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Abstract

Modeling the reluctance of an electromagnetic actuator is a critical step to analyze its dynamics and design model-based
controllers. On the one hand, analytical expressions based on either theoretical or empirical models often lack accuracy
due to model inconsistencies. On the other, numerical methods are much more precise but require exact information
about the system geometry, materials and winding configuration. In this paper we present a new method that brings
together the good properties of the finite element method and of system identification techniques to obtain an accurate
description of the reluctance and its derivative. Since the method is designed to identify the unknown parameters of the
system, it is particularly well suited for modeling existing commercial devices. An application on a safety valve used in
gas lines is included to illustrate the method and a discussion on the results shows the advantages of our proposal.
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1. Introduction

Variable reluctance devices are currently used in many
different applications. Solenoid valves are being increas-
ingly utilized, especially in the automotive industry, e.g.,
in electronic stability control systems [1], or in camless en-
gines [2, 3], and electromechanical switches can be widely
found in drive-by-wire systems [4], household appliances
[5], or battery chargers for electric vehicles [6], among oth-
ers. In addition, novel designs of electric motors are still
being investigated [7] and electromagnetic actuators are
progressively replacing other types of linear-motion sys-
tems in vehicles [8] and in aeronautical applications [9]
because of their accuracy, fast response, and efficiency.

Motors and linear actuators are usually designed tak-
ing into account that their motion will be eventually con-
trolled. Thus, models are generally considered to design
the geometry and select the materials that best fulfill the
requirements of precision, power, efficiency, or cost [10].
On the other hand, solenoid valves and electromagnetic
switches, which are commercial low-cost devices, are nor-
mally not designed to be controlled. Although having dif-
ferent uses, valves and switches share a common operating
principle: a coil acting as an electromagnet pulls a mech-
anism and changes the configuration of a circuit, either
a gas or liquid line or an electrical circuit. The behavior
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of the electromagnetic force, which is higher the smaller
the air gap, together with the absence of any type of con-
trol, causes these actuators to exhibit an on-off behavior
which leads to strong impacts and wear in each operation.
In this connection, several soft-landing and bounce reduc-
tion algorithms have been presented [11, 12, 13, 14, 15],
many of which are based on dynamical models. The bene-
fits are fundamentally cost-related: if the performance was
improved, e.g., by increasing the service life, reducing the
energy consumption or providing silent operation, these
low-cost devices could replace more expensive actuators.

It is therefore evident that a dynamical model of the
system is fundamental both to understand its behavior
and to design control algorithms. In this regard, the most
critical step when building a model of a reluctance actuator
is to have a precise characterization of the reluctance. This
variable depends on the geometry of the actuator and the
magnetic properties of its materials, which may themselves
depend on other variables such as temperature or magnetic
field. It relates the magnetic flux to the electric current
and, together with its derivative with respect to the gap
length, is also a factor of the magnetic force that drives
the motion. In other words, if both the electromagnetic
dynamics and the motion of the device have to be modeled,
it is imperative to obtain an expression of the reluctance
as a function of the position.

The magnetic characterization of variable reluctance
devices has been faced by several different approaches,
ranging from purely theoretical models to more empirical

This is the accepted version of the article. The published version is available at https: // doi. org/ 10. 1016/ j. mechatronics. 2018. 10. 009

https://doi.org/10.1016/j.mechatronics.2018.10.009


ones. On one side, finite element method (FEM) models
have been used, e.g., to optimize the design of a motor [7]
or a linear actuator [16], or to calculate the attractive force
of a circuit breaker [17]. They have been also combined
with analytical dynamical models by means of curve fitting
methods [18]. A different approach is the use of magnetic
equivalent circuits (MEC), a method that simplifies the
description of the electromagnetic dynamics and provides
an analytical expression for the reluctance. Several recent
MEC-based works can be found, including [19], where a
permanent magnet actuator is analyzed by means of three
magnetic subcircuits, [20], where an MEC model is used
to design a torque controller for a synchronous machine,
or [21], where the authors propose a partially unknown
reluctance which is experimentally identified. There also
exist some works that use the MEC approach to calculate
an analytical reluctance which is later validated or even
corrected with FEM simulations [3, 22], and some papers
that compare the results of both approaches [23]. Mention
should also be made to the Fourier analysis approach (see,
e.g., [24] and references therein). On the opposite side of
the theoretical approach we find, for instance, one of the
early works about contact bounce simulation [25]. In that
paper, the inductance of the device is simply fitted to a
second order polynomial.

