

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Tesis Doctoral

Reuse-based and near-optimal replacement

policies for high-performance shared caches in

multicore processors

Autor

Javier Díaz Maag

Director/es

Pablo Ibáñez Marín

Teresa Monreal Arnal

Escuela de Doctorado

Programa de Doctorado en Ingeniería de Sistemas e Informática

2025

i

A Carlos Díaz Tomás y Gabriele Maag Nolte:

Como una flor guardada entre las páginas de un libro,

vuestra esencia perfuma cada línea de mi vida.

Papá y mamá,

dedicado a vosotros.

ii

ABSTRACT

With the widespread adoption of chip multiprocessors, the Shared Last-Level Cache

(SLLC) has become a critical architectural feature for sustaining performance by bridging

the growing gap between fast processing cores and significantly slower main memory. Its

management—particularly the replacement policy—plays a central role in overall system

performance. However, effectively managing the SLLC remains challenging due to limited

temporal locality in the reference streams, which renders traditional cache management

policies inefficient.

This dissertation addresses these challenges by introducing two complementary lines

of work: practical mechanisms that exploit reuse locality to improve content selection in

real systems, and near-optimal replacement policies that, while not implementable, provide

theoretical baselines to guide the design and evaluation of shared cache policies.

Specifically, this dissertation presents four major contributions: (1) a reuse-based content

selection mechanism for exclusive caches (ReD), (2) its adaptation to energy-efficient

STT-RAM SLLCs, (3) an enhanced instruction-aware variant (ReD+), and (4) two near-

optimal offline replacement policies (NOPT) tailored to shared caches.

Firstly, we introduce the Reuse Detector (ReD), an innovative content selection

mechanism designed specifically for exclusive cache hierarchies. Positioned between

each L2 private cache and the SLLC, ReD selectively inserts only those blocks exhibiting

past reuse, effectively reducing cache misses and improving system performance.

Compared to state-of-the-art alternatives such as Cache Hierarchy-Aware Replacement

(CHAR), Reuse Cache, and the Evicted Address Filter (EAF), ReD achieves higher

effectiveness, reducing SLLC misses per instruction and enhancing harmonic IPC by

10.1% and 9.5%, respectively, relative to a baseline without content selection.

Addressing the limitations of conventional SRAM technologies, this thesis explores the

potential of STT-RAM technology for building energy-efficient SLLCs when coupled with

an advanced replacement policy. We propose an adapted version of ReD to mitigate the

primary drawbacks of STT-RAM, notably slow and energy-intensive write operations. In

multiprogrammed workloads, this integration significantly reduces energy consumption in

both the SLLC and main memory — achieving, on average, a 33% reduction in SLLC

energy use, an additional 6% in main memory, and a 7% performance improvement over

iii

a baseline STT-RAM configuration without ReD. Compared to DASCA, a leading

alternative, ReD also delivers superior performance and energy savings.

Building upon the initial ReD mechanism, we propose ReD+, an enhanced content

selection policy that further refines reuse detection by incorporating instruction-level

behavior tracking via a dedicated hardware structure. ReD+ selectively inserts blocks into

the SLLC based on refined criteria involving both block reuse history and reuse patterns

of requesting instructions. Adapted to work on conventional non-inclusive SLLCs,

evaluations demonstrate that ReD+ matches or exceeds the performance of state-of-the-

art policies for this typical category of SLLCs. This mechanism achieved significant

recognition at the 2nd Cache Replacement Championship, ranking third overall and

second in multiprocessor-specific scoring.

Lastly, the dissertation presents two near-optimal offline replacement policies for shared

caches. The first policy approximates the optimal miss rate by iteratively reconstructing the

future global access stream that reaches the SLLC and applying it to a classical OPTb

policy. This process consistently converges, across evaluations, to a stable result within

0.1% of a near-optimal miss rate. Our evaluation shows that existing online (theoretically

implementable) policies achieve approximately 65% of the miss-rate reduction and around

75% of the IPC improvements provided by this near-optimal approach (vs. random

replacement). Recognizing that minimizing miss rate is not the sole objective in shared

caches, we also introduce a near-optimal policy explicitly focused on fairness across cores.

The best online policy, our proposed ReD+, achieves about 60% of the fairness

improvement demonstrated by our near-optimal solution.

Collectively, these contributions provide both theoretical insights and practical

strategies for optimizing cache management in multicore processors, establishing a robust

foundation for future research aimed at addressing existing challenges in computer

architecture.

iv

RESUMEN

Con la adopción generalizada de los multiprocesadores en chip, la Cache Compartida

de Último Nivel (Shared Last-Level Cache, SLLC) se ha convertido en un componente

arquitectónico crucial para mantener el rendimiento, al servir de puente entre los rápidos

núcleos de procesamiento y una memoria principal significativamente más lenta. Su

gestión — en particular, la política de reemplazo— desempeña un papel central en el

rendimiento global del sistema. Sin embargo, gestionar eficazmente la SLLC representa

aún un desafío debido a la escasa localidad temporal en los flujos de accesos, lo que

vuelve ineficientes a las políticas tradicionales de gestión de cache.

Esta tesis aborda estos desafíos mediante la introducción de dos líneas de trabajo

complementarias: mecanismos prácticos que aprovechan la localidad de reuso para

mejorar la selección de contenido en sistemas reales, y modelos de reemplazo cuasi-

óptimos que, aunque no son implementables, proporcionan referencias teóricas para

orientar el diseño y la evaluación de políticas de cache compartida. En concreto, esta tesis

presenta cuatro contribuciones principales: (1) un mecanismo de selección de contenido

basado en reuso para caches exclusivas (ReD), (2) su adaptación a SLLCs de STT-RAM

de bajo consumo, (3) una variante mejorada con correlación instrucción-bloque (ReD+), y

(4) dos políticas de reemplazo cuasi-óptimas (NOPT) diseñadas específicamente para

caches compartidas.

En primer lugar, presentamos el Detector de Reuso (ReD), un mecanismo innovador

de selección de contenido diseñado específicamente para jerarquías de cache exclusivas.

Situado entre cada cache privada L2 y la SLLC, ReD inserta selectivamente sólo aquellos

bloques que han mostrado reuso previo, reduciendo eficazmente los fallos de cache y

mejorando el rendimiento del sistema. En comparación con propuestas punteras como

CHAR, Reuse Cache y EAF cache, ReD logra una mayor efectividad, reduciendo los fallos

por instrucción en la SLLC y mejorando la media armónica de IPC en un 10,1 % y un

9,5 %, respectivamente, en relación con un esquema base sin selección de contenido.

Abordando las limitaciones de las tecnologías convencionales de SRAM, esta tesis

explora el potencial de la tecnología STT-RAM para construir SLLCs energéticamente

eficientes cuando se combina con una política de reemplazo avanzada. Proponemos una

versión adaptada de ReD que mitiga las principales desventajas de la STT-RAM, en

v

particular las operaciones de escritura lentas y de alto consumo energético. En cargas de

trabajo multiprogramadas, esta integración reduce significativamente el consumo de

energía tanto en la SLLC como en la memoria principal: en promedio, se obtiene una

reducción del 33 % en el consumo energético de la SLLC, un 6 % adicional en la memoria

principal y una mejora del rendimiento del 7 % respecto a una configuración base de STT-

RAM sin ReD. En comparación con DASCA, una de las mejores alternativas, ReD también

ofrece un mejor rendimiento y mayor eficiencia energética.

Sobre la base del mecanismo ReD original, proponemos ReD+, una política mejorada

de selección de contenido que perfecciona la detección de reuso mediante el seguimiento

del comportamiento a nivel de instrucción, utilizando una estructura hardware dedicada.

ReD+ inserta selectivamente bloques en la SLLC en función de criterios mejorados que

combinan el historial de reuso de los bloques con los patrones de reuso de las

instrucciones que los solicitan. Adaptado para funcionar con SLLCs convencionales no

inclusivas, las evaluaciones muestran que ReD+ iguala o supera el rendimiento de las

políticas más avanzadas para esta típica categoría de SLLCs. Este mecanismo obtuvo un

reconocimiento destacado en la 2ª edición del Cache Replacement Championship

(CRC2), al alcanzar el tercer puesto en la clasificación general y el segundo en la

puntuación específica de sistemas multiprocesador.

Por último, esta tesis presenta dos políticas de reemplazo offline cuasi-óptimas para

caches compartidas. La primera de ellas aproxima la tasa óptima de fallos mediante la

reconstrucción iterativa del flujo global de accesos futuros a la SLLC, aplicándolo

posteriormente a una política OPTb clásica. Este proceso converge de forma consistente,

en todas las evaluaciones, a un resultado estable con una desviación inferior al 0,1 %

respecto de una tasa de fallos cuasi-óptima. Nuestra evaluación muestra que las políticas

online existentes (implementables en la práctica) logran aproximadamente el 65 % de la

reducción de fallos y cerca del 75 % de la mejora en IPC alcanzadas por esta política

cuasi-óptima (en comparación con una política de reemplazo random). Reconociendo que

minimizar la tasa de fallos no es el único objetivo en caches compartidas, también

introducimos una política cuasi-óptima orientada explícitamente a la equidad (fairness)

entre núcleos. La mejor política online, nuestra propuesta ReD+, alcanza

aproximadamente el 60 % de la mejora en equidad lograda por nuestra solución cuasi-

óptima.

vi

ACKNOWLEDGEMENTS

Mi más sincero agradecimiento a los sabios Pablo, Teresa, Víctor y José María por su

constante ayuda a lo largo de todos estos años de trabajo. Muy especialmente a Pablo,

cuya determinación, energía y aliento han sido fundamentales; sin su impulso, difícilmente

estaría hoy escribiendo estas palabras.

Un profundo agradecimiento también a María, mi mujer, por su apoyo incondicional.

No podría soñar con una mejor compañera de viaje, sin importar en qué aventura nos

embarquemos. Y a mis hijos, Rubén, Sergio y Alba, cuyo entusiasmo y frescura me

inspiran cada día.

vii

PUBLICATIONS

Part of this dissertation includes results already published.

The list of publications is:

• Javier Díaz, Teresa Monreal, Pablo Ibáñez, José María Llabería, and Víctor

Viñals. (2019). ReD: A reuse detector for content selection in exclusive shared

last-level caches. Journal of Parallel and Distributed Computing, 125, 106-120.

• Roberto Rodríguez-Rodríguez, Javier Díaz, Fernando Castro, Pablo Ibáñez,

Daniel Chaver, Víctor Viñals, Juan Carlos Sáez, Manuel Prieto-Matías, Luis

Piñuel, Teresa Monreal and José María Llabería. (2018). Reuse detector:

Improving the management of STT-RAM SLLCs. The Computer Journal, 61(6),

856-880.

• Javier Díaz, Pablo Ibáñez, Teresa Monreal, Víctor Viñals and José María

Llabería. (2017). ReD: a policy based on reuse detection for a demanding block

selection in last-level caches. The 2nd Cache Replacement Championship, at

the International Symposium on Computer Architecture (ISCA).

• Javier Díaz, Pablo Ibáñez, Teresa Monreal, Víctor Viñals and José María

Llabería. (2021). Near-optimal replacement policies for shared caches in

multicore processors. The Journal of Supercomputing, 77, 11756-11785.

viii

ABBREVIATIONS

APKC: Accesses per kilocycle

ART: Address reuse table

CHAR: Cache hierarchy-aware replacement (policy)

CMP: Chip multiprocessor

CRC2: Second cache replacement championship

DASCA: Dead write prediction assisted STT-RAM cache architecture

DBP: Dead block predictor

DDR3: Dual data rate version 3

DIP: Dual insertion (replacement) policy

DRAM: Dynamic random-access memory

DRRIP: Dynamic re-reference interval prediction (replacement policy)

EAF: Evicted address filter (replacement policy)

eDRAM: Embedded dynamic random-access memory

FIFO: First in, first out

FRD: Future reuse distance

hIPC: Harmonic instructions per cycle

I/D: Instruction / data (caches)

IPC: Instructions per cycle

L1: First-level (cache)

L2: Second-level (cache)

LLC: Last-level cache

LRF: Least recently filled (replacement policy)

LRU: Least recently used

ix

MM: Main memory

MOESI: Modified, owned, exclusive, shared, and invalid (cache coherence protocol)

MOSI: Modified, owned, shared, and invalid (cache coherence protocol)

MPI: (Cache) misses per instruction

MPKI: (Cache) misses per kiloinstruction

MRU: Most recently used

MSHR: Miss status holding register

MTJ: Magnetic tunnel junction

NOPT: Near optimal (replacement policy)

NOPTb: Near optimal with bypass (replacement policy)

NRF: Not recently filled (replacement policy)

NRU: Not recently used (replacement policy)

NVM: Non-volatile memory

OAP: Obstruction-aware (cache management) policy

PC: Program counter

PCRT: Program counter reuse table

PHT: Pattern history table

QoS: Quality of service

RAM: Random access memory

ReD: Reuse detector

RRPV: Re-reference interval prediction value

SHiP: Signature-based hit prediction (replacement policy)

SLLC: Shared last-level cache.

SPEC: Standard Performance Evaluation Corporation

SRAM: Static random-access memory

x

SRRIP: Static re-reference interval prediction (replacement policy)

STT-RAM: Spin-Transfer Torque Random Access Memory

TC-AGE: Trip count and age (replacement policy)

TLB: Translation lookaside buffer

WPKI: Writes per kiloinstruction

WC: Write cache

WS: Weighted speedup

YAGS: Yet Another Global (branch prediction) Scheme

xi

CONTENTS

Abstract ... ii
Resumen .. iv

Acknowledgements .. vi
Publications ... vii
Abbreviations .. viii
Contents ... xi
List of figures .. xvi
List of tables ... xix

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Summary of contributions .. 4

1.3 Dissertation overview ... 8

1.4 Thesis Project framework ... 9

2 ReD: A Reuse Detector for content selection in exclusive Shared Last-Level
Caches ... 10

2.1 Introduction .. 10

2.2 Motivation ... 13

2.2.1 Problem analysis .. 13

2.2.2 Detector design .. 14

2.3 Design and implementation of ReD ... 16

2.3.1 Baseline ... 16

2.3.2 Adding the Reuse Detector .. 16

2.3.3 ReD operation .. 18

2.3.4 Example ... 19

2.3.5 Implementation details ... 22

2.3.6 Hardware costs .. 22

2.4 ReD operation insight ... 24

2.5 Experimental setup .. 26

2.5.1 The experimental framework .. 26

2.5.2 Configuration of the baseline system ... 27

2.5.3 Configuration of the evaluated proposal .. 28

xii

2.5.4 Performance metrics .. 29

2.6 Performance analysis of ReD .. 29

2.6.1 Results and comparison with other proposals 30

2.6.2 Alive and dead blocks .. 33

2.6.3 Per-application and per-mix performance .. 34

2.6.4 Content selection ... 35

2.6.5 Single-processor performance ... 35

2.6.6 Detector efficiency .. 36

2.6.7 Additional cache sizes .. 38

2.6.8 Alternative cache replacement policy: Least Recently Filled (LRF) . 39

2.6.9 Additional performance metrics .. 40

2.7 Design space exploration ... 40

2.7.1 ReD capacity .. 41

2.7.2 ReD sector size .. 41

2.7.3 ReD tag size ... 43

2.8 Related work .. 44

2.8.1 Replacement policies ... 45

2.8.2 Content selection policies .. 46

2.9 Conclusions .. 46

3 ReD: Improving the management of STT-RAM Shared Last-Level Caches 48

3.1 Introduction .. 48

3.2 Background and motivation .. 49

3.2.1 Comparison of SRAM and STT-RAM technologies 50

3.2.2 The DASCA scheme .. 51

3.3 Design of ReD for an STT-RAM SLLC... 52

3.3.1 Baseline system ... 52

3.3.2 Adding ReD .. 53

3.3.3 ReD operation .. 53

3.3.4 Implementation details ... 55

3.3.5 Comparison of ReD and DASCA ... 55

3.4 Experimental setup .. 57

3.4.1 The experimental framework .. 57

3.4.2 Configuration of the baseline system ... 58

xiii

3.4.3 Configuration of the evaluated proposal .. 59

3.4.4 Performance metrics .. 59

3.5 Evaluation .. 60

3.5.1 Evaluation in a single-processor system .. 60

3.5.2 Evaluation in a multiprocessor system ... 65

3.6 Related work .. 70

3.7 Conclusions .. 72

4 ReD+: A policy based on reuse detection for optimized demanding block selection
in shared last-level caches ... 74

4.1 Introduction .. 74

4.1.1 Motivation. Problem analysis ... 74

4.1.2 Inclusion relationships in the cache hierarchy 76

4.1.3 The 2nd Cache Replacement Championship 76

4.2 ReD+ content selection policy .. 77

4.3 Implementation details ... 78

4.3.1 Address Reuse Table (ART) .. 78

4.3.2 Program Counter Reuse Table (PCRT) ... 79

4.3.3 Increasing the effectiveness of the ART .. 80

4.3.4 Other details ... 80

4.3.5 Storage costs ... 81

4.4 Evaluation .. 81

4.4.1 The experimental framework .. 81

4.4.2 Configuration of the baseline system ... 82

4.4.3 Results ... 83

4.5 Evaluation at CRC2 .. 85

4.5.1 The experimental framework .. 85

4.5.2 Results ... 86

4.6 Conclusions .. 87

5 Near-optimal replacement policies for shared caches in multicore processors ... 89

5.1 Introduction .. 89

5.2 Background .. 91

5.2.1 Replacement policies for shared caches in multicore processors ... 91

5.2.2 Optimal policies .. 92

5.2.3 OPT and OPTb for a private cache .. 93

xiv

5.2.4 Why it is not possible to implement OPT for shared caches 94

5.2.5 Optimal replacement policies for shared caches 96

5.3 A near-optimal replacement algorithm to minimize miss rate................... 97

5.3.1 NOPTb-miss design ... 97

5.3.2 NOPTb-miss example .. 99

5.3.3 Computational complexity .. 101

5.4 Methodology... 102

5.4.1 The experimental framework .. 102

5.4.2 Configuration of the baseline system ... 103

5.4.3 Metrics .. 104

5.4.4 Other replacement policies .. 105

5.4.5 Reproducibility .. 106

5.5 NOPTb-miss evaluation ... 106

5.5.1 Convergence analysis .. 107

5.5.2 How close is NOPTb-miss to the optimum? 109

5.5.3 Results per application ... 110

5.6 A near-optimal replacement algorithm to maximize fairness.................. 111

5.6.1 NOPTb-fair design ... 111

5.6.2 NOPTb-fair example .. 113

5.7 NOPTb-fair evaluation .. 113

5.7.1 Results per application ... 114

5.7.2 How close is NOPTb-fair to the optimum? 114

5.7.3 Comparison between NOPTb-miss and NOPTb-fair at workload level
 ... 115

5.8 Comparison with state-of-the-art policies ... 116

5.8.1 MPKI and throughput comparison with state-of-the-art policies 116

5.8.2 Fairness comparison with state-of-the-art policies 117

5.8.3 Balancing miss-rate reduction and fairness in SLLC replacement
policies ... 118

5.9 Sensitivity analysis ... 119

5.9.1 Convergence analysis of NOPTb-miss .. 120

5.9.2 MPKI and throughput ... 120

5.9.3 Fairness ... 121

5.10 Conclusions .. 121

xv

6 Conclusions .. 123

6.1 Contributions .. 123

6.2 Future work .. 125

7 Conclusiones .. 127

7.1 Contribuciones ... 127

7.2 Trabajo futuro ... 130

References .. 132

xvi

LIST OF FIGURES

Figure 1.1: growth in processor performance over 40 years. ... 2

Figure 1.2: growth in clock rate of microprocessors in Figure 1.1. 3

Figure 2.1: fraction of blocks evicted from the SLLC cache, in an example mix 13

Figure 2.2: placement of the Reuse Detector. ... 17

Figure 2.3: Reuse Detector operation. ... 18

Figure 2.4: detail of the algorithms in operation. Left: block eviction from L2 cache (non-
shared block). Right: request from a core to its L2 cache. 19

Figure 2.5: example illustrating the operation of ReD. ... 21

Figure 2.6: fraction of blocks evicted from L2 caches, in an example mix, categorized from
the ReD standpoint according to the type of reuse .. 24

Figure 2.7. Left: fraction of the SLLC occupied by blocks of each program in the example
mix. ... 26

Figure 2.8: normalized hIPC (left) and MPI reduction (right) compared to the base system
with 8 MB, for five systems .. 30

Figure 2.9: average fraction of alive blocks present at any given moment in the SLLC. .. 33

Figure 2.10: distribution of normalized IPC, for all applications in all workloads. 34

Figure 2.11: normalized harmonic IPC, for all 100 workloads. ... 35

Figure 2.12: fraction of incoming blocks bypassed by ReD at the SLLC 35

Figure 2.13: normalized IPC obtained by ReD, for single-processor workloads 36

Figure 2.14: number of blocks selected for SLLC insertion after coming from main memory,
for all applications in the example workload. .. 37

Figure 2.15: accuracy of content selection mechanisms ... 37

Figure 2.16: SLLC MPI reduction with respect to the base system.................................. 37

Figure 2.17: fraction of overall detector space occupied by each application 38

Figure 2.18: normalized harmonic IPC (left) and MPI reduction (right), for different SLLC
data sizes ... 39

Figure 2.19: normalized hIPC (left) and MPI reduction (right) obtained when adding ReD c
to base systems with 4-bit LRF and 2-bit TC-AGE. ... 40

Figure 2.20: normalized IPC (left) and normalized weighted speedup (right), for four
proposals: ReD, CHAR, Evicted Address Filter and Reuse Cache. 40

Figure 2.21: normalized hIPC (left) and reduction of SLLC misses per instruction (right),
as a function of the ReD capacity per core. ... 41

Figure 2.22: ReD size per core in KB, as a function of capacity and sector size. 42

xvii

Figure 2.23: normalized hIPC, as a function of the ReD capacity per core, and for different
sector sizes. ... 42

Figure 2.24. Left: average rate of detection errors in ReD due to tag compression. Centre:
normalized hIPC. Right: SLLC MPI reduction. ... 43

Figure 3.1 STT-RAM memory cell structure (left), and STT-RAM equivalent circuit (right).
 ... 50

Figure 3.2: request from a core to its L2 cache. ... 54

Figure 3.3. Block eviction from an L2 private cache... 55

Figure 3.4. Number of writes to the STT-RAM SLLC in the single-processor system. 61

Figure 3.5: performance (IPC) in the single-processor system. 62

Figure 3.6. Energy consumption in the STT-RAM SLLC in the single-processor system.
 ... 63

Figure 3.7: breakdown of energy consumption in the SLLC into the static and dynamic
contributions in the single-processor system. .. 63

Figure 3.8: number of writes to the STT-RAM SLLC in the CMP system. 66

Figure 3.9: performance in the CMP system, measured with the system IPC 66

Figure 3.10: energy consumption in the STT-RAM SLLC in the CMP system. 68

Figure 3.11: breakdown of energy consumption in the SLLC into the static and dynamic
contributions for the baseline in the CMP system. ... 68

Figure 3.12: energy consumption in DRAM in the CMP system. 69

Figure 3.13: number of STT-RAM SLLC hits per kiloinstruction in the CMP system. 69

Figure 4.1: state of ReD+ internal tables after two initial requests, and a first-reuse request.
 ... 78

Figure 4.2: entry of the Address Reuse Table without (a) and with (b) PC sampling,
respectively. ... 79

Figure 4.3: performance results. Speedup vs LRU for ReD+ and SRRIP. From top to
bottom: c1) single core without prefetching, c2) single core with data prefetching,
c3) four cores without prefetching, and c4) four cores with data prefetching. 84

Figure 4.4: SLLC bypass rate with ReD+ using configuration c1 (single core without
prefetching). ... 85

Figure 4.5: CRC2 results.. .. 87

Figure 5.1: an example of the OPTb algorithm naively applied to a shared cache.. 95

Figure 5.2: schematic diagram of the simulation of iteration i of NOPTb-miss. 98

Figure 5.3: an example of how NOPTb-miss works with sequences. 100

Figure 5.4: mean SLLC miss rate for step 1 of NOPTb-miss (labelled as iteration 0) and
several iterations of step 3.. ... 107

xviii

Figure 5.5: maximum relative difference in miss rate in iteration 4 of NOPTb-miss when
starting with MISSES, RANDOM and SRRIP as replacement policies 108

Figure 5.6. Bottom: mean number of accesses to the SLLC per kilocycle (APKC) for the
SPEC CPU applications. Top: MPKI at the SLLC for NOPTb-miss. 110

Figure 5.7: an example of the victim selection procedure of NOPTb-fair. 113

Figure 5.8. Bottom: mean number of accesses to the SLLC per kilocycle (APKC) for all
applications in our workload set. Top: MPKI at the SLLC for NOPTb-fair for the
same applications. ... 114

Figure 5.9: (a) difference in normalized SLLC MPKI reduction and (b) difference in
normalized IPC between NOPTb-miss and NOPTb-fair for all workloads. 115

Figure 5.10: (a) MPKI reduction in the SLLC and (b) normalized IPC, relative to random
replacement. .. 117

Figure 5.11: unfairness for various SLLC replacement policies. Lower values indicate
greater fairness. ... 118

Figure 5.12: mean SLLC miss rate for step 1 of NOPTb-miss (called iteration 0) and several
iterations of step 3, using an octa-core setup.. ... 120

Figure 5.13: (a) MPKI reduction in the SLLC, and (b) normalized IPC, relative to random
replacement, using an octa-core setup. ... 120

Figure 5.14: unfairness for various SLLC replacement policies, using an octa-core setup.
 ... 121

xix

LIST OF TABLES

Table 2.1. L1, L2 and LLC: average MPKI at each cache level of the base system. IPC:
average multiprocessor IPC. .. 27

Table 2.2: processor parameters ... 27

Table 2.3: memory hierarchy parameters .. 28

Table 2.4: ReD evaluation configuration .. 28

Table 2.5: classification of previous work based on the reuse locality property, according
to our taxonomy ... 45

Table 3.1: area, latency and energy consumption for 22nm SRAM and STT-RAM caches
with 1MB size. .. 51

Table 3.2: benchmark characterization according to the number of SLLC writes per
kiloinstruction (WPKI). .. 58

Table 3.3: CPU and memory hierarchy specification. .. 59

Table 3.3: ReD evaluation configuration .. 59

Table 4.1: ReD+ hardware cost, per core .. 81

Table 4.2: memory hierarchy parameters .. 82

Table 5.1: memory hierarchy parameters .. 104

1

1 INTRODUCTION

This chapter presents the motivations for exploring replacement algorithms in shared

last-level caches. It also outlines the key contributions, provides an overview of this

dissertation, and describes the project framework that supported its development.

1.1 MOTIVATION

Over the past decades, computer performance has advanced exponentially, largely

driven by Moore’s Law (Moore, 1965) and Dennard Scaling (Dennard et al., 1974).

Initially, processor performance improvements were closely linked to increasing

frequencies. However, at the start of the 21st century, the expected gains in computational

power and energy efficiency from simple transistor scaling began to diminish. The physical

limitations of packing more transistors into a confined space while maintaining high

switching speeds made further frequency increases unfeasible. Once the limits of power

dissipation were reached, thermal constraints became a major concern (see Figure 1.1

and Figure 1.2).

As a result, processor designers had to shift toward innovative solutions beyond simple

transistor scaling. The industry prioritized multiprocessor architectures at lower

frequencies to mitigate excessive power consumption and sustain performance

improvements. Nowadays, chip multiprocessor (CMP) systems dominate the market in

high-performance servers, desktop systems, embedded systems, and mobile devices

(Baer, 2009).

The ever-increasing processing power of CMPs can only be fully utilized if data flows

to and from Dynamic Random-Access Memory (DRAM) at a rate that matches the

demand, ensuring both sufficient bandwidth and low latency. However, as they are

manufactured using different processes, disparities have emerged in the evolution of their

performance. To mitigate the latency gap, cache memories became a central component

in computer architecture. These small, fast storage structures accelerate memory access

by exploiting regularities in the access stream, such as temporal locality (recently accessed

data tends to be accessed again), spatial locality (nearby data is likely to be accessed

2

soon), and reuse locality (data that is accessed multiple times is likely to be accessed

again).

Figure 1.1: growth in processor performance over 40 years. This chart plots program performance relative to the VAX

11/780, as measured by the SPEC integer (intbase) benchmarks. Prior to the mid-1980s, growth in processor
performance was largely technology-driven and averaged about 22% per year. The increase in growth to about 52%

starting in 1986 is attributable to more advanced architectural ideas. In 2003 the limits of power due to the end of
Dennard scaling and the available instruction-level parallelism slowed uniprocessor performance to 23% per year until

2011. From 2011 to 2015, the annual improvement was less than 12%. Since 2015, with the end of Moore’s Law,
improvement has been just 3.5% per year. Extracted from Hennessy & Patterson (2019).

In the mid-90s, differences between processor and DRAM speed where recognized as

exponential and predicted to become the primary constraint on the rate of improvement in

computer performance, a challenge referred to as the “memory wall” (Wulf & McKee,

1995). Addressing the memory wall challenge became a crucial objective for computer

architects, driving innovations in memory technologies, cache structures, and

management strategies to achieve more efficient and well-balanced computing systems.

The industry adopted the multi-level memory hierarchy (Wilkes, 1965), which introduces

several layers of cache between each processor and main memory (MM), as the leading

design to alleviate the impact of the memory wall.

Nowadays, most CMPs include a multilevel memory hierarchy, ending with a last-level

cache that is shared across several processing cores (LLC or SLLC) (Balasubramonian et

al., 2011). Looking specifically at the current top 10 supercomputers (Strohmaier et al.,

2024), all of them include general-purpose CMPs that have a multilevel cache and an

3

SLLC: AMD 4th Gen EPYC (Bhargava & Troester, 2024), AMD 3rd Gen EPYC (Evers et

al., 2022), Intel 4th generation Xeon Scalable (Nassif et al., 2022), ARM A64FX (Yoshida,

2018), ARM Neoverse V2 (Bruce, 2023), and Intel 3rd generation Xeon Scalable

(Papazian, 2020).

Figure 1.2: growth in clock rate of microprocessors in Figure 1.1. Between 1978 and 1986, the clock rate improved less
than 15% per year while performance improved by 22% per year. Between 1986 and 2003, a period of 52%

performance improvement per year, clock rates shot up almost 40% per year. Since then, the clock rate has been nearly
flat, growing at less than 2% per year. Extracted from Hennessy & Patterson (2019).

The SLLC is critical in terms of cost and performance. In cost, because it occupies

nearly 50% of the chip area. In performance, because it is the last resource before

accessing DRAM, located outside the chip, which is much slower. Therefore,

understanding its behavior and developing innovative mechanisms to enhance its

efficiency are key objectives for modern computer architects.

The contents of a cache are managed by its own replacement policy, implemented in

hardware (Smith, 1982). In its broadest sense the replacement policy is responsible for

determining the identity of the incoming and outgoing cache blocks, to minimize the

number of cache misses. In the event of a miss, the replacement algorithm first decides

4

whether the block that misses is loaded into the cache or bypassed (Mittal, 2016).

Secondly, when a block is loaded, the replacement algorithm will choose a victim block to

be evicted. In almost all replacement policies, the bypass decision and victim block

selection are based on stay or replacement priorities for each block, which the algorithm

manages to estimate future block usefulness.

Although replacement algorithms have been improving for more than 50 years, ongoing

changes in capacity, system architecture (single-core, multi-core, multi-threaded) and

memory technology (Static Random-Access Memory or SRAM, Embedded Dynamic

Random-Access Memory or eDRAM, Spin-Transfer Torque Random-Access Memory or

STT-RAM, etc.), among other factors, still encourage the development of optimizations or

radically different proposals (Jain & Lin, 2019).

The replacement policy is important because it is largely responsible for the

performance of the cache. In shared caches, which serve several competing cores or

threads, it is also partially responsible for fairness and quality of service (QoS). The

importance of the replacement policy is testified to by the organization of a cache

replacement championship twice in recent years, driven by the community of computer

architects (JILP, 2010; CRC2, 2017). These championships have been focused on policies

for SLLCs.

1.2 SUMMARY OF CONTRIBUTIONS

This thesis aims to enhance the efficiency and performance of SLLCs by designing and

studying innovative replacement policies. These policies are evaluated in a simulated

environment, and their underlying mechanisms analyzed to understand how they achieve

their objectives.

The contributions of this dissertation can be categorized as follows, with each category

discussed in detail in a separate chapter:

Improving content selection for exclusive SLLCs. Previous publications reveal that

the stream of references reaching the SLLC of a multiprocessor chip shows little temporal

locality. However, it shows reuse locality, i.e., blocks referenced more than once are more

likely to be referenced soon. This leads to an inefficient use of the cache using

conventional management. There are several proposals addressing this problem for

5

inclusive caches; however, there are few that focus on exclusive caches (Jouppi & Wilton,

1994). In this regard, the specific contributions of this part are the following:

• An analysis of previous mechanisms that exploit reuse locality for an SLLC,

highlighting three primary areas for improvement: low prediction accuracy,

limitations in the size of reuse tracking mechanisms, and susceptibility to

thrashing.

• A presentation of a new content selection mechanism, the Reuse Detector

(ReD), specifically designed for exclusive caches to overcome the limitations of

previous proposals. It utilizes an Address Reuse Table (ART) placed between

each second-level cache (L2) and the SLLC to identify blocks evicted from L2

that have not experienced reuse, and prevent their insertion into the SLLC by

bypassing them. Avoiding the insertion of many useless blocks allows the most

reused ones to remain longer in the SLLC. This content selection mechanism is

compatible with any promotion or victim selection policy.

• A comprehensive analysis and evaluation of the proposed mechanism, in terms

of performance, cost and the trade-offs involved in its implementation. For a fair

comparison, state-of-the-art solutions are included in the evaluation.

Improving the management of STT-RAM SLLCs1. Various limitations associated with

SRAM technology are prompting the exploration of alternative memory technologies for

the development of on-chip SLLCs. Currently, STT-RAM technology is emerging as a

leading candidate, due to its superior energy efficiency, reduced die footprint, and

enhanced scalability. Nevertheless, STT-RAM presents several challenges, including slow

and energy-intensive write operations, which must be overcome to facilitate its integration

into next-generation SLLC architectures. We address these challenges through improved

management. The key contributions in this area are as follows:

• The development of a version of ReD aimed at minimizing both SLLC writes

and invalidations, that is, adapted to avoid the negative aspects of STT-RAM

1 This part of the work was originally presented by its first author, Roberto Rodríguez Rodríguez, in his own
thesis. In this dissertation, the corresponding chapter highlights my specific contributions: the design of ReD,
the modifications required to address the challenges posed by STT-RAMs, and the architectural differences
with respect to the state-of-the-art competing proposal. A summary of Roberto’s work is also included to
provide appropriate context and show the outcomes.

6

SLLCs. In this version, the SLLC has to operate in exclusion with the private

caches upon the block’s initial request but transitions to an inclusive policy

following a subsequent access resulting in an SLLC hit.

• An evaluation of the performance enhancements and energy savings facilitated

by this modified ReD when implemented in a STT-RAM SLLC, across both

single-processor and multiprocessor configurations.

• A comparative analysis of the design and performance relative to Dead Write

Prediction Assisted STT-RAM Cache Architecture (DASCA) (Ahn et al., 2014),

a state-of-the-art competing mechanism addressing similar challenges in STT-

RAMs.

