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Visual SLAM for Hand-Held Monocular Endoscope
Óscar G. Grasa, Ernesto Bernal, Santiago Casado, Ismael Gil and J. M. M. Montiel

Abstract—Simultaneous Localisation And Mapping (SLAM)
methods provide real-time estimation of 3D models from the
sole input of a hand-held camera, routinely in mobile robotics
scenarios. Medical endoscopic sequences mimic a robotic scenario
in which a hand-held camera (monocular endoscope) moves
along an unknown trajectory while observing an unknown cavity.
However, the feasibility and accuracy of SLAM methods have not
been extensively validated with human in-vivo image sequences.
In this work, we propose a monocular visual SLAM algorithm
tailored to deal with medical image sequences in order to provide
an up-to-scale 3D map of the observed cavity and the endoscope
trajectory at frame rate. The algorithm is validated over synthetic
data and human in-vivo sequences corresponding to fifteen la-
paroscopic hernioplasties where accurate ground-truth distances
are available. It can be concluded that the proposed procedure
is: 1) non invasive, because only a standard monocular endoscope
and a surgical tool are used; 2) convenient, because only a hand-
controlled exploratory motion is needed; 3) fast, because the
algorithm provides the 3D map and the trajectory in real time;
4) accurate, because it has been validated with respect to ground-
truth; and 5) robust to inter-patient variability, because it has
performed successfully over the validation sequences.

Index Terms—Endoscopy, Abdomen, Medical robotics, Vir-
tual/augmented reality, Computer vision, SLAM

I. INTRODUCTION

SLAM (Simultaneous Localisation And Mapping) is one
of the most researched topics in mobile robotics: given a
mobile sensor moving along an unknown trajectory in an
unknown environment, the goal is to estimate, simultaneously,
both the environment structure (a map of 3D points) and the
sensor location with respect to that map. Only the information
gathered by the sensor is taken as the input data to the
algorithm; additionally, real-time performance at frame rate
is a common requirement. The SLAM problem is particularly
challenging in the case of monocular cameras because only
a sequence of 2D projections of a 3D scene is available;
in any case, 30 Hz real-time systems estimating up-to-scale
3D camera motions and maps of 3D points using commod-
ity cameras and computers are widely available for mobile
robotics environments nowadays. A seminal work by Davison
[1] provided the first live working system. Being based on EKF
(Extended Kalman Filter), its main weaknesses are the lack of
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robustness with respect to motion clutter and delayed feature
initialisation. In [2], a robustified version of [1] is proposed
by combining EKF with RANSAC. In [3], Klein and Murray
propose a bundle-adjustment-based method that is currently
one of the best performers in robotics. Previous works provide
extensive experimental validation of the SLAM algorithms
and its performance in real time for man-made, mainly rigid,
scenes which are typical in mobile robotics. Recently, EKF
based methods are being extended to provide estimates for
non-rigidly deforming scenes in real time [4], [5].

Exploration of a body cavity with an endoscope can be
posed as a monocular SLAM problem where an up-to-scale
3D map of the observed cavity is estimated from the sole
input of an image sequence, gathered from a standard hand-
held monocular endoscope, without resorting to any additional
sensor such as optical or magnetic trackers, accelerometers,
structured light, or artificial landmarks; the absolute scale of
the map is recovered from the observation of a known size
surgical tool. It is worth noting that the surgeon just needs to
follow vague visibility-based directives about how to explore
the cavity and it is not necessary to tightly follow a predefined
endoscope motion. Furthermore, it is worth noting that SLAM
not only recovers the 3D model, but also the actual trajectory
followed by the endoscope. The map and trajectory estimates
provide scene 3D measurements and support for augmented
reality annotations.

This paper presents a monocular SLAM algorithm tailored
to deal with medical endoscopic sequences and validated with
in-vivo human medical sequences corresponding to ventral
hernia repair surgeries. This work is the culmination of a
series of previously published works. In [6], we proposed to
use EKF + JCBB SLAM to process real hand-held monocular
endoscopic sequences in order to measure distances or insert
augmented reality annotations. Joint Compatibility Branch and
Bound (JCBB) [7] is a state-of-the-art robust data association
in EKF SLAM that exploits the correlation between pairs
of matches to detect and reject spurious matches, however,
its exponential computational complexity in the number of
spurious hinders real-time performance even if there are more
than one mismatch. We proposed a combination of EKF
monocular SLAM + 1-point RANSAC ([2]) in [8] that results
in an algorithm which is able to cope with high outlier rate
in real time. Additionally, the Randomized List Relocalisation
[9] is included to recover from endoscope tracking failure. In
[10], we summarily proposed a hernia repair procedure based
on visual SLAM. However, no experimental validation was
provided.