Despite the extensive literature on the topic, none of
the proposals achieve a full and precise description of the
reluctance of commercial devices. On the one hand, FEM
models are accurate and allow for considering nonlinear
phenomena like magnetic saturation, but some aspects of
the actual system – geometry, materials, winding configu-
ration – are usually partially or completely unknown. On
the other hand, analytical expressions based on the MEC
approach could be experimentally fitted to the actual de-
vice, but they have less precision because they rely on
several simplifications. In this paper, we present a new
modeling methodology that combines FEM simulations
and experimental tests (FEM & EXP) to obtain a precise
characterization of variable reluctance devices. The pro-
posal can be summarized in two steps: first, a complete
description of the reluctance is obtained by means of an
FEM model for several values of the unknown parame-
ters, and secondly, an identification procedure determines
the exact values of these parameters according to exper-
imental data. The main contribution of the work is the
method to merge both approaches, which requires only a
limited amount of FEM simulations but leads to a model
that is both precise and adapted to the specific device.
Although the method can be used to characterize devices
working under saturation, it is particularly advantageous
under the assumption of magnetic linearity. Nevertheless,
we will show that the results outperform those obtained
with other recent approaches. As an example, it has been
applied to a solenoid valve used in low-pressure gas lines.
The results are discussed and the advantages of our pro-
posal are emphasized.

2. Theoretical fundamentals

When describing electromechanical systems, the anal-
ysis is usually divided into the electromagnetic and the
mechanical components. The dynamics of the mechanical
subsystem, which is usually simpler, can be described by
rigid-body models and Newton’s laws of motion [21, 25]
or by more sophisticated methods [23, 26]. On the other
hand, the electromagnetic part, which is the focus of this
work, is generally described by two equations. First, the
electrical equation of the coil,

v = Ri+N
dφ

dt
, (1)

where v is the voltage across the terminals, R is the resis-
tance, i is the electric current, N is the number of turns
and φ is the magnetic flux, and second, an equation estab-
lishing a relation between i and φ, which is usually given
in terms of the reluctance R as

Ni = φR. (2)

As stated in the introduction, R depends on the ma-
terials and on the geometry of the device. When these
are completely known, the MEC approach provides the
following formula for its calculation

R =

∮
dl

µ(l)A(l)
, (3)

where l is the position variable that defines the closed path
of the magnetic flux, i.e., the magnetic circuit, µ is the
magnetic permeability and A is the cross-sectional area. If
the device has a complex geometry, the calculation may be
simplified by partitioning the magnetic circuit into several
elements of constant cross section and constant permeabil-
ity. Thus, (3) is transformed into

R =
∑
i

∫
Ei

dl

µ(l)A(l)
≈
∑
i

li
µiAi

, (4)

where li, µi and Ai are respectively the length, the mag-
netic permeability and the cross section of the ith element,
Ei. In spite of this simplification, in many cases it may
still be difficult to determine li and Ai for some of the el-
ements, particularly for air gaps where flux fringing and
leakages are always present.

A different method to determine the reluctance is by
means of FEM simulations. The procedure is as follows:
the simulations are firstly performed considering the elec-
tric current as the input variable, the output results are
later processed to obtain the magnetic flux in the device,
and, finally, the reluctance is calculated asR = Ni/φ. The
magnetic flux is by definition the integral of the magnetic
flux density, B, over any cross section of the circuit,

φ =

∫
A(l)

B · ds, (5)
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where ds is a differential surface element vector. According
to Gauss’ law for magnetism, the previous expression must
provide identical results when computed for any position
l of the circuit. However, since having a perfect descrip-
tion of A(l) is unlikely (it covers not only the core cross
section but also the surrounding air where B is non-zero)
the applicability of (5) is very limited in practice.

