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Abstract— There is great interest in minimizing the impact
forces and bounces of reluctance actuators during commuta-
tions, in order to reduce acoustic noise and mechanical wear.
In that regard, a model-free run-to-run control algorithm is pre-
sented to decrease the contact velocity, by exploiting the repeti-
tive operations of these devices. The problem is mathematically
formulated and the algorithm is expressed in pseudocode. As the
main contribution of this paper, a search method is proposed
for the run-to-run strategy based on Bayesian optimization.
Adjustments are carried out for its application in run-to-run
control, e.g. the removal of stored points and the definition
of a new acquisition function. For validation, simulations are
performed using a dynamic model of a commercial solenoid
valve, and defining the input parametrization. The results show
the improvement of the proposed method with respect to a
state-of-the-art search.

I. INTRODUCTION

Reluctance-based electromagnetic actuators are electrome-
chanical devices that rely on reluctance forces to change the
position of their movables parts. In particular, simple single-
coil short-stroke reluctance actuators, e.g. electromagnetic
relays or solenoid valves, are extensively used in on-off
switching operations of electrical or pneumatic circuits.
However, the range of applications is restricted because of
one major drawback: the strong impact at the end of each
commutation, which provokes mechanical wear and acoustic
noise. Mitigating those impacts is of great interest, as it
potentially extends their service life, makes them operate
more quietly, and opens them to applications with more
stringent requirements. To decrease contact velocities of the
moving parts in reluctance actuators, soft-landing control
strategies must be designed.

One of the most straightforward approaches is to design
feedback control strategies to track predefined position tra-
jectories [1]. However, in most low-cost short-stroke reluc-
tance actuators, there is no affordable and feasible method
to measure the position in real time. For getting around this,
estimators can be designed for the armature position [2],
or other position-dependent variables [3]. However, these
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solutions require precise models for each device that ac-
counts for—among other aspects—its nonlinearities, discrete
behavior, time-varying parameters, or measurement errors.

Cycle-to-cycle learning-type strategies aim at improving
the robustness of the soft-landing control by taking advantage
of the repetitive functioning of these switching devices. Run-
to-run control, in contrast with other learning-type strategies,
only requires one evaluation value for each cycle [4]. It
is ideal to control low-cost reluctance actuators because,
although their position cannot be accurately obtained during
operations, other variables can be derived to evaluate each
cycle, e.g. the duration of the bouncing [5] or the sound
intensity of the impact.

Measurement-based batch optimization implementations
can be explicit or implicit, depending on whether it requires
a process model or not [6]. Designing a model-based run-
to-run strategy is very challenging, as it needs a robust and
accurate model, and may not even be possible for certain
low-cost actuators that are not designed to be controlled.
Therefore, the proposed optimization is model-free. As such,
the cost function to be optimized, which maps the decision
(input) with the evaluation (output) variables, is a black
box. Without an explicit definition of the cost function, each
evaluation requires querying at a certain decision point and
actually commuting the device. As stated by [6], the gradient
can be approximated by disturbing the d decision variables.
However, the estimated derivatives are very sensitive to
noise and need at least d + 1 function evaluations in each
iteration. A better solution for this type of problem, proposed
by [5], is based in a derivative-free pattern search method
[7]. However, the optimization still requires several function
evaluations in each iteration.

Bayesian optimization is a well known method of black-
box global optimization. In each iteration, it approximates the
black-box function with a random process regressor—which
is typically Gaussian [8]—depending on data from previ-
ous iterations and, through the maximization of an utility
function, selects the following points to be evaluated. It has
proven to be effective in real-time control applications, e.g.
maximum power point tracking [9], or altitude optimization
of airborne wind energy systems [10].

As the main contribution of this paper, a new approach
is proposed for the run-to-run control of reluctance-based
electromagnetic actuators, based on Bayesian optimization.
Several adjustments are introduced to the algorithm: the
limitation of the number of stored previous data by means
of the combination or removal of observations, and the
definition of a new acquisition function. To demonstrate



the effectiveness of the proposal, multiple simulations are
performed, with a dynamic model that fits a commercial
solenoid valve. Results obtained from using the Bayesian
optimization and the state-of-the-art pattern search method
are analyzed and compared.