Leveraging the correlation between a block's reuse and the instruction issuing

its first request to enhance content selection effectiveness. The specific contributions

of this part are the following:

• A critical analysis of the shortcomings in the previous design of the Reuse

Detector, identifying two key areas for enhancement: the occurrence of a

compulsory miss on the second SLLC access of any block, and the suboptimal

utilization of the ART in applications with a large working set.

• The introduction of an enhanced version of the Reuse Detector, named ReD+,

which addresses the previously identified shortcomings while preserving the

original benefits. This model incorporates a Reuse Table correlated with the

Program Counter (PC), designed to identify which instructions initiate requests

for blocks that are subsequently reused. Blocks fetched by these instructions

are retained in the SLLC upon their initial request, rather than waiting for a

confirmed reuse. Moreover, these blocks are not recorded in the Address Reuse

Table, thereby enhancing the detection of the reuse of other blocks.

• Using content selection to enhance the performance of conventional non-

inclusive SLLCs. The issues caused by the low temporal locality of the access

stream in the SLLC extend beyond exclusive caches. Traditional non-inclusive

caches also struggle with efficiency when managed conventionally. Adopting a

selective block selection policy that leverages reuse locality could significantly

improve efficiency across these cache configurations.

7

• This proposal, presented at the 2nd Cache Replacement Championship (CRC2),

achieved third place in the overall ranking among 15 submissions.

Proposal and study of near-optimal replacement policies for SLLCs in multicore

processors. Several decades ago, a replacement policy that minimizes miss rate, known

as MIN (Belady, 1966) or OPT (Mattson et al., 1970), was proposed for private caches.

This policy operates on the principle of knowing the future access sequence that the cache

will receive, and must therefore be implemented offline. However, an equivalent policy for

shared caches, which are accessed by several processors or cores, does not exist,

because replacement decisions in shared environments modify these future sequences.

We propose approaching the optimal execution and the optimal global access sequence

iteratively. The specific contributions in this area are the following:

• We propose a near-optimal policy to minimize the miss rate for shared caches,

named NOPTb-miss. It is an iterative algorithm that is applied to consecutive

runs of the same workload. Our experiments show that, after several iterations,

the miss rate for each workload converges to a minimum. To the best of our

knowledge, this study is the first to investigate the theoretical minimum miss rate

for shared caches and to offer a successful approach.

• Observing that an optimal shared cache that minimizes miss rate does not

benefit all programs in the workload equally, we propose a near-optimal policy

to maximize fairness among threads, named NOPTb-fair. Our experiments

show that this algorithm achieves the highest level of fairness among all

considered replacement policies.

• We compare the performance of our near-optimal offline proposals with current

top-performing online policies, to gain insights into the current state of the art.

We show that the best policies achieve around 65% of the MPKI reduction

obtained by NOPTb-miss and 75% of the throughput improvement (vs.

random). Comparing fairness, the best state-of-the-art policy, our proposed

ReD+, achieves 60% of the improvement seen with NOPTB-fair, and the

second-best only 45%.

• Additionally, by jointly analyzing performance and fairness, we show that

designing a replacement policy for shared caches with the dual objective of

8

reducing miss rate and promoting inter-core fairness yields higher overall

performance.

1.3 DISSERTATION OVERVIEW

This dissertation is organized as follows:

Chapter 2 presents the Reuse Detector (ReD), a novel mechanism for content selection

in exclusive shared last-level caches. It describes its design and explores the trade-offs

involved, gives insight into its operation and cost, evaluates its results, and compares them

against other relevant proposals. It also includes a review of the state of the art in the

matter.

Chapter 3 presents a summary of the application of the Reuse Detector mechanism to

managing SLLCs based on STT-RAM technology. This chapter summarizes the

necessary design modifications to the Reuse Detector to address the specific challenges

of this case and presents a summary of its results, comparing them against a state-of-the-

art proposal for this technology.

Chapter 4 presents ReD+, an evolution of the Reuse Detector that includes additional

mechanisms to improve performance. It details the design modifications and their cost

implications, and evaluates the results. Finally, it presents a summary of the outcomes of

the 2nd Cache Replacement Championship (CRC2), where this proposal was submitted.

Chapter 5 explores the design of near-optimal replacement policies for SLLCs. It

proposes one policy aimed at minimizing the miss rate and another focused on maximizing

fairness between cores. It details their designs, presents their performance results,

compares them with state-of-the-art proposals, and explains how they can provide insights

into the design of future policies.

Chapter 6 presents the conclusions, summarizing the contributions of this dissertation

and outlining potential directions for future work.

9

1.4 THESIS PROJECT FRAMEWORK

This thesis has been developed at the Grupo de Arquitectura de Computadores de la

Universidad de Zaragoza (gaZ), which is part of the Departamento de Informática e

Ingeniería de Sistemas (DIIS) and is supported by the Instituto de Investigación en

Ingeniería de Aragón (I3A).

The thesis and its research work has been funded by PID2022-136454NB-C22

(“Arquitectura y programación de computadores escalables de alto rendimiento y bajo

consumo III”), PID2023-146511NB-I00, PID2019-105660RB-C21, PID2019-107255GB-

C22, TIN2016-76635-C2-1-R and TIN2015-65316-P from Agencia Estatal de

Investigación (AEI) from Spain and European Regional Development Fund (ERDF);

Consolider NoE TIN2014-52608-REDC and TIN2013-46957-C2-1-P from Spain; gaZ:

T58_17R research group, gaZ: T58_20R research group, and gaZ: T58_23R research

group from Aragon Government and European Social Fund (ESF); 2014-2020

"Construyendo Europa desde Aragón" from European Regional Development Fund; and

HiPEAC Collaboration Grant, European Network of Excellence on High Performance and

Embedded Architecture and Compilation from European Horizon 2020, H2020-EU.2.1.1.

The funders had no role in the study, design, implementation, data collection, analysis, or

preparation of the dissertation.

10

2 ReD: A REUSE DETECTOR FOR CONTENT

SELECTION IN EXCLUSIVE SHARED LAST-LEVEL

CACHES

The reference stream reaching a chip multiprocessor SLLC shows poor temporal

locality, making conventional cache management policies inefficient. Few proposals

address this problem for exclusive caches. In this chapter, we propose the Reuse Detector

(ReD), a new content selection mechanism for exclusive hierarchies that leverages reuse

locality at the SLLC, a property that states that blocks referenced more than once are more

likely to be accessed in the near future. Placed between each L2 private cache and the

SLLC, ReD prevents the insertion of blocks without reuse into the SLLC. It is designed to

overcome problems affecting similar recent mechanisms (low accuracy, reduced visibility

window and detector thrashing).

ReD improves performance over other state-of-the-art proposals: Cache Hierarchy-

Aware Replacement (CHAR), Reuse Cache and Evicted Address Filter (EAF). Compared

with the baseline system with no content selection, it reduces the SLLC misses per

instruction (MPI) by 10.1% and increases harmonic instructions per cycle (hIPC) by 9.5%.

2.1 INTRODUCTION

Several studies show that conventional SLLC designs are inefficient because they

waste a large portion of the cache. This is because they hold many dead blocks, i.e., blocks

that are never re-accessed before their eviction. Frequently, those blocks are already dead

when they enter the SLLC (Khan et al., 2010; Qureshi et al., 2007; Gaur et al., 2011). This

occurs in multilevel hierarchies because private caches, often encompassing two levels

(L1 and L2), exploit most of the temporal locality, which is effectively filtered out before

reaching the SLLC (Jaleel et al., 2010a; Jaleel et al., 2010b). To address this drawback

and increase the SLLC hit rate, several proposals suggest new SLLC insertion and

replacement policies. Most of the work refers to inclusive or non-inclusive caches, and only

a small group (Gaur et al., 2011; Chaudhuri et al., 2012) focuses on exclusive SLLCs

(Jouppi & Wilton, 1994).

11

An exclusive SLLC acts as a victim cache of the private caches, storing their evicted

blocks. Some recent AMD and Intel CMPs use exclusive or partially exclusive SLLCs

(Conway et al., 2010; Clark, 2016; Kanter, 2017). The aggregate on-chip capacity of

private caches increases with the number of cores, thus making exclusive hierarchies

more appealing than inclusive ones. Over the next decades, we can expect many-core

designs with more cores within the chip, and SLLCs not much larger than the current ones

(Lotfi-Kamran et al., 2012). Therefore, using an inclusive cache will be even more

inefficient and, unless there are drastic changes in the basic design of the memory

hierarchy, the usefulness of exclusive SLLCs will grow in the future (Jaleel et al., 2015).

This chapter focuses on enhancing the efficiency and performance of an exclusive SLLC

in a chip multiprocessor.

The insertion policy of a replacement algorithm determines the position of incoming

blocks in the replacement list. Several studies show the inefficiency of conventional

insertions policies for SLLCs and propose inserting new blocks either with an intermediate

priority (Jaleel et al., 2010b), or with the lowest priority within their cache set (Michaud,

2010; Qureshi et al., 2007). Alternatively, some incoming blocks could be selected to not

be stored (be bypassed) in the SLLC, if their computed priority is lower than the minimum

in the set (Gao & Wilkerson, 2010; Khan et al., 2010). Throughout this dissertation, we use

the expressions “content selection policy” or “block selection policy” to refer to the part of

the insertion policy that decides whether a new block has to be stored in the SLLC or

bypassed. Exclusive caches offer the opportunity to implement a cache bypass

mechanism with low complexity, in contrast to inclusive hierarchies. Bypassing a block

evicted from a private cache means writing it directly into memory if dirty or discarding it if

clean. Bypassed blocks do not affect the state of the SLLC.

Our proposal is a content selection mechanism that implements a new policy to select

which blocks enter the SLLC and which ones bypass it. Specifically, we propose to take

advantage of the reuse locality existing in the stream of requests to the SLLC. A block is

said to have reuse locality if it has been referenced at least twice. A block with reuse locality

is more likely to be accessed in the near future (Albericio et al., 2013a). Our mechanism

prevents the insertion of many useless blocks in the SLLC. It is also an efficient solution to

reduce traffic from private caches to the SLLC, which is one of the drawbacks of exclusive

designs.

12

After an in-depth analysis of previous proposals that exploit reuse locality, we have

identified three aspects where there is still room for improvement:

• Most of them predict reuse by linking it with a cache block feature, such as the

instruction that brought the block into the SLLC or the memory area the block

belongs to. The accuracy of these predictors is usually low.

• Most proposals detect reuse by keeping track of past accesses in a store

embedded into the SLLC. In such proposals, the size of the SLLC restricts the

number of detected blocks. They effectively lengthen the life of the blocks

flagged as reused in the SLLC, but they are not able to detect further blocks.

• As far as we know, global thrashing may appear in all of them, since the reuse

detection mechanism is shared among all the threads running on the CMP. A

thread bringing too many blocks in the on-chip hierarchy can prematurely

replace existing data from other applications, worsening their reuse detection.

The aim of our proposal is to fill up these gaps. To achieve this, we monitor blocks

evicted from private L2 caches, by means of a specialized mechanism that remembers

addresses of the recently evicted blocks. This mechanism, called hereafter the Reuse

Detector or ReD, detects which blocks of those evicted from L2 do not have reuse, and

avoids inserting them into the SLLC. Clean blocks are discarded, while dirty blocks are

sent directly to main memory. ReD is a separate private hardware near each L2 cache,

sized and organized regardless of the SLLC configuration.

We evaluate ReD using a set of multiprogrammed workloads running on a chip

multiprocessor with eight cores and a three-level cache hierarchy. Results show that ReD

enhances performance, above other recent proposals such as CHAR (Chaudhuri et al.,

2012), Reuse Cache (Albericio et al., 2013b), and EAF (Seshadri et al., 2012).

The chapter is structured as follows. Section 2.2 explains the motivation. Section 2.3

describes ReD in detail. Section 2.4 gives insight into the ReD operation. Section 2.5

details the methodology used, including the experimental environment and the

configuration of the simulated systems. Section 2.6 presents and analyzes results, and

compares them against other relevant proposals. Section 2.7 explores the trade-offs in the

design of ReD. Section 2.8 reviews the state of the art in the matter. Finally, in Section 2.9

we summarize our conclusions.

13

2.2 MOTIVATION

2.2.1 Problem analysis

Several studies have shown that, in a memory hierarchy, most of the blocks have

already received all accesses when they are evicted from the caches close to the

processor. Caches that are further away from the processor are used inefficiently because

the stream of references that reaches them has very little temporal locality. Instead, these

references show reuse locality. The reuse locality property has been empirically proved in

several works (Gaur et al., 2011; Chaudhuri et al., 2012; Albericio et al., 2013a; Albericio

et al., 2013b). It can be stated as follows: lines accessed at least twice tend to be reused

many times in the near future.

 We have conducted an experiment to quantify the number of blocks with reuse and the

amount of reuse. Figure 2.1 plots a classification of the blocks evicted by an exclusive

SLLC depending on the number of SLLC accesses that each block registered during their

stay in the on-chip caches. Each block is classified according to whether it has received a

single access (U), two accesses (R, reuse), or more than two accesses (M, multiple reuse).

The average number of reuses for each M block is shown on top of the bars. The figure

shows the distribution for eight applications running together in an example mix. The labels

on the X axis indicate the names of the applications. Details about the baseline system are

provided in Section 2.3.1, and the experimental setup is described in Section 2.5.

Figure 2.1: fraction of blocks evicted from the SLLC cache, in an example mix, according to the number of accesses
received before its eviction: (U) one access, (R) two accesses, and (M) three or more accesses. The labels on the X
axis indicate the name of the applications. Figures on top of each bar show the average number of reuses for an M

block.

On average, 85% of the blocks do not receive any hit in the SLLC (U). These blocks

could bypass the SLLC without loss of performance. Blocks with only one reuse (R) are

0

0.2

0.4

0.6

0.8

1

astar bwaves dealII gobmk milc omnetpp soplex wrf MIX

Fr
ac

tio
n

of
 re

pl
ac

em
en

ts

M

R

U

6.0 73.6 6.6 14.3 56.3 21.5 5.8 11.4 13.0

14

4% of the total, and those with more reuses (M) are 11%. For each block classified as M,

there are 13.0 reuses on average. A content selection policy that only stored blocks with

reuse (at least two accesses, R + M) would keep the small set of blocks that produces

most hits. Furthermore, this policy would prevent the storage in the SLLC of the large set

of U blocks, reducing the likelihood of M blocks being replaced. Our proposal is a

mechanism that detects the second use of a block to classify it as reused, and only stores

these reused blocks in the SLLC.

2.2.2 Detector design

We have analyzed previous mechanisms designed to classify blocks as reused for an

SLLC and have identified three aspects where they could be improved:

Prediction accuracy. Most works predict reuse by linking it with some cache block

feature, such as the instruction that brought the block into the SLLC or the memory area

the block belongs to (Qureshi et al., 2007; Jaleel et al., 2010b; Wu et al., 2011; Gaur et al.,

2011; Chaudhuri et al., 2012; Li et al., 2012). The accuracy of these predictors is limited.

As an example, a mechanism that associates SLLC reuse with PC would only be accurate

if most blocks brought by each PC present the same behavior, whether having reuse in

the SLLC or not. However, accuracy would drop if some blocks brought by a PC have

reuse in the SLLC, but others do not. Our proposal relies on detection instead of prediction

of the reuse locality. Our mechanism keeps the addresses of all blocks evicted from the

private caches during a certain time window (reuse detection window). The eviction from

private caches of a block whose address is already stored is a true indicator of reuse

locality, and thus the block is tagged as such. In Section 2.6 we provide results to test the

accuracy of our proposal against CHAR, a state-of-the-art predictor (Chaudhuri et al.,

2012).

Thread-global detector hardware. All the previous proposals have in common an

important constraint: their classification hardware is shared among all threads running on

the CMP. A thread delivering lots of misses will cause premature evictions of addresses

previously inserted into the detector by other threads, restricting the detector’s ability to

discover more reuse for those other threads. In other words, a thread missing a lot in its

private caches shrinks the reuse detection window of the remainder applications. In fact,

these mechanisms reproduce in the detector the thrashing problem they try to avoid in the

SLLC. To overcome this, we propose implementing reuse detectors that are private to

15

each processing core. Each detector is placed next to the private L2 cache, and

remembers the addresses of all blocks evicted only by its associated L2 cache. In Section

2.6 we provide results to compare the amount of reuse detected by our proposal versus a

global detector.

Size of the detector. A larger detector size allows it to remember more blocks for

longer, thereby increasing the opportunity to classify more blocks as reused. Most

previously proposed techniques track reuse patterns using the SLLC (Gaur et al., 2011;

Chaudhuri et al., 2012; Albericio et al., 2013a; Gao & Wilkerson, 2010; Khan et al., 2012;

Wu et al., 2011; Li et al., 2012). In these proposals, the SLLC size defines the size of the

detector and, consequently, this detector is not able to discover more reuse than an LRU-

managed SLLC of the same size would do (Mattson et al., 1970). In other words, blocks

categorized as reused do not increase in number. In fact, increasing the lifespan of reused

blocks indirectly shortens the life for those blocks that have not yet shown reuse, due to

the capacity limit. This leads to a reduction in the detection window size relative to a cache

with an LRU replacement policy. Our proposal aims to increase the number of blocks

detected as reused. This requires a larger detection window. To achieve this, we include

an additional store that is able to remember more block addresses than the SLLC can

keep. In Section 2.6 we provide results that show the amount of reuse detected by our

proposal with detection windows of different sizes.

ReD is an efficient content selection mechanism that detects with high accuracy when

a block has been reused, and only stores these reused blocks in the SLLC. This removal

of unused blocks enables a SLLC keeping more blocks with reuse and for longer time.

Compared with previous proposals that also exploit reuse locality, ReD is more accurate

detecting reused blocks, permits a greater visibility window, and does not suffer from global

thrashing. In fact, among all those proposals, ReD is the only one that manages to have

on average more alive than dead blocks in the SLLC. The use of a private and separate

store makes the SLLC replacement policy not adversely affect the detector efficiency, so

ReD can be implemented in an SLLC managed with any replacement policy. ReD is

designed for exclusive SLLCs and chip multiprocessor systems, turning out to be a bypass

mechanism that is simple and easy to implement.

16

2.3 DESIGN AND IMPLEMENTATION OF ReD

2.3.1 Baseline

The baseline system is a three-level cache hierarchy consisting of an SLLC whose

contents are managed in exclusion with respect to the contents of two-level private caches,

which are inclusive. Coherence is kept by means of a directory that holds, for each block

in the hierarchy, both its status and precise location, which can be one or several private

caches or the SLLC.

Blocks coming from main memory are sent directly to the requesting L2 cache.

Eventually, when a block is evicted from L2 it is sent to the SLLC. From here on, either the

block is requested again from any L2 cache, then being sent and invalidated in the SLLC,

or it is replaced by another block that needs room for insertion. If a block placed in an L2

cache is requested by another L2 cache, the directory detects this situation, and the block

is retrieved from the former to be delivered to the latter. Shared blocks are inserted in the

SLLC only when the last copy is evicted from the L2 caches.

It is possible to implement ReD with any SLLC replacement policy. We select Trip Count

and Age (TC-AGE) for our baseline design because this policy has proved to be very

efficient in exclusive SLLCs (Gaur et al., 2011). It is equivalent to Static Re-Reference

Interval Prediction (SRRIP) for inclusive caches (Jaleel et al., 2010b). It uses two bits to

store the age of each cache line. The age is assigned when the block is inserted into the

SLLC: if the block has previously received a hit in the SLLC, it is inserted with age 3,

otherwise it is tagged with age 1. Each block in the private L2 cache stores one additional

trip count bit to remember if it has had a hit in the SLLC (the TC bit). This bit is also sent to

the SLLC with the block when it is evicted from the L2 cache. TC-AGE selects a random

victim among those blocks in the younger group (age 0). If there is no block with age 0 in

the cache set, the age of all blocks is decremented, and the victim selection restarts. In

summary, TC-AGE assigns older age, and therefore less likelihood of replacement, to

blocks that have been reused.

2.3.2 Adding the Reuse Detector

We propose placing our Reuse Detector next to every L2 cache, in the path from each

L2 cache to the SLLC. ReD receives the addresses of every block evicted from the

17

corresponding L2 cache, see Figure 2.2. Being located outside the critical path from the

SLLC to L2 caches, ReD does not affect the SLLC read latency. Instead, it slightly

increases the time that a block evicted from an L2 cache takes to be sent to the SLLC or

main memory.

L2 cache Reuse
Detector

Evicted
blocks Exclusive

SLLC

Selected
blocks

Figure 2.2: placement of the Reuse Detector. Every private L2 cache has one ReD.

When a block is evicted from the L2 cache, ReD decides between sending the block to

the SLLC and bypassing it. The decision is driven by the block reuse history: if a block has

a single use, it is bypassed. If it has one or more reuses, it is stored in the SLLC.

A block is classified as reused if it satisfies one of these conditions:

• The detector remembers the block address. ReD includes a buffer called the

Address Reuse Table (ART), which stores addresses of blocks coming from L2

evictions. By checking if an address is present in the ART, ReD detects whether

it is the first time the block is evicted from L2 or it has already experienced a

previous eviction. A first eviction implies no reuse detected, whereas

subsequent evictions indicate reuse.

• The block was supplied to the private cache either by the SLLC or by another

private cache. We add a bit to each L2 cache block, called the Reuse bit, to

record this condition.

The first condition is employed to detect the initial reuse of a block, whereas both

conditions are active when identifying subsequent reuses. Thus, the primary objective of

the ART is detecting the first reuse of a block. Secondarily, it detects subsequent reuses if

the block has been evicted from both private caches and the SLLC.

The ART is structured as a set associative buffer, and its capacity, associativity, and

replacement policy are design parameters. We define ReD capacity as the number of

tracked evicted blocks times block size. For instance, a ReD able to track 1024 blocks of

64B has a capacity of 64KB. The ReD capacity is a metric that allows us to measure its

tracking potential relative to the SLLC size. Capacity is a key parameter, since an effective

18

reuse detection requires storing a significant number of addresses between consecutive

L2 evictions of a given block.

Neither the SLLC nor the directory require structural changes to be adapted to the new

mechanism. To consider a possible bypass action, the coherence protocol and control

logic will need to be adapted. In addition, our mechanism requires to add the Reuse bit to

each L2 cache block.

2.3.3 ReD operation

Figure 2.3 shows a diagram illustrating the operation of ReD. On L2 evictions the Reuse

bit is first checked. If the evicted block came from the SLLC or another private cache, it is

stored again in the SLLC, without looking up the ART (1). Otherwise, if the evicted block

came from main memory, its address is looked up in the ART (2). A miss means no reuse,

so the block is bypassed, but the address is added to the ART (3). A hit means reuse, so

the block is sent to the SLLC (4). Bypassed blocks send a control message to update the

directory (6). Then, clean blocks are discarded, and dirty blocks are written to DRAM (7).

L2 cache

SLLC

(1) comes from a previous hit in SLLC or
other L2 cache

Address
Reuse Table

(ART)

(2) comes from
main memory

Address search

(4) Address is present

(3) Address is not present

Insert address

(5) Exception, low
priority

(6)

Directory

(7) To DRAMBypass

Figure 2.3: Reuse Detector operation.

As an exception, a small fraction of bypassed blocks is sent to the SLLC with “low

insertion priority” (5). This means the SLLC will store them only if there are free ways in

the corresponding set; moreover, those blocks will be inserted with the highest

replacement priority. This exceptional filling policy comes from the observation that

exclusive SLLCs experiencing at the same time many hits and bypasses may present

many empty ways. Experimentation has shown us that diverting to the SLLC one of every

32 bypassed blocks takes advantage of the free space and increases performance.

19

Figure 2.4 shows two block diagrams with the algorithms in operation. On the left we

show the steps followed when a block is evicted from an L2 cache, and on the right, those

followed when a core requests a block, detailing the management of the Reuse bit.

Block eviction

from L2 cache

Is Reuse

bit set?

y

n

Is tag in

ART?

y

n

Store tag in ART

Exception?
y

n

Update Directory

Store block in

SLLC

Is block Dirty?
y

n
Write block to

main memoryDiscard

Update Directory

Request from a

core to its L2 cache

Reuse bit not

modified.

Send to L1 and

core

Forward access to

SLLC

Access directory

Is copy in any

private cache?Evict from SLLC

Set Reuse bit

Forward access

to main memory

Forward access

to private cache

Send to L2 and L1

Is hit?
n

y

n

y

Is hit?
y

n

Figure 2.4: detail of the algorithms in operation. Left: block eviction from L2 cache (non-shared block). Right: request

from a core to its L2 cache.

2.3.4 Example

To clarify the operation of ReD, this subsection presents a straightforward example

illustrating how five memory blocks (A, B, C, D, and E) move through the various cache

levels under a specific access pattern. In this example, we consider a multiprocessor

system with two processing cores (⁠𝐶𝑜𝑟𝑒0 and 𝐶𝑜𝑟𝑒1 ⁠) with private first-level caches (⁠𝐿10

and 𝐿11), an SLLC, and the corresponding ARTs between both cache levels. We assume

a simplified configuration in which: (1) the L1 caches are direct-mapped, the ARTs are 2-

way set-associative and the SLLC is 4-way set-associative; (2) all memory blocks map to

the same L1 frame and to the same ART and SLLC set; and (3) all caches and ARTs are

initially empty. Figure 2.5 details the access sequence in our example and shows the

contents of the memory hierarchy after each access. Note that, for each block X in the

private caches, we indicate the dirty and reuse bits in the form 𝑋𝑑,𝑟, whereas for blocks in

the SLLC, only the dirty bit is shown, as 𝑋𝑑.

20

The access sequence and the corresponding memory hierarchy behavior are as

follows:

1. 𝐶𝑜𝑟𝑒0 requests a word within block A for reading. The access misses in 𝐿10 ⁠ and is

forwarded to the SLLC. Since the access also misses in the SLLC and block A is not

present in any other private cache, the request is forwarded to DRAM. As shown in

Figure 2.4, block A is then inserted into 𝐿10 with its reuse bit unset, and the requested

word is delivered to 𝐶𝑜𝑟𝑒0.

2. 𝐶𝑜𝑟𝑒1 requests a word within block B for reading. The access misses in both 𝐿11 and

the SLLC, and since the block is not present in any other private cache, the request

is forwarded to DRAM. As shown in Figure 2.4, block B is inserted into 𝐿11 with its

reuse bit unset, and the requested word is returned to 𝐶𝑜𝑟𝑒1.

3. 𝐶𝑜𝑟𝑒1 requests a word within block C for writing. The access misses in both 𝐿11 and

the SLLC, and since the block is not present in any other private cache, the request

is forwarded to DRAM. Block C is inserted into 𝐿11, and its dirty bit is set after the word

is written. Block C replaces block B. Since block B’s reuse bit was unset and its tag

was not present in⁠ 𝐴𝑅𝑇1, the tag is stored in 𝐴𝑅𝑇1, as shown in Figure 2.4. Given that

block B is clean and not reused, it is not inserted into the SLLC but just discarded.

4. 𝐶𝑜𝑟𝑒1 requests a word within block B for reading. The access misses in both 𝐿11 and

the SLLC, and since the block is not present in any other private cache, the request

is forwarded to DRAM. Block B is inserted into 𝐿11, replacing block C. Since block C’s

reuse bit was unset and its tag was not present in⁠ 𝐴𝑅𝑇1, the tag is stored in 𝐴𝑅𝑇1.

Given that block C is dirty and not reused, it is not inserted into the SLLC but directly

updated in DRAM (noted as C’).

5. 𝐶𝑜𝑟𝑒1 requests a word within block D for reading. The access misses in both 𝐿11 and

the SLLC, and since the block is not present in any other private cache, the request

is forwarded to DRAM. Block D is inserted into 𝐿11, replacing block B. Since block B’s

reuse bit was unset but its tag was present in 𝐴𝑅𝑇1 ⁠, block B is inserted into the SLLC.

6. 𝐶𝑜𝑟𝑒1 requests a word within block B for reading. The access misses in 𝐿11 and hits

in the SLLC. Block B is evicted from the SLLC and inserted into 𝐿11 with its reuse bit

set, as it comes from the SLLC. This insertion replaces block D. Since block D’s reuse

bit was unset and its tag was not present in ⁠ 𝐴𝑅𝑇1, the tag is stored in 𝐴𝑅𝑇1 replacing

21

the tag of block B. Given that block D is clean and not reused, it is not inserted into

the SLLC but discarded.

7. 𝐶𝑜𝑟𝑒1 requests a word within block E for reading. The access misses in both 𝐿11 and

the SLLC, and since the block is not present in any other private cache, the request

is forwarded to DRAM. Block E is inserted into 𝐿11, replacing block B. Since block B’s

reuse bit was set, it is inserted into the SLLC, as shown in Figure 2.4.

8. 𝐶𝑜𝑟𝑒1 requests a word within block A for reading. The access misses in both 𝐿11 and

the SLLC. However, the coherency mechanism detects that the block is present in

𝐿10 ⁠, so the request is forwarded there. As shown in Figure 2.4, the block is inserted

into 𝐿11 and the reuse bit is set, as this access is recognized as a reuse.

Figure 2.5: example illustrating the operation of ReD.

A0,0L10:

ART0:

1st
access

Core 0
Read A

L11:

ART1:

SLLC:

DRAM: A B C D E

A0,0L10:

ART0:

2nd
access

Core 1
Read B

B0,0L11:

ART1:

SLLC:

DRAM: A B C D E

A0,0L10:

ART0:

3rd
access

Core 1
Write C

C0,1L11:

ART1: B

SLLC:

DRAM: A B C D E

A0,0L10:

ART0:

4th
access

Core 1
Read B

B0,0L11:

ART1: B C

SLLC:

DRAM: A B C’ D E

A0,0L10:

ART0:

5th
access

Core 1
Read D

D0,0L11:

ART1: B C

SLLC: B0

DRAM: A B C’ D E

A0,0L10:

ART0:

6th
access

Core 1
Read B

B1,0L11:

ART1: D C

SLLC:

DRAM: A B C’ D E

A0,0L10:

ART0:

7th
access

Core 1
Read E

E0,0L11:

ART1: D C

SLLC: B0

DRAM: A B C’ D E

A1,0L10:

ART0:

8th
access

Core 1
Read A

A1,0L11:

ART1: D E

SLLC: B0

DRAM: A B C’ D E

22

2.3.5 Implementation details

We implement the ART as a set associative cache, with entries containing tags for

addresses, valid bits, and some bits for the replacement policy. We will use a 16-way ART;

higher associativities lead to hardly any performance improvements.

Our experiments indicate that using a First-In First-Out (FIFO) replacement policy to

manage the ART performs adequately. FIFO replacement means that the age of an

address relates to its insertion (first use) and not to its last access. This is in line with the

ART main goal of finding out the first reuse of a block.

When ReD is implemented on an SLLC with TC-AGE replacement, only one bit is

needed in the L2 cache to map the Reuse bit and the TC bit. So, in this case, our

mechanism does not have any overhead in the L2 caches. From the TC-AGE perspective,

this bit maintains the same meaning: it remembers whether the block came from the SLLC

or main memory. That is, when blocks are sent to the SLLC, it is reset when ReD discovers

a first reuse (second time a block is evicted from L2); it is set in the subsequent L2 evictions

(a block has already received at least three accesses). Therefore, TC-AGE is driven to

give higher replacement priority in the SLLC to the blocks having one reuse, and less to

those having multiple reuses.

2.3.6 Hardware costs

In this section, we calculate the total number of bits required to implement the ART of

ReD, that we attach to each L2 cache.

The hardware cost of ReD depends primarily on its capacity. By increasing capacity,

ReD can track blocks that have been evicted from the L2 cache longer ago, that is, it can

detect more distant reuses. This is beneficial until it gets to a point where it detects more

blocks with reuse than those the SLLC can effectively store, and performance starts to

decline. The optimal performance for our baseline system with eight cores and an 8 MB

SLLC (see details in Section 2.5.2) is obtained with a ReD capacity of 2 MB (see study in

Section 2.7.1).

For a given capacity, the cost depends on how block addresses are stored in the ART.

A naive implementation that stores all individual block addresses and includes the whole

23

tag would require a significant area. For example, for a ReD capacity of 2 MB, and

assuming a physical address width of 40 bits, it would require 2K 16-way sets, with 24 bits

(23 tag bits and 1 valid bit) per entry, and four FIFO bits per set. The total size for the eight

cores would be 776 KB, a 9.5% of an 8 MB SLLC.

 To reduce the ART area, we propose storing sector tags and compressing them. A

sector is a set of consecutive blocks aligned to the sector size, a power of two. As our

design requires per-block reuse tracking, every sector tag needs as many valid bits as the

number of blocks a sector has. For example, a ReD sector size of four blocks, requires

entries with four valid bits. As some blocks of a sector may not be referenced at all, the

performance for a given ReD capacity decreases when the sector size increases.

Therefore, the right sector size is a trade-off between area and performance.

Compression aims to shorten the tag size while maintaining good ability to distinguish

between sectors. To compress we propose the following bit folding: let t and c be the

number of bits of the entire and compressed tags, respectively. The t bits are split into

consecutive pieces of size c, filling with zeroes if the last piece does not consist of c bits.

Then, the compressed tag results from an XOR operation to all pieces. False positives

may appear by using compression, as several sectors share the same compressed tag.

Therefore, it might happen that blocks without reuse get inserted into the SLLC. Such

wrong insertion is not a functional error, but can hurt performance. So, the right number of

bits is also a trade-off between area and performance.

After trading off performance and cost (see details in Section 2.7), the chosen

configuration has a capacity of 2MB, sector size of two blocks and 10-bit tags. This

balanced configuration is the one used in our experiments unless stated otherwise. It

requires 12 bits (10 tag bits and 2 valid bits) per entry, and four FIFO bits per set. The

number of entries for each ReD is 16K, which means 24.5 KB per core. The total size for

the eight cores is 196 KB, a 2.3% of an 8 MB SLLC. This is a 74.7% reduction compared

to the initial size without cost optimizations.

The Reuse bits in the L2 caches do not require additional area if ReD is implemented

on top of our baseline design, because they are the same TC bits used by TC-AGE. If ReD

is implemented using an alternative replacement policy, 4 KB should be added (1 bit for

each of the 4K entries in our eight 256KB L2 caches).

24

2.4 ReD OPERATION INSIGHT

In this section we use an example workload to analyze in depth the ReD operation, and

how it is able to reduce the SLLC miss rate.

We plot how ReD classifies the blocks it receives, into five classes: first use (U), first

reuse (R), multiple reuse detected only by ReD (MD)2, multiple reuse detected only

because the block comes from the SLLC or another private cache (MC), and multiple reuse

detected by both mechanisms (MA). Figure 2.6 shows the distribution for the eight

applications of an example mix.

A L2 eviction of a block classified as U causes an SLLC bypass, while an eviction of a

block classified as any other class causes the insertion of the block into the SLLC. Evictions

of blocks classified as U, R or MD denote that the block comes originally from main

memory, while blocks classified as MC and MA denote a previous hit in the SLLC or in

another private cache.

Figure 2.6: fraction of blocks evicted from L2 caches, in an example mix, categorized from the ReD standpoint

according to the type of reuse in: (U) first use, (R) first reuse, (MD) multiple reuse detected only by ReD, (MC) multiple
reuse detected only because the block comes from the SLLC or another private cache, and (MA) multiple reuse

detected by any of them.