Instead, the energy approach should be preferably used.
The magnetic energy stored in a system is

U =

∫
V

[∫ t

−∞
H · ∂B

∂t
dt

]
dv =

∫
V

[∫ B

0

H · δB

]
dv, (6)

where V is the volume where the energy is computed, H is
the magnetic field intensity, and dv represents a differential
volume element which, under the assumptions of the MEC
approach, is equal to A(l) dl. Developing the previous ex-
pression and applying Ampère’s law, i.e.,

∮
H dl = Ni,

the magnetic energy stored in an MEC can be expressed
in terms of the scalar variables as

U =

∫ t

−∞
Ni

∂φ

∂t
dt =

∫ φ

0

Ni δφ. (7)

Additionally, under the assumption that the magnetic
permeability is constant, i.e., that the core material works
in the linear region, the previous expressions are trans-
formed into

U =
1

2

∫
V

BH dv =
1

2
Niφ. (8)

Since U can be numerically computed from the results of
the FEM simulations, φ can be obtained from (8) and, us-
ing (2), the expression for the reluctance is finally obtained
as

R =
(Ni)

2

2U
. (9)

Either analytically or by simulations, the reluctance
has to be determined for any position of the mechanism.
Let z be the length of the air gap of the device, which
changes during its operation and, consequently, can be
used as position variable. Then, the magnetic force that
pulls the movable core and drives the motion is given, ei-
ther in terms of φ or of i, by

Fmag = −1

2

dR
dz

φ2 = −1

2

N2

R2

dR
dz

i2, (10)

where the minus sign means that the force acts in the direc-
tion of decreasing reluctance. For a detailed explanation
on how this expression is obtained see, e.g., [21].

Finally, since we will be working with both variables,
recall that the relation between reluctance R and induc-
tance L is given by

L =
N2

R
. (11)

3. Method description

As stated in the introduction, the first step of our
FEM & EXP method is to build an FEM model of the sys-
tem. For that, the studied device has to be inspected and
all the directly measurable parameters gathered. In com-
mercial devices, these usually include the geometry and
dimensions, at least approximately, but rarely the mag-
netic properties of the core and the number of turns of
the coil. Note that, even though in some cases this latter
parameter can be determined using a winding machine,
the measuring process is usually time consuming and may
even lead to the destruction of the device.

The FEM model has to be parameterized in terms
of the excitation current, i, the gap length, z, and also
of the set of unknown parameters, θ. This set may in-
clude N , some geometrical dimensions and one or several
parameters modeling the B-H relation of the core mate-
rial. Thus, the FEM based reluctance can be expressed as
RFEM = RFEM(i, z,θ). If needed, additional variables such
as temperature could be also incorporated to the analysis
in the same way as the current. Note that if the material of
the core is assumed linear, the reluctance is independent of
the model excitation, i.e., RFEM = RFEM(z,θ), and can be
calculated using (9). Considering that magnetic saturation
only affects the iron core, which usually represents a small
part of the reluctance, this simplification is reasonable in
many cases. However, our FEM & EXP method can also
characterize systems that work under magnetic saturation,
e.g., by using the two-parameter Frölich-Kennelly satura-
tion model [21]. In that case, (9) would be no longer valid
and RFEM would have to be obtained by another method.

After that, a parametric sweep has to be performed to
obtain a finite set of FEM reluctance values,

ΨFEM = {RFEM(i, z,θ) | i ∈ IFEM, z ∈ ZFEM, θ ∈ ΘFEM} ,
(12)

where IFEM, ZFEM and ΘFEM are respectively the sets of
discrete values of i, z and θ for which the reluctance is com-
puted. Given that this variable is a smooth function with
respect to most of the parameters, we propose to estimate
RFEM at any other point using cubic spline interpolation,

RFEM(i, z,θ) ≈ R̂FEM(i, z,θ) = fspline
(
ΨFEM, i, z,θ

)
, (13)

where R̂ is the estimation and fspline is the interpolating
function. It is therefore evident that the selection of IFEM,
ZFEM and ΘFEM is a key aspect of the method. On the
one hand, IFEM and ZFEM must be selected considering
the minimum and maximum values of i and z which will
be evaluated during the experimental tests. In turn, these
should be based on the physical limitations of the actua-
tor. On the other hand, ΘFEM should be centered around
a nominal value of θ and cover all possible values of the
parameters. In this regard, setting reasonable bounds to
geometric dimensions or magnetic properties should not
be a problem because these are always limited by physics.
The number of elements in each set is a trade-off between
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simulation time and model accuracy: a coarse selection
of points would greatly reduce the number of FEM sim-
ulations, but a finer one would necessarily lead to bet-
ter estimations of RFEM. In any case, note that the re-
luctance calculation can be made independent of N be-
cause any constant product of N and i will lead to the
same RFEM. Thus, this variable does not need to be in-
cluded in the sweep. Once the reluctance is obtained,
the FEM based inductance can be computed by (11) as
LFEM(i, z,θ) = N2/R̂FEM(i, z,θ).