II. PROBLEM STATEMENT

Firstly, the dynamics of the system are described. Most
commonly in run-to-run (R2R) optimization problems, the
system dynamics is formulated with a conventional state-
space representation [11], but it is not accurate enough in
this scenario. As mentioned in previous works [12], [3],
reluctance actuators have three different dynamic modes,
corresponding to the upper and lower position boundaries
and the motion between those limits. Furthermore, other
dynamical or output variables may also have discrete behav-
iors. Therefore, the dynamical system cannot be considered
a continuous dynamical system, but a hybrid automaton.
Similarly to the generalized form presented in [13], it can
be formulated as

χ̇k(t) = Fq

(
χk(t), uk(t), dk(t)

)
, χk(t) ∈ Cq, (1)(

χk(t+), qk(t+)
)

= Gq

(
χk(t)

)
, χk(t) ∈ Dq, (2)(

χk(0), qk(0)
)

= (χ0, q0) , (3)

where k is the iteration number, χk(t) the continuous state
vector, qk(t) ∈ {1, 2, . . . , Q} the discrete state, uk(t) the
continuous input vector, dk(t) the disturbance vector, Fq the
flow map, Gq the jump map, Cq the flow set, Dq the jump
set, and (χ0, q0) the initial states. To simplify, the usual
continuous output vector is not directly defined, but it would
be included in—or derived from—χk(t).

Secondly, the input signal is parameterized into a discrete
set of decision variables, as is required for R2R control. For
any instant t, the input is obtained as

uk(t) = U
(
xk, t

)
, (4)

where xk is the decision vector and U is the function that
generates the input signal.

Thirdly, the variable to be optimized in each repeated
cycle is defined. It is obtained directly or indirectly from
measurements, which means the optimization problem is
measurement-based. This variable may be related to the
impact noise level, the bouncing duration, the transient time,
or a combination of them. It can be defined as a terminal
cost ykr to be optimized,

ykr = Ψ
(
χk(tf)

)
, (5)

being Ψ the cost function and tf the operation final time.
The optimization process exploits the stored data from pre-

vious iterations, which are the decision vectors xi and their
corresponding observed costs yi, for all i = 1, 2, . . . , k−1.
Note that, due to possible measurement errors, the observed
costs yi are different from the real ones yir.

Finally, the general measurement-based terminal-cost op-
timization under uncertainty can be formulated as follows,

min
xk

ykr = Ψ
(
χk(tf)

)
, (6)

s.t. (1)− (4),

S
(
χk(t), uk(t), qk(t)

)
≤ 0, (7)

T
(
χk(tf), q

k(tf)
)
≤ 0, (8)

given X k−1, Yk−1, (9)

where X k−1 =
{
xi | i = 1, 2, . . . , k − 1

}
, (10)

Yk−1 =
{
yi | i = 1, 2, . . . , k − 1

}
, (11)

yi = yir + vi, (12)

being S and T the path and final state constraint functions,
X k−1 and Yk−1 the sets of previous decision vectors and
observed costs, and vi the ith observation noise.

Being an implicit R2R optimization, the system dynamics
is treated as a black box. To simplify the optimization
formulation, the input generation may be included in the
black-box function, resulting in the following reformulation,

min
xk

ykr = ψ
(
xk
)

+ δk, (13)

s.t. S
(
xk
)
≤ 0, (14)

given X k−1, Yk−1, (15)
where (10)− (12),

where the new black-box cost function ψ maps the decision
vector to the cost, δk is the additive effect of the disturbance
dk(t) from (1), and the new constraint function S acts as a
replacement of S and T .

III. RUN-TO-RUN CONTROL

This section presents the R2R control strategy with the
proposed search method, which is based on Bayesian opti-
mization (R2R-BO).

A. Main algorithm

Firstly, the generalized run-to-run control algorithm is
presented. It must be iterative to account for and exploit
the cyclic operations of reluctance-based electromagnetic
actuators. These devices are characterized by having two
distinct operation types depending on the motion direction:
making and breaking. These two types of operation act
alternatively, which means that a complete commutation
cycle consists of one operation of each.