As shown, the amount of bypass varies from one program to another. In bwaves and

milc, more than 91% of blocks evicted from L2 show a single use, and are bypassed. This

is consistent with the measurements presented later in Table 2.1, which show that the

2 Although the proposed ReD hardware cannot distinguish between the R and MD classes, they were
separated in the figure to illustrate that both reuse detection mechanisms are complementary.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

astar bwaves dealII gobmk milc omnetpp soplex wrf MIX

Fr
ac

tio
n

of
 b

lo
ck

s MA

MC

MD

R

U

25

SLLC miss rates for these programs are very high. At the opposite extreme, in astar,

omnetpp and wrf less than 2% of the blocks evicted from the private caches do not show

reuse, so there is almost no bypass for these applications. The rest of the programs

present intermediate figures: dealII, gobmk and soplex, with bypass levels of 13%, 7% and

40%, respectively.

The number of blocks that are sent to the SLLC after detecting their first reuse (R class)

varies between 0.2% and 5.5% for omnetpp and dealII, respectively, with an average of

1.0%. These few blocks showing a first reuse are accessed later multiple times (MD, MC,

and MA classes). On average, for each block classified as R (first reuse), ReD detects 61

additional reuses.

Blocks classified as MD have been previously detected by ReD, classified as reused

and stored in the SLLC, but they have been prematurely evicted from there. As ReD has

a detection window that is larger than the SLLC, it can detect this situation and re-insert

them into the SLLC. This occurs on average 13% of the times a multiple reuse is detected.

The bypass of blocks without reuse in bwaves, milc, dealII and soplex allows the SLLC

to better preserve the useful blocks from these programs, because they will not be evicted

as often. Moreover, other programs of the mix will also benefit from this.

Figure 2.7 shows the average fraction of the SLLC occupied by each program, for the

baseline system and for ReD (left). It also shows the SLLC misses per instruction (MPI)

reduction of each application with respect to the baseline (right). Bwaves and milc take

much less SLLC space with ReD. However, the block selection done by ReD does not

harm their performance, since both maintain a miss rate similar to that of the baseline

(0.9% worse in bwaves). For the rest of the programs, having more space in the SLLC and

a better block selection mechanism allows them to keep more blocks with reuse and for a

longer time, resulting in reductions in the SLLC MPI between 30.4% and 97.3% for soplex

and omnetpp, respectively. For the whole mix3, MPI is reduced by 24.0%, and the

normalized hIPC is 1.28.

3 If we order our 100 workloads, described in Section 2.5, from higher to lower normalized hIPC, this example
mix is in position number 8.

26

Figure 2.7. Left: fraction of the SLLC occupied by blocks of each program in the example mix. We take data every

million cycles and show the average. Right: SLLC MPI reduction of ReD with respect to the base system.

2.5 EXPERIMENTAL SETUP

This section details the experimental framework and the configuration of the baseline

system we use to evaluate the proposal.

2.5.1 The experimental framework

As a simulation engine we use the Simics full-system simulator (Magnusson et al.,

2002), and the plugins Ruby and Opal from the GEMS Multifacet toolset (Martin et al.,

2005) and DRAMSim2 from the University of Maryland College Park (Rosenfeld et al.,

2011). Ruby is used to accurately model the memory hierarchy of the CMP system:

caches, directory, coherence protocol, on-chip network, buffering, and blocking of

components. Opal (also known as TFSim) is used to model in detail a superscalar out-of-

order processor. DRAMSim2 is used to model a cycle-accurate DDR3 memory system.

Our Simics platform simulates SPARC cores managed by Solaris 10, and runs a

multiprogrammed workload made of applications from the CPU 2006 suite of the Standard

Performance Evaluation Corporation (SPEC) (Henning, 2006). For our system with 8

processors, we have generated a set of 100 mixes, composed by random combinations of

8 benchmarks each, taken from among all the 29 included in the SPEC CPU 2006

benchmark suite. Each program appears between 18 and 41 times, this representing an

average of 27.6 times with a standard deviation of 6.1.

To identify initialization phases, we run until completion all the SPARC binaries, with

the reference inputs, on a real machine. During the execution we use hardware counters

to detect the end of the initialization phase of each benchmark. For every mix, we ensure

0 0.2 0.4 0.6 0.8 1

Base

With ReD

Fraction of SLLC space occupied

astar bwaves dealII gobmk milc omnetpp soplex wrf

-20%
0%

20%
40%
60%
80%

100%

R
ed

uc
tio

n
in

 M
PI

27

that no application was in its initialization phase by fast-forwarding the simulation until all

the initialization phases are finished. Starting at this point, we first run 300 million cycles to

warm up the memory system, and then collect data statistics for the next 700 million cycles.

The first three columns in Table 2.1 show the average number of misses per kilo-

instruction (MPKI) in all three levels of the memory hierarchy. These figures are averages

for each benchmark in all mixes in which appears, and when the eight benchmarks in each

mix run together on the base system. The last column shows average multiprocessor

instructions per cycle (IPC).

Benchmark L1 L2 SLLC IPC Benchmark L1 L2 SLLC IPC

astar 7.5 1.1 0.7 1.17 libquantum 45.8 33.2 32.2 0.28
bwaves 24.5 21.1 20.1 0.66 mcf 64.9 36.0 18.9 0.18
bzip2 8.4 3.9 0.9 1.30 milc 24.6 23.5 22.0 0.23
cactusADM 20.8 11.4 4.9 0.64 namd 1.7 0.2 0.2 3.16
calculix 8.5 4.3 1.5 1.61 omnetpp 12.6 9.2 2.2 0.63
dealII 1.6 0.5 0.3 2.69 perlbench 10.2 1.8 0.8 1.37
gamess 6.7 1.0 0.6 2.60 povray 11.5 0.2 0.1 2.65
gcc 22 6.4 2.1 0.78 sjeng 6.9 0.8 0.5 1.28
gemsFDTD 42.7 29.7 22.8 0.45 soplex 8.9 7.1 3.1 0.63
gobmk 13.2 1.1 0.3 1.23 sphinx3 18.8 14.3 11.7 0.26
gromacs 11.7 3.0 1.2 1.60 tonto 6.7 1.3 0.5 2.18
hmmer 3.3 2.4 0.2 2.50 wrf 14.3 8.9 1.5 2.26
h264ref 4.2 1.4 0.7 1.36 xalancbmk 15.1 8.7 2.8 0.68
lbm 65.4 38.6 36.7 0.21 zeusmp 32.3 8.7 7.2 0.87
leslie3d 40.4 23.2 17.9 0.58

Table 2.1. L1, L2 and SLLC: average MPKI at each cache level of the base system (exclusive
SLLC with 8 MB and TC-AGE replacement policy). IPC: average multiprocessor IPC.

2.5.2 Configuration of the baseline system

We model a base system of eight superscalar processors with speculative out-of-order

execution. Each processor has a 4-wide pipeline of 18 stages and 10 functional units.

Branch prediction uses a Yet Another Global Scheme (YAGS) structure (Eden & Mudge,

1998) with a direction pattern history table (PHT) of 4K entries. Table 2.2 summarizes all

the parameters of the simulated processor.

Base architecture SPARC v9
Cores 8, 4-way superscalar, 4 GHz

Pipeline 18 stages: 4 fetch, 4 decode, 4 dispatch/read, 1 (>4) execute, 3
memory, 2 commit

ROB size 128 entries

Register Files int: 160 (logical) + 128 (rename)
FP: 64 (logical) + 128 (rename)

Functional units 4 int, 4 FP, 2 load/store
Branch prediction YAGS cache structure with a PHT of 4,096 entries

Table 2.2: processor parameters

28

Each processor core has a two-level private cache hierarchy, being the exclusive third

and last level cache shared among all the cores. The SLLC has a total size of 8MB, and is

split into four banks that are cache line interleaved (64B).

A crossbar network connects the eight processors to the four SLLC banks. The Dual

Data Rate version 3 (DDR3) memory system is accessed through two memory channels

running at a frequency of 667 MHz (DDR3-1333). Table 2.3 shows all the details of the

cache hierarchy we simulate.

Private cache L1
Instruction/Data (I/D)

32 KB, 4-way, LRU replacement, block size of 64 B,
3 cycles access latency

Private cache L2
unified

256 KB in inclusion with L1, 8-way, replacement LRU, block size of 64 B,
7 cycles access latency

Network Crossbar, 80 bits bus width, 5 cycles latency

Shared cache L3
(SLLC)

8 MB exclusive (4 banks of 2 MB each), block interleaving, block size of
64 B. Each bank: 16-way, TC-AGE replacement with 2 bits, 10 cycles
access latency, 32 demand miss status holding registers (MSHR)

DRAM
Device Micron 32M 8B x8, 2 channels, 2 ranks per channel, 8 devices
per rank, 8 GB total.

DRAM bus
2 channels at 667 MHz, Double Data Rate (DDR3-1333), 8 B bus width,
4 DRAM cycles/line, 24 processor cycles/line

Table 2.3: memory hierarchy parameters

2.5.3 Configuration of the evaluated proposal

Table 2.4 summarizes the configuration of ReD used in the subsequent performance

analysis. The reported values correspond to each individual ART. For more details, refer

to Section 2.3.

ReD capacity 2MB
Associativity 16-way
Replacement FIFO
Sector size 2 blocks
Tag size 10 bits
Number of sets 1,024
Number of entries 16,384

Table 2.4: ReD evaluation configuration

29

2.5.4 Performance metrics

Two performance metrics are mainly used: the harmonic mean of weighted IPCs (Luo

et al., 2001; Eyerman & Eeckhout, 2014) normalized to that of the base system

(normalized harmonic IPC or normalized hIPC) and the reduction in misses per instruction

against the base system (MPI reduction). Unless stated otherwise, figures show the

average of the results obtained for each of the 100 workloads.

For each mix, the normalized harmonic IPC for a proposal "PROP" is calculated as

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ℎ𝐼𝑃𝐶𝑃𝑅𝑂𝑃 =
𝐻𝑡(

𝐼𝑃𝐶𝑡
𝑃𝑅𝑂𝑃 𝑀𝑃

𝐼𝑃𝐶𝑡
𝐵𝐴𝑆𝐸 𝑆𝑃)

𝐻𝑡(
𝐼𝑃𝐶𝑡

𝐵𝐴𝑆𝐸 𝑀𝑃

𝐼𝑃𝐶𝑡
𝐵𝐴𝑆𝐸 𝑆𝑃)

 (2.1)

where 𝐼𝑃𝐶𝑡
PROP 𝑀𝑃 is the IPC obtained using PROP for processor t when run in the

multiprogrammed experiment, 𝐼𝑃𝐶𝑡
BASE 𝑀𝑃 is the IPC obtained using the base system for

processor t when run in the multiprogrammed experiment, 𝐼𝑃𝐶𝑡
BASE 𝑆𝑃 is the IPC obtained

using the base system for processor t when run alone on the system, and function H is the

harmonic mean, defined as

𝐻𝑡(𝑥) =
𝑡

∑
1

𝑥𝑡
𝑡

 (2.2)

The harmonic IPC metric is used because it incorporates a notion of fairness, in addition

to performance. This is because the harmonic mean tends to be lower when there is much

variance among the different weighted IPCs of each processor.

The reduction in misses per instruction is calculated as

1 −
∑ 𝑀𝑡

𝑃𝑅𝑂𝑃
𝑡

∑ 𝑀𝑡
𝐵𝐴𝑆𝐸

𝑡
∙

∑ 𝐼𝑡
𝐵𝐴𝑆𝐸

𝑡

∑ 𝐼𝑡
𝑃𝑅𝑂𝑃

𝑡
 (2.3)

where 𝑀𝑇 is the number of SLLC misses counted during simulation for processor t, and

𝐼𝑇 is the number of instructions executed by processor t.

2.6 PERFORMANCE ANALYSIS OF ReD

In this section we first present our performance results and compare ReD with state-of-

the-art proposals. Next, we present data on the fraction of alive blocks in the SLLC

achieved by each proposal. In Section 2.6.3 we analyze the IPC results of our proposal

30

broken down by application and mix. Next, we show the extent of content selection

performed by ReD. In Section 2.6.5 we present results on single-processor workloads.

Next, we analyze the efficiency of our detector and compare it to the other mechanisms.

In Section 2.6.7 we analyze ReD performance using different SLLC sizes, and using an

alternative replacement policy. Finally, we provide additional performance metrics.

2.6.1 Results and comparison with other proposals

Figure 2.8 plots normalized hIPC and MPI reduction against the baseline obtained by

ReD. Compared to the baseline, it reduces MPI by 10.1% and increases harmonic IPC by

9.5%.

Hereunder we compare the performance of our mechanism with three other recent

proposals, also shown in Figure 2.8: CHAR (Chaudhuri et al., 2012), Reuse Cache

(Albericio et al., 2013b) and EAF (Seshadri et al., 2012). We also compare it with a base

system with double the SLLC size, that is, 16 MB.

Comparison with CHAR. CHAR is a content selection proposal that bases the bypass

decision on the access pattern that a block has at all levels of the memory hierarchy. CHAR

was proposed both for inclusive and exclusive SLLCs. We use here the exclusive version.

ReD outperforms CHAR both in MPI reduction (10.1% vs. 4.3%) and normalized hIPC

(1.095 vs. 1.070). CHAR uses a predictor to foresee which blocks will show or not reuse.

In Section 2.6.6 we will show that the accuracy of predictor-based CHAR is lower than the

accuracy of our detector-based ReD.

Figure 2.8: normalized hIPC (left) and MPI reduction (right) compared to the base system with 8 MB, for five systems:

ReD (with the balanced configuration), CHAR, Evicted Address Filter, Reuse Cache (with RC-32/8 and NRR in tag
array), and a base system with double the SLLC size (16 MB). All are implemented on an exclusive SLLC with TC-AGE

in the data array.

1

1.02

1.04

1.06

1.08

1.1

1.12

CHAR Exc.
EAF

Exc. RC ReD BASE
16MB

N
or

m
al

iz
ed

 h
IP

C

0%

2%

4%

6%

8%

10%

12%

CHAR Exc.
EAF

Exc. RC ReD BASE
16MB

R
ed

uc
tio

n
in

 M
PI

31

Comparison with the Reuse Cache. The Reuse Cache is a content selection proposal

for an SLLC whose tag and data arrays are decoupled, and that stores data only of those

lines that have shown reuse. To be fair in the comparison, we have modelled a Reuse

Cache in which the data array works in exclusion with the private L2 caches. Our exclusive

Reuse Cache works as follows: each block in the L2 private caches includes a bit indicating

whether it should be inserted into the SLLC when evicted from L2 (bypass / no bypass).

On an SLLC miss (first block access), the block is sent from main memory to the L2 cache

indicating “bypass”, and the tag is inserted into the SLLC tag array. This allows subsequent

reuse to be detected. On a hit in the tag array of the SLLC that misses in the data array

(second block access) the block is sent from main memory to L2 cache indicating “no

bypass”. When the block is evicted again from L2, it is stored in the SLLC data array. In

subsequent accesses, which hit both in tag and data arrays, the block is sent to the private

L2 indicating “no bypass”, and is evicted from the SLLC data array. There are no changes

in the SLLC tag and data arrays.

We use an exclusive Reuse Cache with a data array of 8MB and a tag array equivalent

to 32MB. In our simulations, we found that this configuration offers the best performance

among designs with 8MB of data. TC-AGE is used as replacement policy in the data array.

As shown in Figure 2.8, ReD outperforms the Exclusive Reuse Cache both in MPI

reduction (10.1% vs. 4.5%) and normalized hIPC (1.095 vs. 1.038).

 The Reuse Cache employs a global reuse detector, whose effectiveness is hindered

by interference between the distinct applications. We analyze this effect in Section 2.6.6.

In addition, the Reuse Cache embeds the reuse detector into the SLLC tag array. This

increases the detector complexity, since each entry must keep the complete tag along with

coherency information, limiting the design opportunities.

Comparison with the Evicted-Address Filter. The Evicted-Address Filter Cache is

an SLLC that tracks the addresses of blocks that were recently evicted from the SLLC in

a structure called the Evicted-Address Filter (EAF). Missed blocks whose addresses are

present in the EAF are predicted to have high reuse, while the remaining blocks are

predicted to have low reuse. This prediction determines their insertion priority: blocks

predicted to have high reuse are inserted at the Most-Recently-Used (MRU) position,

whereas those predicted to have low reuse follow a bimodal insertion policy — inserted at

32

MRU with probability 1/64, and at Least-Recently-Used (LRU) otherwise. The EAF is

implemented using a Bloom filter (Bloom, 1970), which is cleared periodically.

Even though EAF is a replacement policy and not a content selection policy, we have

included it in our comparison because it also attaches a reuse detection mechanism. The

information ReD stores and acts upon is different, because it monitors blocks sent from L2

caches to the SLLC whereas EAF does it from the SLLC to main memory. EAF cannot be

used to implement a content selection policy, because it uses a Bloom filter to store the

reuse information. The filter is periodically cleared, which produces a loss of information

that leads to temporarily classify all blocks as not reused. This is beneficial when the

detector is used to adjust the replacement policy, as it is in the original publication and in

our setup. Conversely, it makes it unsuitable for use as a content selection mechanism, as

it would lead to not inserting any new blocks into the SLLC after the reset, for any

application, until the filter is adequately refilled.

To be fair in the comparison, we have modelled an EAF Cache in which the data array

works in exclusion with the private L2 caches. The L2 caches are also extended to store

the Reuse bit, which is sent to the SLLC on eviction. At the time the block enters into the

SLLC, that is, when it is evicted from an L2 cache, the Reuse bit is checked first. If it is set,

the block is inserted at the MRU position. If not, the EAF is checked, applying the described

policy. We store the SLLC MRU information using 2 bits per block, in line with the 2 bits

that we use for TC-AGE in our other models. Our experimental results show that for the

exclusive version a larger Bloom filter is required. We obtain the best results with a filter

25% larger than in the original publication. This is consistent with the increase in distinct

blocks in the whole cache subsystem due to the move from inclusion to exclusion, from 8

to 10 MB (eight cores with 256 KB of L2 cache each).

As shown in Figure 2.8, ReD outperforms the exclusive EAF Cache both in MPI

reduction (10.1% vs 2.7%) and normalized hIPC (1.095 vs. 1.032).

Comparison with a double-sized base system. Figure 2.8 plots normalized hIPC and

MPI reduction against the baseline obtained by ReD with an 8 MB SLLC, and by a base

system with a 16 MB SLLC (BASE 16MB).

ReD with an 8 MB SLLC achieves 87% of the MPI reduction (10.1% vs 11.6%) and

81% of the increase in normalized hIPC (1.095 vs 1.117) of the double-sized base system,

with only a 2.3% increase in SLLC space.

33

2.6.2 Alive and dead blocks

In this section we present the average number of alive blocks that the SLLC stores at

any given time. We define a block in the SLLC as alive at a given time if it receives a hit in

the future before its eviction. Conversely, a block is defined as dead at a given time if it

does not receive an additional hit before its eviction. Dead blocks waste storage.

Figure 2.9 plots these results for CHAR, exclusive EAF, exclusive Reuse Cache and

ReD. Additionally, we include the baseline configuration (labelled TC-AGE), and Not

Recently Filled (NRF) as the most basic replacement policy (NRF is analogous to Not

Recently Used or NRU in inclusive caches). For each workload, we take measures every

million cycles and calculate the average. We show the average over all our workloads.

Figure 2.9: average fraction of alive blocks present at any given moment in the SLLC, for different cache management

proposals, using an 8 MB SLLC.

As Figure 2.9 shows, when using the basic 1-bit NRF policy only 14.0% of the blocks

are alive on average. Our baseline configuration (2-bit TC-AGE) increases that figure up

to 20.4%. All other proposals, implemented on top of TC-AGE, improve the management

of the SLLC, increasing the fraction of alive blocks. ReD achieves the best results with

51.5% of alive blocks, being the only proposal that manages to have on average more

alive than dead blocks.

Comparing Figure 2.9 with previous Figure 2.8 (right), we realize that increasing

fractions of alive blocks correlates to a higher reduction in misses per instruction, albeit it

is not proportional. As ReD prioritizes multiple-reused blocks in the SLLC (see Section

2.3.5), it takes more advantage of the alive fraction, thus leading to a higher miss rate

reduction.

0%

10%

20%

30%

40%

50%

60%

CHAR Exc. EAF Exc. RC NRF ReD TC-AGE

Fr
ac

tio
n

of
 a

liv
e

bl
oc

ks

in
 th

e
SL

LC

34

2.6.3 Per-application and per-mix performance

As explained previously, application performance depends both on the application itself

and on the other applications running in the workload. Figure 2.10 shows box-and-whisker

plots with the distribution of speed-ups (normalized IPC) by application, with respect to the

baseline system, for all instances of the applications that are running in our 100 workloads.

Five values are plotted, namely minimum, first quartile, median, third quartile, and

maximum.

Out of all 29 applications, 5 show improved performance in all workloads they appear

in (astar, bzip2, hmmer, tonto and xalancbmk), with medians as high as 1.41 for

xalancbmk. Another 11 show improved performance starting with the first quartile (bwaves,

gamess, gobmk, gromacs, h264ref, mcf, omnetpp, sjeng, soplex, sphinx3, wrf), although

in some mixes they show reduction. In 8 of them (cactusADM, dealII, gcc, libquantum,

milc, namd, perlbench, povray), the median shows improvement but the first quartile shows

reduction. The 5 remaining applications (GemsFDTD, calculix, lbm, leslie3d, and zeusmp)

show less performance in the median.

Performance results also vary by workload, depending on the applications it includes.

Figure 2.11 plots the normalized harmonic IPC for all the workloads, relative to the

baseline. Out of the 100 mixes, 94 show speed-up improvements of up to 1.70, the worst

having a value of 0.98.

Figure 2.10: distribution of normalized IPC, compared to the base system, for all applications in all workloads.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

AD
M

ca
lc

ul
ix

de
al

II
ga

m
es

s
gc

c
G

em
sF

D
TD

go
bm

k
gr

om
ac

s
h2

64
re

f
hm

m
er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m
m

cf
m

ilc
na

m
d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay
sj

en
g

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

xa
la

nc
bm

k
ze

us
m

p

N
or

m
al

iz
ed

 IP
C

35

Figure 2.11: normalized harmonic IPC, compared to the base system, for all 100 workloads.

2.6.4 Content selection

In this section, we present the extent of content selection performed by ReD. Figure

2.12 plots, for each workload, the fraction of blocks evicted from the L2s that are bypassed.

Workloads are ordered in descending normalized hIPC, following the same order as in

Figure 2.11. The average bypass fraction is 0.49, the maximum is 0.85 and the minimum

is 0.21.

As shown by the trend line, there is very low correlation between the bypass fraction

and the performance gain of each mix. This is expected due to the heterogeneity in mix

composition and the varying SLLC utilization patterns of the constituent programs.

Figure 2.12: fraction of incoming blocks bypassed by ReD at the SLLC. Workloads are ordered in descending

normalized harmonic IPC.

2.6.5 Single-processor performance

In this section we show the performance of ReD for single-processor workloads. For

these experiments we use a 1 MB LLC, the same per-processor amount as in our

multiprocessor simulations. All other parameters are the same. We show results for all

benchmarks that have MPKI > 2 at the LLC.

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

0 10 20 30 40 50 60 70 80 90

N
or

m
al

iz
ed

 h
IP

C

Workload

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

By
pa

ss
 fr

ac
tio

n

Workload

36

Figure 2.13 plots normalized IPC obtained by ReD compared to the base system.

Although ReD is specifically designed for chip multiprocessor systems, it still provides

performance enhancements for 9 of these 14 sequential workloads, up to 12.8% speedup

for xalancbmk. It decreases the performance of the other 5, up to 1.8% for omnetpp.

It is interesting to compare these results with those shown in Figure 2.10 for multi-

processor workloads. Omnetpp shows there positive normalized IPC in most of the

workloads it is present in (starting with the first quartile). As shown in Figure 2.7, the content

selection made by ReD changes the distribution of space in the SLLC, and is often able to

assign more space to the alive blocks of omnetpp, surpassing the 1 MB that we use in this

section. With increasing space, the reused working set fits in the SLLC, and omnetpp turns

to show IPC improvements in most multiprocessor benchmarks.

Figure 2.13: normalized IPC obtained by ReD, compared to the base system, for single-processor workloads that have

LLC MPKI >2, on an exclusive LLC with 1 MB in the data array

2.6.6 Detector efficiency

In this section we analyze ReD efficiency in terms of the number of blocks selected for

SLLC insertion, and their usefulness. We show figures about the number of blocks

selected by the distinct detectors/predictors, and the subsequent reuse of these blocks.

Figure 2.14 plots the number of blocks in our example workload that, after coming from

main memory to L2, are selected for SLLC insertion (“new blocks”). We show figures for

ReD, CHAR, and a detector named “Shared ReD”. This detector is similar to ReD, but it

uses a single address buffer that is shared among all cores instead of multiple private

ones. Figure 2.15 shows the accuracy of each content selection mechanism. This is

defined as the percentage of new blocks that are accessed at least once after being sent

0.98
1

1.02
1.04
1.06
1.08
1.1

1.12
1.14

N
or

m
al

iz
ed

 IP
C

37

to the SLLC. Figure 2.16 plots the MPI reduction of each mechanism versus our base

system.

Figure 2.14: number of blocks selected for SLLC insertion after coming from main memory, for all applications in the

example workload. From left to right: CHAR, shared ReD (8 MB and 16 MB) and ReD (16 MB, 2MB per core)

Figure 2.15: accuracy of content selection mechanisms: percentage of new blocks used at least once after being sent to
the SLLC, in the example workload. From left to right: CHAR, shared ReD (8MB and 16 MB) and ReD (16 MB, 2MB per

core)

Figure 2.16: SLLC MPI reduction with respect to the base system. From left to right: CHAR, shared ReD (8MB and 16

MB) and ReD (16 MB, 2MB per core)

As shown in Figure 2.14 and Figure 2.15, predictor-based CHAR is less selective than

our detector-based ReD. CHAR inserts many more blocks into the SLLC but its accuracy

is low. For example, for bwaves CHAR inserts into the SLLC about 18 times the blocks

inserted by ReD. However, both have similar SLLC miss ratio because only 2% of the

blocks inserted by CHAR are used before being evicted. The behavior is similar for milc

(12x and 0.1%). To store blocks for these two applications, CHAR evicts useful blocks from

0
50000

100000
150000
200000
250000
300000

astar bwaves dealII gobmk milc omnetpp soplex wrf

C
ou

nt
 o

f n
ew

 b
lo

ck

in
se

rti
on

s

CHAR
Shared ReD 8M
Shared ReD 16M
ReD 16M

0%
10%
20%
30%
40%
50%
60%

astar bwaves dealII gobmk milc omnetpp soplex wrf MIX

Ac
cu

ra
cy

 o
f n

ew
 b

lo
ck

in

se
rti

on
s

CHAR
Shared ReD 8M
Shared ReD 16M
ReD 16M

-20%
0%

20%

40%
60%

80%
100%

astar bwaves dealII gobmk milc omnetpp soplex wrf MIX

R
ed

uc
tio

n
in

 M
PI

CHAR
Sh. ReD 8M
Sh. ReD 16M
ReD 16M

1,081,904 937,042 616,144

38

other cores. Consequently, ReD is much better than CHAR at reducing MPI for two other

applications of this mix (astar and dealII). For the whole mix the MPI reduction for CHAR

is 20% vs 24% for ReD 16M (Figure 2.16). These differences, or even larger ones, appear

consistently across our workloads, leading to the average 6% difference shown in Figure

2.8.

Shared ReD with a capacity of 16M overall inserts 32% more blocks than Shared ReD

with 8 MB. Additionally, the accuracy increases by 2%. This does not directly translate into

a much higher MPI reduction in this particular workload (only 0.3%), but on average

(across our 100 workloads) it leads to a 1% reduction in MPI.

ReD 16M outperforms Shared-ReD 16M in 5 applications of the mix, and obtains similar

performance in bwaves, milc and omnetpp. Figure 2.17 plots the average fraction of the

ART occupied by each program using these two mechanisms. Only two applications,

bwaves and milc, occupy 76% of the shared detector, stealing capacity from the other six

applications. The private detector in ReD protects all applications from this thrashing,

which leads to a fair distribution of the detection window, and ultimately better performance

of the workload.

Figure 2.17: fraction of overall detector space occupied by each application

on the example mix, for ReD (16 MB, 2MB per core) and Shared ReD 16MB.

2.6.7 Additional cache sizes

In this section we show the performance of ReD using distinct SLLC cache sizes, and

compare it with the selected three proposals.

Figure 2.18 plots normalized hIPC and MPI reduction against the base system obtained

by CHAR, exclusive EAF, exclusive Reuse Cache and ReD for varying SLLC sizes. ReD

outperforms all other proposals in both metrics across all SLLC sizes considered.

0 0.2 0.4 0.6 0.8 1

Shared
ReD

ReD

Fraction of detector space occupied

astar bwaves dealII gobmk milc omnetpp soplex wrf

39

Figure 2.18: normalized harmonic IPC (left) and MPI reduction (right) compared to the base system, for different SLLC
data sizes, for four systems: ReD (with a balanced configuration for each size), CHAR, Evicted Address Filter Cache
and Reuse Cache (RC-16/4, RC-32/8 and RC-64/16). All are implemented on an exclusive SLLC with TC-AGE in the

data array.

2.6.8 Alternative cache replacement policy: Least Recently Filled (LRF)

Content selection and replacement policies are usually aligned, as they share the same

objectives. Therefore, we use TC-AGE as replacement policy: ReD selects reused blocks

to be stored in the SLLC, and TC-AGE aims to retain the most reused blocks as long as

possible. However, content selection and replacement policies are orthogonal. The former

chooses which blocks enter the SLLC and the latter which blocks are evicted to make room

for others. Therefore, ReD can be implemented on an SLLC managed with any

replacement policy.

As ReD has the detector store decoupled from the cache, the replacement policy

cannot adversely affect the detector’s efficiency. In other mechanisms where the SLLC

itself serves as detector store, there is a clear dependence between detection and

replacement. A poor replacement algorithm can adversely affect the detector.

Next, we analyze the impact of our proposal on an exclusive SLLC with a 4-bit Least-

Recently-Filled (LRF) replacement policy, similar to LRU in inclusive caches. Figure 2.19

plots normalized hIPC and MPI reduction obtained by ReD when using LRF and TC-AGE,

compared to a base system with the same replacement policy but without ReD. Adding

ReD leads to better MPI reductions and higher normalized hIPC with LRF than with TC-

AGE. This is not a surprising result, as the former is not as efficient as the latter and leaves

more room for improvement.

1
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.1

4 8 16

N
or

m
al

iz
ed

 h
IP

C

SLLC data size (MB)

CHAR Exc. EAF Exc. RC ReD

0%

2%

4%

6%

8%

10%

12%

4 8 16

R
ed

uc
tio

n
in

 M
PI

SLLC data size (MB)

CHAR Exc. EAF Exc. RC ReD

40

Figure 2.19: normalized hIPC (left) and MPI reduction (right) obtained when adding the ReD content selection

mechanism to base systems with 4-bit LRF (Least-Recently-Filled) and 2-bit TC-AGE as replacement policies. Both are
implemented on an exclusive SLLC with 8 MB in the data array.

2.6.9 Additional performance metrics

In this section we show our results using two alternative performance metrics. Figure

2.20 plots normalized IPC (speedup) and normalized weighted speedup (WS) (Snavely &

Tullsen, 2000) for CHAR, exclusive EAF, exclusive Reuse Cache and ReD, using the

same configurations as in Section 2.6.1.

Figure 2.20: normalized IPC (left) and normalized weighted speedup (right) compared to the base system with 8 MB, for
four proposals: ReD, CHAR, Evicted Address Filter and Reuse Cache. All are implemented on an exclusive SLLC with

TC-AGE in the data array.

The results exhibit the same trends observed in Figure 2.8 (left), based on normalized

harmonic IPC.

2.7 DESIGN SPACE EXPLORATION

The following three subsections evaluate the performance-cost trade-offs of ReD

capacity, sector size and tag compression, searching for a balanced configuration.

1
1.02
1.04
1.06
1.08
1.1

1.12
1.14

LRF TC-AGE

N
or

m
al

iz
ed

 h
IP

C

0%
2%
4%
6%
8%

10%
12%
14%
16%

LRF TC-AGE

R
ed

uc
tio

n
in

 M
PI

1
1.01
1.02
1.03
1.04
1.05
1.06
1.07

CHAR Exc. EAF Exc. RC ReD

N
or

m
al

iz
ed

 IP
C

1

1.02

1.04

1.06

1.08

CHAR Exc. EAF Exc. RC ReD

N
or

m
al

iz
ed

W

ei
gh

te
d

Sp
ee

du
p

41

2.7.1 ReD capacity

Here we study how the results vary depending on the ReD capacity (see Section 2.3.2).

Figure 2.21 shows normalized hIPC and reduction in MPI, with respect to the baseline, as

a function of the ReD capacity per core. For this experiment, the ReD sector size is one

block and it stores the entire tag. We show average values across the 100 mixes described

in Section 2.5.

Figure 2.21: normalized hIPC (left) and reduction of SLLC misses per instruction (right) with respect to the base system,

as a function of the ReD capacity per core.

By increasing capacity, ReD can track blocks that have been evicted from the L2 cache

longer ago, that is, it can detect more distant reuses. The optimal configuration is achieved

with a capacity of 2 MB per core, which presents a hIPC increase of 9.9%, and reduces

MPI by 10.4%. A ReD with capacity larger than 2 MB detects more blocks with reuse than

those the SLLC can effectively store, leading to a performance decrease compared to the

2 MB ReD.

2.7.2 ReD sector size

Increasing sector size decreases the ReD hardware cost (see Section 2.3.6). We call

ReD size the hardware cost of a given configuration measured in bytes. Figure 2.22 shows

ReD size as a function of capacity and sector size, when using tags with 10 bits.

1
1.02
1.04
1.06
1.08
1.1

1.12

0.5 1 2 4 8

N
or

m
al

iz
ed

 h
IP

C

ReD capacity per core (MB)

0%
2%
4%
6%
8%

10%
12%

0.5 1 2 4 8
R

ed
uc

tio
n

in
 M

PI

ReD capacity per core (MB)

42

Figure 2.22: ReD size per core in KB, as a function of capacity and sector size. The sector size is the number of blocks

associated with each ReD tag. We consider tags of 10 bits.

For a given ReD capacity, doubling the sector size allows to halve the number of ART

sets. Therefore, a ReD with bigger sector size requires less ReD size. This is because the

storage saved by reducing the number of entries is greater than the storage needed to add

valid bits for each block of a sector.

On the other hand, Figure 2.23 shows how performance varies when the ReD sector

size increases.

Figure 2.23: normalized hIPC with respect to the base system, as a function of the ReD capacity per core, and for

different sector sizes.

We have defined the reuse detection window as the set of block addresses that ReD

remembers of an executing thread (ReD window for short). Note that it could be different

from the ReD capacity because some threads may not use the full capacity of the detector.

If we increase the sector size while maintaining the ReD capacity, the ReD window

decreases because sometimes the thread will not reference all the blocks of a sector.

Therefore, ReD will detect less reuse, leading to a performance degradation for all the ReD

capacities except for 8 MB, where ReD already detected more blocks with reuse than

those the SLLC is able to store.

1
2
4
8

16
32
64

128
256

1 2 4 8

R
eD

 s
iz

e
 (K

B)

ReD capacity per core (MB)

1 blk./sec.
2 blk./sec.
4 blk./sec.
8 blk./sec.