The values of the unknown parameters are then deter-
mined in the second step of the method. For that, experi-
mental tests have to be firstly performed. Our proposal is
to measure the position-dependent inductance of the de-
vice by placing the armature at several static positions
between the minimum and maximum possible values of
the gap length. If the aim of the model is not to charac-
terize a single system, but the average behavior of a mass
production device, several units of the actuator may be
evaluated in order to minimize the effects of the manufac-
turing variability. The inductance may be measured by
two different approaches. First, if an impedance analyzer
is available, direct measurements can be performed using
the series resistance-inductance (RL) circuit model. Oth-
erwise, a classic linear system identification process [27]
needs to be performed for every position of the device.
The idea is to use a voltage step as input and record the
dynamic response of the electric current. Then, each data
set is used to fit a series RL model, i.e., the following dy-
namic equation,

v = Ri+ L
di

dt
, (14)

by minimizing the root-mean-square error (RMSE) be-
tween the simulated and the experimental values of i. If
the FEM model depends on the excitation, several small-
signal step response tests around different levels of i have
to be performed.

One method or the other, the result of the process is a
set of experimental values of resistance, REXPα(iβ , zγ), and
inductance, LEXPα(iβ , zγ), for α=1, ..., n, β=1, ...,m, and
γ = 1, ..., p, where n, m and p are respectively the num-
ber of actuators, excitation levels and positions evaluated.
Note that although the coil resistance does not depend on
the position of the armature, it should not be assumed
constant because it could vary between tests due to tem-
perature changes. Hence, identifying both parameters, in-
stead of only L, prevents from errors due to variations in
temperature. An estimation error of the model at the β-
th excitation level and γ-th position with respect to the
measurements of the α-th actuator may be defined as

eα,β,γ (θ) = LFEM (iβ , zγ ,θ)− LEXPα (iβ , zγ) , (15)

and thus the sum of squared errors may be used as a per-
formance index of the model,

J(θ) =

n∑
α=1

m∑
β=1

p∑
γ=1

(
eα,β,γ (θ)

)2
. (16)

The best-fitting parameter set is therefore the one that
minimizes J ,

θ∗ = arg min
θ

J(θ), (17)

and the FEM & EXP reluctance is

RFEM&EXP(i, z) = R̂FEM(i, z,θ∗). (18)

To sum up, the flow chart of the proposal is shown in
Fig. 1.

Reluctance actuator

Obtain measurable
parameters

Build parametric
FEM model

Simulate
(Sweep for i, z and θ)

Process results
to obtain R̂FEM(i, z,θ)

LFEM (i, z,θ) =
N2

R̂FEM (i, z,θ)

Measure v-i step response
n actuators, m excitation

levels, p positions

Fit each data set to
an RL series circuit

LEXPα

(
iβ , zγ

)
α = 1, ..., n;

β = 1, ...,m; γ = 1, ..., p

θ∗ = arg min
θ

 n∑
α=1

m∑
β=1

p∑
γ=1

(
eα,β,γ (θ)

)2

RFEM&EXP(i, z) = R̂FEM(i, z,θ∗)

Figure 1: Flow chart of the proposed FEM & EXP method

4. Validation example

The device used to validate the FEM & EXP method
is a commercial solenoid valve used for safety purposes
in low-pressure gas lines (see Fig. 2). In this valve, the
coil is wrapped around a cylindrical steel core which has
a fixed and a movable part. The housing, which is also
made of the same material, provides a low-reluctance re-
turn path for the flux. A helical spring ensures that the
mechanism returns to its original position when the coil
is de-energized. As a commercial device, this valve is sold
by the manufacturer without providing much information
about its design. Hence, although the geometry can be
obtained from measurements, other parameters of the de-
vice are partially or completely unknown. In particular,
we know neither the material of the core, which is some
type of carbon steel, nor the number of turns of the coil.
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Figure 2: (a) Solenoid valve and (b) its geometry.