The R2R solution (see Algorithm 1) consists in a loop in
which every iteration k comprises the generation of the input
signals for the making and breaking operations (uk

m and uk
b

respectively) from their corresponding decision vectors (xk
m

and xk
b), the application of these signals and the observation

of the costs (ykm and ykb), and lastly, the optimization process
in which the next decision vectors (xk+1

m and xk+1
b ) are

obtained from previous data (X k
m, Yk

m, X k
b and Yk

b ).
Notice that the frequency of the cycles is limited by the

computation time of the functions GENERATE INPUT and
SEARCH. If that time is not small enough, it is necessary



Algorithm 1 Run-to-run
1: Initialize: x1

m, x
1
b

2: for k ← 1 to num. commutations do
3: uk

m(t)← GENERATE INPUT(xk
m)

4: uk
b(t)← GENERATE INPUT(xk

b)
5: Apply uk

m(t) and measure ykm
6: Apply uk

b(t) and measure ykb
7: xk+1

m ←SEARCH(X k
m, Yk

m)
8: xk+1

b ←SEARCH(X k
b, Yk

b )
9: end for

to adapt the algorithm to work around this issue, e.g. by
commuting the device several times in each iteration without
updating the decision vectors, or by computing in parallel the
function algorithms for the making and breaking operations.

While the function GENERATE INPUT must be specifically
defined for each situation, the following description of opti-
mization function SEARCH is generalized for any actuator.

B. Bayesian optimization

Bayesian optimization is an iterative method for finding
the global optimum of an unknown function. It relies on
previous data to build a stochastic model of the black-box
function. The selection of the next point xk+1 is carried
out by maximizing an utility function (acquisition function
facqn). The evaluation yk+1 is obtained in the next iteration
of the R2R Algorithm 1.

The function is described in Algorithm 2. Its inputs are
the current point (decision vector xk), which was obtained
in the previous iteration, and its evaluation yk. Its output is
the next point xk+1. Some parameters, e.g. the observation
noise variance σn2, are set as constant. Also, there are some
persistent variables, e.g. the number of stored points j, which
are changed inside the function but are not required outside
of it. Note that these variables are different for each operation
type but, for the sake of simplicity, that distinction is omitted.
The algorithm can be divided into three steps:

1) Learning. Updating the stored points X ∈ Rd×j

and their evaluations Y ∈ R1×j by the addition
of the kth decision vector xk and its cost yk. The
variance of the last observation σn

2 is added to the
covariance Σ, which is a diagonal matrix (i.e. noises
are uncorrelated).

2) Data size constraining (j ≤ jmax). Observations are
merged or removed if necessary. These processes are
further discussed in Subsection III-D.

3) Acquisition. Selection of next decision vector xk+1 by
maximizing an acquisition function, given the previous
decision vectors X , costs Y and the observation co-
variance Σ. The search is restricted between the lower
bound xlb and the upper bound xub. The proposed
acquisition function is defined in Subsection III-E.

C. Prior and posterior distributions

The selected model for regression is the Gaussian process,
which is the most popular one in the context of Bayesian

Algorithm 2 Bayesian optimization
1: function SEARCH(xk, yk)
2: Constant: σn2, d, jmax

3: Persistent: j, X, Y , Σ
. Learning

4: j ← j + 1
5: (Xj , Yj , Σj,j)←

(
xk, yk, σn

2
)

. Data size constraining
6: (X, Y , Σ, j)← MERGE(X, Y , Σ, j)
7: if j > jmax then
8: (X, Y , Σ, j)← REMOVE(X, Y , Σ, j)
9: end if

. Acquisition
10: xk+1 ← arg maxxlb≤x≤xub

facqn (x |X,Y ,Σ )
11: return xk+1

12: end function

optimization because it only requires simple algebraic oper-
ations to determine the corresponding posterior distribution.
In general, it is completely specified by a mean m(x) and
covariance function or kernel k(x,x′) [8],

f(x) ∼ GP (m(x), k(x,x′)) . (16)

For convenience, m is assumed to be constant. The chosen
covariance function is squared exponential,

k(x,x′) = σf
2 exp

(
−1

2
(x− x′)TM−2 (x− x′)

)
, (17)

where σf 2 is the characteristic variance and M ∈ Rd×d is
a diagonal matrix with the lengthscales for each dimension.