1
1.02
1.04
1.06
1.08
1.1

1.12

1 2 4 8

N
or

m
al

iz
ed

 h
IP

C

ReD capacity per core (MB)

1 blk/sector

2 blk/sector

4 blk/sector

8 blk/sector

43

The best configuration in terms of performance, with 2MB of capacity and sectors with

one block, requires a ReD size of 45 KB per core. However, other configurations have

better performance/cost ratios: the one with 2 MB of capacity and sectors with 2 blocks

shows 0.35% lower hIPC and a ReD size of 24.5 KB, 46% lower.

2.7.3 ReD tag size

As explained in Section 2.3.6, the ART can store compressed tags to reduce the

amount of storage required. Figure 2.24 shows on the left, depending on the tag size, the

average error rate in reuse detection due to tag compression. These errors are false

positives: a false reuse is detected because the compressed tag that is being searched

matches with that of a different sector previously registered. Inserting not-reused blocks

into the SLLC reduces the effectiveness of the mechanism. The error rate is less than 1%

with a tag of only 12 bits.

Figure 2.24. Left: average rate of detection errors in ReD due to tag compression. Centre: normalized hIPC with respect
to the base system. Right: SLLC MPI reduction with respect to the base system. The NC bar represents the tag with no

compression.

Figure 2.24 shows also, in the centre and on the right, normalized hIPC and MPI

reduction obtained for our selected configuration (2MB of capacity and a sector of 2 blocks)

as a function of tag size. The performance loss is almost negligible for a tag size of 10 bits:

normalized hIPC decreases 0.29% while MPI increases 0.26% compared to the

configuration with uncompressed tags. This justifies compression in order to reduce the

amount of storage required.

This is the balanced configuration we have selected: 2 MB ReD capacity, sector size

of two blocks and 10-bit tags. It has a ReD size of 24.5 KB.

0

0.02

0.04

0.06

0.08

0.1

0.12

8 9 10 11 12

Ta
g

er
ro

r r
at

e

Tag size (bits)

1

1.02

1.04

1.06

1.08

1.1

1.12

8 9 10 11 12 NC

N
or

m
al

iz
ed

 h
IP

C

Tag size (bits)

0%

2%

4%

6%

8%

10%

12%

8 9 10 11 12 NC

R
ed

uc
tio

n
in

 M
PI

Tag size (bits)

44

2.8 RELATED WORK

Any cache content management mechanism is based on a model that forecasts

whether a block will be used in the immediate future. State-of-the-art mechanisms for the

SLLC can be broadly classified into two groups: those that rely on the last touch to each

block — such as PC-based approaches by Khan et al. (2010), PC-sequence-based

methods by Lai et al. (2001), and counter-based strategies by Kharbutli & Solihin (2008)

— and those that exploit reuse locality, including techniques proposed by Qureshi et al.

(2007), Gaur et al. (2011), Jaleel et al. (2010b), Chaudhuri et al. (2012), Albericio et al.

(2013a, 2013b), Gao & Wilkerson (2010), Khan et al. (2012), Wu et al. (2011), Li et al.

(2012), Seshadri et al. (2012), and Gupta et al. (2013).

In a similar way, Faldu & Grot (2016) classify management strategies into Dead Block

Predictors (DBPs) and insertion policies. DBPs try to predict whether a block has reached

the end of its useful lifetime on chip. Insertion policies try to predict when a block is dead

on arrival (it will not see any reuse in the cache after its insertion). The paper concludes

that DBPs are less accurate than insertion policies.

We focus on proposals relying on the reuse locality property of the SLLC blocks, which

are “insertion policies” in Faldu & Grot (2016) taxonomy. We can classify them according

to three characteristics:

• Replacement / content selection: In some proposals, the replacement algorithm

gives higher priority to stay in the cache to those blocks showing reuse. On the

other hand, some works leverage reuse locality to select for insertion only those

blocks classified as reused, bypassing the rest.

• Detection / prediction: To classify blocks, some authors suggest reuse detection

mechanisms, while others propose mechanisms to predict a reuse behavior

before it appears.

• Address store: Both detection and prediction mechanisms need to remember

past block addresses to identify the second access to a block. Detection

mechanisms associate reuse to the block receiving a second access while

prediction mechanisms associate reuse to a signature of the block receiving a

second access. The structure that holds past accesses can be implemented in

45

several ways, either embedded into the SLLC itself or as an independent

structure.

Table 2.5 contains a sample of previous work classified according to this taxonomy.

 Addresses in the SLLC In a different store

Replacement

Detection

Gao & Wilkerson 2010
Gaur et al., 2011 (TC-AGE)
Khan et al., 2012
Albericio et al., 2013a

Seshadri et al., 2012
Gupta et al., 2013

Prediction
Qureshi et al., 2007
Jaleel et al., 2010b
Wu et al., 2011

Content
selection

Detection Albericio et al., 2013b Our proposal (ReD)

Prediction
Gaur et al., 2011 (Bypass + TC-AGE)
Chaudhuri et al., 2012
Li et al., 2012

Table 2.5: classification of previous work based on the reuse locality property, according to our taxonomy

2.8.1 Replacement policies

Both detection and prediction have been used to guide replacement algorithms, and

most of them keep the reuse window in the SLLC itself.

Replacement mechanisms based on detection label a block as not reused when it

comes from main memory (its first use in the reuse window that the SLLC is able to recall).

Subsequent SLLC hits (second and later touches to the block) will flag the block as reused.

Two proposals include an added store to remember these blocks. Seshadri et al. (2012)

use a Bloom filter (Bloom, 1970) and Gupta et al. (2013) use a bypass buffer.

Replacement mechanisms based on prediction try to figure out whether a block will be

reused before it really is, and flag the block as reused just after its first touch. Prediction

policies categorize blocks according to certain features — signatures in Wu et al. (2011)

— and study the reuse characteristics of any block in each category. Wu et al. (2011)

analyze distinct types of signatures: memory region, program counter, or instruction

sequence. As an example, the PC signature policy acts by classifying blocks according to

the PC of the memory instruction responsible for bringing them in the chip. It identifies the

reuse behavior of the blocks that each instruction loads (mainly categorizing them as

reused or not reused), and assigns the same category to all blocks that the same

instruction will bring in the future.

The Dual Insertion Policy (DIP) and Dynamic Re-Reference Interval Prediction (DRRIP)

mechanisms are also predictors (Qureshi et al., 2007; Jaleel et al., 2010b). Using set-

46

dueling techniques, these mechanisms analyze the reuse behavior of the entire application

and apply it to all its blocks. All blocks are categorized into a single category, the one of

their own application.

2.8.2 Content selection policies

Except the Reuse Cache proposed by Albericio et al. (2013b), all other content selection

policies include some sort of prediction: Li et al. (2012) uses the PC signature policy, Gaur

et al. (2011) the trip count and use count of blocks, and Chaudhuri et al. (2012) the

behavior of blocks during their stay in private caches and their coherence status. For each

class, an algorithm analyzes its SLLC behavior and extends it to all future blocks belonging

to the same category.

Comparing our proposal with others using prediction, they tend to be more complex,

and often require the transfer of data between cache levels or to send the PC to the cache

subsystem. Additionally, predictors show lower accuracy than detectors.

On the other hand, all previous content selection techniques track reuse (and reuse

patterns) using the SLLC. Therefore, the SLLC size defines and limits the size of the reuse

detection window.

Finally, all these proposals have in common an important constraint: their reuse

detector is shared among all threads running on the CMP. A single thread can thrash the

detector, shrinking the reuse detection window of the remainder applications. To overcome

this, we propose implementing reuse detectors that are private to every processing core.

2.9 CONCLUSIONS

Previous publications reveal that the stream of references reaching the SLLC of a CMP

shows little temporal locality. However, it shows reuse locality, i.e., blocks referenced more

than once are more likely to be referenced in the near future. This leads to an inefficient

use of the cache if conventional management is performed. There are several proposals

addressing this problem for inclusive caches, but few that focus on exclusive ones.

This chapter proposes a novel content selection mechanism for exclusive SLLCs that

leverages the reuse locality embedded in the SLLC request stream. We propose adding a

Reuse Detector, placed in between each L2 cache and the SLLC, to discover which of the

47

L2 evicted blocks have not experienced reuse and avoid their insertion in the SLLC,

bypassing them. We analyze problems affecting similar recent mechanisms (low accuracy,

reduced visibility window and thrashing in the detector) and design ReD to overcome them

as much as possible. We evaluate the proposal in a multicore chip with eight processors

that executes a multiprogrammed workload. Properly designed, ReD prevents the

insertion of many useless blocks in the SLLC, and helps keeping the most reused.

Experimental results show that this allows for enhancing SLLC performance beyond other

recent proposals. Specifically, ReD reduces the SLLC misses per instruction by 10.1%

with respect to a base cache with TC-AGE replacement and no content selection, while

CHAR and exclusive-cache versions of the Reuse Cache and the EAF cache reduce MPI

by 4.3%, 4.5% and 2.7% respectively.

48

3 ReD: IMPROVING THE MANAGEMENT OF STT-

RAM SHARED LAST-LEVEL CACHES4

The limitations of SRAM have prompted exploration of alternative memory technologies

for implementing on-chip SLLCs. Among these, STT-RAM has emerged as a leading

candidate due to its superior energy efficiency, reduced die area, and greater scalability.

However, its relatively slow and energy-intensive write operations remain a significant

drawback. This chapter addresses these issues by adapting the Reuse Detector (ReD),

introduced in the previous chapter. ReD identifies blocks with no reuse potential and

prevents their insertion into the SLLC, thereby reducing the frequency of write operations

and hence the energy consumption in STT-RAM.

Experimental results on a system with eight cores running multiprogrammed workloads

demonstrate that our mechanism reduces SLLC energy consumption by an average of

33%, cuts main memory energy usage by 6%, and improves performance by 7%

compared to a baseline STT-RAM SLLC without ReD. Moreover, our proposal surpasses

DASCA, the state-of-the-art STT-RAM SLLC management scheme, achieving 5% greater

SLLC energy savings, 3% higher performance, and an additional 3% reduction in DRAM

energy consumption.

3.1 INTRODUCTION

Current technologies used to implement SLLCs primarily rely on SRAM or embedded

DRAM. However, both are power-hungry, particularly at the large capacities demanded by

the growing number of processor cores. A promising approach to mitigate this issue

involves adopting emerging Non-Volatile Memory (NVM) technologies. Among these,

STT-RAM stands out as the most compelling candidate. It significantly reduces static

power consumption and offers greater density than SRAM, enabling larger cache

4 This part of the work was originally presented by its first author, Roberto Rodríguez Rodríguez, in his own
thesis. In this dissertation, the chapter highlights my specific contributions: the design of ReD, the
modifications required to address the challenges posed by STT-RAMs, and the architectural differences with
respect to the state-of-the-art competing proposal. A summary of Roberto’s work is also included to provide
appropriate context and show the outcomes.

49

capacities within the same area. In addition, STT-RAM provides more efficient read

operations in terms of both latency and energy. Despite these advantages, certain

drawbacks hinder its widespread use as an SLLC in next-generation CMPs: specifically,

its write operations are slower and more energy-intensive than those of SRAM. These

limitations can lead to performance degradation and may even offset the energy gains

obtained from reduced static power.

This chapter improves both the performance and energy efficiency of an STT-RAM

SLLC by reducing the number of write operations it performs. To this end, we propose

adapting and integrating ReD, which evaluates each block evicted from the private cache

levels to determine whether it has been reused at the SLLC. If reuse is detected, the block

is either inserted into the SLLC or used to update an existing entry. Otherwise, it bypasses

the SLLC and is sent directly to main memory.

We evaluate our proposal using single- and multiprogrammed workloads, and

experimental results show that ReD effectively prevents the insertion of low-utility blocks

into the STT-RAM SLLC, thereby increasing the likelihood of retaining blocks that exhibit

reuse. As a result, the number of slow and energy-intensive write operations to the STT-

RAM SLLC is reduced, leading to lower energy consumption and improved system

performance.

The rest of the chapter is organized as follows: Section 3.2 explains our motivation and

some necessary background. Section 3.3 presents our proposal to improve the STT-RAM

SLLC management. Sections 3.4 and 3.5 detail the experimental framework used and the

obtained results, respectively. Section 3.6 recaps some related work and finally, Section

3.7 concludes the chapter.

3.2 BACKGROUND AND MOTIVATION

In this section, we first motivate the need for a new SLLC management scheme by

outlining the main limitations of SRAM technology and conventional management

strategies. We then briefly describe the DASCA scheme (Ahn et al., 2014), which

represents the closest approach to our proposal and stands as the current state of the art

in STT-RAM SLLC management.

50

3.2.1 Comparison of SRAM and STT-RAM technologies

Various emerging technologies are currently being considered as potential

replacements for SRAM in constructing SLLCs. Among them, STT-RAM is the most

promising candidate to overcome key limitations of SRAM, such as high energy

consumption and read latency.

The primary difference between STT-RAM and SRAM lies in their storage mechanisms:

STT-RAM stores information using a Magnetic Tunnel Junction (MTJ), whereas SRAM

relies on electric charges. An MTJ consists of two ferromagnetic layers — referred to as

the free layer and the reference layer — and a dielectric tunnel barrier in between (Figure

3.1, left). The reference layer maintains a fixed magnetic orientation, while the free layer

can switch its orientation when a current is applied across the MTJ. If the magnetic

orientations of the two layers differ, the MTJ exhibits high resistance, representing a logical

‘1’; if the orientations are aligned, the resistance is low, representing a logical ‘0’.

A read operation is performed by applying a small voltage across the MTJ and sensing

the resulting current. Refer to Figure 3.1 (right), where the STT-RAM cell functions as a

variable resistor. Writing to an MTJ involves applying a larger voltage for a defined

duration, known as the write pulse width, to alter the magnetic direction of the free layer.

Figure 3.1 STT-RAM memory cell structure (left), and STT-RAM equivalent circuit (right). Extracted from Escuin (2024).

To illustrate the trade-offs between SRAM and STT-RAM for SLLC design, Table 3.1

summarizes the key characteristics of a 1-bank, 1MB cache implemented in 22nm

technology. The SRAM and STT-RAM models were obtained using CACTI 6.5 (Hewlett-

Packard, 2013) and NVSim (Dong et al., 2012), respectively. The STT-RAM cache offers

a smaller die footprint and greater efficiency in read operations compared to its SRAM

counterpart. More notably, it consumes nearly sixty times less static power. However, STT-

51

RAM also presents a critical drawback that must be addressed: significantly poorer write

performance, both in terms of latency and energy consumption.

Parameter SRAM STT-RAM Ratio SRAM / STT-RAM

Area (mm2) 0.94 0.35 2.68
Read latency (ns) 8.75 5.61 1.56
Write latency (ns) 8.75 16.50 0.53
Read energy (nJ) 0.56 0.32 1.75
Write energy (nJ) 0.56 1.31 0.43
Leakage power (mW) 190.58 3.09 61.67

Table 3.1: area, latency and energy consumption for 22nm SRAM and STT-
RAM caches with 1MB size.

3.2.2 The DASCA scheme

The Dead Write Prediction Assisted STT-RAM Cache Architecture (DASCA), proposed

by Ahn et al. (2014), aims to reduce write energy by predicting and bypassing dead writes,

which are writes to data in the SLLC that are not referenced again during the lifetime of

the corresponding cache blocks. The authors introduce a theoretical model that classifies

dead writes into three categories: dead-on-arrival fills, dead-value fills, and closing writes,

each representing a different form of redundant write. Building on this model, DASCA

employs a dead write predictor derived from a state-of-the-art dead-block predictor (Khan

et al., 2010). Consequently, a write to the SLLC is bypassed only if it is predicted not to

result in additional cache misses.

DASCA adds a dedicated field to each private cache line to store the program counter

(PC) of the instruction that last wrote to the block. This field is updated only on write

operations. In addition, a PC-signature table (prediction table) is incorporated into the

design to guide dead write predictions, and is updated following the mechanism described

in Table 2 of their paper. Specifically, the design samples a subset of cache sets and tracks

PC information only for those sets. Predictions are made using the signature table, which

consists of saturating counters similar to those employed in bimodal branch predictors.

These counters are indexed by the signatures recorded in the sampler entries. In this way,

the PC-based predictor establishes a correlation between dead blocks and memory

instruction addresses (signatures), allowing distinct signatures to be used depending on

the type of dead write being predicted.

52

3.3 DESIGN OF ReD FOR AN STT-RAM SLLC

In this section, we first describe the baseline system we build upon. We then present

the proposed design that extends it.

3.3.1 Baseline system

The baseline multiprocessor system features a memory hierarchy composed of two

private cache levels (L1 and L2) and an SLLC. All caches follow a write-back, write-allocate

policy and use LRU replacement. The L1 and L2 caches are inclusive, whereas the SLLC

is non-inclusive.

The baseline management policy for this memory hierarchy operates as follows: when

a block is fetched from main memory, it is inserted into the private cache levels (L1 and

L2) of the requesting core, but not into the SLLC. While the block resides in the private

caches of that core, it may be requested by other cores. In such cases, the block is

transferred from the source core’s private L2 cache to the L1–L2 caches of the requesting

core, as specified by the directory-based coherence protocol.

When a block is evicted from an L2 cache, the SLLC is checked. If the block is not

present — either because it was never inserted or because it was previously evicted by

the SLLC's replacement policy — it is inserted into the SLLC. Consequently, in our memory

hierarchy, insertions into the SLLC originate exclusively from L2 caches, not directly from

main memory, resembling the behavior of an exclusive cache policy. However, to avoid as

much writing in the SLLC as possible, our baseline differs from a strictly exclusive policy

in one key aspect: on an SLLC hit, the block is copied to the requesting core’s private

caches but is also retained in the SLLC. This way, a subsequent eviction from the L2 cache

overwrites the existing copy in the SLLC only if the block has been modified in the private

caches (i.e., it is dirty).

Consequently, for each specific block the SLLC works in exclusion with the private

caches upon its initial request, but transitions to an inclusive policy following a subsequent

access that results in a hit.

53

3.3.2 Adding ReD

As discussed in the previous chapter, several studies have shown that a significant

fraction of the blocks inserted or updated in the SLLC are ultimately useless, as they

correspond to dead blocks. These blocks are detrimental for two reasons: they displace

other blocks that may still hold future reuse potential, and they increase the number of

write operations to the SLLC. The latter is particularly undesirable in the context of NVMs,

where write operations are both costly and energy-intensive, as outlined in previous

sections.

In the previous chapter, we demonstrated that ReD can approximately halve the

number of insertions into an SRAM-based SLLC under an exclusive memory hierarchy.

Building on this, in the present chapter we apply ReD to reduce the number of dead blocks

inserted or updated in an STT-RAM SLLC. This reduction enhances the efficiency of the

SLLC, leading to improvements in overall system performance and reductions in energy

consumption.

To achieve this, we adapt and extend the use of ReD to a configuration with a different

inclusion/exclusion behavior, where the SLLC operates partially in exclusion and partially

in inclusion with respect to the private levels. In the previous chapter, the exclusive policy

dictated that, upon an SLLC hit, the block was moved to the private caches and removed

from the SLLC. In the current design, the block is also inserted into the private levels upon

an SLLC hit, but unlike before, it is retained in the SLLC until it is evicted by the replacement

policy.

3.3.3 ReD operation

Figure 3.2 illustrates a flow diagram representing the process of a block request

originating from a core. Since the primary objective is to minimize writes to the SLLC, the

management approach differs from the one described in the previous chapter; specifically,

blocks are not evicted (invalidated) in the SLLC when they receive a hit, to avoid writing to

the cache.

54

Request from a

core to its L2 cache

Reuse bit not

modified.

Send to L1 and

core

Forward access to

SLLC

Access directory
Is copy in any

private cache?

Set Reuse bit

Forward access

to main memory

Forward access

to private cache

Send to L2 and L1

Is hit?
n

y

n

y

Is hit?
y

n

Figure 3.2: request from a core to its L2 cache.

Figure 3.3 shows how this approach modifies the management of block evictions from

an L2 cache. When a block is evicted, its reuse bit is first examined. If this reuse bit is set,

the block is inserted into the SLLC, provided it is not already present. Moreover, if the block

already exists in the SLLC and is marked dirty, it is updated. If the reuse bit is not set but

the block's tag is found in the ART, the block is handled identically to the previous scenario.

In all other cases, the block is bypassed. Unlike our proposal for exclusive caches, no

exception mechanism is necessary here, since there are no empty ways created by

evictions following SLLC hits.

55

Block eviction

from L2 cache

Is Reuse

bit set?

y

n

Is tag in

ART?

y

n

Store tag in ART

Update Directory

Write block in

SLLC

Is block Dirty?
y

n

Write block to

main memoryDiscard

Update Directory

Is block Dirty?

y

Is block

already

in SLLC?

n

n

y

Figure 3.3. Block eviction from an L2 private cache.

3.3.4 Implementation details

Since our objective in this chapter is to strictly control the content stored in the SLLC in

order to minimize write operations, we reduce the ReD capacity used in the previous

chapter by half, setting it to 1 MB. This reduced capacity aims to increase the bypass

fraction while still preserving good performance.

As in the previous chapter, we track sectors in the ART and compress the tags to

minimize the hardware overhead associated with ReD. With 8K entries in the ART, the

additional storage required per core is 14 KB. Therefore, for system with eight processors,

the total storage overhead amounts to 112 KB, which corresponds to approximately 1.3%

of an 8 MB SLLC.

3.3.5 Comparison of ReD and DASCA

In this section, we briefly outline the main differences between the ReD mechanism and

the DASCA scheme. Regarding their operation, DASCA aims to predict dead writes in the

SLLC. The authors of DASCA categorize dead writes into three types: dead-on-arrival fills,

56

dead-value fills, and closing writes. Dead-on-arrival fills refer to blocks that are accessed

only once during their lifetime in the SLLC, specifically on the read miss that triggers their

insertion. Dead-value fills occur when a block, after being inserted into the SLLC due to a

read miss, receives a writeback from lower levels before any intervening read, effectively

rendering the original data unused. Closing writes correspond to writeback for blocks that

will not be accessed again prior to their eviction. DASCA relies on a PC-based predictor to

identify these dead writes, which requires recording the PC signature of each instruction

that accesses the SLLC.

In contrast, ReD predicts dead blocks based on their reuse behavior. Specifically, our

approach uses the addresses of accessed data rather than instruction addresses, as in

DASCA. Furthermore, while ReD stores these data addresses directly, DASCA employs

a PC-signature table trained using an auxiliary sampler cache that operates in parallel with

the conventional cache hierarchy.

Focusing on the specific implementation of the DASCA scheme used in our evaluation,

it is important to note that our approach employs a memory hierarchy in which L1 and L2

caches are inclusive, while the SLLC is partially exclusive and partially non-inclusive (see

Section 3.3.1). In contrast, the original DASCA evaluation was conducted on a two-level

cache hierarchy, assuming non-inclusive caches by default. That is, their baseline setup

differs from ours. To enable a fair comparison between ReD and DASCA, we re-implement

DASCA using the same three-level cache hierarchy adopted for our evaluation of ReD.

As a result, the only high-level deviation from the original DASCA design concerns one

of the three dead write classifications: dead-value fills — blocks that receive a writeback

from lower-level caches right after being filled into the SLLC (after a read miss), before any

read operation in between. This means the first SLLC write operation was useless, as data

is overwritten consecutively. This write-after-write case cannot occur in our configuration.

Specifically, in our setup, all insertions into the SLLC originate from L2 evictions. The first

fill to the SLLC never happens directly, it happens when the block is evicted, in this case

dirty, from L2. Even if the processor subsequently issues a write request for a word of such

block, and results in a write hit in the SLLC, the rest of the block needs to be read from the

SLLC to copy it into the private caches. Therefore, a useless SLLC write never happens.

Therefore, we consider this evaluation fair, as it applies DASCA under the same

conditions as our proposal. In doing so, we ensure that ReD does not gain an unfair

57

advantage by structurally avoiding dead-value fills through a different content management

policy between cache levels.

3.4 EXPERIMENTAL SETUP

3.4.1 The experimental framework

For our experiments, we use the gem5 simulator (Binkert et al., 2011), a modular

platform for computer-system architecture research, encompassing system-level

architecture as well as processor microarchitecture.

Within gem5, we configure an O3 (out-of-order) processor type CPU model to enable

detailed simulation and improve accuracy. We employ the Ruby memory system with the

MOESI_CMP_directory coherence protocol, which implements the Modified, Owned,

Exclusive, Shared, and Invalid (MOESI) policy. We focus on a MOESI-based protocol

because coherence models with an owned state (e.g., MOESI and MOSI) have been

shown to reduce the number of writes to the SLLC, as reported by Chang et al. (2014).

The on-chip network is modeled as a crossbar using Garnet (Agarwal et al., 2009), a

detailed interconnection network model inside gem5. DRAM main memory is modeled

using DRAMSim2 (Rosenfeld et al., 2011).

We simulate both single- and multiprocessor scenarios. Our experiments use

workloads drawn from the SPEC CPU 2006 benchmark suite (Henning, 2006). Note that

results from 4 out of the 29 benchmarks are excluded from the evaluation due to

constraints in the experimental framework.

For the single-processor evaluations, we use reference inputs and simulate 1 billion

instructions from the checkpoints selected using PinPoints (Patil et al., 2004). For the

multiprocessor experiments, we fast-forward 100 million instructions, perform a cache

warm-up phase for 200 million instructions, and then collect results over a minimum of 500

million instructions per processor.

Multi-processor evaluations report results from 28 multiprogrammed mixes composed

of SPEC CPU 2006 benchmarks, executed on a CMP system with eight processors. To

construct the multiprogrammed mixes, we adopt the following methodology: first, we

execute each benchmark in isolation on our baseline system, configured with a 1 MB

SLLC, and measure the number of write operations it generates to the SLLC. For each

58

benchmark, we compute the number of writes to the SLLC per 1000 instructions (WPKI).

Based on this metric, we classify benchmarks into three categories: high, medium and low.

Specifically, benchmarks with WPKI greater than 8 are assigned to the high category,

those between 1 and 8 into the medium category, and benchmarks with WPKI less than 1

are placed in the low category.⁠ Table 3.2 shows the results of this categorization.

Category Benchmarks

High lbm, mcf, libquantum, bwaves, milc, cactusADM, zeusmp, leslie3d
Medium hpcg, soplex, gcc, wrf, astar, hmmer, xalancbmk, gobmk, perlbench
Low gromacs, calculix, h264ref, tonto, omnetpp, namd, sphinx3, GemsFDTD

Table 3.2: benchmark characterization according to the number of SLLC writes per kiloinstruction (WPKI).

Based on this classification, we build a set of 28 multiprogrammed mixes. First, we

randomly generate three groups of four mixes each composed exclusively of applications

from a single WPKI category. These are referred to as H0-H3, M0-M3 and L0-L3,

corresponding to the high, medium, and low WPKI categories, respectively. Next, we

create an additional 16 mixes by combining applications from different categories in a

balanced and homogeneous manner. The workload names encode the WPKI categories

of the constituent applications. For example, HL2 denotes the third mix composed of eight

applications evenly split between the high and low WPKI categories.

3.4.2 Configuration of the baseline system

The main characteristics of both the processor and the memory hierarchy are

summarized in Table 3.3. The SLLC read and write latencies are adjusted to reflect the

characteristics of STT-RAM technology. Both latency and energy consumption values are

obtained from NVSim (Dong et al., 2012) for a 1MB single-bank cache and are presented

in Table 3.1. When scaling the SLLC to larger capacities, we multiply the leakage power

by the number of cores.

59

Architecture x86

CPUs 1 or 8, 2 GHz
Pipeline 8 Fetch, 8 decode, 8 rename, 8 issue/execute/writeback, 8 commit
Registers Integer (256), floating point (256)
Buffers Reorder buffer (192), instruction queue (64)
Branch predictor TournamentBP

Functional units
IntALU = 6, IntMultDiv = 2, FPALU = 4, FPMultDiv = 2, SIMD-Unit = 4, RdWrPort =
4, 1fpPort = 1

Private Cache L1 D/I 32 KB, 8 ways, LRU replacement, block size 64B, access latency 2 cycles, SRAM

Private Cache L2 D/I
256 KB, 16 ways, LRU replacement, block size 64B, access latency 5 cycles,
SRAM

Interconnection Crossbar network, modeled using Garnet, latency 3 cycles

Shared Cache L3
1 bank/1MB per core, 16 ways, LRU replacement, block size 64B, R/W latency
6/17 cycles, STT-RAM

DRAM 2 Ranks, 8 banks, 4 KB page size, DDR3 1066 MHz
DRAM bus 2 channels with a bus of 8 bits

Table 3.3: CPU and memory hierarchy specification.

3.4.3 Configuration of the evaluated proposal

To evaluate ReD, we implement the policy within the cache hierarchy and introduce

modifications to the coherence protocol. Table 3.4 summarizes the ReD configuration used

in the subsequent performance analysis. The reported values correspond to each

individual ART instance. For additional details, refer to Section 3.3.4.

ReD capacity 1MB
Associativity 16-way
Replacement FIFO
Sector size 2 blocks
Tag size 10 bits
Number of sets 512
Number of entries 8,192

Table 3.4: ReD evaluation configuration

3.4.4 Performance metrics

Single-processor performance is reported using IPC, normalized to that of the baseline

configuration. To evaluate performance in multiprogrammed workloads, we compute the

system IPC, defined as the sum of the instructions per cycle committed by all processors

in the chip (⁠∑ 𝐼𝑃𝐶𝑖
𝑛
𝑖=1 , where n is the number of processors), and normalize this value with

respect to the baseline.

60

Regarding energy usage, we report the total energy consumption of both the SLLC and

DRAM, normalized to that of the baseline. For the SLLC, we consider both dynamic and

static contributions. The static contribution is computed based on NVSim (Dong et al.,

2012), which provides the leakage energy for a 1 MB SLLC. To obtain the total static

energy, we multiply the leakage value by the execution time and by the number of cores.

The dynamic contribution is obtained by multiplying the number of SLLC accesses by the

per-access dynamic energy, also reported by NVSim. The total dynamic energy

consumption is calculated as follows:

DynamicEnergy = 𝐻SLLC ∗ 𝐻𝐸SLLC + 𝑊SLLC ∗ 𝑊𝐸SLLC

+𝑀SLLC ∗ 𝑀𝐸SLLC
 (3.1)

where 𝐻SLLC ⁠, 𝑊SLLC and 𝑀SLLC denote the number of hits, writes and misses in the SLLC.

The terms 𝐻𝐸SLLC ⁠, 𝑊𝐸SLLC and 𝑀𝐸SLLC denote the corresponding energy consumption per

hit, write and miss, respectively.

For the DRAM, the total energy consumption is obtained directly from the simulator.

In the multiprocessor results, we divide the number of SLLC writes as well as both the

dynamic and static energy consumption by the total number of instructions executed,

before normalizing. This adjustment accounts for variations in the number of simulated

instructions per core across different configurations (see Section 3.4.1). In the single-

processor scenario, this is not required, as all configurations execute the same number of

instructions (1 billion) in every run.

3.5 EVALUATION

This section compares the effectiveness of ReD and DASCA in managing an STT-RAM

SLLC, focusing on both performance and energy consumption in the SLLC and main

memory. Section 3.5.1 presents the single-processor evaluation, while Section 3.5.2

discusses the multiprocessor scenario.

3.5.1 Evaluation in a single-processor system

We begin by presenting the number of writes to the SLLC generated by each evaluated

proposal, along with the resulting performance. Next, we analyze the associated energy

consumption in both the STT-RAM and main memory, following the model described in

61

Section 3.4. Finally, we discuss the observed results. All graphs in this section report

individual values for each benchmark, along with the arithmetic or geometric mean,

labelled as AVG and GMEAN respectively. They also report the same type of mean,

computed over only the eight most write-intensive benchmarks (as identified in Table 3.2),

labelled as HIGH.

Content selection. Figure 3.4 illustrates the number of writes to the STT-RAM SLLC

generated by the DASCA scheme and our ReD proposal, normalized to a baseline system

that does not employ any write reduction or filtering mechanism.

Figure 3.4. Number of writes to the STT-RAM SLLC normalized to the baseline.

As illustrated, our proposal significantly outperforms DASCA. Notably, in 20 out of 25

benchmarks evaluated, ReD demonstrates superior effectiveness in reducing write traffic

to the STT-RAM SLLC. Overall, block-bypassing decisions guided by ReD reduce the

number of SLLC writes by approximately 65% compared to the baseline system, whereas

DASCA achieves only a 52% reduction. Furthermore, when focusing specifically on the

eight programs with the highest traffic (HIGH), ReD decreases the number of SLLC writes

by 80% relative to the baseline, compared to a 66% reduction achieved by DASCA.

Performance. In addition to energy efficiency improvements, performance remains a

critical aspect. It is therefore essential to ensure that our approach does not degrade

performance while reducing SLLC energy consumption. To further assess the benefits of

ReD, Figure 3.5 presents the normalized IPC achieved by each scheme.

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 n
um

be
r o

f
SL

LC
 w

rit
es

DASCA ReD

62

Figure 3.5: performance (IPC) normalized to the baseline.

Overall, our scheme performs moderately better than DASCA. ReD achieves a 1.9%

performance improvement over the baseline, whereas DASCA yields only a 0.3% gain.

When focusing on the write-intensive applications, ReD clearly outperforms DASCA, with

performance improvements of 5.0% and 1.4%, respectively. These results suggest that

our approach is particularly effective for applications that generate a high number of writes

to the SLLC — a trend that will be further confirmed in the multiprocessor evaluation.

Energy savings. Figure 3.6 shows the total energy savings in the SLLC, accounting

for both dynamic and static components. Overall, our proposal achieves a 34.5% energy

reduction compared to the baseline, while DASCA achieves 29.5%. When considering

only the write-intensive programs, the savings increase to 60% for ReD and 49% for

DASCA.

Breaking down the total energy savings, ReD reduces dynamic energy by 50%,

compared to 42% for DASCA. In the write-intensive subset, the reductions are 68% and

57%, respectively. For the static component, ReD achieves a 2.0% energy reduction,

whereas DASCA reaches only 0.3% (5.0% and 1.4%, respectively, for the write-intensive

applications).

It is important to note that avoiding SLLC writes reduces dynamic energy, while

improvements in performance translate into lower static energy consumption. As illustrated

in Figure 3.7, dynamic energy in the baseline system dominates for most of the

applications evaluated, being significantly higher than the static contribution.

0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08

N
or

m
al

iz
ed

 IP
C

DASCA ReD

63

Figure 3.6. Energy consumption in the STT-RAM SLLC normalized to the baseline.

Figure 3.7: breakdown of energy consumption in the SLLC into the static and dynamic contributions for the baseline in

the single-processor system.

Finally, we have also evaluated the impact of each scheme on energy consumption in

DRAM main memory. For simplicity, we do not show the results for all individual

applications. As expected, DRAM energy savings generally follow the same trend as

performance improvements. Overall, our proposal reduces DRAM energy consumption by

2.0% compared to the baseline, whereas DASCA achieves a modest 0.2% reduction. In

the case of write-intensive applications, the reductions are 4.7% and 1.1%, respectively.

Discussion. A closer inspection of individual benchmarks reveals several noteworthy

cases that merit further analysis. Overall, the relative trend in the number of SLLC writes

between ReD and DASCA is largely reflected in the energy consumption differences,

although this relationship is modulated by the corresponding performance results.