4.1. Finite Element Model

An FEM model has been built using the software COM-
SOL Multiphysics. The rotational symmetry of the valve
has allowed for using a two-dimensional axisymmetric model,
with a much lower computational complexity than its three-
dimensional equivalent. The coil has been modeled as a
single-turn coil of rectangular section with uniform cur-
rent density and total current Ni. This simplification is
widely used in the simulation of inductors [28], reduces
significantly the modeling stage and the simulation time,
and is magnetically equivalent to modeling all the turns of
the coil. The material of the core is assumed magnetically
linear, which causes RFEM to be independent of the model
excitation and permits using (9) to compute its value.

Since the magnetic permeability of the core is unknown,
the reluctance has been computed for seven different val-
ues, covering the complete range of usual values of ferro-
magnetic materials. For simplicity, instead of using the
absolute permeability of the core, µc, we will work with
the relative value, µrc = µc/µ0, where µ0 is the vacuum
magnetic permeability. The highest selected value, which
is µrc = 106, has been used as an approximation of infinite
magnetic permeability, i.e., the reluctance of the core in
this case may be considered negligible and, consequently,
RFEM only consists of the air gap component. On the
other hand, the gap length, z, has been discretized into
twenty different values between zero and the maximum
gap (z = 3.35 mm), using a non-uniform distribution with
more values near the lower and upper bounds. A total of
140 FEM simulations have been consequently performed,
taking approximately 50 minutes of computation time on
a fourth generation Intel i7 processor. As an example,
Fig. 3 shows the magnetic flux density norm in the valve
obtained in three of these simulations.

The result of the process is therefore a 140 values lookup
table of the reluctance as a function of the gap length and

Figure 3: Magnetic flux density norm obtained from FEM simula-
tions with µrc = 100 at gap lengths of 0, 1.675, and 3.350 mm,
respectively. Ni = 30 A. The color scale goes from dark blue for 0 T
to dark red for 125 mT.

the relative magnetic permeability of the core,RFEM (z, µrc).
The obtained values are represented in Fig. 4. As shown,
RFEM begins with a value which corresponds to zero gap
and, accordingly to (3), is higher the lower the magnetic
permeability of the core. In this regard, note that the ini-
tial reluctance for µrc = 106 is not zero although the core
can be assumed perfectly magnetically permeable; this is
due to the existence of a secondary annular air gap between
the housing and the movable core (see Fig. 2b). Since the
air is a low permeable material compared to the core, the
reluctance increases with the gap length. The trend is
similar for all the studied values of magnetic permeabil-
ity. However, it is noteworthy that the derivative of RFEM

with respect to z, which is one of the factors of the mag-
netic force (10), is highly different for gap lengths close to
the limit values. This can be seen in Fig. 5, where this
variable is represented as a function of the magnetic per-
meability for the minimum, middle and maximum gaps.
It is particularly worth noting that, for the maximum gap,
this derivative even changes sign for permeabilities greater
than 200, which is due to the attraction force produced in
the secondary air gap. The FEM based inductance per
square turn, also known as permeance, is also represented
in Fig. 6.

4.2. Experimental identification

As stated in Section 3, the first step of the identification
consists in measuring the inductance of the valve at several
positions of the plunger. For that, it has been supplied
with a square wave voltage between 0 and 0.45 V, and
the electric current through the coil has been measured
with a shunt resistor. A Picoscope 4824 oscilloscope/signal
generator has been used both to create the input and to
record the output signals. The valve has been positioned
at the desired gap lengths by means of a micrometric screw
(see Fig. 7), and the tests have been conducted at low-level
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Figure 4: Reluctance obtained from FEM simulations as a function
of gap length and of the core relative permeability.
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Figure 5: Derivative of the reluctance with respect to the gap length
as a function of the relative permeability of the core. Values for gap
lengths of 0, 1.675, and 3.35 mm.

voltages so that the magnetic force generated was not high
enough to move the plunger. Thus, the returning spring of
the device maintains the desired position during the test.