In a given iteration, we have the training outputs Y =
f(X)+ε. The output noise ε is an independently distributed
Gaussian random vector whose covariance is Σ. By the
properties of Gaussian processes, the joint distribution of Y
and an output f for an arbitrary x is multivariate normal,[

Y T

f

]
∼ N

(
mJj+1,1,

[
K + Σ k
kT k(x,x)

])
, (18)

where J denotes an all-ones matrix, and the covariance
matrices K ∈ Rj×j and k ∈ Rj×1 are

Ki,i′ = k(Xi,Xi′), ki = k(Xi,x), ∀i, i′ ≤ j. (19)

The posterior predictive distribution for f is also Gaussian,

f |X,Y ,x ∼ N (µ, σ2), (20)

where the mean µ and variance σ2 depend on previous data,

µ = (Y −mJ1,j) (K + Σ)−1 k +m, (21)

σ2 = k(x,x)− kT (K + Σ)−1 k. (22)

D. Data size constraining

For the application of the optimization method for cycle-
to-cycle learning type control, it is imperative to constrain
the size of stored data in order to prevent the ceaseless
increase of computational requirements. For that purpose,
two adjustments are introduced.



The first measure considers that, if two or more obser-
vations are performed for the same input, there is no need
to store them separately. By using Bayesian inference, those
cost evaluations can be merged and the equivalent cost mean
and variance are obtained.

Suppose that the ith and jth columns of X are equal
(Xi = Xj). Their corresponding costs are Yi and Yj , with
variances Σi,i and Σj,j . From the first observation, the prior
probability density for an arbitrary y is proportional to

p(y) ∝ exp

(
− (y − Yi)2

2 Σi,i

)
, (23)

and the likelihood of the second observation given y is
proportional to

p(Yj |y) ∝ exp

(
− (Yj − y)2

2 Σj,j

)
. (24)

Therefore, the posterior probability density is proportional to

p(y|Yj) ∝ p(y) p(Yj |y)

∝ exp

(
− (y − Yi)2

2 Σi,i
− (Yj − y)2

2 Σj,j

)
∝ exp

(
− (y − Yeq)

2

2σeq2

)
, (25)

where

yeq =
Σj,j Yi + Σi,i Yj

Σi,i + Σj,j
, σeq

2 =
Σi,i Σj,j

Σi,i + Σj,j
, (26)

which are the resulting cost mean and variance from the
merging. As Bayesian inference was used, the substitution of
(Yi, Σi,i) with (yeq, σeq

2) and the removal of (Yj , Σj,j) will
result in the same posterior Gaussian probability distribution
(see equation (20)) for the optimization phase. Note that the
condition Xj = Xi can be relaxed to allow some tolerance.
A straightforward and effective way is to round all decision
vectors, so two points that are very close together are treated
as equal.

Merging observations contributes to reducing the size of
the data history, but does not guarantee that it is bounded.
Therefore, as a second measure, points are removed if the
number surpasses the chosen limit jmax (function REMOVE
from Algorithm 2). One way of approximating the Gaussian
process for large data sets is by selecting a subset. The
selection criterion introduced by [14] aims at keeping the
most information of the function by maximizing the differ-
ential entropy. However, in the presented problem, only one
point at most is needed to be removed from the set in each
iteration. Consequently, instead of a selection criterion, it is
more straightforward and computationally efficient to define
a removal criterion. Considering that, the objective is to find
the index i which minimizes the increment of entropy due
to the removal of Xi from the set X ,

arg min
i

(
H(σ2

i−)−H(σ2
i )
)
, (27)

being H(σ2
i ) and H(σ2

i−) the entropy values before and after
the removal of Xi respectively. Note that the differential

entropy H of a normal distribution depends solely on the
variance,

H(σ2) =
1

2

(
1 + log

(
2π σ2

))
. (28)

For a pointXi, the posterior variance σ2
i is calculated from

(22). If Xi were removed, the resulting posterior variance
σ2
i− would increase, depending on the observation noise Σi,i,

σ2
i− =

Σi,i σ
2
i

Σi,i − σ2
i

. (29)

By disregarding the constants, the derived entropy incre-
ment is proportional to

H(σ2
i−)−H(σ2

i ) ∝ log

(
σ2
i−
σ2
i

)
∝ − log

(
1− σ2

i

Σi,i

)
,

(30)
which monotonically increases with respect to σ2

i /Σi,i.
Therefore, the index to be removed is simply obtained as

arg min
i

(
σ2
i

Σi,i

)
. (31)

E. Acquisition

The last step is the selection of the next point xk+1 to
evaluate, which must trade off between obtaining the most
information of the function (exploration) and attempting to
minimize it (exploitation). As f is a random variable, the
selection of xk+1 must be carried out by the maximization
of an acquisition function dependent on µ and σ2, defined in
equations (21) and (22). One of the most common acquisition
functions is the expected improvement, which is appropriate
in regular optimization problems, as it manages to balance
exploration and exploitation