However, some exceptions can be observed in namd, GemsFDTD and omnetpp. In these

benchmarks, ReD achieves a significantly larger reduction in the proportion of SLLC writes

compared to DASCA, yet this reduction does not yield proportional energy savings or

0.00

0.20

0.40

0.60

0.80

1.00
N

or
m

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n
DASCA ReD

0.0

0.2

0.4

0.6

0.8

1.0
Static Dynamic

64

performance gains. In fact, the improvements in both metrics remain modest. This can be

attributed to the nature of these applications: they are three of the four benchmarks with

the lowest WPKI values. Although the relative reduction in writes is significant, the absolute

number of avoided writes is small. Consequently, the energy savings and performance

gains in these cases remain modest.

Also, in applications such as mcf, cactusADM and hmmer, ReD achieves significantly

higher IPC values than DASCA, despite both techniques exhibiting similar write reduction

capabilities. For these three benchmarks, the results indicate that ReD achieves

substantial improvements over both DASCA and the baseline in terms of SLLC hit rate.

Notably, the number of SLLC hits in cactusADM and mcf increases by factors of 7.23× and

2× compared to the baseline, while DASCA achieves only 1.89× and 0.89×, respectively.

Across all evaluated benchmarks, ReD increases the number of SLLC hits by

approximately 31% compared to the baseline, and 106% when considering only the write-

intensive ones. In contrast, DASCA yields only a 5% improvement overall and 31% in the

high-WPKI subset. In summary, ReD is more effective at identifying blocks with high reuse,

resulting in improved performance.

A third special case is observed in the libquantum application, whose behavior may

initially appear counterintuitive. Neither ReD nor DASCA is able to significantly reduce the

number of writes to the SLLC. However, libquantum running under ReD reports a 7%

performance improvement over the baseline, while performance remains largely

unchanged with DASCA. Additionally, as expected due to the low number of bypasses,

the number of SLLC hits is approximately the same across all three configurations. The

explanation for this performance improvement lies in SLLC bank contention caused by

intense write activity. Of all benchmarks, libquantum experiences the highest level of

stalling due to write contention. Although the write reduction achieved by ReD is limited, it

is sufficient to reduce stall occurrences by approximately 8% compared to the baseline. In

absolute terms, this translates into several million stalls avoided, which ultimately accounts

for the performance improvement observed.

In contrast, although benchmarks such as gromacs, calculix and wrf exhibit moderate

reductions in SLLC writes under both ReD and DASCA, they perform worse than the

baseline. In these cases, the number of SLLC hits is lower than in the baseline, suggesting

that the bypassing decisions made by both schemes are ineffective. As a result, the energy

65

savings from reduced write activity are partially offset by performance losses due to an

increased number of SLLC misses. Additionally, although write operations are not on the

critical path, the performance gains from avoiding long write latencies may be mitigated if

contention arises at the SLLC banks for the writes that are still performed.

3.5.2 Evaluation in a multiprocessor system

This section presents and analyzes the key results obtained from evaluating ReD and

DASCA on a CMP system with eight processors and an 8 MB SLLC.

In addition to the individual results of the 28 evaluated mixes, we report the mean values

for several groups of mixes. For normalized IPC, we use the geometric mean, while for all

other metrics, the arithmetic mean is reported. The groups and their corresponding labels

are defined as follows:

• AVG: all 28 mixes

• HIGH: the four mixes composed exclusively of benchmarks in the high WPKI

category (Hi mixes)

• H + HM: the four Hi mixes, plus the four mixes combining high and medium

WPKI benchmarks (HMi mixes).

• H + HM + HML: the Hi mixes, the HMi mixes, and the four mixes combining

high, medium, and low WPKI benchmarks (HMLi mixes)

• SomeH: all 16 mixes that include at least one application from the high WPKI

category.

Content selection. Figure 3.8 illustrates the number of writes to the STT-RAM SLLC

generated by DASCA and ReD. Results for both schemes are normalized to the baseline.

66

Figure 3.8: number of writes to the STT-RAM SLLC normalized to the baseline in the CMP system.

These results show that ReD is consistently more effective than DASCA in reducing

write operations to the SLLC. In all but two of the evaluated workloads, ReD outperforms

DASCA. On average, ReD reduces the number of writes by 54% compared to the baseline,

while DASCA achieves a 44% reduction. For the write-intensive mixes, the reductions are

44% and 35% respectively.

When comparing the level of SLLC bypassing achieved by ReD in these

multiprogrammed workloads to the 49% reported in the previous chapter (see Section

2.6.4), we observe a moderately higher rate. Although the two scenarios are not directly

comparable due to differences in simulation environment, workload composition and

cache architecture, this outcome is nonetheless expected. In the STT-RAM design, the

ReD capacity was intentionally reduced by half to further decrease the number of write

operations to the SLLC.

Performance. Figure 3.9 illustrates the IPC delivered by each evaluated policy,

normalized to the baseline.

Figure 3.9: performance in the CMP system, measured with the system IPC normalized to the baseline

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
 n

um
be

r o
f

SL
LC

 w
rit

es
DASCA ReD

0.9

1.0

1.1

1.2

1.3

N
or

m
al

iz
ed

 IP
C

DASCA ReD

67

As shown, ReD moderately outperforms DASCA. This highlights a key advantage of

ReD, as it not only reduces the number of writes to the SLLC more effectively than DASCA,

but also delivers higher performance. This improvement, as will be discussed later,

contributes to greater energy savings in both the SLLC and main memory. Overall, ReD

improves performance by 7% compared to the baseline, while DASCA achieves a 4%

improvement.

A closer examination of individual mixes reveals that ReD particularly outperforms

DASCA in the Hi mixes, composed of write-intensive benchmarks. In these cases, ReD

improves performance by 20% relative to the baseline, while DASCA yields an 11%

improvement. As shown in Figure 3.9, ReD also significantly surpasses DASCA and the

baseline in the SomeH mixes, which include at least one high-WPKI benchmark.

Energy savings. Figure 3.10 illustrates the energy savings in the SLLC. As in the

single-processor scenario, the graph exhibits a trend similar to that observed in write

reduction (Figure 3.8), with ReD consistently outperforming DASCA, but modulated with

the performance results. As shown in Figure 3.11, the dynamic component of SLLC energy

consumption is higher than the static one, except in mixes composed exclusively of low-

WPKI benchmarks. Consequently, the ability to reduce SLLC write activity (which affects

the dynamic portion) has a greater impact on total energy consumption than performance

improvements, which influence the static portion. Overall, ReD achieves a 32.5% reduction

in SLLC energy consumption compared to the baseline, while DASCA yields a 27%

reduction. For write-intensive mixes, ReD and DASCA reduce SLLC energy by 34% and

27.5%, respectively.

 Breaking down the savings, ReD reduces the static energy component by 6% on

average (15% for the write-intensive mixes), while DASCA achieves a 3.6% reduction

(9.5% in the high mixes). In terms of dynamic energy, ReD reports average savings of 43%

(36% in the write-intensive mixes), whereas DASCA achieves 36% (30% in the high

mixes). Finally, mixes composed of low-WPKI benchmarks show the lowest energy

savings across all configurations. This is consistent with their modest write reduction and

the relatively high contribution of static energy to total SLLC consumption in such

scenarios.

68

Figure 3.10: energy consumption in the STT-RAM SLLC normalized to the baseline in the CMP system.

Figure 3.11: breakdown of energy consumption in the SLLC into the static and dynamic contributions for the baseline in

the CMP system.

Figure 3.12 additionally illustrates the energy savings achieved in main memory. Unlike

in the STT-RAM SLLC, leakage power constitutes a significantly larger portion of total

energy consumption in DRAM. As a result, the observed trends largely mirror those of the

IPC graph, but in inverse relation: higher performance leads to lower DRAM energy usage

due to shorter execution time. On average, ReD reduces main memory energy

consumption by 6% compared to the baseline (3% for the write-intensive mixes). DASCA

achieves a 3% reduction on average but consumes 6% more energy in the high-WPKI

mixes. This energy overhead may appear counterintuitive, especially considering that

DASCA reduces SLLC writes by 35% and delivers a performance improvement exceeding

10%. However, the explanation lies in the increase in SLLC misses under DASCA for this

subset, which leads to more frequent DRAM accesses, as shown by our study.

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

DASCA ReD

0.0

0.2

0.4

0.6

0.8

1.0
Static Dynamic

69

Figure 3.12: energy consumption in DRAM normalized to the baseline in the CMP system.

Discussion. The superior performance of ReD is attributable to several factors, the

most important of which is the high accuracy achieved in content selection. Figure 3.13

shows the number of SLLC hits per kilo instruction experienced by each mix, normalized

to the baseline. As the figure illustrates, ReD achieves a higher number of hits than DASCA

in all but one mix, confirming that it is more effective at selecting highly reused blocks.

Figure 3.13: number of STT-RAM SLLC hits per kiloinstruction normalized to the baseline in the CMP system.

In addition to the improvement in hit rate, several other metrics also help explain ReD’s

superior performance. These include SLLC misses, DRAM reads and writes, row buffer

read hit rate, and SLLC bank contention. Our analysis shows that ReD consistently

outperforms DASCA across all of these metrics, both when considering the full set of mixes

and when focusing specifically on the write-intensive ones.

0.7

0.8

0.9

1.0

1.1

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

DASCA ReD

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
or

m
al

iz
ed

 S
LL

C
 h

its DASCA ReD

70

3.6 RELATED WORK

In recent years, various researchers have proposed solutions to address the challenges

of energy consumption and performance in STT-RAM SLLCs. These efforts primarily focus

on either reducing the number of writes or lowering the energy consumed per write.

A substantial body of work has focused on reducing write traffic to the STT-RAM. Wang

et al. (2013) propose an obstruction-aware cache management (OAP) mechanism, which

periodically monitors the cache to detect specific applications that obstruct the SLLC.

These are applications that use the SLLC but do not obtain any performance benefit from

it, instead causing degradation to the rest of the workload. Upon detection, OAP forwards

the data to the next cache level or main memory as appropriate.

Rasquinha (2011) introduces two techniques aimed at reducing write activity and

improving energy efficiency of a last level (L2) STT-RAM cache. The first involves the

insertion of a small cache between L1 and the LLC, called Write-Cache (WC). It stores

only dirty lines evicted from L1 and is mutually exclusive with the LLC. On a cache access,

both the LLC and WC are probed in parallel. Write misses are allocated in WC and load

misses are directed to the LLC. By absorbing the majority of L1 writebacks, WC

substantially decreases write traffic to the LLC.

Yazdanshenas et al. (2014) present a coding scheme based on the concept of value

locality to reduce switching activity. By replacing frequently observed data patterns with

limited weight codes, their method achieves fewer and more uniform writes.

Jung et al. (2013) exploit the observation that a significant portion of the data written to

a cache consists of zero-valued bytes or words. Their design augments the tag array with

fine-grained ‘all-zero’ flags at byte and word levels. Before writing, the data value is

checked. If the zero-valued bytes or words are detected, the system sets the

corresponding flags and only writes the non-zero bytes or words. On reads, the original

content is reconstructed by combining the stored non-zero data with the flag information.

Park et al. (2012) propose logically dividing each cache line into several partial lines

and maintaining a per-segment history bit in L1 to track which parts have changed. When

a dirty L1 block is written back to the LLC, only the modified segments are updated, thereby

reducing write volume.

71

Mao et al. (2013) address the write pressure introduced by prefetching. One of their

techniques prioritizes different types of SLLC requests — load, store, prefetch or write back

— based on their criticality, ensuring that more critical requests are served first. In

multiprocessor systems, excessive requests from cache-intensive programs can block

those from cache-unintensive ones, leading to starvation. To mitigate this, they propose a

second mechanism that raises the priority of requests from cache-unintensive programs

so they are promptly served.

Finally, Chang et al. (2014) analyze the impact of cache coherence protocols on the

number of writes in STT-RAM SLLCs. They show that protocols with an owned state, such

as MOESI and MOSI, contribute to reduce them.

Another line of research focuses primarily on improving the performance of STT-RAM

caches. Jog et al. (2012) propose a cache revive technique to calculate the retention time.

Some cache blocks retain data even after the retention time has expired. The retention

time is selected to minimize the number of unrefreshed cache blocks.

Guo et al. (2010) propose the use of STT-RAM for designing combinational logic,

register files and on-chip storage structures, including instruction and data L1 caches,

translation lookaside buffers (TLBs), and L2 caches. To hide the write latency inherent to

STT-RAM, they introduce a sub-bank buffering technique, which enables writes to

complete locally within each sub-bank while allowing reads from other locations within the

array to proceed without obstruction. They show that, by carefully designing the pipeline,

the STT-RAM design can significantly reduce leakage power while maintaining a

performance level close to that of an SRAM-based design.

Sun et al. (2011) propose an STT-RAM cache design for lower-level caches in which

different cache ways are designed with varying retention periods. For instance, in a 16-

way cache, way 0 is built using a fast STT-RAM design with a low retention period, while

the remaining 15 ways use a slower STT-RAM design with higher retention period. Their

technique employs hardware to detect whether a block is read- or write-intensive. Write-

intensive blocks are primarily allocated to way 0, whereas read-intensive blocks are

allocated to the other ways. Additionally, to avoid refreshing dying blocks in way 0, their

design incorporates data migration, relocating such blocks to banks with longer retention

periods.

72

Finally, Sun et al. (2009) propose a write-buffer design to address the long write latency

of a last level (L2) STT-RAM cache. In their design, the LLC may receive requests from

both L1 and the write buffer. Since STT-RAM exhibits lower read latency than write latency,

and because read operations are more performance-critical, the buffer adopts a read-

preemptive management policy that gives higher priority to read requests over writes.

Additionally, the authors propose a hybrid cache design combining SRAM and STT-RAM,

with the goal of redirecting the most write-intensive blocks to the SRAM portion.

We compare ReD exclusively against DASCA for three main reasons. First, DASCA is

more recent than all the aforementioned techniques and is the most closely related to our

work, as both mechanisms aim to reduce the energy consumption of an STT-RAM SLLC

by bypassing write operations predicted to be dead or unlikely to exhibit reuse. Second,

some of the previously discussed proposals, such as the one by Wang et al. (2013), are

already evaluated in the DASCA paper and are clearly outperformed by it. Third, several

other approaches (Yazdanshenas et al., 2014; Jung et al., 2013; Park et al., 2012; Mao et

al., 2013; Jog et al., 2012; Sun et al., 2009; Sun et al., 2011), although addressing the

same general problem, are entirely orthogonal to ours. ReD could, in fact, be built on top

of them, making a direct comparison inappropriate. For instance, Yazdanshenas et al.

(2014) address the STT-RAM write energy problem at the circuit level by identifying

frequently stored values in the SLLC (value locality) and encoding these patterns to reduce

the number of writes and balance cell wear. Unlike our proposal, this approach operates

at the bit level.

3.7 CONCLUSIONS

In this chapter, we addressed two major limitations of conventional SRAM SLLCs: their

high energy consumption and inefficient content management. To overcome these issues,

we proposed using an STT-RAM SLLC whose contents are selected by our ReD

mechanism, adapted to this cache architecture. ReD improves the management of the

STT-RAM SLLC in two complementary ways. First, it bypasses to main memory a

significant portion of incoming blocks, reducing the number of costly write operations.

Second, it increases the SLLC hit rate, leading to moderate performance gains.

Additionally, main memory energy consumption is also reduced as a result.

73

Our approach outperforms other techniques aimed at reducing energy consumption in

STT-RAM SLLCs, including the state-of-the-art DASCA scheme. DASCA delivers inferior

results due to its lower effectiveness in reducing write operations and its less accurate

block selection strategy. As a result, it achieves smaller reductions in energy consumption

and more limited performance gains. In contrast, ReD more accurately identifies reusable

blocks, leading to substantial improvements. On average, ReD reduces SLLC energy

consumption by 33%, achieves an additional 6% reduction in main memory energy, and

improves performance by 7% compared to an STT-RAM SLLC baseline without ReD.

More notably, when compared directly with DASCA, ReD provides an average of 5%

greater SLLC energy savings, 3% higher performance, and a further 3% reduction in

DRAM energy consumption.

74

4 ReD+: A POLICY BASED ON REUSE DETECTION

FOR OPTIMIZED BLOCK SELECTION IN SHARED

LAST-LEVEL CACHES

In this chapter, we propose a novel content selection policy for SLLCs that, like the

previously proposed ReD policy on which it is based, leverages reuse detection to

determine whether a block coming from main memory should be inserted into the SLLC.

This enhanced policy, named ReD+, optimizes the block selection mechanism of ReD to

achieve improved accuracy and performance: blocks bypass the SLLC unless their

expected reuse behavior suggests likely reuse, inferred either from recent reuse history or

from the behavior of the associated requesting instructions. As in the original ReD, blocks

are inserted into the SLLC upon their second request within a limited time window.

Additionally, ReD+ permits certain blocks to enter the SLLC upon their first request if the

associated requesting instruction has previously demonstrated a pattern of requesting

highly reused blocks. In addition to the ART, which tracks reuse for specific block

addresses, ReD+ introduces a PC Reuse Table (PCRT) that measures and correlates

reuse with its requesting program counters, and regulates the insertion rate into the ART

to prevent thrashing.

In this chapter, we also adapt ReD+ to work with conventional non-inclusive SLLCs,

showing that it achieves performance comparable to that of leading state-of-the-art

replacement policies for such architectures. This mechanism was presented under the

generic name “ReD” at the 2nd Cache Replacement Championship (CRC2). It achieved

third place by overall score among 15 submissions, and second in shared-cache

(multiprocessor) score.

4.1 INTRODUCTION

4.1.1 Motivation. Problem analysis

In previous chapters, we proposed the Reuse Detector (ReD), a novel content selection

mechanism that leverages an Address Reuse Table to identify blocks that have not

experienced prior reuse and prevents their insertion into the SLLC by bypassing them.

75

Avoiding the insertion of many useless blocks in the SLLC helps maintain more frequently

reused blocks for extended periods. We explore the design and evaluate the results of

applying this block selection policy to exclusive and STT-RAM-based SLLCs.

The foundational design of ReD presents a significant limitation related to the reuse

detection mechanism: blocks with reuse will experience two last-level cache misses before

finally being inserted into the SLLC. Although our previous results indicate that the

increased efficiency provided by ReD more than compensates for this drawback, thus

improving overall performance, additional performance gains could still be realized by

preventing the second cache miss.

To avoid the second miss, we propose to exploit the correlation between the reuse

pattern of the blocks and the instructions that request them for the first time. A similar

correlation has been pointed out and exploited in a previous study (Wu et al., 2011). In our

policy, we focus on the instructions that request blocks with a high reuse probability. SLLC

misses coming from such instructions will always trigger SLLC block storage, avoiding the

second miss.

An additional problem in ReD is detector thrashing within the ARTs. As explained in

Chapter 2, ReD prevents global thrashing by implementing private ARTs per core. In this

way, a thread experiencing many misses in its private caches does not reduce the reuse

detection window for threads running on other cores. However, the private ART of the

affected core may still experience thrashing, significantly reducing its reuse detection

window.

To mitigate this problem, we leverage the previously stored information to detect

correlations between the reuse patterns of blocks and the instructions that initially request

them, with the goal of reducing the insertion rate of new addresses into the ART.

Specifically, the insertion rate is lowered if the associated requesting instruction has

already shown a correlation with either high or very low block reuse. In the first case,

requested blocks are classified as reused regardless of their status in the ART. In the

second case, blocks are predicted to have no future reuse, making its recording into the

ART unnecessary.

76

4.1.2 Inclusion relationships in the cache hierarchy

Based on our previous results, we believe that the block selection policy is the key

component of the SLLC replacement policy. An improved content selection could deliver

significant performance gains comparable to those of any state-of-the-art full replacement

policy — not only in specific scenarios, as discussed in Chapters 2 and 3, but also in

generic conventional SLLCs.

Specifically, in Chapter 2 we have presented ReD for exclusive SLLCs. In Chapter 3,

we adapt it to function optimally with STT-RAM SLLCs using a mixed approach: for each

specific block, the SLLC operates in exclusion with the private caches upon the block’s

initial request but transitions to an inclusive policy following a subsequent access resulting

in an SLLC hit. In both scenarios, the mechanism acts upon every L2 eviction;

consequently, each ART is placed between its corresponding L2 and the SLLC.

In this chapter, we further adapt ReD+ to operate within a conventional non-inclusive

hierarchy. When retrieved from DRAM, blocks may or may not be stored in the SLLC

depending on the content selection decision. Here, the mechanism acts on fills from main

memory and is positioned adjacent to the SLLC.

4.1.3 The 2nd Cache Replacement Championship

To demonstrate that an improved content selection mechanism can deliver

performance gains comparable to state-of-the-art policies in conventional SLLCs, we

presented our ReD+ proposal (under the generic name “ReD”) at the most recent 2nd

Cache Replacement Championship (CRC2, 2017), which exclusively targeted non-

inclusive SLLC policies. It achieved third place by overall score among 15 submissions,

with an average performance score only 0.2% lower than the leading policy. In the

multiprocessor score – the more relevant metric given the shared nature of the cache – it

ranked second.

The structure of the rest of this chapter is as follows: Section 4.2 describes the operation

of ReD+. Section 4.3 discusses implementation details and provides storage costs.

Section 4.4 presents our internal evaluation results. Section 4.5 summarizes the

independent results obtained and published by CRC2. Finally, Section 4.6 concludes the

chapter.

77

4.2 ReD+ CONTENT SELECTION POLICY

As in ReD, the primary reuse detection is performed by per-core Address Reuse Tables

(ARTs). In this non-inclusive adaptation, they are all placed adjacent to the SLLC instead

of between each L2 and the SLLC, and store addresses of requests that have recently

missed in the SLLC instead of blocks evicted from L2.

The goal of the ART remains the same: to detect whether blocks requested by its

associated core are requested again within a time window. A request that misses both in

the SLLC and the ART is marked as a candidate for bypass in the SLLC, and its address

is stored in the ART. We refer to this as an initial request. A request that misses in the

SLLC but hits in the ART is stored in the SLLC, as the ART hit provides a clear indication

of reuse. We call this a first-reuse request. Subsequent requests are expected to hit in the

SLLC.

When relying solely on the previous mechanism, as ReD does, a block with reuse

experiences two SLLC misses: both the initial and the first-reuse requests miss in the

SLLC. To avoid this second miss, ReD+ introduces a secondary mechanism, designed to

predict reuse patterns at the time of a block’s initial request. This mechanism is based on

the hypothesis that a block’s reuse behavior correlates with the PC of the instruction

issuing the initial request, referred to as the trigger instruction. ReD+ records the reuse

behavior of blocks brought in by initial requests in a table indexed by the PC of the trigger

instruction, enabling it to estimate the reuse probability of a new block based on previously

recorded values associated with its trigger instruction. We call this table the Program

Counter - Reuse Table (PCRT). The PCRT stores two counters per entry: #reused and

#notreused. To manage these counters, certain sampled sets of the ART are expanded to

store the PC of the trigger instruction along with its block address.

When a first-reuse request hits in the ART, the retrieved trigger PC is used to increment

the corresponding #reused counter in the PCRT. The requested block is fetched from main

memory, sent to the L2 cache, stored in the SLLC, and its corresponding ART entry is

invalidated. When a valid (and thus not reused) block is evicted from the ART, the

associated trigger PC is used to increment the corresponding #notreused counter. The

reuse probability for the trigger instruction can be computed simply as

78

 Reuse probability =
#reused

#reused+#notreused
 (4.1)

Further details are provided in Section 4.3.2.

Requests marked by the ART as candidates for bypass are checked against the PCRT.

If the trigger instruction has a high reuse probability, the bypass mark is disregarded, and

the block is inserted into the SLLC to avoid a miss on the expected first-reuse request from

the L2 cache.

To facilitate visualization of the entire mechanism, Figure 4.1 provides a schematic

representation of the ART and the PCRT, illustrating their states after three requests.

Figure 4.1: state of ReD+ internal tables after two initial requests ①②, and a first-reuse request ③. It is assumed that

the ART set shown uses PC sampling.

4.3 IMPLEMENTATION DETAILS

We configure the ART and PCRT to meet the limited storage budget defined by CRC2,

a constraint established to ensure a fair comparison among all submitted replacement

policies. This budget is defined as 32 KB per core, representing 1.56% of an SLLC that

consists of 2MB per core.

4.3.1 Address Reuse Table (ART)

The ART is organized as a set-associative buffer with 16 ways and 512 sets. As in ReD,

we employ a FIFO replacement policy (requiring 4 bits per set) and, to reduce hardware

costs, the ART is organized into sectors. Each entry, or sector, tracks four consecutive

blocks, requiring four valid bits per entry to distinguish among them, as illustrated in Figure

First-reuse
request

Initial requests

Memory

ld/st trigger instr.PC1

ld/stPC2

…

x@x

y@y

ART

…

PC1@xv

…

PC1@yi

…

PCRT

…

10

…

#reused#notreused

 



PC1

time

now

79

4.2(a). ReD+ also uses partial address tags in the ART. The partial tag size is set to 11

bits, a value determined in our experiments to offer a good trade-off between size and

performance. With this configuration, ReD+ capacity is 2MB per core.

We sample 1/4 of the ART sets to collect information for the PCRT. In each entry of

these sampled ART sets, we store the PCs of the trigger instructions corresponding to the

four blocks within the sector. We store only the amount of bits required to index the PCRT,

not the whole PC, as illustrated in Figure 4.2(b).

Figure 4.2: entry of the Address Reuse Table without (a) and with (b) PC sampling, respectively.

Entry of the Program Counter - Reuse Table (c).

4.3.2 Program Counter Reuse Table (PCRT)

The PCRT is tagless and contains 256 entries, a value determined experimentally to

provide a good trade-off between size and performance. This relatively small, tagless

design is sufficient for ReD+, as the PCRT serves only as a secondary mechanism. For

example, if two aliased PCs show markedly different behaviours — one with high reuse

and the other with low reuse — and the PCRT categorizes their combined reuse probability

as low, not all initial requests will be sent to the SLLC. Nevertheless, the ART will still

correctly handle the first-reuse requests.

PCRT entry

#reused#notreused

1010

PCidx

Requests

(a)

(b)

(c)

ART entry

v0v1v2v3PAt

111111

ART entry with PC indexes

PCidx
0

PCidx
1

PCidx
2

PCidx
3v0v1v2v3PAt

8888111111

80

The PCRT is indexed using 8 bits (bits 2–9) of the trigger PC. Each PCRT entry contains

two 10-bit counters (#reused and #notreused), as shown in Figure 4.2(c). When either

counter reaches its maximum, both counters in the entry are halved.

The minimum reuse probability that forces all initial requests to be sent to the SLLC is

set to 1/4. This value was determined experimentally and corresponds to a #notreused /

#reused ratio of 3.

4.3.3 Increasing the effectiveness of the ART

The PCRT also allows identifying initial requests that are not worth keeping in the ART.

Specifically, we utilize information stored in the PCRT to reduce the insertion rate of

addresses in the ART in the following two cases:

• Addresses requested by a trigger instruction with very low reuse probability (less

than 1/64).

• Addresses requested by a trigger instruction with high reuse probability (more

than 1/4). Since ReD+ already stores all blocks requested by instructions in this

category in the SLLC, keeping all their initial requests in the ART is

unnecessary.

Reducing the insertion rate of these addresses allows the ART to retain other, more

useful addresses for longer periods, thereby enhancing its effectiveness.

The reduced insertion rate is set to 1 out of every 8 insertions. It is not advisable to

reduce this rate to zero, as a non-zero insertion rate ensures that the ART can store at

least a portion of a thrashing working set. Moreover, ReD+ must occasionally insert

addresses along with their associated PCs into the ART to monitor changes in trigger-

instruction behavior over time.

4.3.4 Other details

ReD+ can be combined with any other SLLC replacement policy, either by adding it as

a block selection policy or by substituting for the one used in the base policy. The base

replacement policy considered in the results section and used for the CRC2 submission is

2-bit SRRIP (Jaleel et al., 2010b). This policy is applied upon insertion only when ReD+

decides not to bypass a block.

81

Write-back requests are ignored by ReD+ and SRRIP. If these requests miss, they are

always allocated in the SLLC, but with the lowest priority. The simulation infrastructure

does not permit bypassing them.

4.3.5 Storage costs

Table 4.1 summarizes the storage costs per core of ReD+ (ART and PCRT), plus the

costs of SRRIP. The total cost remains within the 32 KB per-core budget imposed by

CRC2.

ART

Parameters 512 sets, 16 ways, 4 blocks/sector
bits / entry 11 tag, 4 valid
bits / set 4 (FIFO replacement)
Cost 512 * (16 * 15 + 4) = 124928 bits = 15616 bytes

ART
sampled
sets

Parameters 128 sets, 16 ways, 4 blocks/sector
bits / entry 4 * 8 bits PC
Cost 128 * 16 * 32 = 65536 bits = 8192 bytes

PCRT
Parameters 256 entries
bits / entry 2 * 10
Cost 256 * 20 = 5120 bits = 640 bytes

SRRIP
Parameters 2048 sets, 16 ways
bits / entry 2
Cost 2048 * 16 * 2 = 65536 bits = 8192 bytes

Total cost: 15616 + 8192 + 640 + 8192 = 32640 bytes (31.875 KB)

Table 4.1: ReD+ hardware cost, per core

4.4 EVALUATION

4.4.1 The experimental framework

For our evaluation, we use a simulation framework based on ChampSim (ChampSim,

2021), which is designed for detailed memory subsystem research and was also employed

in CRC2. It is a cycle-accurate trace-based simulator that models an out-of-order multicore

processor and a memory hierarchy with three levels of cache, the last of which is shared.

We consider the four configurations defined in the championship: single core without

prefetching (c1), single core with data prefetching (c2), four cores without prefetching (c3)

and four cores with data prefetching (c4).

82

For single-core configurations, we use 45 traces collected from various phases of

execution from the 29 applications of the SPEC CPU 2006 benchmark suite. For multi-

core configurations, we create 80 mixes by randomly combining these 45 traces.

Single-core configurations run 200 million instructions for warm-up followed by 800

million instructions for data collection. Multicore configurations execute at least 1 billion

instructions per core. If the end of a trace is reached during simulation, execution continues

by restarting the trace from the beginning.

4.4.2 Configuration of the baseline system

We model a base system of four superscalar processor cores with speculative out-of-

order execution. Each processor has a 6-wide pipeline. A maximum of two loads and a

maximum of one store can be issued every cycle. The reorder buffer has 256 entries and

no scheduling restrictions. Branch prediction uses a simple gshare predictor (McFarling,

1993). Hardware prefetchers are disabled. All instructions have one-cycle latency except

for memory accesses.

Each processing core has a two-level private cache hierarchy, the third and last level

cache being shared by all the cores. The SLLC has a size of 2 MB per core and is non-

inclusive. Write-back bypassing for dirty blocks is not allowed, but read bypassing is (its

usage depends on the policy).

Main memory is partially modelled including data bus contention, bank contention and

write-to-read bus turnaround delays. The memory read queue is out-of-order and uses a

modified Open Row First-Ready First-Come-First-Serve (FR-FCFS) policy. Table 4.2 lists

all the details of the memory hierarchy.

ITLB / DTLB 4 KB,16-set, 8-way

2nd level TLB unified 96 KB, 128-set, 12-way

Private cache L1 I/D
32 KB, 8-way, LRU replacement, block size of 64 B,

4 cycles of access latency

Private cache L2

unified

256 KB, includes all L1 contents, 8-way, LRU replacement, block size of 64 B,

8 cycles of access latency

Shared cache L3

(SLLC)

8 MB (2 MB for single-core), non-inclusive, 16-way, block size of 64 B,

20 cycles of access latency, 32 demand MSHR

DRAM
DRAM core access latency: 13.5 ns on row hit, 40.5 ns on row miss

Two 64-bit DRAM channels (one for single-core)

Table 4.2: memory hierarchy parameters

83

All previously mentioned parameters mirror the setup used in CRC2 and are

representative of current CMP architectures.

4.4.3 Results

Figure 4.3 shows results obtained with our proposed policy, alongside those for SRRIP

as a reference. For the single-core configurations (c1 and c2), we plot the speedup relative

to LRU, whereas for multicore configurations (c3 and c4), we plot the average speedup

across all occurrences of the trace in all mixes, relative to the performance obtained with

LRU. We only plot results for traces that achieve more than a 2% speedup when increasing

SLLC capacity from 2 MB to 8 MB with the LRU replacement algorithm in a single-core

configuration.

84

Figure 4.3: performance results. Speedup vs LRU for ReD+ and SRRIP. Results for all SPEC CPU 2006 benchmarks
that show more than a 2% improvement in IPC between a 2MB and an 8MB LRU-managed LLC, and its geometric
mean. From top to bottom: c1) single core without prefetching, c2) single core with data prefetching, c3) four cores

without prefetching, and c4) four cores with data prefetching.

The geometric mean of speedups over all selected traces is 4.4% using configuration

c1, 2.4% using c2, 5.6% using c3 and 3.6% using c4. For the remaining 26 traces not

plotted, the geometric mean of speedups is 0.1% in c1, 0.2% in c2, 1.5% in c3 and 1.4%

in c4.

Figure 4.4 shows the bypass rate using configuration c1. The average of the plotted

traces is 32.8%, reaching a maximum of 82.1% in 429.mcf.

0.96
1

1.04
1.08
1.12
1.16

Sp
ee

du
p

vs

LR
U

ReD+-c1
SRRIP-c1

0.96
1

1.04
1.08
1.12
1.16

Sp
ee

du
p

vs

LR
U

ReD+-c2
SRRIP-c2

0.96
1

1.04
1.08
1.12
1.16

Sp
ee

du
p

vs

LR
U

ReD+-c3
SRRIP-c3

0.96
1

1.04
1.08
1.12
1.16

Sp
ee

du
p

vs
 L

R
U ReD+-c4

SRRIP-c4

85

Figure 4.4: SLLC bypass rate with ReD+ for all SPEC CPU 2006 traces that show more than 2% improvement in IPC
between a 2MB and an 8MB LRU-managed SLLC, using configuration c1 (single core without prefetching).

4.5 EVALUATION AT CRC2

In this section we summarize the results obtained and published by the CRC2

organization and evaluation committee (CRC2, 2017). We focus on SHiP (Wu et al., 2011)

– used by CRC2 as a reference policy for comparison –, ReD+, and the remaining policies

within the top 5 by overall score: Hawkeye (Jain & Lin, 2016; Jain & Lin, 2017), SHiP++

(Young et al., 2017), Multiperspective Reuse Prediction (Jiménez & Teran, 2017), and

Less is More (Wang et al., 2017). This summary enables an independent comparison of

ReD+ against state-of-the-art replacement policies for conventional SLLCs.

4.5.1 The experimental framework

Both the simulation framework and the configuration of the baseline system are identical

to those used in our internal evaluation. Refer to Section 4.4 for further details.

CRC2 simulates the same four configurations (c1-c4) described in the previous section

but uses a different set of traces derived from the SPEC CPU 2006 benchmark suite

(CRC2, 2021). Out of the 26 benchmark applications, the 20 with an SLLC MPKI greater

than one are selected to ensure sufficient cache stress. For each selected program, the

reference input is used, and the highest-weighted SimPoint (Perelman et al., 2003;

Hamerly et al., 2005) comprising 1 billion instructions is traced. For multicore simulations,

100 multi-programmed workloads are created by randomly combining these 20 single-core

traces.