In this case, the resulting FEM & EXP model will be
used to predict the dynamic behavior of any manufac-
tured valve. Hence, a total of 68 tests have been con-
ducted, which correspond to four different valves at 17
different positions. Then, a series RL linear model has
been fitted to each one of the 68 input-output data sets,
obtaining as a result the experimental values of resistance,
REXPα(zγ), and inductance, LEXPα (zγ), for α = 1, ..., 4 and
γ = 1, ..., 17. As an example, Fig. 8 shows the experimen-
tal response of the electric current for one of the valves at
three different positions and the corresponding best-fitting
RL model simulations.

Once the experimental inductance has been measured,
the next step is to identify the best-fitting values of µrc and
N by minimizing the performance index J . The optimiza-
tion has been performed by means of the simplex search

0 0.5 1 1.5 2 2.5 3
0
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3

3.5

4

4.5

5
10

-8

Figure 6: Inductance per square turn obtained from FEM simula-
tions as a function of gap length and of the core relative magnetic
permeability.

Figure 7: Prototype used in the experiments. A micrometric screw
allows for a precise positioning of the plunger.

algorithm of Lagarias et al. [29], using as initial values
µrc = 100, which is a standard value for carbon steels,
and N = 1000, which is an approximation obtained from
the ohmic resistance and the dimensions of the coil. The
best-fitting parameter values found by the algorithm are
µrc
∗ = 89.13 and N∗ = 1178, and the RMSE of the model

with respect to the measurements is 1.06 mH. Considering
that the experimental values of inductance already have an
average standard deviation of 0.804 mH, we conclude that
the fitting of the model is very good. Another value of
the number of turns, N = 1207, has been experimentally
obtained from one specific valve by means of a winding
machine with a built-in turn counter. Since N∗ is very
similar to this value, we can state that the results of the
proposed procedure are satisfactory. Besides, measuring
N by means of the winder implies destroying the device,
so our proposal is clearly advantageous in this aspect.

Additional results of both identification stages are pre-
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Figure 8: Electric current response to a 0.45 V voltage step. Experi-
mental tests at three different gap lengths and best-fitting RL model
simulations.

sented in Figs. 9 to 11. In the first place, Fig. 9 shows the
experimental resistance of the valve obtained from the RL
model fitting. As expected, there is no evident dependence
on the gap length for any of the four units. However, there
are small but noticeable differences between devices which
may be due to the inherent variations in the manufacturing
process. Note also that the variability found on each device
is perfectly explained by small temperature fluctuations
between tests. Secondly, Fig. 10 shows the experimental
inductances of the four valves as well as the FEM & EXP
model inductance, LFEM&EXP(z) = (N∗)2/RFEM&EXP(z).
In this case, the dependence on z is evident and similar for
all the units. Besides, it is shown that the model induc-
tance fits very well with the experimental values. In this
connection, Fig. 11 represents the residuals of the model,
which are calculated as rα = LEXPα − LFEM&EXP. It can
be seen that, except for z = 0 mm, these residuals present
an evident tendency, which means that they are probably
not due to experimental errors but to small model devia-
tions. Nevertheless, the residuals are very small compared
to the inductance, so we conclude that the identification
procedure has been successful. With respect to the first
position, note that this corresponds to the situation of a
perfectly closed gap, which can be modeled but is hardly
reachable in practice since surface irregularities are always
present.

0 0.5 1 1.5 2 2.5 3
48
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49

49.5

Figure 9: Experimental values of resistance as a function of gap
length.
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Figure 10: Experimental and FEM & EXP values of inductance as a
function of gap length.
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Figure 11: Residuals of the model as a function of gap length.

4.3. Discussion on magnetic linearity

Throughout the validation example we have assumed
that the core material is magnetically linear. Under this
assumption, the reluctance is independent of the model
excitation and can be easily computed using the mag-
netic energy. In addition, the simulation time is greatly
reduced for a twofold reason: the FEM model is linear
and the parametric sweep is one dimension smaller. If de-
sired, magnetic saturation could be included as explained
in Section 3, i.e., by means of a parametric model. In that
case, both the FEM simulations and the experimental tests
would have to be carried out for several excitation levels
so that the saturation effects are properly characterized.