In this work, an extensive validation of [8] over synthetic
data and in-vivo sequences corresponding to fifteen real human
ventral hernia repair surgeries is presented. We focus on
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geometrical accuracy providing a comparison with respect to
ground-truth.

II. RELATED WORK

A seminal work in providing 3D models from body monoc-
ular image sequences was proposed by Burschka et al. in
[11]. Assuming scene rigidity, the system produces a map
for registering preoperative CT scan with the endoscopic
images. Its main limitations are map size and the lack of
robustness with respect to outlier matches. Computer vision
methods based on a discrete set of views have been applied
to medical images, assuming scene rigidity, in order to just
compute the 3D structure of the cavity. In [12], the classical
two view RANSAC structure from motion is applied to
mannequin images to determine the 3D structure; a constraint-
based factorization 3D modelling method produces a dense
3D reconstruction in near real time. In [13], structure from
motion is used to build a photorealistic 3D reconstruction of
the colon; in a first stage, images are processed pairwise to
produce an initial 3D map; in a second stage, all the maps
are joined in a unique photorealistic 3D cavity model. In
[14], these methods have been refined and extended to deal
with multiple views with a significant boost in performance in
rigid medical scenes. Thanks to careful feature selection and
a quite robust spurious tracking ASKC [15] (Adaptive Scale
Kernel Consensus), they are able to estimate both 3D models
of the cavity and the location of the camera with respect to this
cavity up to submilimeter accuracy in a cadaver for endonasal
skull surgery. Hu et al. in [16], in a similar vein, propose
a 3D structure estimation from multiple images. They deal
with outliers by means of the trifocal tensor, then a bundle
adjustment optimization is performed reporting accuracies
slightly over a millimeter.

Cavity 3D reconstruction from medical sequences of non-
moving stereo endoscope has been proposed in [17] and [18].
Visual SLAM methods have proven to be valid processing
medical images coming from a moving stereo endoscope in
[19], where an EKF stereo SLAM, assuming smooth camera
motion and scene rigidity, is validated over synthetic sequences
and qualitatively over in-vivo animal sequences; no usage
of algorithms robust to spurious data is reported. In [20],
the scene non-rigidity is considered: EKF visual SLAM is
combined with a dynamic periodic model, learnt on-line, to
estimate the respiration cycle from stereo images.

Intensive research is being done in designing medical
miniaturised devices that can provide depth map as stereo
endoscopes while avoiding the correspondence problem. A
monoport structured light device based on a stereo scope
is presented in [21], preliminary but promising results are
reported. In [22], a catadioptric structured light prototype
specifically designed to recover the lumen of a tubular cavity
is described, reporting 0.1 mm accuracy tested on a phantom
and ex-vivo animal. In [23], a monoport prototype combining
time-of-flight (ToF) and RGB is proposed; despite the low
resolution of the depth map, promising results are reported.
All these previous devices are still under development, in any
case the rich 3D information that they can provide suggests a
promising venue of research for SLAM algorithms.

Our proposal is also based on EKF SLAM, however, we deal
with monocular sequences, our method is robust to outliers,
and we provide extensive validation over both synthetic data
and real human in-vivo sequences.

Malti et al. in [24] propose a 2-phase 3D monocular
reconstruction of the abdominal cavity using a template-based
method. The first phase consists in exploring the abdominal
cavity in order to obtain an initial 3D rigid reconstruction using
2 views and the essential matrix + camera resection + bundle
adjustment combination. Afterwards, in the second phase, this
reconstruction is exploited to infer 3D scene deformations
during operation. The algorithm is one of the first to deal with
the scene non-rigidity under general deformation. However,
the correspondences are assumed known, computing time
is not reported, and only a qualitative validation over one
sequence is provided.

Recently, methods based on photometric properties are
being used to endoscopic sequences. In [25], the results
of [24] are taken as input to provide a dense 3D model
based on shape from shading; only a quantitative validation
for synthetic data, and qualitative validation for one in-vivo
sequence of the uterus are provided. Collins et al. in [26]
propose shape from shading in real time at 23Hz for medical
rigid scenes thanks to a GPGPU implementation; in-vivo and
ex-vivo experimental validation is provided but the authors
acknowledge poor conditioning and the strong assumption of a
constant albedo as prior data. [27] proposes a preliminary work
based on photometric stereo with learnt reflectance models
in order to estimate a 3D reconstruction of an organ from
one image using 3 different color light sources; for this, the
tip of the endoscope has to be modified to include 3 color
filters. The method is able to compute the absolute depth
without detecting image features, although it is sensitive to
illumination changes. They provide preliminary experiments
over one in-vivo pig liver sequence, including comparison with
respect to ground-truth. The main advantage of photometric
methods with respect to feature-based ones is their ability to
deal with textureless images. However, they are still sensitive
to illumination changes.