0

0.2

0.4

0.6

0.8

1
By

pa
ss

 ra
te

86

Single-core configurations run 200 million instructions for warm-up followed by 1 billion

instructions for data collection. Multicore configurations execute at least 1 billion

instructions per core. As in our internal evaluation, if the end of a trace is reached during

simulation, execution continues by restarting the trace from the beginning.

CRC2 also simulates two additional configurations with four cores using CloudSuite

(Ferdman et al., 2012). Configuration c5 runs with prefetching disabled, while configuration

c6 has prefetching enabled. Traces are generated by running CloudSuite in an execution-

driven full-system simulator, intercepting all instructions and memory references within the

simulator to build the trace files. Traces are collected at six sampling points per benchmark,

with each sample containing at least 100 million instructions.

The simulation runs at least 100 million instructions per core. If the end of a trace is

reached during simulation, the trace is restarting from the beginning and the execution

continues.

Single-core simulation results are scored using the geometric mean of IPC speedups

relative to the baseline LRU policy. Multicore results are scored using the geometric mean

of weighted IPC speedup (Luo et al., 2001; Eyerman & Eeckhout, 2014) relative to the

baseline LRU policy.

4.5.2 Results

Figure 4.5 presents the results for the six configurations and all the considered policies,

along with the overall weighted score used by the organizers to rank the policies in the

competition. This overall score assigns 50% weight to the SPEC CPU configurations

(12.5% each) and 50% to the CloudSuite configurations (25% each).

ReD+ ranks third in overall weighted score, 0.2% below Hawkeye and 0.1% below

SHiP++. Considering the average of the multicore scores — which excludes single-core

results due to their limited relevance for shared cache policies — ReD+ ranks second,

after Hawkeye.

Comparing ReD+ with Hawkeye, two aspects are important to contextualize these

results. First, the implementation complexity of ReD+ — including the ART and the PCRT

— is much lower than Hawkeye’s OPTgen. Second, our proposal achieves these results

by focusing solely on content selection, relying on a relatively simple SRRIP policy for

insertion, promotion, and eviction. Future improvements in these aspects can be integrated

87

with ReD+ content selection to achieve even higher performance. In contrast, Hawkeye

defines specific policies for insertion, promotion and eviction.

Figure 4.5: CRC2 results. Score for top benchmarks for the different configurations: c1–SPEC CPU 2006 single core
without prefetching, c2–SPEC CPU 2006 single core with prefetching, c3–SPEC CPU 2006 four cores without

prefetching, c4–SPEC CPU 2006 four cores with prefetching, c5–CloudSuite four cores without prefetching, c6–
CloudSuite four cores with prefetching. On the right, weighted score used to rank results in the competition.

4.6 CONCLUSIONS

Based on our previous work, we design ReD+, a block selection policy that combines,

in a synergistic way, two different approaches to computing the reuse likelihood of a block

that misses the SLLC: a) the detection of a recent-past use of the block as an indicator of

future reuse, and b) the past reuse behavior of blocks fetched by the same instruction that

requests the block.

As in ReD, we design a block reuse detector, separate from the SLLC, that tracks

addresses that have recently missed in the SLLC. Additionally, we include a PC-indexed

store that monitors the reuse of blocks requested by each instruction and, in some cases,

can predict reuse behavior. Although a similar table was used in a previous study (Wu et

al., 2011), our approach differs in two key aspects. First, we train it using the reuse

observed by the address detector, rather than the SLLC. Second, in ReD+, it serves as a

secondary mechanism that acts only in specific scenarios: to avoid the miss on the first-

reuse request and to reduce the number of insertions into the address detector. Both

mechanisms are implemented in private per-core tables, to ensure a fair distribution of

resources and to avoid potential thrashing caused by a single thread.

1
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.1

c1
SPEC CPU

c2
SPEC CPU

c3
SPEC CPU

c4
SPEC CPU

c5
CloudSuite

c6
CloudSuite

Weighted

Sc
or

e
vs

 L
R

U

ReD+
Hawkeye
SHIP++
MRP
LisM
SHiP

88

Based on our previous results with ReD, we believe that the block selection policy (that

is, the decision of whether to bypass the cache or not), is the key component of the SLLC

replacement policy. Enhancing the content selection mechanism can lead to substantial

performance improvements that match the gains of state-of-the-art full replacement

policies. These improvements are achievable not only in specialized scenarios, but also in

conventional SLLCs.

We submitted our ReD+ proposal under the generic name “ReD” in the latest Cache

Replacement Championship (CRC2), which exclusively evaluates replacement policies for

conventional non-inclusive SLLCs. Among the 15 competing submissions, ReD+ secured

third place by overall score, achieving an average performance within 0.2% of the top-

ranked policy, and second in shared-cache (multiprocessor) score.

89

5 NEAR-OPTIMAL REPLACEMENT POLICIES FOR

SHARED CACHES IN MULTICORE PROCESSORS

An optimal replacement policy that minimizes the miss rate in a private cache was

proposed several decades ago. It requires knowing the future access sequence the cache

will receive, and therefore can only be implemented offline in a simulated environment. No

equivalent exists for shared caches because replacement decisions can alter this future

sequence. We present a novel near-optimal policy for minimizing the miss rate in a shared

cache that approaches the optimal execution iteratively. During each iteration, the future

access sequence is reconstructed on every miss by interleaving the future per-core

sequences taken from the previous iteration. This single sequence is then used to feed a

classical private-cache optimum replacement policy. Our evaluation on an SLLC shows

that this iterative proposal converges to a near-optimal miss rate that is independent of the

initial conditions, within a margin of 0.1%. The best state-of-the-art policies that do not

require future knowledge (i.e., “online” policies) achieve approximately 65% of the miss

rate reduction and 75% of the IPC improvement obtained by our near-optimal proposal,

relative to random replacement.

In a shared cache, miss rate minimization does not imply the optimization of other

metrics. Therefore, we also propose a new near-optimal policy to maximize fairness

between cores. The best state-of-the-art online policy, our previously described ReD+,

achieves 60% of the improvement in fairness seen with our near-optimal policy. Our

proposals are useful both for setting upper performance bounds and inspiring

implementable mechanisms for shared caches.

5.1 INTRODUCTION

Ideally, a cache replacement algorithm would ensure that every cache request results

in a hit, allowing the requested block to be serviced as soon as possible. However, this is

evidently not feasible in practice. The OPT cache replacement algorithm minimizes the

number of misses for a specific cache organization (size, associativity, etc.) and is

therefore considered the optimal policy (Mattson et al., 1970).

90

It is worth developing an optimal policy for several reasons:

• To determine the performance gap between proposed replacement policies and

the optimum, this being the room for improvement for new policies.

• To identify and analyze specific desirable behaviours of the optimal policy, to

inspire real-life implementations that mimic or approach optimal algorithms.

Unfortunately, OPT is only applicable to private caches, those that serve a single core,

program, or thread. It cannot be applied to shared caches. This is because it assumes that

the future sequence of cache accesses is independent of the replacement algorithm,

depending solely on the processor and the memory hierarchy between it and the cache

level where the algorithm operates. This assumption does not hold for shared caches.

Therefore, there is no known optimal policy that minimizes misses for shared caches.

The maximum performance that can be achieved by improving the replacement policy in

a shared cache is unknown.

Our goal in this chapter is to propose new algorithms for shared caches that are

approximations to theoretical schemes designed to optimize certain specific metrics. We

refer to this family of algorithms as near-optimal replacement algorithms (NOPTs). These

algorithms can be used in the design phase when developing new replacement policies

for shared caches, similarly to how OPT has been used for private caches since it was

proposed.

Specifically, our contributions are the following:

• We first propose an NOPT to minimize the miss rate for shared caches. It is an

iterative algorithm that is applied to consecutive runs of the same workload. Our

experiments show that, after several runs, the miss rate for each of our

workloads converges to a minimum. To the best of our knowledge, this is the

first study that seeks to determine the theoretical minimum miss rate for shared

caches and provides a successful approach.

• Secondly, having noticed that an optimal shared cache that minimizes miss rate

does not benefit all programs in the workload equally, we propose an NOPT to

maximize fairness between threads. Our experiments show that, with this

algorithm, we obtain the best fairness of all replacement policies considered.

91

• Additionally, we compare the performance of current state-of-the-art policies

with that of our proposals. We show that the best previous policies achieve 65%

of the miss rate reduction obtained by applying our NOPT designed to minimize

miss rate (vs. random), and 75% of the increase in instructions executed per

cycle (IPC). Further, our results are maintained when doubling the number of

cores in the system. Regarding fairness, the best state-of-the-art policy, our

proposed ReD+, achieves 60% of the improvement obtained with our near-

optimal policy, and the second best only 45%. The gaps increase when doubling

the number of cores.

The chapter is structured as follows. Section 5.2 explains the background and

motivation. Section 5.3 describes in detail the NOPT proposed to minimize miss rate.

Section 5.4 details the methodology used in our evaluations, including the experimental

environment and the configuration of the simulated systems. Section 5.5 evaluates the

NOPT to minimize miss rate. Section 5.6 describes our NOPT proposed to maximize

fairness between cores and section 5.7 evaluates this algorithm. Section 5.8 presents

results for state-of-the-art online policies and compares them to our near-optimal

proposals. Section 5.9 presents an analysis on how sensible our proposals are to the most

important variable in a CMP, the number of cores. Finally, in section 5.10, we summarize

our conclusions.

5.2 BACKGROUND

5.2.1 Replacement policies for shared caches in multicore processors

Cache replacement algorithms for processors have been evolving for more than 50

years. Most of the published work has focused on SLLCs (Jain & Lin, 2019), as the benefits

of more effective algorithms are greater in these caches: it is difficult to manage SLLC

contents because both temporal and spatial localities are diminished in the stream of

references observed by the SLLC (Jaleel et al., 2010; Qureshi et al., 2007).

These replacement policies are based on various mechanisms. Some prioritize blocks

based on their recency of access, such as LRU, SRRIP (Jaleel et al., 2010b), and PDP

(Duong et al., 2012). Other use the frequency of accesses, like LFU, LFRU (Lee et al.,

2001) and SAR (Lim et al., 2010). Re-reference distance is the basis for Timekeeping (Hu

92

et al., 2002), EHC (Vakil-Ghahani et al., 2018) and Leeway (Faldu & Grot, 2017). A mixed

approach is used in Modified LRU (Wong & Baer, 2000), DIP (Qureshi et al., 2007), DRRIP

(Jaleel et al., 2010b), SBAR (Qureshi et al., 2006), EVA (Beckmann & Sanchez, 2017) and

ACR (Warrier et al., 2013). Recent state-of-the-art policies classify blocks as either cache-

averse or cache-friendly, and manage each class differently, such as DBCP (Khan et al.,

2010), AIP/LvP (Kharbutli & Solihin, 2008), CHAR (Chaudhuri et al., 2012), the Reuse

Cache (Albericio et al., 2013b), SHiP (Wu et al., 2011), Hawkeye (Jain & Lin, 2016), and

our ReD and ReD+ policies, presented in previous chapters.

5.2.2 Optimal policies

The studies of Belady (1966) and Mattson et al. (1970) are the first to address the issue

of obtaining the absolute minimum number of cache misses produced by a known

sequence of references, and they do so from different perspectives. The first proposed

approach, MIN, determines whether a reference causes a miss or a hit in a cache

managed with an optimal algorithm by analyzing the past sequence of references, while

the second one, OPT, decides the block to be replaced to obtain the minimum miss rate

by analyzing the future sequence of references. A few years later, Belady and Palermo

proved that MIN and OPT provide identical results (Belady & Palermo, 1974). The optimal

algorithm with bypass (OPTb), called pass-through initially, is presented more than a

decade later (McFarling, 1991). OPTb is the optimal algorithm when the cache is not

required to store an incoming block.

In a recent paper, Michaud (2016) develops new ways to describe the OPT and OPTb

algorithms that help to improve our understanding of them and mathematically

demonstrates some of their properties.

OPT and OPTb require knowledge of future memory accesses and are therefore not

implementable in real systems. However, they can be evaluated offline using a simulator.

Such policies are referred to as offline policies. In contrast, those that do not rely on future

knowledge and can, in principle, be implemented in real systems are known as online

policies.

Several papers about cache replacement policies have used OPT in recent years.

Some of them use it as a reference when presenting results (Qureshi et al., 2006; Wong

& Baer, 2000; Qureshi et al., 2007; Khan et al., 2010; Chaudhuri et al., 2012; Qureshi et

93

al., 2005). But, even when designing a policy for shared caches, its usage is limited to

single-processor comparisons. Authors of a recent study explicitly state their desire to

compare with optimum results for SLLCs, but rule it out as impossible (Jain & Lin, 2018).

Other authors not only use OPT for presenting results, but also study and seek to mimic

its behavior in new replacement policy proposals (Kharbutli & Solihin, 2008; Jain & Lin,

2016; Lin & Reinhardt, 2002; Jeong & Dubois, 2006; Rajan & Govindarajan, 2007; Gaur

et al., 2011). Again, they sometimes use single-processor OPT to guide shared cache

designs, because there is no multi-core alternative.

Similarly, other offline policies have been designed to represent the ideal application of

a specific mechanism (Chaudhuri et al., 2012; Liu & Yeung, 2009). These are often called

“oracle” policies. They are used to guide the development of implementable online policies

based on the same principles.

5.2.3 OPT and OPTb for a private cache

In a set-associative cache, OPT selects the block in the cache set that is going to be

referenced the furthest into the future as a victim, and it always inserts the missing block

in the cache (Mattson et al., 1970). Suppose that a 4-way set of a cache contains blocks

A, B, C and D, and that the future sequence of references to blocks in this set is

FACEDABFC. The OPT algorithm would choose to replace block B to make room for block

F. This is because blocks A, C and D are going to be referenced before block B.

The authors of the aforementioned study demonstrated that this algorithm minimizes

the miss rate in the private cache, and thereby, optimizes conventional performance

metrics such as execution time and IPC. Though it cannot be implemented on a real cache

because it requires knowledge of the future sequence of address references, it can be

implemented offline in a simulated environment, when the sequence is known from a

previous, identical run.

OPTb is the optimal policy when the cache allows bypassing. In this architecture, a

requested block does not need to be inserted into the cache, it can be bypassed. It can be

used for example in non-inclusive L2 or L3 caches (Zahran et al., 2007). OPTb is similar

to OPT but it also considers the requested block as a potential victim. If it is re-referenced

the furthest into the future, the incoming block is not inserted into the cache and no block

is evicted. In our previous example, OPTb would bypass the incoming block F instead of

94

evicting B, because all the blocks present in the cache are going to be referenced before

the next reference for block F.

OPT and OPTb are implemented in two phases. In the first phase, the program is

simulated, and the sequence of access requests made to the cache is recorded and stored

in a file. In the second phase, the simulation is run again, but this time, replacement

decisions are taken using OPT/OPTb, which look for the future references in the file

generated in the first phase.

Evidently, replacement decisions in the second phase may differ from those taken in

the first phase. A change in a replacement decision may modify the service time for a

future request due to the difference in hit and miss times, and therefore, alter the instruction

execution speed of the core. This, in turn, may change the timing of future accesses to the

cache. In a private cache, however, this change will not modify the sequence itself: it will

still include the same block references in the same order (assuming the core executes

instructions in program order).

In other words, the access sequence received by a private cache does not depend on

its own behavior. Therefore, during the first phase of OPT and OPTb, the cache can use

any organization and replacement policy. In fact, simulating program execution and its

interaction with the memory hierarchy between the core and the studied cache would be

enough.

5.2.4 Why it is not possible to implement OPT and OPTb for shared caches

A shared cache receives several streams of accesses, one per core or thread sharing

the cache. The interleaving of these per-core sequences forms the global access

sequence the cache receives. To form this global sequence, it is necessary to know not

only the individual sequences but also their timings. As in a private cache, the replacement

policy of a shared cache cannot modify the content or the order of references in each

individual stream, but it can alter the relative timing between them, because hits and

misses have different service times. This, in turn, can alter the stream interleaving, and

therefore the global sequence itself.

Figure 5.1 illustrates, with an example, how this affects the execution of OPTb on a

system with a shared cache. A cache set contains blocks A, B, X and Y. Two cores are

going to access this cache set. The future access sequences are shown as S0 and S1

95

respectively. We execute phase 1 of the OPTb algorithm with two different replacement

policies α and β. They result in different timings due to the different replacement decisions,

and form two different global streams SαG and SβG. When running the simulation again in

phase 2 of the OPTb algorithm, core 0 first accesses block A, and a replacement decision

is required. When working with global stream SαG, OPTb evicts block B, while when

working with global stream SβG, the first evicted block is Y. Clearly, both decisions cannot

be optimal simultaneously.

Figure 5.1: an example of the OPTb algorithm naively applied to a shared cache. Top: cache set contents and access
sequences for a 4-way cache in a dual-core system. Middle: local and global streams resulting from running phase 1 of
the OPTb algorithm with replacement policy α, in which B is the last accessed block from the initial cache set contents.

Bottom: local and global streams resulting from replacement policy β, in which Y is the last accessed block. The
difference in access timings between policy α and β appear because of the different replacement decisions. Highlighted
boxes indicate first accesses to blocks considered for replacement or bypass. The last accessed block found in phase 2

of the OPTb algorithm is not the same in both cases.

OPT and OPTb require the global sequence they work with to be the same as the future

stream the cache will receive. That is, the global access sequence that is captured in phase

1 must be the same as that obtained when applying the optimal algorithm in phase 2. This

can only occur if, during phase 1, we already know the timings that the optimal replacement

policy would generate. As they depend on block service times, which depend on whether

accesses are hits or misses, and in turn, on the replacement policy, we would need to

know the optimal replacement decisions during phase 1. This is impossible. Therefore,

OPT and OPTb cannot be used as optimal replacement policies for shared caches.

AS0: F A C E D A F B C

Z X Z U X T Y X T US1:
Access sequences

ASα0: F A C

Sα1:Replacement
policy α

E D A F B C

Z X Z U X T Y X T U

A Z X Z F U X A T C Y X E T U D A F B CSαG:

Time Last accessed block

Cache set
content B X YC

ASβ0: F A C E D A

Sβ1:Replacement
policy β

F B C

Z X Z U X T Y X T U

A Z F A X C E Z D A U F B X C T Y X T USβG:

Time Last accessed block

96

5.2.5 Optimal replacement policies for shared caches

There are some specific characteristics of shared caches, not present in private caches,

that need to be considered when developing an optimal policy for them.

First, as the global sequence the shared cache receives depends on timings, and those

depend on the whole processor and memory organization, optimal replacement decisions

for shared caches also depend on the timing behavior of the rest of the system. Therefore,

the optimal cache replacement policy may differ from one computer organizations to

another, even when the workload and the physical characteristics of the shared cache are

the same.

Additionally, even the definition of optimum is not unique for a shared cache. Minimizing

the miss rate of the cache does not automatically imply an optimal result in other metrics

such as throughput (instructions executed in the whole system per unit of time), weighted

speedup (Snavely & Tullsen, 2000) or fairness. Therefore, it is possible to propose various

optimization goals for a shared cache.

In this chapter, we propose a family of algorithms — called NOPTs — that approximate

optimal behavior for specific metrics in shared caches. Our proposals require knowledge

of the future and therefore are offline policies, like OPT and OPTb. We apply them to

SLLCs, which are currently the most common type of shared cache in CMPs5.

The optimal algorithm we seek to approximate is OPTb. We decided to work with this

variant because it obtains the minimum miss rate for a given cache organization and size.

As mentioned, it requires the cache to be able to bypass incoming blocks. It is

straightforward to adapt our proposals to a cache that does not allow bypassing by just

taking OPT as the basis instead of OPTb.

5 Another common use of shared caches appears in simultaneous multithreading processors, where a single
core executes several threads in parallel (Eggers et al., 1997).

97

5.3 A NEAR-OPTIMAL REPLACEMENT ALGORITHM TO

MINIMIZE MISS RATE

In this section, we propose a replacement algorithm whose goal is to achieve a miss

rate close to the optimum for an SLLC. We call it NOPTb-miss, standing for near-optimal

replacement algorithm with bypass to minimize miss rate.

5.3.1 NOPTb-miss design

Our proposed method for achieving a result close to the optimum in miss rate is to

iteratively approach the optimal execution and the optimal global access sequence. Our

hypothesis is that the global sequence obtained in an iteration with NOPTb-miss is closer

to what an optimal algorithm would produce than the one obtained in the previous iteration.

We propose the following procedure:

1. Simulate the workload, using any replacement policy in the SLLC.

2. For each execution core, store its individual access stream to the SLLC in files.

Include the timing of the accesses with this initial replacement policy, that is, the cycle

when each request arrives at the SLLC.

3. Simulate the workload using OPTb, feeding it with a global access sequence that is

dynamically constructed using the individual sequences generated and stored in the

previous execution.

4. For each execution core, store its individual access stream to the SLLC in files,

including the new access timings.

5. If the exit condition is not met, return to step 3 and iterate.

The files generated in steps 2 and 4 store, separated by the core and SLLC set, the list

of accesses to the SLLC and the time (in cycles) between two consecutive accesses.

Figure 5.2 is a schematic diagram of the simulation of iteration i of NOPTb-miss (steps

3 and 4) using a cache shared by two cores.

98

Figure 5.2: schematic diagram of the simulation of iteration i of NOPTb-miss.

During iteration i, the simulation executes the applications running in all cores, including

its private caches, and generates requests made to the SLLC. In the event of a miss, the

SLLC uses the NOPTb-miss replacement policy. Whenever a replacement is required, the

policy reads the files created in iteration i-1 to build the global access sequence expected

in the immediate future for the affected set. It does so by interleaving the access streams

of all cores, using the timing information included6. The replacement decision is taken

using OPTb, fed by this future global access sequence, calculated for that specific time.

It is important to highlight that it is not enough to store and use a static global access

sequence. Each execution changes the relative speed between cores, due to the different

optimization possibilities of the various access patterns of the simulated applications.

These variations accumulate over time and would quickly invalidate the information stored

in a static global access sequence.

NOPTb-miss dynamically adapts to these changes. For each set, it maintains pointers

to the individual access sequences indicating the last access the SLLC has received from

each core. These pointers show the current execution point of each core. When a core

generates more accesses per cycle than in the previous iteration due to a better miss rate,

its pointers advance faster than before, meaning that the computation for that core is

6 If two accesses from different cores arrive to the SLLC at the same time, the access from the lower-ordered
core is taken first.

SLLC

Core
1

Access
sequence

Iter. i
Core 1

Access
sequence

Iter. i
Core 2Core

2

Build
global
stream

Access
sequence

Iter. i-1
Core 1

Access
sequence

Iter. i-1
Core 2

Access @, time

Access @, time

OPTb

@, time

NOPTb-miss replacement

DRAM

99

relatively more advanced. The global access sequence is dynamically built interleaving the

individual access streams starting from the pointers.

Using this mechanism, NOPTb-miss adapts to past variations in core execution speeds

and does not allow such variations to accumulate as the execution advances. A valid future

global access sequence is fed into OPTb to take its replacement decisions; however, these

decisions are sometimes sub-optimal because the timings used to interleave the individual

streams come from a previous run. We expect the count of optimal decisions to increase

as we iterate, as timings incrementally approach those obtained with the static global

access sequence that would correspond to the optimal replacement.

The exit condition in step 5 depends on the goals set to achieve with NOPTb-miss and

the precision required for the solution. We suggest iterating until the reduction in miss rate

between iteration i and i-1 is lower than a defined threshold. In section 5.5 we give details

about the exit condition applied in our evaluation.

5.3.2 NOPTb-miss example

In this section, we present an example to illustrate how NOPTb-miss works in a cache

shared by two cores. Figure 5.3 shows, at the top, the access sequences stored during

iteration 1 for both cores and a specific cache set. They include the block address (“A”,

“B”, etc.) and the timing of each access, relative to the previous one. For simplicity, we

assume all accesses in the example have missed in the SLLC in iteration 1.

100

Figure 5.3: an example of how NOPTb-miss works with sequences.

During the simulation of iteration 2, at time t=1, the access to block X occurs. We

assume that this access misses in the cache, and therefore NOPTb-miss is used to decide

the replacement. The future global sequence is generated by interleaving the individual

access sequences for the corresponding set (see “Iteration 2, t=1” in the figure). OPTb is

applied to decide the replaced block based on this sequence (see “Global, t=1”). We

suppose that in this case, OPTb decides to store X in the cache, a decision that in the

future will convert the second access to X to a hit. As this first access to X misses as in the

previous iteration, there are no changes in its service time. Therefore, future accesses will

arrive as planned.

At time t=3, an access to A arrives. We assume it also misses. NOPTb-miss

regenerates the global sequence from this cycle, which will coincide with the one

generated at t=1 but starting in cycle 3, since there have been no changes with respect to

the previous iteration.

At time t=5, the second access to X arrives, which in this case is a hit. NOPTb-miss

does not apply since no replacement is required. The service time of this access to X is,

however, less than that of the previous simulation, because it is served from the SLLC and

not from DRAM. Therefore, core 2 experiences less delay and we assume it will be able

to launch the next access to Y earlier than in the previous simulation.

A after 3 cyclesCore 1: B/6 C/6 D/5 E/2

X after 1 cycle X/4 Y/6 Z/2 U/4Core 2:
Access sequences
from iteration 1

1Cycle: 2 3 4 5 6 7 8 9 10

Core 1:

11 12 13 14 15 16 17 18 19 20

Core 2:
Iteration 2

t=1

A B C D

X X Y Z U

X A X B Y Z C U DGlobal, t=1:

Cycle: 6 7 8 9 10

Core 1:

11 12 13 14 15 16 17 18 19 20

Core 2:
Iteration 2

t=6

B C D

Y Z U

Y Z B U C DGlobal, t=6:

A after 3 cyclesCore 1: B/6 C/6 D/5 E/2

X after 1 cycle X/4 Y/1 Z/2 U/4Core 2:
Access sequences
from iteration 2

101

At time t=6, an access to Y arrives, five cycles before the previous iteration. We assume

it misses in the cache. NOPTb-miss regenerates the global sequence based on the current

state (see “Iteration 2, t=6” in the figure). Note that the order of accesses in the global

sequence generated at time t=6 (see “Global, t=6”) differs from that generated at time t=1

(see “Global, t=1”). This is because the speed with which the individual sequence of each

core is traversed changes from one iteration to another, when accesses change from

misses to hits or vice versa.

During the simulation of iteration 2, new SLLC access sequences are generated and

stored in new files. Figure 5.3 shows, at the bottom, that in core 2 the distance between

the second access to X and the access to Y has changed. These new sequences will be

used in iteration 3.

5.3.3 Computational complexity

The computational time (T) required to execute NOPTb-miss depends mainly on the

number of accesses of the workload that is being simulated. The order of magnitude of

this figure for our simulated workloads (see section 5.4) ranges from tens of millions to

hundreds of millions. It also depends on the number of cores and the cache associativity,

but they are several orders of magnitude smaller and do not change unless the architecture

changes. The number of iterations required is also a factor, but empirically we have found

that it is a small figure (see section 5.5). We therefore consider the number of accesses of

the workload as the input size of our algorithm (n).

The part of the algorithm that requires more computation is the construction of the global

access sequence that happens on every miss. This task finishes when the first access for

every block present in the set and for the incoming block are found in the future access

sequences. The best-case scenario is when all accesses are found immediately. As this

inexpensive task needs to be repeated on every miss, and the number of misses is

proportional to the number of accesses, in this case

𝑇𝑏𝑒𝑠𝑡(𝑛) ∈ 𝑂(𝑛) (5.1)

The worst-case scenario happens when all accesses appear at the end of the individual

sequences, forcing the construction of the whole global sequence on every miss. In this

case, as we need to repeatedly build a list of n/2 items on average, we have

𝑇𝑤𝑜𝑟𝑠𝑡(𝑛) ∈ 𝑂(𝑛2) (5.2)

102

Although there is no known optimal algorithm for our scenario, it is a problem that can

theoretically be solved by brute-force searching. On every miss, either one of the blocks

present in the set is evicted or the incoming block is bypassed. The brute-force search

would need to consider all situations, branching the simulation for every possible decision.

At the end of all branches, the miss rate for every branch would be calculated and the

minimum taken, which corresponds to the optimal solution. As branches are created on

every miss, we have

𝑇𝑏𝑟𝑢𝑡𝑒(𝑛) ∈ 𝑂(𝑐𝑛) (5.3)

where c is the associativity of the cache plus one, therefore greater than one.

Comparing (5.1) and (5.2) with (5.3), we can see that NOPTb-miss can be executed in

quadratic time whereas the brute-force optimal solution requires exponential time.

5.4 METHODOLOGY

In this section, we describe the methodology used in the rest of the chapter for

evaluation purposes. First, we present the experimental framework, in section 5.4.1, and

details of our baseline system, in section 5.4.2 . Next, in section 5.4.3, we briefly describe

the metrics used in our results, and in section 5.4.4 we describe other replacement policies

that we use in our evaluation. Last, in section 5.4.5, we offer information to facilitate the

reproduction of our results.

5.4.1 The experimental framework

For our evaluation, we use a simulation framework based on the ChampSim simulator,

designed for detailed memory subsystem research. This is the same as that used in the

most recent Cache Replacement Championship (CRC2, 2017).

Note that our proposals do not require this specific framework to work. They can be run

on any cycle-accurate simulation engine, either based on the simulated execution of

workloads or the reading of executed instructions from program traces.

We execute a multiprogrammed workload set composed of applications from the SPEC

CPU 2006 suite (Henning, 2006) on a system with four cores. These are the same

applications used in CRC2. The championship defines a “de facto” standard for the

evaluation of cache replacement policies that we are reusing.

103

We have generated a set of 100 mixes, formed by random combinations of 4

benchmarks each, taken from all those in the SPEC CPU 2006 benchmark suite. Each

program appears between 8 and 22 times, this corresponding to a mean of 13.8 times with

a standard deviation of 4.0.

Traces for each benchmark are also taken from CRC2. For each individual program,

the reference input is taken and the highest-weighted SimPoint (Perelman et al., 2003;

Hamerly et al., 2005) of 1 billion instructions is traced. If during the simulation the end of a

trace is reached, its execution continues from the beginning.

We first run at least 200 million instructions of each instruction trace to warm up the

memory system, and then collect data for the next 800 million instructions. At the end of

the data collection phase of a thread, the execution continues to put pressure on the

shared resources, until data for all cores are collected.

Access streams and timings are captured during the whole execution for all cores. In

each execution with NOPTb-miss, the simulation is extended beyond the data collection

phase by up to 1000 million instructions, so that the access stream captured is long enough

for all cores to not reach the end of it during the next execution.

5.4.2 Configuration of the baseline system

We model a base system that is the same used to evaluate ReD+ in the previous

chapter. It consists of four superscalar processor cores with speculative out-of-order

execution. Each processor has a 6-wide pipeline. A maximum of two loads and a maximum

of one store can be issued every cycle. The reorder buffer has 256 entries and no

scheduling restrictions. Branch prediction uses a simple gshare predictor (McFarling,

1993). Hardware prefetchers are disabled. All instructions have one-cycle latency except

for memory accesses.

Each processor core has a two-level private cache hierarchy, the third and last level

cache being shared by all the cores. The SLLC has a size of 2 MB per core and is non-

inclusive. Write-back bypassing for dirty blocks is not allowed, but read bypassing is (its

usage depending on the policy).

Main memory is partially modelled including data bus contention, bank contention and

write-to-read bus turnaround delays. The memory read queue is out-of-order and uses a

104

modified Open Row First-Ready First-Come-First-Serve (FR-FCFS) policy. Table 5.1 lists

all the details of the memory hierarchy.

ITLB / DTLB 4 KB,16-set, 8-way

2nd level TLB unified 96 KB, 128-set, 12-way

Private cache L1 I/D
32 KB, 8-way, LRU replacement, block size of 64 B,

4 cycles of access latency

Private cache L2

unified

256 KB, includes all L1 contents, 8-way, LRU replacement, block size of 64 B,

8 cycles of access latency

Shared cache L3

(SLLC)

8 MB (2 MB for single-core), non-inclusive, 16-way, block size of 64 B,

20 cycles of access latency, 32 demand MSHR

DRAM
DRAM core access latency: 13.5 ns on row hit, 40.5 ns on row miss

Two 64-bit DRAM channels (one for single-core)

Table 5.1: memory hierarchy parameters

Some metrics are normalized to single-core execution results. In such cases, we run

each of the benchmarks in the same simulation environment, changing the core count to

a single core and reducing the SLLC size to a quarter of its original size.

5.4.3 Metrics

To evaluate performance, we report SLLC misses per kilo instruction (MPKI) and

number of instructions executed by all cores per cycle (system IPC). The former is a

performance metric for the SLLC alone and the latter is for the whole system. Unless stated

otherwise, figures show the (arithmetic) mean of the results obtained for each of the 100

workloads.

To evaluate fairness, we use the M1 (un)fairness metric defined by Kim et al. (2004).

This is a pure (un)fairness metric that is independent of performance level, unlike mixed

metrics such as harmonic IPC (Luo et al., 2001). For each mix, the unfairness is calculated

as

𝑀1 = ∑ ∑ (|
𝑀𝑖𝑠𝑠_𝑠ℎ𝑟𝑖

𝑀𝑖𝑠𝑠_𝑑𝑒𝑑𝑖
−

𝑀𝑖𝑠𝑠_𝑠ℎ𝑟𝑗

𝑀𝑖𝑠𝑠_𝑑𝑒𝑑𝑗
|)𝑗𝑖 (5.4)

for any pair 𝑖 and 𝑗 of cores executing in the workload (six combinations for our four cores).

𝑀𝑖𝑠𝑠_𝑠ℎ𝑟 is the miss count in the shared cache scenario and 𝑀𝑖𝑠𝑠_𝑑𝑒𝑑 is the miss count

in the dedicated scenario, in which a program runs in a single-core setup with a

105

proportionally smaller SLLC (a quarter of the original size). Notice that M1=0 means

complete fairness.

5.4.4 Other replacement policies

Throughout the evaluation we use other replacement policies, either as part of the

discussion or in our comparisons:

• The RANDOM policy evicts a block randomly selected among those stored in

the set.

• The MISSES policy forces all blocks coming from DRAM to bypass the SLLC,

and all write-backs to be allocated to a fixed way of the cache. Its goal is to force

as many misses in the SLLC as possible.

• The SRRIP policy (Jaleel et al., 2010b) utilizes the concept of a re-reference

interval prediction value (RRPV) for a cache block. The version we use stores

this value in two bits. On insertion, a block gets assigned a long re-reference

interval, with RRPV=2. If the block receives a hit, it is promoted to a near-

immediate re-reference interval, with RRPV=0. In case an eviction is required,

the lowest-order block with distant re-reference interval, RRPV=3, is selected.

If there is no block like that in the cache set, the RRPV of all blocks is

incremented, and the victim selection restarts. In summary, SRRIP assigns

lower RRPV, and therefore less likelihood of replacement, to blocks that have

been recently re-referenced.

• The LRU policy (Least Recently Used) maintains the stack of blocks in a set

ordered by its recency of usage. It selects the least recently requested block for

eviction.

• The SHiP++ policy (Young et al., 2017) is an evolution of SHiP-PC (Wu et al.,

2011). SHiP-PC tries to predict the reuse characteristics of a line based on a

signature of the line, which is defined by the PC of the instruction that caused

the miss. A data structure called the Signature Hit Predictor stores SLLC

hit/miss data correlated to this signature. SHiP leverages the RRPV concept of

SRRIP but it assigns values on insertion in a different way: a block is inserted

with long re-reference interval only if other blocks associated with its same

106

signature have previously hit in the SLLC, and with distant interval if not. The

policy mirrors SRRIP in other areas. SHiP++ extends SHiP by improving the

management of the Signature Hit Predictor and making the policy prefetch and

writeback-aware.

