmin, zmax] [ 0, 1] mm

A. Nominal system

For each of the two operations, five different soft-landing
policies have been computed using the nominal model of
Section II. These correspond to the time-optimal (TO) solu-
tion and four energy-optimal (EO) strategies. The TO policy
has been firstly computed to determine the minimum time
required by the system to achieve a soft-landing motion.
Then, EO solutions have been found for final times equal to
102% (EO1), 105% (EO2), 110% (EO3) and 120% (EO4)
of the TO final time. The results of the simulations are
presented in Figs. 3 and 4. For the sake of clarity, these
figures only include the TO, EO2 and EO4 solutions; the
other two are intermediate trajectories. The contact instant
using each policy is marked with a dot.

As shown in the figures, the TO policy is of Bang-off-
Bang type, i.e., the input switches between α, 0 and β.
During the making operation, this strategy increases rapidly
the flux to generate a strong force towards zero gap. Then,
the magnetic force is decreased to zero until nearly the end
of the motion, when it is again increased so that the mover
arrives with zero acceleration. On the other hand, the motion
during the breaking operation is primarily governed by the
elastic force. The initial flux is rapidly decreased to zero so
that no magnetic force opposes the motion. Then, at the end
of the trajectory, the flux is increased to generate a force
that slows down the plunger and makes it reach the final
position with zero velocity. As expected, the EO policies
are smoother and cause the input to vary continuously on
the interval [α, β], but this is achieved at the expense of
having larger final times. Note that, although there is not a
great difference, the asymmetry in the forces causes the two
operations to have different optimal-time durations (2.511 ms
for making and 2.401 ms for breaking).

The nominal model has been also used for an additional
analysis. In this regard, note that the usual non-controlled
activation policy with these actuators consists in applying a
constant positive voltage in the making operation and another
voltage—zero or very close to zero—in the breaking. Hence,
we have analyzed how the final time and the impact velocity
depend on these voltages. The results are presented in Figs. 5
and 6. As shown, the minimum achievable impact velocity
at the end of the making operation is about 0.99 m/s, which
corresponds to a voltage of about 16 V and a final time
of 4.5 ms. On the other hand, the impact velocity on the
breaking operation could be reduced down to 0.76 m/s when
using a 2.25 V dc voltage. Lower voltages for the making or
higher for the breaking do not produce motion. These values

Mode 1: Max. gap

ẋ =

 0
0

f3(x, u)


Mode 2: Motion

ẋ =

 f1(x)
f2(x)

f3(x, u)


Mode 3: Min. gap

ẋ =

 0
0

f3(x, u)



f2(x) < 0

x1 = zmax ∧ x2 ≥ 0

⇒ x+
2 = 0

x1 = zmin ∧ x2 ≤ 0

⇒ x+
2 = 0

f2(x) > 0

Fig. 2. Hybrid automaton modeling the dynamics of the actuator.
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Fig. 3. Optimal soft-landing trajectories for the making operation. From
top to bottom: voltage (input), position, velocity and magnetic flux.

0 0.5 1 1.5 2 2.5 3
-50

0

50

0 0.5 1 1.5 2 2.5 3
0

0.5

1

0 0.5 1 1.5 2 2.5 3
0

0.4

0.8

0 0.5 1 1.5 2 2.5 3
0

10

20

Fig. 4. Optimal soft-landing trajectories for the breaking operation. From
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Fig. 6. Final time (left) and absolute value of the impact velocity (right) in
non-controlled constant-voltage breaking operations. The case of minimum
impact velocity is marked with a red dot.

are used as a benchmark to analyze the performance of the
designed optimal control policies on perturbed systems.

B. Perturbed system

As stated in the introduction, the difficulty in measuring
or estimating variables and the very high speed of reluctance
actuators motivate the search of open-loop soft-landing con-
trol policies which can be easily implemented and applied
in practice. Considering that the main problem of open-loop
control is the lack of robustness against disturbances, in
this section we analyze the results of applying the already
presented input profiles on perturbed systems.

For that, 25,000 Monte Carlo simulations have been per-
formed for each operation and control policy using the hybrid
model in Fig. 2. The nominal parameter vector

p =
[
R N k1 k2 k3 m ks zs

]T
(38)

is replaced in the simulations by ppert, which is randomly
generated from a normal distribution, ppert ∼ N(p,Σ2),
where Σ = diag (0.01p). The value of Σ has been set
accordingly to the usual variability of the parameters in
commercial actuators. The rest of the parameters remain
unchanged. Considering that the mover may bounce at the
end of the motion, two different variables are extracted from
each simulation. First, the final time, tend, which is not the
time of the first impact but the time at which the motion ends.
Secondly, an equivalent impact velocity, veq, calculated as

veq = +

√
mpert

m

∑
i

(
x2(ti)

)2
, (39)

where mpert is the perturbed mass and {ti} is the set of time
instants at which an impact occurs. This variable represents
the velocity that the nominal system should have in order to
dissipate on one impact the same amount of kinetic energy
than the perturbed system on all the bounces. Since the
simulations can take longer than tf , where tf is the nominal
final time, the input is extended in time using a constant
voltage (50 V for making and 0 V for breaking).