Alternatively, magnetic saturation may also be mod-
eled using an approximate method which does not require
additional (and nonlinear) FEM simulations. Assuming
that permeability only depends on the excitation current,
the described identification procedure could be performed
several times using small-signal measurements from tests
at different levels of current. Thus, a family of reluctance
and inductance curves would be obtained and the depen-
dence of permeability on current could be studied. In this
connection, the current during the step-response tests of
the previous example varied approximately between 0 and
9 mA (see Fig. 8), so we can state that the obtained results
correspond to a current of about 4.5 mA.
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5. Model comparison

In this section, we compare our modeling method with
other three common approaches in the literature:

� First, as proposed in some works [21], a model whose
reluctance is assumed linear with respect to the gap
length. In this case, this linear reluctance has been
fitted to RFEM&EXP by least squares and the corre-
sponding inductance has been computed by (11) us-
ing the already identified value of N∗=1178.

� Secondly, a purely numerical model similar to those
presented in [16] or [17]. For that, we directly use the
results from the presented FEM model for µrc = 100
and N = 1000, which were the initial guesses for
the unknown parameters and, hence, are the logical
values to use if no experiments have been performed.

� Finally, a theoretical model using the MEC approach
as in [19] or [20]. For that, the magnetic circuit has
been decomposed in several elements of simple ge-
ometry (see Fig. 12) whose reluctances can be ana-
lytically calculated. Specifically, all the resulting ele-
ments have been approximated as cylinders or cylin-
drical rings whose dimensions and reluctances are
shown in Table 1. Note that, in order to account for
flux fringing effects, the reluctance of the primary
air gap incorporates the correction factor proposed
by McLyman [30].

1

2

3 4

5

6

7

8

9

10

Figure 12: Magnetic circuit of the valve and reluctance decomposi-
tion. Reluctances R2 and R9 depend on the gap length, z.

The reluctance values obtained from the four different
approaches are presented in Fig. 13. As shown, a linear
reluctance could be used to link magnetic flux and electric
current with little error. Actually, the root-mean-square
deviation (RMSD) between both models has a value of
1.38 · 106 H−1, which represents only about 2% of the
mean value of RFEM&EXP. Since the identified value of
permeability, µrc

∗ = 89.13, is close to the initial guess of
µrc = 100, the FEM reluctance is also very similar and
has a RMSD of about 3%. On the other hand, the MEC

reluctance is less accurate, basically because of the simpli-
fied geometry and the assumptions of the method, and the
RMSD in this case reaches about 18% of the mean value
of the reluctance. Table 2 summarizes the RMSD of the
methods.

The inductance values are represented in Fig. 14. These
results, together with the experimental fitting of Fig. 10,
show clearly that the studied approaches are not as ac-
curate as our proposal. In this regard, the RMSE of
the models with respect to the experimental values of in-
ductance are 3.29 mH for the linear reluctance method,
6.41 mH for the FEM model and 11.3 mH for the MEC
approach, all of them much higher than the 1.06 mH error
of the FEM & EXP method (see Section 4.2). It is note-
worthy that, while the linear reluctance model provides a
very accurate inductance except for small gap lengths, the
difference between the estimated and the identified values
of the number of turns causes the FEM and MEC models
to have much greater errors.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10
10

7

Figure 13: Reluctance as a function of gap length. Method compar-
ison.

0 0.5 1 1.5 2 2.5 3
0

20

40

60

Figure 14: Inductance as a function of gap length. Method compar-
ison.

The reluctance of the device is also related to the mag-
netic force that drives the motion. Given (10), this force
may be studied, e.g., per square unit of flux,

Fmag/φ
2 = −1

2

dR
dz

, (19)

which allows for analyzing the errors in the derivative of
the reluctance with respect to the gap length, or per square

8



Table 1: Reluctance decomposition of the MEC model. Each element has internal radius Rint, external radius Rout and height h.

Reluctance Geometry Flux Direction µ Rint (mm) Rout (mm) h (mm) Value (A/Wb)

R1 Cylinder Axial 100µ0 - 2 7.45 4.72 · 106

R2 Cylinder Axial 100µ0 - 1.5 4.15− z [mm] 1.13 · 106 · (4.15− z [mm])
R3 Ring Radial 100µ0 1.5 1.8 2 1.15 · 107

R4 Ring Radial µ0 1.8 2.4 1.7 2.14 · 105

R5 Ring Radial 100µ0 2.1 5.05 0.6 1.85 · 106

R6 Ring Axial 100µ0 4.75 5.35 17 7.11 · 106

R7 Ring Radial 100µ0 1 5.05 1.7 1.21 · 106

R8 Cylinder Axial 100µ0 - 2 5.15 3.26 · 106

R9 Cylinder Axial µ0 - 2 z [mm]
6.33 · 107 · z [mm]

1 +
z [mm]

3.54
· log

(
30.6

z [mm]

)
R10 Cylinder Axial 100µ0 - 1.5 0.4 4.50 · 105

Table 2: Root-mean-square deviations between the FEM & EXP modeling method and the most common approaches in literature. In
parentheses, magnitude of the errors with respect to the mean absolute value of the corresponding variable.