Firstly, the improvement of the Gaussian random variable
f can be expressed as a function,

I(f) = max(µmin − f, 0), (32)

where µmin is the best observation so far, according to their
predictive posterior mean values,

µmin = min
i
µ(Xi), (33)

µ(X) = (Y −mJ1,j) (K + Σ)−1K +mJ1,j . (34)

The expected improvement is the expectation of I(f),
which can be expressed as

E[I(f)] = σ
(
ϕ(fn) + fn Φ(fn)

)
, fn =

µmin − µ
σ

, (35)

where fn is the normalization of f , while ϕ and Φ are
the standard normal probability and cumulative distribution
functions, respectively.

The reasoning behind (32) is that, if the obtained cost f is
worse than the best µmin, there is no improvement, but also
no loss, so I(f) is zero. This is suitable for optimization
problems in which there is no regret. However, for R2R
control, there must be a penalty for obtaining worse outputs
than µmin, as this is conducted in real time.

Assuming that there are n remaining commutations, an
improvement over µmin would mean a potential improvement



Fig. 1. Simplified diagram of linear-travel solenoid actuator.

for the remaining n commutations. On the other hand, a
worsening over µmin would only mean a worsening for the
next commutation, because in the following one it would be
possible to commute with an expected cost of µmin. Taking
that into consideration, the net improvement is defined,

Inet(f) =

{
n (µmin − f), f ≤ µmin,
µmin − f, f > µmin,

(36)

and the proposed acquisition function facqn is its expectation,
which can be expressed in relation to E[I(f)],

facqn = E[Inet(f)] = σ fn + (n− 1) E[I(f)]. (37)

Note that, if n = 1, the expected Inet is simply µmin−µ,
and its maximization is equivalent to the minimization of
µ. As n decreases, the acquisition favors exploitation over
exploration, which is the intended behavior. Also, notice that
as n increases, E[Inet(f)]/n tends to E[I(f)], which would
correspond to a regret-free optimization.

IV. ANALYSIS

In this section, the proposed run-to-run control based on
Bayesian optimization (R2R-BO) is compared with the state-
of-the-art run-to-run strategy. For that purpose, simulations
are performed with both alternatives.

A. System model, input and output

Firstly, a dynamic model for a reluctance actuator is
defined. The chosen one is based on a commercial low-cost
linear travel solenoid valve, which is schematically depicted
in Fig. 1. The core is cylindrically asymmetrical, with a fixed
part and an armature. The coil current generates a magnetic
flux through the core parts and the air gap between them.
The spring force tends to open the gap, whereas the magnetic
force points at the opposite direction. The air gap length—
and the armature position—is restricted to [zmin, zmax].

The system is modeled with a hybrid automaton. There
are three state variables: the magnetic flux χ1, the position
χ2 and the velocity χ3. As the first operation in each
cycle is the making, or closing of the gap, the initial state
χ0 is set to [0 zmax 0]T. The input u is the voltage
between the coil terminals. As the motion is constrained,
χ2 and χ3 are static if the armature reaches one of the two
limits. Additionally, as the generated magnetic force cannot
change direction, it is convenient to restrict also the current
and magnetic flux to non-negative values. In practice, this
would be implemented with diodes, which only allow one
current flow direction. In the model, this is achieved by the
addition of dynamic modes in which the magnetic flux is
static. Ultimately, the automaton presents six discrete states,

χ̇1 = f1(χ, u)
χ̇2 = 0
χ̇3 = 0

χ̇1 = f1(χ, u)
χ̇2 = f2(χ)
χ̇3 = f3(χ)

χ̇1 = f1(χ, u)
χ̇2 = 0
χ̇3 = 0

χ̇1 = 0
χ̇2 = 0
χ̇3 = 0

χ̇1 = 0
χ̇2 = f2(χ)
χ̇3 = f3(χ)

χ̇1 = 0
χ̇2 = 0
χ̇3 = 0

χ2 ≤ zmin

χ+
2 = zmin

χ+
3 = 0

χ2 ≥ zmax

χ+
2 = zmax

χ+
3 = 0

χ1 ≤ 0

χ+
1 = 0

f3(χ) > 0

χ1 ≤ 0

χ+
1 = 0

f3(χ) < 0

χ1 ≤ 0

χ+
1 = 0

χ2 ≤ zmin

χ+
2 = zmin

χ+
3 = 0

χ2 ≥ zmax

χ+
2 = zmax

χ+
3 = 0

u > 0

f3(χ) > 0

u > 0

f3(χ) < 0

u > 0

Fig. 2. Diagram of the hybrid automaton. Guard conditions in green and
reset states in red.