The results for the making and breaking operations are
respectively presented in Figs. 7 and 8. In both figures, it
can be seen that the best values obtained in the simulations
are close to those of the nominal case. However, almost
all the simulations take longer times and have nonzero
values of veq, which means that soft landing is not perfectly
achieved. In any case, it must be noted that the equivalent
impact velocities in the great majority of the simulations are
smaller than the impact velocities of the non-controlled case
(indicated by dash-dot lines in the graphs). In this regard,
the mean values are between 45% and 70% smaller than if
no control is applied. Therefore, we can conclude that all
the proposed policies are advantageous in the search of soft
landing with respect to the standard activation.

Focusing on the making operation (see Fig. 7), it can be
seen that the best results are undoubtedly those correspond-
ing to the TO policy. The median and mean values, as well as
the interquartile range, are clearly better in both the impact
velocity and the final time. There is a worsening trend with
tf and, consequently, the worst results are those given by
the EO4 policy. Additionally, the histograms show that the
simulations in which there are bounces are slightly worse in
both variables, and the effect is similar for the five proposed
policies. The bouncing phenomenon is however much more
pronounced in the breaking operation (see Fig. 8), what
leads to very different results depending on whether there are
bounces or not. In this regard, there is not one best policy
for this operation with respect to the impact velocity (see,
e.g., that the TO policy has the best median value, but it has
the worst third quartile). In any case, the minimum mean
impact velocity corresponds to the EO3 policy, whereas the
minimum mean final time is obtained with the TO strategy.

V. CONCLUSIONS

In this paper we have presented and compared five differ-
ent open-loop control policies to achieve soft-landing on a
class of nonlinear actuators. Firstly, the dynamic equations
of the system have been studied and its main particularities
highlighted. The magnetic force, which can only act in one
direction, establishes an asymmetry in the motion and has
proved to be one of the main control limitations.

Solutions corresponding to the five strategies have been
computed for the two possible motions of a nominal actuator.
Then, the robustness of applying the open-loop policies
on perturbed systems has been analyzed via Monte Carlo
simulations. It has been shown that, although soft landing
is not completely achieved, the impact velocity is reduced
in the great majority of the cases. In this regard, the mean
reduction with the best policy in the making operation is
about 60%, while in the breaking motion reaches about 70%.
These results, together with the simple implementation that
the proposed strategies would have in practice, suggest that
open-loop optimal control could be a practical and cost-
effective approach to achieve soft landing on reluctance
actuators.
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[14] M. Benosman and G. M. Atınç, “Extremum seeking-based adaptive
control for electromagnetic actuators,” Int. J. Control, vol. 88, no. 3,
pp. 517–530, 2015.

[15] J. Tsai, C. R. Koch, and M. Saif, “Cycle adaptive feedforward
approach controllers for an electromagnetic valve actuator,” IEEE
Trans. Control Syst. Technol., vol. 20, no. 3, pp. 738–746, May 2012.

[16] E. Ramirez-Laboreo, C. Sagues, and S. Llorente, “A new run-to-run
approach for reducing contact bounce in electromagnetic switches,”
IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 535–543, Jan. 2017.

[17] S. K. Chung, C. R. Koch, and A. F. Lynch, “Flatness-based feedback
control of an automotive solenoid valve,” IEEE Trans. Control Syst.
Technol., vol. 15, no. 2, pp. 394–401, Mar. 2007.

[18] T. Glück, W. Kemmetmüller, and A. Kugi, “Trajectory optimization
for soft landing of fast-switching electromagnetic valves,” IFAC Proc.
Vol., vol. 44, no. 1, pp. 11 532–11 537, Jan. 2011.

[19] A. Fabbrini, A. Garulli, and P. Mercorelli, “A trajectory generation
algorithm for optimal consumption in electromagnetic actuators,”
IEEE Trans. Control Syst. Technol., vol. 20, no. 4, pp. 1025–1032,
Jul. 2012.

[20] J. J. Cathey, Electric machines: analysis and design applying Matlab.
McGraw-Hill, 2001.

[21] S. D. Sudhoff, Power magnetic devices: a multi-objective design
approach. John Wiley & Sons, 2014.

[22] D. S. Naidu, Optimal Control Systems, 1st ed., ser. Electrical Engi-
neering Series. CRC Press, 2002.

[23] D. E. Kirk, Optimal Control Theory - An Introduction. Dover
Publications, 1998.