• The Hawkeye policy (Jain & Lin, 2016; Jain & Lin, 2017) learns from Belady’s

MIN algorithm (Belady, 1966) by applying it to past cache accesses to inform

future cache replacement decisions. It introduces a new method of efficiently

simulating Belady’s behavior on past accesses and stores the expected hit or

miss behavior of a block correlated with the PC of the instruction that requested

the access. Thereby PCs are classified as cache-friendly or cache-averse and

this information is used to assign the replacement priority in the SLLC.

• Our ReD+ policy, presented in Chapter 4.

5.4.5 Reproducibility

All resources required to reproduce the evaluation in this chapter are available in a

public repository (Díaz, 2021). These include:

• The version of the ChampSim simulator we use (ChampSim, 2021). The original

version is continuously evolving.

• The composition of our workload set.

• Pseudo-code for NOPTb-miss.

• The source code for NOPTb-miss, NOPTb-fair and the other policies with which

they are compared.

• Sample execution scripts.

Additionally, the traces we use are also publicly available (CRC2, 2021).

5.5 NOPTB-MISS EVALUATION

In this section, we first study NOPTb-miss convergence, showing the evolution of the

SLLC miss rate as more iterations are run. Next, we analyze how near our proposal is to

the optimum. Finally, we present results for each application in our workload.

107

5.5.1 Convergence analysis

In step 1, NOPTb-miss can model an SLLC with any replacement policy. To validate

our design and hypothesis in different circumstances, we select three different initial SLLC

policies: SRRIP (Jaleel et al., 2010b), RANDOM and a policy that misses in the SLLC as

much as possible, which we call “MISSES”. These three initial policies are used in three

isolated sets of experiments.

Our proposal is based on the hypothesis that the global sequence obtained in an

iteration with NOPTb-miss is closer to what an optimal algorithm would produce than the

one obtained in the previous iteration. This implies that the miss rate is reduced in each

iteration. This hypothesis can be verified by measuring the miss rate, which should

decrease asymptotically in each iteration, heading towards the optimum value. This value

is expected to be independent of the starting replacement policy.

Figure 5.4 shows the mean SLLC miss rate for successive iterations of the simulation

of NOPTb-miss, for all three initial replacement policies. Iteration 0 corresponds to step 1

of the algorithm, while the rest correspond to step 3. The chart on the right is a zoomed

view of the chart on the left, excluding iteration 0 from the X-axis and narrowing the Y-axis

range. Both charts display the same data for iterations 1 through 4. As shown on the left,

miss rates converge rapidly, as soon as the first iteration, to a very similar value regardless

of the replacement policy used in iteration 0. On the right, we can see how successive

iterations improve the miss rate convergently. The miss rates in iteration 4 differ by less

than 0.1% between the policies.

(a) (b)

Figure 5.4: mean SLLC miss rate for step 1 of NOPTb-miss (labelled as iteration 0) and several iterations of step 3. The
two graphs show the same values for iterations 1-4 but using different scales; (a) shows all iterations while (b) is a zoom

showing the iterations in which the convergence can be seen most clearly.

0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4

SL
LC

 m
is

s
ra

te

Iteration

Starting with MISSES
Starting with RANDOM
Starting with SRRIP

0.4430

0.4435

0.4440

0.4445

0.4450

1 2 3 4

SL
LC

 m
is

s
ra

te

Iteration

Starting with MISSES
Starting with RANDOM
Starting with SRRIP

108

The aforementioned values are means of the rates with the different 100 workloads.

Figure 5.5 shows, for each workload, the maximum difference in miss rate obtained in

iteration 4 between any two of the three experiments. In the worst case, the miss rates

differ by 0.50%. In 96 of the 100 workloads, the difference is less than 0.1%.

Figure 5.5: maximum relative difference in miss rate in iteration 4 of NOPTb-miss when starting
with MISSES, RANDOM and SRRIP as replacement policies in step 1 (iteration 0).

In our experiments, we have stopped our simulations in iteration 4 since the results are

very similar to those obtained in iteration 3. In 55% of workloads and experiments, the miss

rate is lower than in iteration 3, and in the rest it is higher. In iteration 4 and later (not

shown), miss rates no longer exhibit systematic improvement, but fluctuate slightly.

According to our analysis, the main reason for this is that the simulation framework models

an out-of-order processor. The unordered execution sometimes results in accesses from

the same core in successive iterations not occurring in strictly the same order. The most

common case is that two consecutive accesses exchange their order in the sequence.

These accesses must be very close in time. Since the out-of-order model may slightly alter

the order of closely spaced instructions between iterations, the individual access

sequences are not completely reliable, making the OPTb policy generate sub-optimal

replacements, which cause small variations in the result.

In summary, NOPTb-miss converges quickly, after a few iterations, to a miss rate that

differs less than 0.1% for all the various initial replacement policies selected for step 1.

Where not stated otherwise, in the rest of this chapter, we present the results obtained in

iteration 4 when using SRRIP as the initial policy.

Although our experimental results show that the algorithm converges for all 100 mixes

in our workload, a more thorough theoretical analysis would be required to mathematically

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

M
is

s
ra

te
 d

iff
er

en
ce

Workload

109

guarantee convergence in all cases. Such an analysis, while interesting, falls outside the

scope of the present work.

5.5.2 How close is NOPTb-miss to the optimum?

Since there is no optimal policy for miss rate for shared caches, we believe it is not

possible to mathematically demonstrate that NOPTb-miss provides the same results that

such a policy would produce. That said, there is strong evidence that NOPTb-miss obtains

results that, within the indicated margins, are indistinguishable from such a theoretical

policy.

On the one hand, as we mentioned at the beginning, a theoretical way to minimize the

miss rate in the SLLC would be to apply OPTb using the global sequence resulting from

the execution of the workload using OPTb as a replacement algorithm. From this point of

view, the optimal algorithm can be understood as the one that generates results and a

global sequence such that, when applying OPTb again, these results are not modified. As

we have seen, after several iterations of NOPTb-miss the results show very little variation,

which in our opinion indicates that it is very close to the optimum.

On the other hand, it could be argued that with NOPTb-miss, in some cases, the

algorithm could converge to a local minimum and fail to escape it through further iterations.

We believe that the convergence towards a very similar miss rate starting with three very

different replacement policies makes this very unlikely. In addition, we have carried out

experiments introducing variations in the timing of the access sequences. With this, the

goal is to introduce disturbances in input data in different directions, to force the algorithm

out of a hypothetical local minimum. Specifically, for a subset of the workloads, we run

multiple experiments in iteration 5, where the times between consecutive addresses in

three of the cores during the whole simulation were multiplied by 0.5, 1, 3 or 9, while those

of the other core were left unchanged. All 175 combinations were tested for each workload

in the subset. The results in MPKI and IPC worsened for that iteration, as replacement

decisions were misinformed and therefore not optimal, but quickly returned in iteration 6 to

values within the same ranges as those obtained before the disturbance. These results

provide strong evidence that the algorithm does not converge to local minima.

110

5.5.3 Results per application

In this section, we compare the results obtained by each of the applications when using

NOPTb-miss as the replacement policy. Figure 5.6 shows, on the top chart, the normalized

MPKI obtained with NOPTb-miss for all individual benchmarks. Values are normalized to

the MPKI obtained when executing each application in a single-core system using OPTb

as the replacement policy, with an SLLC reduced in size proportionally (from 8 MB for four

cores to 2 MB for a single core). The vertical bar shows the range of results for all instances

where the application appears in our workload set and the horizontal bar crossing the

vertical one indicates the mean. Applications are ranked by the number of requests for

accesses per kilocycle (APKC) they make to the SLLC, shown on the bottom chart.

Figure 5.6. Bottom: mean number of accesses to the SLLC per kilocycle (APKC) for the SPEC CPU applications that
compose our workload set, ranked by value. Top: MPKI at the SLLC for NOPTb-miss, normalized to the value obtained

when executing each application in a single-core system with a proportionally reduced SLLC size and OPTb. The
vertical bar shows the range of results for all instances where the application appears in our workload set. The

horizontal bar shows the mean.

The figure shows that the applications on the right, those with the highest rate of access

to the SLLC, generally achieve MPKI reductions when running alongside others in a

shared cache. Conversely, the applications on the left, those with lower access rates,

experience an increase in miss rate compared to that in their optimal solo execution. This

result can be explained by the characteristics of the policy. To minimize miss rate, NOPTb-

miss attempts to reconstruct the global sequence of references as it will occur in the future.

Cores that launch more requests per cycle place relatively more blocks in that global

sequence than those that launch fewer. As an optimal global miss rate is achieved

0.01

0.1

1

10

100

N
or

m
al

iz
ed

 S
LL

C

M
PK

I

NOPTb-miss

0
5

10
15
20

Av
er

ag
e

SL
LC

AP

KC

111

retaining blocks accessed soonest in the future, and those are mostly from applications

with high access rate, cores that access the cache less frequently have less priority, this

meaning that NOPTb-miss does not favor them.

A fair replacement for a shared cache should provide similar MPKI reduction to all

applications. Therefore, we can conclude that NOPTb-miss does not treat applications

fairly. Specifically, it seems that NOPTb-miss at least partially sacrifices fair service

between cores to minimize the global miss rate of the shared cache.

5.6 A NEAR-OPTIMAL REPLACEMENT ALGORITHM TO

MAXIMIZE FAIRNESS

As mentioned before, there is no single definition of an optimal replacement policy in a

shared cache because the optimization of the total number of cache misses does not imply

the optimization of other metrics such as global throughput (total number of instructions

executed) or fairness between cores.

We can, therefore, propose the design of a NOPT with a different objective, seeking to

approximate a different optimum. Considering the analysis presented in the previous

section, our new objective is to treat all cores fairly, improving fairness among them. We

call our proposed algorithm NOPTb-fair, standing for near-optimal replacement algorithm

with bypass to maximize fairness.

Fairness itself is a desirable property but it is not a common main goal in real-world

design. With this design and analysis, we aim to explore how fairness affects other metrics

such as throughput, to show the potential shortcomings that may appear with a policy only

looking to minimize miss rate and to ultimately help achieve a better balance between

throughput and fairness in real-life policies.

5.6.1 NOPTb-fair design

NOPTb-miss decides the replacement based on the time it will take to reference each

block in the global sequence, regardless of which core will reference it. Nonetheless, for a

particular core, only the blocks that it will reference in the future and their order of reference

are relevant. That is, its own sequence of future references is the relevant one, regardless

of what the other cores do.

112

Let us suppose that, at some point, the first references that appear in the future

sequences of cores C1 and C2 are for blocks B1 and B2 respectively. The most important

block for core C1 is B1, and, similarly, that for C2 is B2, and this does not depend on

whether B1 is accessed later than B2 or vice versa. Our proposal is based on respecting

these individual priorities of each core.

We define the future reuse distance (FRD) of a block B, used by a particular core, as

the number of accesses that appear in the individual access sequence of that core from

the current time until the next reference to block B. FRD indicates the relative importance

of each block to the core that uses it: the lower the FRD, the more important it is to keep

the block in the SLLC for the core that uses it. Our proposal for NOPTb-fair replaces the

block with the largest FRD of any of the cores. Therefore, it determines the priority of each

block from the point of view of the core that uses it, instead of from that of the shared

cache, and replaces the least important of them. It is interesting to note that OPTb for a

single core also replaces the block with the largest FRD.

NOPTb-fair follows this procedure:

1. Simulate the workload, using any replacement policy in the SLLC.

2. For each execution core, store its individual access stream to the SLLC in files.

Timing information is not required.

3. Simulate the workload using a replacement policy that evicts the block with the

largest FRD, also considering the possibility of a bypass. This policy is fed with the

individual access sequences captured in the previous step. It also uses pointers in

each sequence to track the last access received in the SLLC from each core.

The result does not depend on the policy used in the initial step — within the limitations

caused by the simulation of out-of-order processors (see Section 5.5.1) — and no iterative

process is required. This is because the SLLC replacement policy affects the timing, but

not the list or order of accesses of each core, which is the only information used by NOPTb-

fair.

A complementary view on NOPTb-fair appears when we realize that its results are

equivalent to applying OPTb on a global sequence constructed with the (unrealistic)

assumption that the SLLC will receive the same number of accesses per cycle from each

core, instead of using the actual expected timings as NOPTb-miss does.

113

5.6.2 NOPTb-fair example

In this section, we illustrate the operation of NOPTb-fair with an example of a cache

shared by two cores. Figure 5.7 shows, for a specific time, the content of a cache set and

the sequences of future accesses of the two cores to that cache set. These sequences

have been obtained in a previous simulation and have no temporal information. Therefore,

they could have been generated using any replacement algorithm in the SLLC.

Figure 5.7: an example of the victim selection procedure of NOPTb-fair. Top: cache set contents and access sequences
for a 4-way cache in a dual-core system. Bottom: FRD calculation at miss caused by Z, assuming A hits before. Each
FRD calculation searches only in the sequence of the affected core. Block B has the largest FRD (7), and is therefore

selected for eviction.

Suppose that the first access to reach the SLLC is to block A from core 0. It is a hit and

therefore there is no replacement action. Then, the access to Z from core 1 arrives at the

SLLC, this causing a miss and therefore requiring a replacement action. At that time,

NOPTb-fair calculates FRD for each of the blocks in the set and the new block Z. FRD for

block B is 7 since core 0 will access blocks F, A, C, E, D, A and F before block B. Similarly,

the FRD is 1 for A (block F), 0 for X, 5 for Y (blocks X, Z, U, X and T), and finally, 1 for Z

(block X). The largest FRD among the five candidate blocks is that of block B, which will

therefore be evicted to make room for Z.

5.7 NOPTB-FAIR EVALUATION

In this section, we first present the per-application performance results for NOPTb-fair.

Next, we analyze how near our proposal is to the optimum. Finally, we compare results for

NOPTb-fair and NOPTb-miss per workload.

AS0: F A C E D A F B C

Z X Z U X T Y X T US1:
Access sequences

FRD calculation
at miss caused by Z

Cache set
content A XB Y

F A C E D A F B CBlock A:

F A C E D A F B CBlock B:

= 1

= 7

Block X:

Block Y:

= 0

= 5

X Z U X T Y X T U

X Z U X T Y X T U

Block Z: = 1X Z U X T Y X T UMAX → Evict

114

5.7.1 Results per application

Figure 5.8 shows the normalized MPKI obtained with NOPTb-fair for all individual

benchmarks. The chart organization is the same as in Figure 5.6 (above). Comparing the

figures, we can see that for NOPTb-fair there is no obvious correlation between the

normalized SLLC MPKI and the SLLC APKC. With NOPTb-fair, only two applications

(perlbench and gobmk) show a significantly higher mean MPKI than the single-core

optimal execution, and the increase is much smaller than that observed with NOPTb-miss.

These results confirm that NOPTb-fair achieves a substantially fairer outcome than

NOPTb-miss, as evidenced by the lower variation in MPKI across applications.

Figure 5.8. Bottom: mean number of accesses to the SLLC per kilocycle (APKC) for all applications in our workload set,
ranked by value. Top: MPKI at the SLLC for NOPTb-fair for the same applications, normalized to the value obtained
when executing each application in a single-core system with a proportionally reduced SLLC size. The vertical bar

shows the range of results for all instances where the application appears in our workload set. The horizontal bar shows
the mean.

5.7.2 How close is NOPTb-fair to the optimum?

To the best of our knowledge, there is no previous proposal for a replacement algorithm

that optimizes fairness between cores in an SLLC. Therefore, we cannot compare the

NOPTb-fair design or results against other optimal or near-optimal proposals.

In Section 5.8, we compare NOPTb-fair fairness results with those from other

replacement policies. NOPTb-fair obtains a better fairness metric than any other policy.

Beyond this, and unlike the case of NOPTb-miss, we are not able to provide strong

evidence that its results are optimal or near optimal. We consider NOPTb-fair the best-

known approximation to the theoretical optimal fairness policy to date.

0.01

0.1

1

10

100

N
or

m
al

iz
ed

 S
LL

C

M
PK

I

NOPTb-fair

0
5

10
15
20

Av
er

ag
e

SL
LC

AP

KC

115

5.7.3 Comparison between NOPTb-miss and NOPTb-fair at workload level

Having two policies whose optimization goals are different allows us to compare them

and study how the goals affect the final performance of the system. In this section, we

compare NOPTb-miss and NOPTb-fair, and analyze their performance for each workload.

 Figure 5.9 shows a comparison of NOPTb-miss and NOPTb-fair at workload level. The

chart on the left shows the differences in normalized SLLC MPKI between the two policies

for each of the workloads executed, ranked by this difference in descending order. Positive

values mean that NOPTb-miss misses less often (performs better) than NOPTb-fair. As

expected, NOPTb-miss reduces the SLLC MPKI more than NOPTb-fair for all workloads

in our set.

The chart on the right shows the differences in normalized IPC, with workloads ranked

by this difference in descending order. Positive values mean that NOPTb-miss increases

IPC more (performs better) than NOPTb-fair. We can see that the higher reductions in

MPKI observed with NOPTb-miss do not always translate into a better throughput: 34 out

of the 100 multiprogrammed workloads show better normalized IPC for NOPTb-fair than

for NOPTb-miss.

 (a) (b)

Figure 5.9: (a) difference in normalized SLLC MPKI reduction and (b) difference in normalized IPC between NOPTb-
miss and NOPTb-fair for all workloads. A positive value indicates that NOPTb-miss achieves a better result in the

corresponding metric. Workloads are ranked by value in descendent order (i.e., the workload order differs between the
two charts).

It seems counterintuitive that the policy optimized for fairness should achieve better IPC

than the one that yields a better miss rate, as is observed in several workloads. Although

we have already noted in our introduction that, in shared caches, optimizing miss rate does

-0.1

0

0.1

0.2

0.3

D
iff

er
en

ce
 in

 n
or

m
.

SL
LC

 M
PK

I r
ed

uc
tio

n

Workloads

NOPTb-miss vs. NOPTb-fair

-0.02

0

0.02

0.04

0.06

0.08

D
iff

er
en

ce
 in

no

rm
al

iz
ed

 IP
C

Workloads

NOPTb-miss vs. NOPTb-fair

116

not imply optimizing other performance metrics, it is not obvious why greater fairness can,

in some cases, result in higher system throughput.

Applications with fewer accesses to the SLLC tend to have higher IPC than applications

that have more accesses. The former either require less data or rely more heavily on

private caches, which are faster than the SLLC and significantly faster than main memory.

Although the penalty for an SLLC miss is similar in all cases when measured in cycles, the

equivalent number of instructions that cannot be executed during the miss penalty is higher

in applications with low SLLC APKC. In other words, eliminating a miss in a low-

APKC/high-IPC application increases the number of instructions executed per cycle more

than eliminating a miss in a high-APKC/low-IPC application.

As NOPTb-miss favors applications with higher APKC and lower IPC, it reduces miss

rate but does not increase throughput by the same proportion. This mechanism explains

why, in certain workloads, the balanced behavior of NOPTb-fair achieves better global IPC

than NOPTb-miss.

5.8 COMPARISON WITH STATE-OF-THE-ART POLICIES

One of the utilities of having an optimal or near-optimal policy is to compare it against

the best existing online policies, which do not require knowledge of the future. In Sections

5.8.1 and 5.8.2, we compare the results of various online replacement policies, in terms of

performance and fairness respectively, against the two offline near-optimal algorithms

presented previously. Following this analysis, Section 5.8.3 proposes new design

guidelines for future replacement algorithms.

5.8.1 MPKI and throughput comparison with state-of-the-art policies

The left chart of Figure 5.10 shows the percentage of MPKI reduction achieved by

several replacement policies when taking random replacement as the baseline. We

consider two basic policies, LRU and SRRIP (Jaleel et al., 2010b), along with the three

best ones from the CRC2 competition: ReD+, SHiP++ (Wu et al., 2011; Young et al., 2017),

and Hawkeye (Jain & Lin 2016; Jain & Lin 2017). Additionally, we include NOPTb-miss

and NOPTb-fair.

117

(a) (b)

Figure 5.10: (a) MPKI reduction in the SLLC and (b) normalized IPC, relative to random replacement.

On average, NOPTb-miss results in an MPKI 35% lower than that obtained with random

replacement. The winning algorithms from the CRC2 provide an MPKI between 20 and

22% lower than that obtained with random replacement. The differences between them

are small, despite the significant differences in their design approaches. The reduction

obtained by the three CRC2 winners corresponds to around 65% of the reduction obtained

by NOPTb-miss.

Figure 5.10 also shows, on the right, the normalized IPC (versus random) with those

same policies. The result is similar to that obtained for MPKI. On average, with NOPTb-

miss, the IPC is 10.6% higher than with random replacement, while the winning algorithms

of the last replacement competition achieved an IPC between 6.5 and 7.7% higher than

that observed with random replacement.

This means that the best policies have already achieved around 75% of the maximum

improvement possible in IPC. This average figure should not discourage further research

on cache replacement since, on the one hand, significant improvements may be obtained

for some applications and, on the other, the relative importance of cache memory tends to

increase over time (Wulf & McKee, 1995).

5.8.2 Fairness comparison with state-of-the-art policies

In this section, we present the results of state-of-the-art policies, together with those of

NOPTb-miss and NOPTb-fair, focusing on fairness. Figure 5.11 shows the unfairness

score (see Section 5.4.3) for the same set of SLLC replacement policies as before.

0%

10%

20%

30%

40%

LRU SRRIP ReD+ SHIP++ Hawk. NOPTb
miss

NOPTb
fair

M
PK

I r
ed

uc
tio

n

1
1.02
1.04
1.06
1.08
1.1

1.12

LRU SRRIP ReD+ SHIP++ Hawk. NOPTb
miss

NOPTb
fair

N
or

m
al

iz
ed

 IP
C

118

Figure 5.11: unfairness for various SLLC replacement policies. Lower values indicate greater fairness.

As expected, NOPTb-fair achieves the lowest and therefore best value, specifically, an

unfairness 85% lower than that achieved with NOPTb-miss.

 Among the online policies, Random and LRU result in the worst fairness. This is

because they do not use any mechanism to prevent an application with a high access rate

from taking up excessive space in the SLLC. The worst case occurs with applications that

heavily access with a scanning or thrashing pattern (Jaleel et al., 2010b), as they do not

benefit from the SLLC and hinder others from doing so.

The next policies, in the ranking by unfairness, are SRRIP and SHiP++, which show

intermediate values. Both have mechanisms to avoid problems with scanning or thrashing

patterns; specifically, they do not allow blocks to have high priorities unless they detect

reuse in the SLLC. Nonetheless, they do not prevent some applications that access heavily

from taking up excessive space. Next in the ranking is Hawkeye which, imitating OPT,

avoids thrashing and scanning, and respects the space of each application if that proves

useful in reducing the overall miss rate.

The best result among online policies is obtained by ReD+. On the one hand, it protects

against scanning and thrashing because it bypasses blocks without reuse. On the other, it

protects applications with a relatively lower access rate because it uses a private reuse

detector for each core, separated from the SLLC.

5.8.3 Balancing miss-rate reduction and fairness in SLLC replacement policies

Any design that attempts to minimize miss rate may resort to favoring specific

applications or application types that are “easy targets”, thereby resulting in unfair

outcomes. As we have seen in Section 5.7.3, a fair replacement policy like NOPTb-fair

manages to convert the reductions in miss ratios to IPC increases better than an unfair

0
5

10
15
20
25
30

Ran
dom

LRU SRRIP ReD+ SHIP++ Hawk
eye

NOPTb
miss

NOPTb
fair

U
nf

ai
rn

es
s

119

policy like NOPTb-miss. On the other hand, Figure 5.11 shows that state-of-the-art

replacement policies achieve even worse results in terms of fairness than NOPTb-miss

These findings suggest that fairness also affects throughput for state-of-the-art policies. If

this is the case, the same effect of an advantage in IPC associated with better fairness

should be also noticeable comparing two of these policies.

Figure 5.10 shows that MPKI reduction is 20.4% for ReD+ and 20.9% for SHiP++,

higher for SHiP++, while the normalized IPC is 1.075 for ReD+ and 1.065 for SHiP++,

higher for ReD+. This aligns with the higher unfairness obtained by SHiP++ shown in

Figure 5.11: 22.5 with SHiP++ and 10.6 with ReD+. Similar trends are seen comparing

other policies, like Hawkeye with SHiP++ and with ReD+.

We conclude that, in shared caches running heterogeneous workloads, higher system

IPC values are obtained when considering fairness together with miss rate reduction when

designing the replacement policy. As inter-core fairness is a concept that has no meaning

in single-core systems, this conclusion suggests a replacement policy designed for private

caches should not be transferred directly to a shared cache, even if the private cache is a

last-level cache. Such an approach might result in a policy with relatively high unfairness

between cores, that benefits only a subset of applications and fails to produce an average

throughput improvement commensurate with the observed miss rate reduction. A

quantitative analysis of the policy’s fairness and per-application performance, using

NOPTb-fair as a reference, may provide hints on how to improve the design to avoid such

problems.

5.9 SENSITIVITY ANALYSIS

As these algorithms target shared caches in multicore processors, the core count

becomes a critical parameter of the setup. In this section, we evaluate the sensitivity of

these algorithms to the number of cores in the system by using eight cores, twice the

number used before (octa-core vs quad-core). The size of the SLLC has also been doubled

to 16 MB. Our workload consists of 10 mixes, a smaller set due to limited computational

resources.

First, we analyze the convergence of NOPTb-miss using this new setup. Then, we

present performance results for NOPTb-miss and NOPTb-fair and compare them with

online policies. Finally, we report fairness results.

120

5.9.1 Convergence analysis of NOPTb-miss

Figure 5.12 shows the mean SLLC miss rate after several iterations of NOPTb-miss,

with the octa-core setup. Comparing these results with the quad-core results in Figure 5.4,

we see that the convergence is slightly slower in iteration 1, but results are similar after

iteration 3 (<0.1% variation).

(a) (b)

Figure 5.12: mean SLLC miss rate for step 1 of NOPTb-miss (called iteration 0) and several iterations of step 3, using
an octa-core setup. The two charts show the same values for iterations 1-4 but using different scales; (a) shows all

iterations while (b) is a zoom showing the iterations in which the convergence can be seen most clearly.

We conclude that the number of cores does not significantly affect the convergence of

NOPTb-miss.

5.9.2 MPKI and throughput

Figure 5.13 shows the percentage of MPKI reduction and the normalized IPC achieved

by our selected set of replacement policies when taking random replacement as the

baseline, using the octa-core setup.

(a) (b)

Figure 5.13: (a) MPKI reduction in the SLLC, and (b) normalized IPC, relative to random replacement, using an octa-
core setup.

0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4

SL
LC

 m
is

s
ra

te

Iteration

Starting with MISSES
Starting with RANDOM
Starting with SRRIP

0.477

0.478

0.479

0.48

0.481

0.482

1 2 3 4
SL

LC
 m

is
s

ra
te

Iteration

Starting with MISSES
Starting with RANDOM
Starting with SRRIP

0%

10%

20%

30%

40%

LRU SRRIP ReD+ SHIP++ Hawk
eye

NOPTb
miss

NOPTb
fair

M
PK

I r
ed

uc
tio

n

1
1.02
1.04
1.06
1.08
1.1

1.12

LRU SRRIP ReD+ SHIP++ Hawk
eye

NOPTb
miss

NOPTb
fair

N
or

m
al

iz
ed

 IP
C

121

NOPTb-miss also outperforms all other policies in both metrics with eight cores, as

expected. Comparing these results with the quad-core results in Figure 5.10, we can see

that the gap with respect to the best online policies is similar. The best online policy is

Hawkeye in terms of MPKI reduction, as with four cores. Nonetheless, when considering

global IPC, the best online policy with eight cores is ReD+.

5.9.3 Fairness

Figure 5.14 shows the unfairness score for the same set of SLLC replacement policies

as before, using the octa-core setup.

Figure 5.14: unfairness for various SLLC replacement policies, using an octa-core
setup. A lower score means better fairness.

NOPTb-fair also achieves the best fairness with eight cores, as expected. Comparing

these results with the quad-core results in Figure 5.11, we can see that the gap with respect

to the best online policies is larger, and the differences between online policies are also

larger, especially between ReD+ and Hawkeye. The greater fairness advantage achieved

by ReD+ explains its superior IPC performance with eight cores, outperforming Hawkeye

despite having a higher MPKI. This is consistent with our analysis in Section 5.8.3.

5.10 CONCLUSIONS

The replacement algorithm is a key piece in the design of cache memories. An optimal

algorithm that minimizes the miss rate in a private cache has been available for several

decades. This algorithm can be run offline on a simulator to provide reference values and

insights into design problems. There is no equivalent algorithm, however, for shared

caches, which are accessed by several processors or cores.

0

20

40

60

80

100

Ran
dom

LRU SRRIP ReD+ SHIP++ Hawk
eye

NOPTb
miss

NOPTb
fair

U
nf

ai
rn

es
s

122

This chapter presents a novel near-optimal offline algorithm for minimizing the miss rate

in a shared cache. We propose approaching the optimal execution and the optimal global

access sequence iteratively. During each execution, the future access sequence that the

shared cache will receive is reconstructed on every miss, interleaving the future individual

per-core access sequences including their expected timings, as obtained from the previous

execution. This reconstructed future access sequence feeds an OPTb policy, which

decides to bypass the requested block or evict the block to be accessed further into the

future. We evaluate NOPTb-miss running on an SLLC and show that it converges after a

few iterations to a near-optimal miss rate that is independent of the initial conditions, within

a margin of 0.1%.

In a shared cache, the optimization of the total number of cache misses does not imply

the optimization of other metrics like fairness or throughput. We show that, running a

multiprogrammed workload, NOPTb-miss benefits applications that access the SLLC more

than others and is therefore not optimal in that regard. We then propose NOPTb-fair, a

new near-optimal offline algorithm whose goal is to maximize fairness while maintaining a

low miss rate. NOPTb-fair improves fairness by replacing the block with the largest Future

Reuse Distance across all cores, defined as the number of accesses until its next use by

its requesting core. NOPTb-fair achieves the best fairness among all replacement policies

considered. Due to its better fairness, it even achieves a better overall throughput than

NOPTb-miss in 34% of the workloads, despite always having a worse miss rate.

Our near-optimal proposals can be used to gain insights into state-of-the-art online

policies. Comparing performance results, we show that the best online policies achieve

around 65% of the MPKI reduction obtained by NOPTb-miss and 75% of the throughput

improvement (vs. random). We demonstrate that our results are maintained when doubling

the number of cores in the system. Comparing fairness, the best state-of-the-art policy, our

previously proposed ReD+, achieves 60% of the improvement seen with our near-optimal

policy, and the second-best only 45%. The gaps increase when doubling the number of

cores. Analyzing performance and fairness together we show that, when designing a

replacement policy for shared caches, higher system IPC values are obtained when

seeking to achieve fairness in addition to miss rate reduction.

123

6 CONCLUSIONS

6.1 CONTRIBUTIONS

The research presented throughout this dissertation addresses important challenges in

managing Shared Last-Level Caches (SLLCs) in Chip Multiprocessors (CMPs). The

inherent inefficiencies in conventional cache management mechanisms, primarily

stemming from limited temporal locality specifically within the stream of accesses reaching

the SLLC and insufficient exploitation of reuse locality, have been thoroughly analyzed and

mitigated through the proposals detailed in previous chapters.

Our initial contribution introduced ReD, an innovative content selection mechanism

specifically designed for exclusive SLLCs. ReD effectively leverages reuse locality by

employing a dedicated Reuse Detector positioned between each L2 cache and the SLLC.

This component monitors the blocks evicted from L2 and determines whether they have

experienced recent reuse. If a block shows no reuse, it is considered unlikely to be reused

in the near future and is therefore bypassed—preventing its insertion into the SLLC. By

filtering out non-reusable blocks before they reach the shared cache, ReD preserves

valuable cache space for data with higher likelihood of reuse, significantly improving cache

utilization and overall performance.

Through evaluation with multiprogrammed workloads on an eight-core processor, ReD

demonstrated significant performance enhancements, achieving a 10.1% reduction in

misses per instruction (MPI) compared to the baseline. Furthermore, ReD substantially

outperformed contemporary strategies such as CHAR, Reuse Cache, and EAF cache,

underscoring the effectiveness of our reuse-detection approach.

Expanding on these insights, we investigated power consumption challenges

associated with conventional SRAM-based SLLCs, proposing the integration of Spin-

Transfer Torque RAM (STT-RAM) technology coupled with our ReD mechanism, modified

to adapt to this scenario. An SLLC based on STT-RAM features significantly lower static

energy consumption, a smaller area footprint, and slightly lower dynamic read energy, but

roughly doubles both the energy and latency of write operations. Its integration with ReD

notably decreased cache writes, by selectively bypassing unnecessary block insertions,

124

resulting in an average energy saving of 33% in the STT-RAM SLLC and additional

memory subsystem energy reductions. Moreover, the improved hit rates translated into

meaningful performance enhancements, confirming ReD's dual benefit of power efficiency

and performance improvement. Compared against the state-of-the-art DASCA scheme,

ReD demonstrated superior accuracy in identifying reusable blocks, delivering further

performance improvements and higher energy savings across both SLLC and main

memory.

Recognizing the pivotal role of the block selection policy in cache performance, we

developed ReD+, a refined version of our previous ReD mechanism. ReD+ synergistically

integrates two complementary reuse-based proposals: the reuse detection mechanism

from ReD, which tracks the reuse status of each block, and an instruction-based historical

reuse predictor. The combination avoids the compulsory second miss of every block

present in ReD and enhances its reuse detection effectiveness in case of a thrashing core,

thus significantly improving the SLLC miss rate. This hybrid strategy further optimized

content selection, achieving strong results demonstrated by its performance in the latest

Cache Replacement Championship (CRC2). Specifically, ReD+ achieved third place

overall, second in shared-cache scenarios, and exhibited performance within 0.2% of the

best competing submission, reaffirming its robustness and versatility in diverse operating

conditions.

Complementing our online policy improvements, we also introduced novel near-optimal

offline replacement policies, NOPTb-miss and NOPTb-fair. The goal of NOPTb-miss is to

minimize the miss rate in an SLLC, extending the principle of the classical OPTb algorithm

— traditionally applied to private caches — to the more complex context of shared caches.

To achieve this, NOPTb-miss adopts an iterative approach in which each execution refines

the future global access sequence seen by the SLLC. This sequence, constructed by

interleaving per-core future accesses obtained from the previous iteration, is fed to an

OPTb policy to guide bypass and eviction decisions. Through successive iterations, the

algorithm quickly converges to a near-optimal miss rate that is robust to initial conditions,

providing a strong lower bound for online policies.

Meanwhile, NOPTb-fair extends beyond miss rate reduction, explicitly optimizing

fairness among cores while maintaining excellent miss-rate reduction. It improves fairness

by evicting the block with the largest Future Reuse Distance (FRD) across all cores, where

125

FRD is defined as the number of accesses before a block is reused by its requesting core.

Our evaluation shows that fairness-oriented strategies frequently deliver better overall

throughput, confirming that jointly optimizing for fairness and miss rate leads to superior

system performance and underscoring the significance of comprehensive design

objectives in shared-cache architectures.