Fig. 3. Gap reluctance and its derivative with respect to the gap length.

with the corresponding guard conditions and reset states, as
illustrated in Fig. 2. To shorten the expressions, the time t
dependency and the iteration k distinction are omitted.

The dynamic functions f1(χ, u), f2(χ) and f3(χ), which
were derived in a previous work [12], are defined as

f1 =
u

N
− R (Rc(χ1) +Rg(χ2))χ1

N2 , (38)

f2 = χ3, (39)

f3 =
1

mmov

(
ks (zs − χ2)− cf χ3 −

∂Rg(χ2)

∂χ2

χ1
2

2

)
, (40)

where mmov is the moving mass, ks is the spring stiffness
coefficient, zs is the spring equilibrium position, cf is the
damping friction coefficient, R is the internal resistance,
N is the number of coil turns, Rc is the core reluctance
and Rg the gap reluctance. In order to consider the rarely
negligible magnetic saturation phenomenon, Rc is modeled
as a parametric expression derived from the Fröhlich-Kenelly
equation,

Rc(χ1) =
k1

1− k2 |χ1|
. (41)

In contrast, Rg and its derivative are obtained from lookup
tables, whose data were calculated from a finite element
model, and are represented in Fig. 3.
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Fig. 4. Profile of the voltage input signals for breaking and making
operations of the kth iteration.

TABLE I
SYSTEM DYNAMICS AND INPUT PARAMETERS

Parameter Value

mmov 1.6 × 10−3 kg

ks 74.05 N/m

zs 1.5 × 10−2 m

cf 0 Ns/m

z̄min 3 × 10−4 m

z̄max 1.3 × 10−3 m

Parameter Value

R 55 Ω

N 1200

k1 2.32 × 106 H−1

k2 5 × 104 Wb−1

umin/max ∓50 V

τmax 3 × 10−3 s

Secondly, an input parametrization method is defined,
for the function GENERATE INPUT from Algorithm 1. The
voltage is defined as a square signal, parameterized with two
time intervals (d = 2) for each operation τkm/b,1 and τkm/b,2,
as shown in Fig. 4. The constant τmax is the maximum
time interval allowed for the commutation, and must be set
accordingly. The two interval parameters must depend on the
decision vectors xk

m/b. They are normalized as follows,

xkm/b,1 =
τkm/b,1

τmax
, xkm/b,2 =

τkm/b,2

τmax − τkm/b,1

. (42)

This way, every decision variable can conveniently be
bounded to [0, 1], and it is ensured that τkm/b,1 + τkm/b,2 ≤
τmax. The constant τmax must be set accordingly.

Thirdly, as the objective is to minimize the impacts, the
output or cost is defined as the sum of squared velocities
during contact. Note that the bouncing phenomenon is not
considered in the proposed model, but several impacts can
still occur in each making or breaking operation. Further-
more, to be consistent with the formulation from Section II,
the cumulative squared contact velocities should have been
added to the model as an auxiliary variable.

B. Simulations

Finally, simulations are performed to analyze the pro-
posed run-to-run control, and to compare the optimization
algorithm with the pattern search method. To simulate the
disturbance, white noise is added to the position constraints:
zkmin = z̄min +εkzmin and zkmax = z̄max +εkzmax, where εkzmin

and εkzmin are independent normal random variables with
zero mean and standard deviation σz . The parameters for
the input generation and the model are specified in Table I.

The run-to-run strategy based on the pattern search method
(R2R-PS), as it was previously proposed for soft landing of
solenoid actuators, requires evaluating 2 d+ 1 times in each
iteration, one is the reevaluation of the previous best point
and the other are evaluations around this point. As d = 2, it is

(a) Making operation. (b) Breaking operation.