All the above mentioned methods are able to produce
camera location with respect to the observed scene, a basic
requirement for augmented reality insertions, navigation, or
multimodal image fusion that have proven to be useful in
medical applications for example [28], [29]. In [30], EKF
stereo SLAM is also used to artificially expand the intraop-
erative field of view (FoV) of the laparoscope (dynamic view
expansion).

Finally, it is worth mentioning the recent review about
optical 3D reconstruction from medical image laparoscopic
sequences provided by Maier-Hein et al. in [31].

III. MONOCULAR VISUAL SLAM

This section is devoted to describing the EKF algorithm
used in this work which is efficient as well as robust-
to-spurious data association. We have selected the 1-point
RANSAC (1PR) [2], in its exhaustive hypotheses testing
version, as a robust-to-spurious data association method.
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To compute the EKF estimation, it is mandatory to define
the state, the state transition equations, and the measurement
model. These definitions, for the case of the visual SLAM
problem, are detailed in Sections III-A and III-B. The 1PR data
association, like most of the EKF SLAM algorithms, computes
firstly a putative individually compatible (IC) data association
based on the EKF innovation computed at the prediction stage,
it is detailed in Section III-C. Secondly, in a modified update
stage, spurious matches are detected and removed, and only
the inliers are eventually fused in the EKF (Section III-D).
Next, the algorithm to add and remove features from the
map (map management) is described in Section III-E. Finally,
Section III-F describes the mandatory capability to relocalise
the camera after tracking is lost.

A. State Vector Definition

The probabilistic representation of the world map and the
camera location at step k is coded in a unique state vector
modelled as a multivariate Gaussian, xk:

xk =
(
x>v ,y

>
1 ,y

>
2 , . . . ,y

>
n

)>
. (1)

It is composed of camera state, xv , and the map defined by
location of every point, yi. See Section III-E for map point
management details.

The camera state, xv , is formed from position, rWC , orien-
tation encoded in a quaternion, qWC , and linear and angular
velocities, vW and ωC .

The map is composed of n point features (y>1 . . .y
>
n )>

whose locations are encoded either in Euclidean coordi-
nates, yi =

(
Xi Yi Zi

)>
, or in inverse depth (ID),

yi =
(
xi yi zi θi φi ρi

)>
. Details for the ID

parametrization can be found in [32].
Regarding the state transition equation for the camera, we

propose a dynamic constant velocity model to encode its
smooth motion:

fv =


rWC
k+1

qWC
k+1

vWk+1

ωCk+1

 =


rWC
k +

(
vWk + VW

k

)
∆t

qWC
k × q

((
ωCk + ΩC

)
∆t
)

vWk + VW

ωCk + ΩC

 (2)

where q
((
ωCk + ΩC

)
∆t
)

is the quaternion defined by the
rotation vector

(
ωCk + ΩC

)
∆t.

We assume that the state noise vector is composed of
linear, aW , and angular acceleration, αC , acting as inputs
producing, at each step, an impulse of linear velocity, VW =
aW∆t, and angular velocity ΩC = αC∆t. Both of them are
modelled as zero mean Gaussians with known covariance,
diag (QaW ,QαC ), processes.

Regarding the state transition equation for the scene points,
we propose a static model with zero state noise to encode the
scene as perfectly rigid:

yik+1
= yik . (3)

B. Measurement Equation

The measurements, zk = h (xk), are provided by a pinhole
camera:

h =

(
u

v

)
=

 u0 − f
dx

hC
x

hC
z

v0 − f
dy

hC
y

hC
z

 (4)

where u, v are the pixel coordinates of the observation in
the image. hC =

(
hCx hCy hCz

)>
, is the vector joining

the current camera location with the observed map feature,
expressed in the camera frame. u0, v0, f, dx, dy are the camera
intrinsic parameters corresponding to the principal point, the
focal length, and the pixel size. Finally, the two-parameter
distortion model [33] is applied to compensate the lens radial
distortion.