These policies provide key references by approximating optimal replacement policies,

thus serving as valuable tools for evaluating and guiding the development of practical,

state-of-the-art cache management policies. The best state-of-the-art online policies

achieve around 65% of the miss rate reduction and around 75% of the IPC improvement

obtained by NOPTb-miss (vs random replacement). The best state-of-the-art online policy,

our proposed ReD+, achieves 60% of the improvement in fairness seen with NOPTb-fair.

Collectively, the contributions of this dissertation demonstrate that reuse-based content

selection, particularly when combined with advanced prediction techniques, significantly

improves shared cache performance and efficiency in multicore processors. These

benefits are consistently observed across a variety of scenarios and cache configurations.

Furthermore, the development of near-optimal offline replacement policies not only

establishes theoretical bounds for cache management strategies but also offers valuable

insights to guide the design of practical, high-performance policies.

6.2 FUTURE WORK

The practical and theoretical advancements outlined in the previous section establish a

robust foundation for future research, offering directions for the continued evolution of CMP

cache optimization. Future work may explore the following directions:

Reuse-based replacement policies. ReD+ can be further improved by incorporating

additional information or addressing certain limitations:

• Prefetch vs. demand requests: Currently, ReD+ does not distinguish between

prefetch and demand requests, despite their fundamentally different lifecycles.

Tailoring the management strategy based on request type could enhance the

accuracy of content selection.

• Static vs dynamic thresholds: ReD+ relies on predefined static thresholds to

classify blocks as having “very low” or “high” reuse probability. These values,

126

chosen through simulation, remain fixed regardless of the running workload.

However, what qualifies as high or low reuse varies significantly depending on

the characteristics of the running application. Introducing a dynamic mechanism

to adjust these thresholds at runtime could make the policy more responsive to

workload characteristics and, in turn, enhance its overall performance.

Near-optimal replacement policies. Future research in this area could explore the

following directions:

• Execution time optimization in the presence of prefetching: Both our proposed

near-optimal policies and the prior work reviewed in this dissertation have been

studied under the assumption that all requests to the SLLC are of equal

importance. However, prefetch requests typically have less critical impact, as

they may lack accuracy or timeliness. Consequently, optimizing execution time

may require differentiating between request types and managing them

accordingly. Further investigation is needed to better understand this challenge

and to develop strategies that account for the differing impact of prefetch and

demand requests.

• Improving SLLC replacement policies through fairness considerations: Our

proposed NOPTb-fair policy shows that targeting fairness in shared caches,

alongside miss rate reduction, can lead to higher overall system IPC. In contrast,

many state-of-the-art policies focus exclusively on minimizing miss rate. The

principles introduced in this dissertation can serve as a foundation or guide for

extending such policies with fairness-oriented mechanisms in a synergistic

manner, thereby improving their overall effectiveness.

Taken together, the contributions presented in this dissertation not only advance the

state of the art in shared cache management, but also lay a foundation upon which to build

future solutions — fairer, more efficient, and better suited to the current and future needs

of computer architecture.

127

7 CONCLUSIONES

7.1 CONTRIBUCIONES

La investigación presentada a lo largo de esta tesis aborda desafíos importantes en la

gestión de las memorias cache compartidas de último nivel (SLLC, por sus siglas en

inglés) en procesadores multinúcleo (CMPs). Las ineficiencias inherentes a los

mecanismos convencionales de gestión de cache — derivadas principalmente de la

limitada localidad temporal dentro del flujo de accesos que llega a la SLLC y del

aprovechamiento insuficiente de la localidad de reuso — han sido analizadas en

profundidad y mitigadas mediante las propuestas detalladas en los capítulos anteriores.

Nuestra contribución inicial presentó el Detector de Reuso (ReD), un innovador

mecanismo de selección de contenido diseñado específicamente para SLLCs exclusivas

— cuyo contenido se gestiona en exclusión con las caches privadas. ReD aprovecha

eficazmente la localidad de reuso mediante el uso de un detector de reuso dedicado

(ReD), ubicado entre cada cache L2 y la SLLC. Este componente supervisa los bloques

expulsados de L2 y determina si han experimentado reuso reciente. Si un bloque no

muestra reuso, se considera poco probable que vuelva a ser reutilizado en un futuro

próximo y, por lo tanto, se omite — evitando su inserción en la SLLC. Al filtrar los bloques

antes de que lleguen a la cache compartida, ReD preserva su valioso espacio para líneas

con mayor probabilidad de reuso, mejorando significativamente la utilización de la cache

y el rendimiento global.

Mediante una evaluación con cargas de trabajo multiprogramadas en un procesador

de ocho núcleos, ReD ha demostrado mejoras significativas en el rendimiento, logrando

una reducción del 10,1 % en los fallos por instrucción (MPI) en comparación con el

esquema tomado como base. Además, ReD superó ampliamente a estrategias

contemporáneas como CHAR, Reuse Cache y EAF cache, lo que pone de relieve la

eficacia de nuestro enfoque basado en la detección de reuso.

En una segunda fase, investigamos los desafíos de consumo energético asociados a

las SLLCs convencionales basadas en SRAM, proponiendo la integración de la tecnología

Spin-Transfer Torque RAM (STT-RAM) junto con nuestro mecanismo ReD, modificado

128

para adaptarse a este escenario. Una SLLC basada en STT-RAM presenta un consumo

estático de energía muy inferior, menor superficie y algo menor consumo dinámico en

lecturas, pero aproximadamente duplica el consumo y la latencia de las escrituras. Su

integración con ReD redujo notablemente las escrituras en cache, al omitir selectivamente

la inserción de bloques innecesarios. Esto se tradujo en un ahorro energético medio del

33 % en la SLLC basada en STT-RAM, además de reducciones adicionales en el

consumo energético del subsistema de memoria. Asimismo, las mejores tasas de acierto

se tradujeron en notables mejoras de rendimiento, confirmando el doble beneficio de ReD

en eficiencia energética y rendimiento. En comparación con la política DASCA, ReD

demostró una mayor precisión en la identificación de bloques a mantener en la cache,

ofreciendo mejoras adicionales en rendimiento y mayores ahorros energéticos tanto en la

SLLC como en la memoria principal.

Reconociendo el papel fundamental de la política de selección de contenido en el

rendimiento de la cache, desarrollamos ReD+, una versión perfeccionada de nuestro

anterior mecanismo ReD. ReD+ integra de manera sinérgica dos propuestas

complementarias basadas en el reuso: el mecanismo de detección de reuso de ReD, que

detecta el estado de reuso de cada bloque, y un predictor histórico de reuso basado en la

instrucción que dispara la petición de cada bloque. Esta combinación evita el segundo

fallo obligatorio de cada bloque que se producía en ReD y mejora la eficacia de detección

de reuso en situaciones con procesadores que generan un número excesivo de peticiones

(thrashing), lo que permite una reducción significativa de la tasa de fallos en la SLLC. Esta

estrategia híbrida optimizó aún más la selección de contenido, logrando resultados

destacables, como se evidenció en su desempeño en la última edición del Cache

Replacement Championship (CRC2). Concretamente, ReD+ obtuvo el tercer puesto a

nivel general y el segundo en simulaciones donde la cache es compartida, y mostró un

rendimiento a tan solo un 0,2 % del mejor participante, reafirmando así su solidez y

versatilidad en condiciones operativas diversas.

Como complemento a nuestras mejoras en las políticas “en línea”, es decir, aquellas

que pueden implementarse teóricamente en un procesador real, también introdujimos

nuevas políticas de reemplazo “fuera de línea” cuasi-óptimas, que sólo pueden ejecutarse

en un simulador al requerir información futura. El objetivo de nuestra nueva política

NOPTb-miss es minimizar la tasa de fallos en una SLLC, extendiendo el principio del

algoritmo clásico OPTb — tradicionalmente aplicado a caches privadas — al contexto más

129

complejo de las caches compartidas. Para ello, NOPTb-miss adopta un enfoque iterativo

en el que cada ejecución refina la secuencia futura global de accesos vista por la SLLC.

Dicha secuencia, construida entrelazando los accesos futuros por núcleo obtenidos en la

iteración anterior, se introduce en una política OPTb que guía las decisiones de omisión

(bypass) e inserción. A través de iteraciones sucesivas, el algoritmo converge

rápidamente hacia una tasa de fallos cuasi-óptima, robusta frente a las condiciones

iniciales, proporcionando así una cota inferior sólida para las políticas “en línea”.

Por su parte, NOPTb-fair va más allá de la reducción de la tasa de fallos, al optimizar

explícitamente la equidad (fairness) entre núcleos sin comprometer la eficacia en dicha

reducción. Esta política mejora la equidad seleccionando para su expulsión el bloque con

la mayor Distancia de Reuso Futura (FRD, por sus siglas en inglés) entre todos los

núcleos, donde la FRD se define como el número de accesos que deben transcurrir antes

de que un bloque sea reutilizado por el núcleo que lo solicitó originalmente. Nuestra

evaluación muestra que las estrategias orientadas a la equidad con frecuencia logran un

mayor rendimiento global, lo que confirma que una optimización conjunta de la equidad y

la tasa de fallos conduce a un mejor desempeño del sistema completo, y subraya la

importancia de adoptar objetivos de diseño integrales en las arquitecturas con cache

compartida.

Estas políticas constituyen referencias fundamentales al aproximarse a las políticas de

reemplazo óptimas, y se convierten así en herramientas valiosas para evaluar y orientar

el desarrollo de políticas prácticas y de vanguardia en la gestión de cache. Las mejores

políticas “en línea” del estado del arte alcanzan aproximadamente el 65 % de la reducción

en la tasa de fallos y alrededor del 75 % de la mejora en IPC obtenidas por NOPTb-miss

(frente al reemplazo aleatorio). En cuanto a la equidad, la mejor política “en línea” del

estado del arte alcanza un 60 % de la mejora lograda con NOPTb-fair.

En conjunto, las contribuciones de esta tesis demuestran que la selección de contenido

basada en reuso, especialmente cuando se combina con técnicas avanzadas de

predicción, mejora de forma significativa el rendimiento y la eficiencia de las caches

compartidas en procesadores multinúcleo. Estos beneficios se observan de manera

consistente en una amplia variedad de escenarios y configuraciones de cache. Además,

el desarrollo de políticas de reemplazo fuera de línea cuasi-óptimas no solo establece

130

cotas teóricas para las políticas de gestión de cache, sino que también ofrece valiosas

orientaciones para el diseño de políticas prácticas de alto rendimiento.

7.2 TRABAJO FUTURO

Los avances teóricos y prácticos expuestos en la sección anterior establecen una base

sólida para investigaciones futuras, ofreciendo diversas líneas para la evolución continua

de la optimización de caches en procesadores multinúcleo. Entre las posibles direcciones

para el futuro trabajo se incluyen las siguientes:

Políticas de reemplazo basadas en el reuso. ReD+ puede mejorarse aún más

incorporando información adicional o abordando ciertas limitaciones:

• Peticiones adelantadas (prefetch) frente a peticiones de demanda:

Actualmente, ReD+ no distingue entre peticiones adelantadas y peticiones de

demanda, a pesar de que presentan ciclos de vida fundamentalmente distintos.

Adaptar la estrategia de gestión en función del tipo de petición podría mejorar

la precisión en la selección de contenido.

• Umbrales estáticos frente a dinámicos: ReD+ se basa en umbrales estáticos

predefinidos para clasificar los bloques como de “muy baja” o “alta” probabilidad

de reuso. Estos valores, elegidos mediante simulación, permanecen fijos

independientemente de la carga de trabajo en ejecución. Sin embargo, lo que

se considera un alto o bajo reuso varía considerablemente en función de las

características de la aplicación que se está ejecutando. Introducir un

mecanismo dinámico que ajuste estos umbrales en tiempo de ejecución podría

hacer que la política responda mejor a las particularidades de cada carga de

trabajo y, en consecuencia, mejorar su rendimiento global.

Políticas de reemplazo cuasi-óptimas. La investigación futura en esta área podría

explorar las siguientes direcciones:

• Optimización del tiempo de ejecución en presencia de peticiones adelantadas:

Tanto nuestras políticas cuasi-óptimas propuestas como los trabajos previos

revisados en esta tesis han sido estudiados bajo la suposición de que todas las

peticiones a la SLLC tienen la misma importancia. Sin embargo, las peticiones

adelantadas suelen tener un impacto menos crítico, ya que pueden carecer de

131

precisión o puntualidad. En consecuencia, optimizar el tiempo de ejecución

puede requerir diferenciar entre tipos de peticiones y gestionarlas de forma

diferenciada. Se requiere una investigación más profunda para comprender

mejor este desafío y desarrollar estrategias que tengan en cuenta el impacto

desigual de las peticiones por demanda y las adelantadas.

• Mejora de las políticas de reemplazo en la SLLC mediante criterios de equidad:

Nuestra política NOPTb-fair demuestra que orientar el diseño hacia la equidad

en las caches compartidas, además de reducir la tasa de fallos, puede conducir

a un mayor IPC global del sistema. Sin embargo, muchas de las políticas más

avanzadas en el estado del arte se centran exclusivamente en minimizar la tasa

de fallos. Los principios introducidos en esta tesis pueden servir como base o

guía para extender dichas políticas con mecanismos orientados a la equidad

de manera sinérgica, mejorando así su eficacia global.

En conjunto, las contribuciones aquí presentadas no solo avanzan el estado del arte

en la gestión de caches compartidas, sino que también establecen un marco sobre el que

construir futuras soluciones más justas, eficientes y adaptadas a las necesidades actuales

y futuras de la arquitectura de computadores.

132

REFERENCES

Agarwal, N., Krishna, T., Peh, L.-S., & Jha, N. K. (2009). Garnet: A Detailed On-chip

Network Model Inside a Full-System Simulator. 2009 IEEE International

Symposium on Performance Analysis of Systems and Software, 33–42.

Ahn, J., Yoo, S. & Choi, K. (2014). DASCA: Dead Write Prediction Assisted STT-RAM

Cache Architecture. 2014 IEEE 20th International Symposium on High

Performance Computer Architecture (HPCA), 25–36.

Albericio, J., Ibáñez, P., Viñals, V., & Llabería, J. M. (2013a). Exploiting reuse locality on

inclusive shared last-level caches. ACM Transactions on Architecture and Code

Optimization (TACO), 9(4), 38, 1-19.

Albericio, J., Ibáñez, P., Viñals, V., & Llabería, J. M. (2013b). The reuse cache: downsizing

the shared last-level cache. 2013 46th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 310-321.

Baer, J. (2009). Microprocessor architecture: from simple pipelines to chip

multiprocessors. Cambridge University Press.

Balasubramonian, R., Jouppi, N. P., & Muralimanohar, N. (2011). Multi-core cache

hierarchies. Synthesis Lectures on Computer Architecture 6(3), 1-153.

Beckmann, N., & Sanchez, D. (2017). Maximizing cache performance under uncertainty.

2017 IEEE International Symposium on High Performance Computer

Architecture (HPCA), 109–120.

Belady, L. A. (1966). A study of replacement algorithms for a virtual-storage computer. IBM

Systems Journal, 5(2), 78-101.

Belady, L. A., & Palermo, F. P. (1974). On-line measurement of paging behavior by the

multivalued MIN algorithm. IBM Journal of Research and Development, 18, 2-19.

Bhargava R., & Troester, K. (2024). AMD Next-Generation “Zen 4” Core and 4th Gen AMD

EPYC Server CPUs. IEEE Micro, 44(3), 8-17.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hestness, J.,

Hower, D. R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish,

133

M., Hill, M. D., & Wood, D. A. (2011). The gem5 simulator. SIGARCH Computer

Architecture News 39(2), 1–7.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7), 422-426.

Bruce, M. (2023). ARM Neoverse V2 platform: Leadership Performance and Power

Efficiency for Next-Generation Cloud Computing, ML and HPC Workloads. IEEE

Hot Chips 35th Symposium (HCS).

ChampSim. (2021). ChampSim code repository. Retrieved Feb 28th, 2025.

https://github.com/ChampSim/ChampSim

Chang, M.-T., Lu, S.-L., & Jacob, B. (2014). Impact of cache coherence protocols on the

power consumption of STT-RAM based LLC. The Memory Forum Workshop.

Chaudhuri, M., Gaur, J., Bashyam, N., Subramoney, S., & Nuzman, J. (2012). Introducing

hierarchy-awareness in replacement and bypass algorithms for last-level caches.

2012 21st International Conference on Parallel Architectures and Compilation

Techniques (PACT), 293-304.

Clark, M. (2016). A New, High Performance x86 Core Design from AMD. IEEE Hot Chips

28thSymposium (HCS).

Conway, P., Kalyanasundharam, N., Donley, G., Lepak, K., & Hughes, B. (2010). Cache

hierarchy and memory subsystem of the AMD Opteron processor. IEEE Micro,

30(2), 16-29.

CRC2. (2017). The 2nd Cache replacement championship, at the International Symposium

on Computer Architecture (ISCA). Retrieved Feb. 28th, 2025.

http://crc2.ece.tamu.edu.

CRC2. (2021). CRC2 trace repository. Retrieved Feb. 28th, 2025.

https://crc2.ece.tamu.edu/?page_id=41

Dennard, R. H., Gaensslen, F. H., Yu, H.-N., Rideout, V. L., Bassous, E., & LeBlanc, A. R.

(1974). Design of ion-implanted MOSFET’s with very small physical dimensions.

IEEE Journal of Solid-State Circuits, 9(5), 256-268.

Diaz, J. (2021). NOPT code repository. Retrieved Aug. 25th, 2024.

https://github.com/jdmaag73/NOPT

https://github.com/ChampSim/ChampSim
http://crc2.ece.tamu.edu/
https://crc2.ece.tamu.edu/?page_id=41
https://github.com/jdmaag73/NOPT

134

Dong, X., Xu, C., Xie, Y., & Jouppi, N. P. (2012). NVSim: a circuit-level performance,

energy, and area model for emerging nonvolatile memory. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 31(7), 994-1007.

Duong, N., Zhao, D., Kim, T., Cammarota, R., Valero, M., & Veidenbaum, A. (2012).

Improving cache management policies using dynamic reuse distances. 2012 45th

Annual IEEE/ACM International Symposium on Microarchitecture, 389-400.

Eden, A. N., & Mudge, T. (1998). The YAGS branch prediction scheme. Proceedings of

the 31st Annual ACM/IEEE International Symposium on Microarchitecture, 69-

77.

Eggers, S. J., Emer, J. S., Levy, H. M., Lo, J. L., Stamm, R. L., & Tullsen, D. M. (1997).

Simultaneous multithreading: a platform for next-generation processors. IEEE

Micro, 17(5), 12-19.

Escuin, C. (2024). Crafting Non-Volatile Memory (NVM) Hierarchies: Optimizing

Performance, Reliability, and Energy Efficiency [Doctoral dissertation, University

of Zaragoza]. Zaguan repository. https://zaguan.unizar.es/record/135624

Evers, M., Barnes, L. & Clark, M. (2022). The AMD Next-Generation “Zen 3” Core. IEEE

Micro, 42(3), 7-12.

Eyerman, S. & Eeckhout, L. (2014). Restating the Case for Weighted-IPC Metrics to

Evaluate Multiprogram Workload Performance. IEEE Computer Architecture

Letters, 13(2), 93-96.

Faldu, P. & Grot, B. (2016). LLC Dead Block Prediction Considered Not Useful. 13th

Workshop on Duplicating, Deconstructing and Debunking (WDDD).

Faldu, P. & Grot, B. (2017). Reuse-Aware Management for Last-Level Caches. The 2nd

cache replacement championship, at the International Symposium on Computer

Architecture (ISCA).

Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D., Kaynak, C.,

Popescu, A. D., Ailamaki, A., & Falsafi, B. (2012). Clearing the clouds: a study of

emerging scale-out workloads on modern hardware. ACM SIGARCH Computer

Architecture News, 40, 37-48.

https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fzaguan.unizar.es%2Frecord%2F135624&data=05%7C02%7Cjavier.diazmaag%40dxc.com%7C0df0ab514d674620598c08dd930b328b%7C93f33571550f43cfb09fcd331338d086%7C0%7C0%7C638828398543870743%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=VVuUaDHMhwi07cyc7UHDeVpnWQAXjOIK%2BRt1nLyabkI%3D&reserved=0

135

Gao, H., & Wilkerson, C. (2010). A dueling segmented LRU replacement algorithm with

adaptive bypassing. Proceedings of the 1st JILP Workshop on Computer

Architecture Competitions.

Gaur, J., Chaudhuri, M., & Subramoney, S. (2011). Bypass and Insertion Algorithms for

Exclusive Last-level Caches. 2011 38th Annual International Symposium on

Computer Architecture (ISCA), 81-92.

Guo, X., Ipek, E., & Soyata, T. (2010). Resistive Computation: Avoiding the Power Wall

with Low-leakage, STT-MRAM Based Computing. ACM SIGARCH Computer

Architecture News, 371-382.

Gupta, S., Gao, H., & Zhou, H. (2013). Adaptive Cache Bypassing for Inclusive Last Level

Caches. 2013 IEEE 27th International Symposium on Parallel and Distributed

Processing, 1243-1253.

Hamerly, G., Perelman, E., Lau, J., & Calder, B. (2005). SimPoint 3.0: faster and more

flexible program phase analysis. Journal of Instruction-Level Parallelism 7(4),1-

28.

Hennessy, J. L., & Patterson, D. A. (2019). Computer Architecture. A Quantitative

Approach, 6th edition. Morgan Kaufmann / Elsevier.

Henning, J. L. (2006). SPEC CPU 2006 benchmark descriptions. ACM SIGARCH

Computer Architecture News, 34(4), 1-17.

Hewlett-Packard Labs. (2013) CACTI, an integrated cache and memory access time, cycle

time, area, leakage, and dynamic power model. Retrieved Aug. 25th, 2024.

http://www.hpl.hp.com/research/cacti/

Hu, Z., Kaxiras, S., & Martonosi, M. (2002). Timekeeping in the memory system: Predicting

and optimizing memory behavior. Proceedings of the 29th Annual International

Symposium on Computer Architecture, 209-220.

Jain, A., & Lin, C. (2016). Back to the future: leveraging Belady’s algorithm for improved

cache replacement. 2016 ACM/IEEE 43rd Annual International Symposium on

Computer Architecture (ISCA), 78-89.

http://www.hpl.hp.com/research/cacti/

136

Jain, A., & Lin., C. (2017). Hawkeye cache replacement: leveraging Belady’s algorithm for

improved cache replacement. The 2nd cache replacement championship, at the

International Symposium on Computer Architecture (ISCA).

Jain, A., & Lin., C. (2018). Rethinking Belady’s algorithm to accommodate prefetching.

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

(ISCA), 110-123.

Jain, A., & Lin., C. (2019). Cache replacement policies. Synthesis Lectures on Computer

Architecture 14(1), 1-87.

Jaleel, A., Borch, E., Bhandaru, M., Steely Jr., S. C., & Emer, J. (2010a). Achieving Non-

Inclusive Cache Performance with Inclusive Caches. Temporal Locality Aware

(TLA) Cache Management Policies. 2010 43rd Annual IEEE/ACM International

Symposium on Microarchitecture, 151-162.

Jaleel, A., Theobald, K. B., Steely Jr., S. C., & Emer, J. (2010b). High Performance Cache

Replacement Using Re-Reference Interval Prediction (RRIP). Proceedings of the

37th International Symposium on Computer Architecture, 60-71.

Jaleel, A., Nuzman, J., Moga, A., Steely Jr., S.C., & Emer, J. (2015). High Performing

Cache Hierarchies for Server Workloads. Relaxing Inclusion to Capture the

Latency Benefits of Exclusive Caches. 2015 IEEE 21st International Symposium

on High Performance Computer Architecture (HPCA), 343-353.

Jeong, J., & Dubois, M. (2006). Cache replacement algorithms with nonuniform miss costs.

IEEE Transactions on Computers, 55(4), 353-365.

JILP. (2010). Proceedings of the 1st JILP workshop on Computer Architecture

Competitions.

Jiménez, D. A., & Teran, E. (2017). Multiperspective reuse prediction. 2017 50th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 436-448.

Jog, A., Mishra, A. K., Xu, C., Xie, Y., Narayanan, V., Iyer, R., & Das, C. R. (2012). Cache

Revive: Architecting Volatile STT-RAM Caches for Enhanced Performance in

CMPs. Proceedings of the 49th Annual Design Automation Conference, 243-252.

137

Jouppi, N. P., & Wilton, S. J. E. (1994). Trade-offs in Two-Level On-Chip Caching.

Proceedings of the 21st International Symposium on Computer Architecture, 34-

45.

Jung, J., Nakata, Y., Yoshimoto, M., & Kawaguchi, H. (2013). Energy-efficient spin-transfer

torque RAM cache exploiting additional all-zero-data flags. 14th International

Symposium Quality Electronic Design (ISQED), 216-222.

Kanter, D. (2017, July 17th). Skylake-SP Scales Server Systems. Microprocessor Report.

Khan, S., Tian, Y., & Jiménez, D. A. (2010). Sampling Dead Block Prediction for Last-Level

Caches. 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, 175-186.

Khan, S., Wang, Z., & Jimenez, D. (2012). Decoupled dynamic cache segmentation. 2012

IEEE 18th International Symposium on High Performance Computer Architecture

(HPCA), 1-12.

Kharbutli, M., & Solihin, Y. (2008). Counter-based cache replacement and bypassing

algorithms. IEEE Transactions on Computers, 57(4), 433-447.

Kim, S., Chandra, D., & Solihin, Y. (2004). Fair cache sharing and partitioning in a chip

multiprocessor architecture. Proceedings of the 13th International Conference on

Parallel Architecture and Compilation Techniques (PACT 2004), 111-122.

Lai, A. C., Fide, C., & Falsafi, B. (2001). Dead-Block Prediction & Dead-Block Correlating

Prefetchers. Proceedings of the 28th Annual International Symposium on

Computer Architecture, 144-154.

Lee, D., Choi, J., & Kim, J. H. (2001). LRFU: a spectrum of policies that subsumes the

least recently used and least frequently used policies. IEEE Transactions on

Computers 50(12),1352-1361.

Li, L., Tong, D., Xie, Z., Lu, J., & Cheng, X. (2012). Optimal bypass monitor for high

performance last-level caches. 2012 21st International Conference on Parallel

Architectures and Compilation Techniques (PACT), 315-324.

Lim, H., Kim, J., & Chong, J. (2010). A cache replacement policy to reduce cache miss

rate for multiprocessor architecture. IEICE Electron Express 7(12), 850-855.

138

Lin, W. F., & Reinhardt, S. (2002). Predicting last-touch references under optimal

replacement. Tech Rep CSE-TR-447–02, University of Michigan.

Liu, W., Yeung, D. (2009). Using aggressor thread information to improve shared cache

management for CMPs. 2009 18th International Conference on Parallel

Architectures and Compilation Techniques, 372-383.

Lotfi-Kamran, P., Grot, B., Ferdman, M., Volos, S., Kocberber, O., Picorel, J., Adileh, A.,

Jevdjic, D., Idgunji, S., Ozer, E., & Falsafi, B. (2012). Scale-Out Processors. ACM

SIGARCH Computer Architecture News, 40(3), 500-511.

Luo, K., Gummaraju, J., & Franklin, M. (2001). Balancing Throughput and Fairness in SMT

Processors. 2001 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), 164-171.

Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J.,

Larsson, F., Moestedt, A., & Werner, B. (2002). Simics: A full system simulation

platform. Computer, 35(2), 50-58.

Mao, M., Li, H. H., Jones, A.K., & Chen, Y. (2013). Coordinating Prefetching and STT-

RAM Based Last-level Cache Management for Multicore Systems. Proceedings

of the 23rd ACM International Conference Great Lakes Symposium on VLSI, 55-

60.

Martin, M., Sorin, D., Beckmann, B., Marty, M., Xu, M., Alameldeen, A., Moore, K., Hill, M.,

& Wood, D. (2005). Multifacet's general execution-driven multiprocessor

simulator (GEMS) toolset. Computer Architecture News, 33(4), 92-99.

Mattson, R. L., Gecsei, J., Slutz, D. R. & Traiger, I. L. (1970). Evaluation techniques for

storage hierarchies. IBM Systems Journal, 9(2), 78-117.

McFarling, S. (1991). Program Analysis and optimization for machines with instruction

cache. Tech Rep No. CSL-TR-91–493, Stanford University.

McFarling, S. (1993). Combining branch predictors. Technical Report WRL-TN-36, Digital

Western Research Laboratory.

Michaud, P. (2010). The 3P and 4P cache replacement policies. Proceedings of the 1st

JILP Workshop on Computer Architecture Competitions.

139

Michaud, P. (2016). Some mathematical facts about optimal cache replacement. ACM

Transactions on Architecture and Code Optimization (TACO), 13(4), 50, 1-19.

Mittal, S. (2016). A survey of cache bypassing techniques. Journal of Low Power

Electronics and Applications, 6(2), 5.

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics,

38(8), 114-117.

Nassif, N., Munch, A. O., Molnar, C. L., Pasdast, G., Iyer, S. V., Yang, Z., Mendoza, O.,

Huddart, M., Venkataraman, S., Kandula, S., Marom, R., Kern, A. M., Bowhill, B.,

Mulvihill, D. R., Nimmagadda, S., Kalidindi, V., Krause, J., Haq, M. M., Sharma,

R., & Duda, K. (2022). Sapphire Rapids: The Next-Generation Intel Xeon

Scalable Processor. 2022 IEEE International Solid-State Circuits Conference

(ISSCC), 44-46.

Papazian, I. E. (2020). New 3rd Gen Intel Xeon Scalable Processor (Codename: Ice Lake-

SP). IEEE Hot Chips 32nd Symposium (HCS).

Park, S. P., Gupta, S., Mojumder, N., Raghunathan, A., & Roy, K. (2012). Future Cache

Design Using STT MRAMs for Improved Energy Efficiency: Devices, Circuits and

Architecture. DAC Design Automation Conference 2012, 492-497.

Patil, H., Cohn, R. S., Charney, M., Kapoor, R., Sun, A., & Karunanidhi, A. (2004).

Pinpointing Representative Portions of Large Intel Itanium Programs with

Dynamic Instrumentation. 37th International Symposium on Microarchitecture

(MICRO-37'04), 81-92.

Perelman, E., Hamerly, G., Van Biesbrouck, M., Sherwood, T., & Calder, B. (2003). Using

Simpoint for accurate and efficient simulation. Proceedings of the 2003 ACM

SIGMETRICS international conference on Measurement and modeling of

computer systems (SIGMETRICS '03), 318-319.

Qureshi, M. K., Moinuddin, K., Thompson, D., & Patt, T. N. (2005). The V-Way cache:

demand-based associativity via global replacement. 32nd International

Symposium on Computer Architecture (ISCA'05), 544-555.

140

Qureshi, M. K., Lynch, D. N., Mutlu, O., & Patt, Y. N. (2006). A case for MLP-aware cache

replacement. 33rd International Symposium on Computer Architecture (ISCA'06),

167-178.

Qureshi, M., Jaleel, A., Patt, Y., Steely, S., & Emer, J. (2007). Adaptive insertion policies

for high performance caching. Proceedings of the 34th annual international

symposium on Computer architecture (ISCA '07), 381-391.

Rajan, K., & Govindarajan, R. (2007). Emulating optimal replacement with a shepherd

cache. 40th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO 2007), 445-454.

Rasquinha, M. (2011, December). An energy efficient cache design using spin torque

transfer (STT) RAM. [Master of Science, School of Electrical and Computer

Engineering, Georgia Institute of Technology].

Rosenfeld, P., Cooper-Balis, E., & Jacob, B. (2011). DRAMSim2: A cycle accurate memory

system simulator. Computer Architecture Letters, 10(1), 16-19.

Seshadri, V., Mutlu, O., Kozuch, M. A., & Mowry, T. C. (2012). The evicted-address filter:

a unified mechanism to address both cache pollution and thrashing. Proceedings

of the 21st international conference on Parallel architectures and compilation

techniques, 355-366.

Smith, A. J. (1982). Cache memories. ACM Computer Surveys (CSUR), 14(3), 473-530.

Snavely, A. & Tullsen, D. M. (2000). Symbiotic jobscheduling for a simultaneous

multithreading processor. Proceedings of the ninth international conference on

Architectural support for programming languages and operating systems

(ASPLOS IX), 234-244.

Strohmaier, E., Dongarra, J., Simon, H., Meuer, M., & Meuer, H. (2024, November). Top

500, the list, 64th edition. Retrieved Feb. 28th, 2025. https://www.top500.org

Sun, G., Dong, X., Xie, Y., Li, J., & Chen, Y. (2009). A novel architecture of the 3D stacked

MRAM L2 cache for CMPs. 2009 IEEE 15th International Symposium on High

Performance Computer Architecture, 239-249.

https://www.top500.org/

141

Sun, Z., Bi, X., Li, H. H., Wong, W.-F., Ong, Z.-L., Zhu, X., & Wu, W. (2011). Multi retention

level STT-RAM cache designs with a dynamic refresh scheme. 2011 44th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 329-338.

Vakil-Ghahani, A., Mahdizadeh-Shahri, S., Lotfi-Namin, M., Bakhshalipour, M., Lotfi-

Kamran, P., & Sarbazi-Azad, H. (2018). Cache Replacement Policy Based on

Expected Hit Count. IEEE Computer Architecture Letters, 17(1), 64-67.

Wang, K., Dong, X., & Xie, Y. (2013). OAP: An obstruction-aware cache management

policy for STT-RAM last-level caches. 2013 Design, Automation & Test in Europe

Conference & Exhibition (DATE), 847-852.

Wang, J., Zhang, L., Panda, R. & John, L. K. (2017). Less is More: Leveraging Belady’s

Algorithm with Demand-based Learning. The 2nd Cache replacement

championship, at the International Symposium on Computer Architecture (ISCA).

Warrier, T., Anupama, V., & Mutyam, M. (2013). An Application-Aware Cache

Replacement Policy for Last-Level Caches. Architecture of Computing Systems

– ARCS 2013. Lecture Notes in Computer Science, 7767, 207-219.

Wilkes, M. V. (1965). Slave Memories and Dynamic Storage Allocation. IEEE Transactions

on Electronic Computers, EC-14(2), 270-271.

Wong, W., & Baer, J. L. (2000). Modified LRU policies for improving second-level cache

behavior. Proceedings of the Sixth International Symposium on High-

Performance Computer Architecture. HPCA-6, 49-60.

Wu, C. J., Jaleel, A., Hasenplaugh, W., Martonosi, M., Steely Jr., S. C., & Emer, J. (2011).

SHiP: signature-based hit predictor for high performance caching. Proceedings

of the 44th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO-44), 430-441.

Wulf, W. A., & McKee, S. A. (1995). Hitting the memory wall: implications of the obvious.

ACM SIGARCH Computer Architecture News 23(1), 20-24.

Yazdanshenas, S., Ranjbar Pirbast, M., Fazeli, M., & Patooghy, A. (2014). Coding last

level STT-RAM cache for high endurance and low power. IEEE Computer

Architecture Letters, 13, 73-76.

142

Yoshida, T. (2018). Fujitsu high performance CPU for the post-k computer. IEEE Hot Chips

30th Symposium (HCS).

Young, V., Chou, C., Jaleel, A., & Qureshi, M. (2017). SHiP++: enhancing signature-based

hit predictor for improved cache performance. The 2nd cache replacement

championship, at the International Symposium on Computer Architecture (ISCA).

Zahran, M., Albayraktaroglu, K., & Franklin, M. (2007). Non-inclusion property in multi-level

caches revisited. International Journal of Computers and Their Applications,

14(2), 99-108.