Fig. 5. Comparison of results (mean values and 5th-95th percentile
intervals) from R2R-PS and R2R-BO, for σz = 10−6 m.

necessary to perform 5 making and 5 breaking commutations
in each iteration. The starting mesh for both operation
types is composed of the points [0.5 0.5]T, [0.75 0.5]T,
[0.5 0.75]T, [0.25 0.5]T and [0.5 0.25]T. The shrink and
expand coefficients are set to 1/2 and 2 respectively, i.e. the
mesh size is halved or doubled if the new best point is the
same or not, respectively, as the previous one.

The proposed run-to-run algorithm based on Bayesian
optimization (R2R-BO), on the other hand, requires one
evaluation per iteration, independently of d. The first eval-
uated decision vector is set to [0.5 0.5]T for both making
and breaking operations. To limit the stored data, jmax is
set to 50. Furthermore, the prior mean values and kernel
hyperparameters from (17) are specified for each case so the
optimization process works efficiently.

The two optimization methods are compared through a
Monte Carlo method: performing 500 simulations of 200
making and breaking commutations for each given σz . For
the first comparison, σz is set to 10−6 m and the resulting
costs y are obtained for each commutation and each opera-
tion type. R2R-PS requires 5 commutations per iteration so,
for a better visualization, the results are grouped 5 by 5. In
Fig. 5, from each set of 2500 costs, the mean is displayed,
as well as the interval between the 5th and 95th percentiles.
R2R-PS is able to reach costs close to zero, as the 5th
percentile values indicate, but the observation randomness,
albeit low, slows down the convergence rate—especially in
the making operation—, as the mean and 95th percentile
values indicate. In contrast, R2R-BO does not have that
problem, as it takes into account the stochasticity.

For the following graphics, we display the average cost ȳ
for each number of commutations k, ȳ(k) =

∑k
i=1 y

i/k. It
varies less abruptly, making it more suitable for increasing
position deviations and eliminating the need of grouping in
sets of 5. In Fig. 6, the mean and percentile intervals of ȳ
are represented as a function of the number of commutations.
Figs. 6(a) and 6(b) show the average costs for σz = 10−6 m,
obtained from the previous costs y (Figs. 5(a) and 5(b)). The
σz is increased to 10−5 m (Figs. 6(c) and 6(d)), 2×10−5 m
(Figs. 6(e) and 6(f)), and 5× 10−5 m (Figs. 6(g) and 6(h)).
As expected R2R-BO is consistently better than R2R-PS.
The R2R-BO results are very good for σz ≤ 2 × 10−5 m.
In particular, the R2R-BO making costs are slightly better
than the breaking ones for σz = 10−6 m because, in this
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Fig. 6. Comparison of results (mean values and 5th-95th percentile
intervals) from R2R-PS ans R2R-BO, for different position deviations.

specific case, the starting point is significantly better. Despite
that, for greater deviations, the breaking average costs reach
lower minimums. Notice also that setting σz = 5× 10−5 m,
although it is merely a 5 % of the nominal valve travel
distance, is enough to make the impact velocities vary greatly
between commutations, especially in the making operations.

In general, note that R2R-PS does not require any knowl-
edge of the black-box functions, which makes its imple-
mentation for different actuators more straightforward, but
in turn is less efficient, even with low uncertainties or
disturbances. However, it could be improved by adjusting
or adapting the shrink and expand coefficients. It could also
be improved by storing previous data, like R2R-BO, and
merging observations of same points.

V. CONCLUSIONS

In this paper, we have presented a new run-to-run strategy
with a search algorithm based on Bayesian optimization,
for soft-landing control of short-stroke reluctance actuators.
Simulation results show the improvement over another state-
of-the-art run-to-run strategy [5], which was based on a
pattern search method and aimed at reducing contact bounce
in relays and contactors.

One important advantage of the proposed strategy (R2R-
BO) is that, as it uses Gaussian process regressors, it directly
accounts for uncertainty and hence it is more robust. Another
advantage is the efficient exploitation of previous data to
select following points and converge rapidly to an optimum,
by means of the mentioned regression and the definition of
an appropriate acquisition function.

The proposed method has still room for improvement.
Similarly to pattern search and other methods, like random
search, the algorithm could benefit from adaptive search
bounds, closing the space around the best point and increas-
ing the convergence rate. This could be specially useful if the
dimension of the decision vector increases, and the maximum
number of stored points is insufficient for generating a
regressor accurate enough for the entire space.
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