C. Classical EKF Estimation

Classical EKF estimation equations are:

x̂k|k−1 = fk(x̂k−1|k−1) (5)

Pk|k−1 = FkPk−1|k−1F
>
k + GkQkG

>
k (6)

νk = zk − h(x̂k|k−1) (7)

Sk = HkPk|k−1H
>
k + Rk (8)

Kk = Pk|k−1H
>
k S
−1
k

x̂k|k = x̂k|k−1 + Kkνk (9)
Pk|k = (I−KkHk)Pk|k−1 (10)

where Fk = ∂fk
∂x , fk being the stacking of (2) and an

instance of (3) for each map point. Gk = ∂fk
∂nk

, where
nk is the state noise vector assumed to be a zero mean
multivariate normal distribution with known covariance Qk =
diag

(
QaW ,QαC , 01, . . . , 0n

)
, where each 0i corresponds to

a map point. Hk = ∂hk

∂x . Rk is the image measurement error
covariance, also assumed to be a diagonal matrix.

The first two equations (5, 6) encode the prediction step. The
EKF prediction x̂k|k−1 provides an estimate for the relative
pose of every map point with respect to the camera. It is
accurate enough to synthesize in a patch the point image
appearance, compensating for rotation and scale variations
along the sequence. Then, the synthesised patch is exhaustively
searched inside the elliptical region defined by innovation and
its covariance (7,8) by means of normalised image correlation
(see Fig.1a). The pixel scoring highest, zi, if over a threshold,
is selected as the match in the new image. This stage produces
the set of putative IC matches:

zICk = (z1, . . . , zmk
)> (11)

corresponding to some of the visible map points.
Next stage is the update (9,10) where the information

provided by the IC matches is fed in the estimation. This is
the most expensive step in terms of computational cost. It has
to be stressed that if one or more of the matches are spurious,
the whole estimation process might become wrecked. Next
section is devoted to detailing the robust-to-spurious update
stage.
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D. 1PR-EKF Update

The IC matching stage produces an initial set of putative
matches, (11), where we can identify 3 subsets (see Fig.1c):
• low-innovation inliers.- Inlier matches whose innovation

according to (7) is small when compared with the stan-
dard deviation of the image measurement error.

• high-innovation inliers.- Inlier matches whose innovation
according to (7) is big when compared with the standard
deviation of the image measurement error. They corre-
spond to points whose location is quite uncertain, for
example just initialised points. These observations are
quite informative, hence valuable enough to be kept.

• outliers.- They are not jointly compatible with the rest of
the IC matches. They have to be detected and excluded
from the update.

The exhaustive hypotheses testing 1PR algorithm imple-
ments a modification of the EKF update stage which aims
to detect and reject spurious matches. The algorithm has three
main stages which are summarised in Algorithm 1. Fig. 1
illustrates the algorithm steps over a sample image.

The initial data are the IC matches (Fig. 1a). The first
stage is hypotheses generation and consensus. It consists of a
variation of the classical RANSAC algorithm [34] that exploits
the EKF properties. For each match in zIC , a hypothesis is
generated by integrating only the zi measurement according
to (9). It is worth noting that the expensive covariance update
(10) is not applied. Assuming that all the correlated error is
corrected by this integration, the innovation covariance (8)
can be approximated as the measurement error Sk ≈ Rk

covariance. Hence, a cheap χ2 test can be applied to identify
the support for the hypothesis. Due to this approximation, only
low-innovation inliers are going to be included in the support.

The most supported hypothesis is considered as the con-
sensus hypothesis and the corresponding supporting matches,
zli inliers, are the definitive low-innovation inliers (Fig. 1b).
Non-supporting matches, znonsupport, are not definitively la-
belled as outliers because some of them can be high-innovation
inliers.

The second stage, high-innovation inliers rescue, starts with
a partial update using the low-innovation inliers, zli inliers,
including both the estimation (9) and the covariance (10)
updates. For each non-supporting match, a χ2 test based on the
new and more accurate innovation covariance (8) is applied,
what allows to accept as high-innovation inliers, zhi inliers,
some of the znonsupport (Fig. 1c).

Finally, in the high-innovation inliers update stage, the es-
timation is updated with the rescued high-innovation matches
(Fig. 1d). Although the final number of detected spurious
matches is rather low, their rejection is a must for performance.

Regarding the number of tested hypotheses, on the one
hand, the cardinality of the IC set is low (in the order of
tens). On the other hand, we are able to generate a hypothesis
from just one measurement. As a result, the cardinality of the
hypothesis set is the same as the IC set and we can afford
to exhaustively test all the hypotheses. It is worth noting that
we do not need to resort to cutting the complexity by random
sampling. Although our hypotheses generation is not random,

we still keep the RANSAC name because, in any case, our
method is quite akin to the popular algorithm.