Modeling method
Variable

R L |Fmag | /φ2 |Fmag | /i2

Linear R 1.38 · 106 H−1 (2.17%) 1.67 mH (7.01%) 5.33 · 109 N/Wb2 (52.4%) 10.2 N/A2 (167%)
FEM 2.09 · 106 H−1 (3.28%) 6.14 mH (25.8%) 1.52 · 108 N/Wb2 (1.49%) 1.75 N/A2 (28.7%)
MEC 1.17 · 107 H−1 (18.4%) 10.4 mH (43.5%) 3.02 · 109 N/Wb2 (29.8%) 8.59 N/A2 (141%)

unit of current,

Fmag/i
2 = −1

2

N2

R2

dR
dz

, (20)

which provides a more integrated analysis because it in-
cludes the errors in the reluctance, its derivative, and also
in the number of turns of the coil. Hence, both options
have been considered and the results are presented in Figs. 15
and 16 and also in Table 2. In order to see clearly the dif-
ferences among methods, the graphs show separately the
magnetic force for small lengths of the gap, z ∈ [0, 0.4] mm,
and for the rest of possible values of z. As shown, the mag-
netic force calculated with the FEM & EXP model has its
maximum absolute value for z = 0 and decreases rapidly
with the gap length. Besides, it becomes almost zero for
the maximum gap, which indicates that the electromag-
net can not pull the mechanism if it has been completely
released. On the other hand, it is evident that the force
resulting from the linear R does not reproduce accurately
the actual behavior, especially for low and high values of
the gap. Actually, the RMSDs of this method reach about
52% and 167% of their respective mean absolute values,
which definitely proves that it should not be used to com-
pute the force, even if the number of turns of the coil is
perfectly known. The reluctance derivative provided by
the MEC model is slightly better, but the best approxi-
mation is given by the FEM model, whose RMSD is only
about 1.5%. In any case, the error in the initial guess of N
makes these two approaches reach very high errors when
evaluating Fmag/i

2.

Figure 15: Magnetic force per square unit of flux as a function of
gap length.

Figure 16: Magnetic force per square unit of current as a function of
gap length.
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6. Conclusions

As shown, describing accurately the reluctance of any
electromechanical device is critical to analyze its dynamics.
In this paper we have presented a new method for char-
acterizing the reluctance of a commercial device by com-
bining results from FEM simulations and data acquired
in experimental tests. This fusion permits overcoming the
drawbacks that both approaches have separately, i.e., the
lack of information about some aspects of the system or
the assumption of too many simplifications. In this regard,
the FEM model allows for a precise study of the reluctance
with respect to the position of the mechanism, while the
identification procedure makes use of experimental data to
determine the unknown parameters.

Once the properties of the device are identified and the
reluctance completely characterized, the magnetic force
can also be obtained and analyzed. We have seen that,
for a given value of current or of magnetic flux, this force
is maximum for zero gap and decreases rapidly with the
position during the first stage of the motion. A further
discussion has shown that a linear approximation of the
reluctance with respect to the gap length could be used
to relate current and magnetic flux, but it would lead to
high errors if used to calculate the magnetic force. Be-
sides, MEC and FEM models have been also included in
the comparison and we have shown that the errors with
our approach are between five and ten times smaller with
respect to the inductance.

The method has been illustrated by an example with
a solenoid valve which had two unknown parameters: the
number of turns of the coil and the magnetic permeability
of the core. However, the procedure can also be used if
more parameters of the device have to be identified. Fur-
thermore, it is fully applicable to any other variable re-
luctance device such as relays or any type of short-stroke
actuator. In this regard, the resulting models are expected
to lead to more precise simulations and to better control
and estimation algorithms.
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