Algorithm 1 Exhaustive Hypotheses 1PR EKF-Update
1: IN: x̂k|k−1,Pk|k−1 {EKF prediction at step k}
2: zIC ,Rk {IC matches & Meas. Error Covariance}
3: OUT: x̂k|k,Pk|k {EKF estimate at step k}
4: {A. 1-Point hypotheses generation and consensus}
5: for each zi match in zIC do
6: x̂i = EKF state update(zi, x̂k|k−1)(Eq. 9)

7: ĥi = predict all measurements(x̂i)
8: [zsui , z

ns
i ] = find supporters(zIC , ĥi, χ

2
2,0.95,Rk)

9: if size(zsui ) > size(zli inliers) then
10: zli inliers = zsui ; znonsupport = znsi
11: end if
12: end for
13: {B. Partial EKF update using low-innovation inliers &

rescue high-innovation inliers}
14: [x̂lik|k,P

li
k|k] = Update(zli inliers, x̂k|k−1,Pk|k−1)(Eq. 9,10)

15: for each zj match in znonsupport do
16: [ĥj ,Sj ] = point j pred and cov(x̂lik|k,P

li
k|k, j)

17: νj = zj − ĥj

18: if νj>Sj−1νj < χ2
2,0.95 then

19: zhi inliers = add match to inliers(zhi inliers, zj)
20: end if
21: end for
22: {C. Partial EKF update using high-innovation inliers}
23: [x̂k|k,Pk|k] = Update(zhi inliers, x̂lik|k,P

li
k|k)(Eq. 9,10)

E. Map Management
This section is devoted to describing how features are

initialised and deleted from the map. As in any real-time
visual SLAM method, an accurate prediction for the location
of the map points with respect to the camera is available.
This prediction allows to warp the patches defining the point
appearance. Thanks to this warping, the perspective deforma-
tions are compensated. Then, resorting to expensive invariant
descriptors and detectors would be overkilling in SLAM.
Therefore, we propose to use FAST [35] and simple patch
correlation to extract and recognise the map features (each
map point is identified by a planar texture patch) because it is
cheap and performs satisfactorily.

Additionally, in our current particular case, due to the
small depth variation of the abdominal cavity and the limited
laparoscope movements (it only pivots and slides over the
fulcrum), features do not undergo severe perspective changes.

The feature initialisation criterion is targeted to keep in
the FoV a predetermined number of visible features. When
the number of visible features in the camera view is less
than a threshold, features are initialised within a randomly
located window favouring less populated areas (image regions
with few or no map features). The strongest FAST corners
are sought inside the window and, among them, the most
distinctive one for relocalisation, as stated in Section III-F, is
selected and initialised in the map. New features are encoded
in ID and, as the estimation improves, converted to Euclidean.
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(a) Individually compatible –IC– matches. State prediction ( ) with their
corresponding elliptical search regions.

(b) Consensus hypothesis and low-innovation matches. The match generat-
ing the hypothesis ( ). Set of low-innovation supporting matches ( ).
Non-supporting matches ( ).

(c) Low-innovation inliers update & high-innovation inliers rescue. Set of
low-innovation inliers ( ). Rescued high-innovation inliers ( ) are now
inside the search region and then accepted. Spurious matches ( ) remain
out of the new search region.

(d) Final update. The updated state results from the integration of high and
low-innovation inliers ( ). Outliers ( ) are not integrated.

Fig. 1. 1PR stages corresponding to one frame for the operation in Fig. 5a: (a) Individually compatible –IC– matches. (b) RANSAC winner hypothesis and
consensus low-innovation matches. (c) Low-innovation partial update and the rescued high-innovation inliers. (d) Fully updated map. The estimated state is
represented by its projection in the image, ( ) stands for the estimation and the ellipse stands for the covariance. The measurements are displayed as ( ).
Different colors are used to code different matching categories. Zoom is made over 4 paradigmatic matches for each class matches.

A feature is removed from the map if it is repeatedly
predicted to be in the image but it is not successfully matched.
In our case, the reobservation rate should be higher than 40%.
We can conclude that the surviving map features are trackable,
locally salient, and distinctive for recognition at relocalisation.

F. Relocalisation

The previous active search strategy for matching is one of
the system strengths (it enables the system to operate in real
time) but it is also one of its weaknesses. The system works
well provided that the mapped features are found inside the
elliptical search regions. However, if the camera suffers sudden
motions, the image is blurred, there are large occlusions, or the
scene is deformed changing its appearance, the tracking will
fail because no features are matched in several consecutive
frames (Fig. 2).

The relocalisation algorithm must detect loss of tracking and
stop EKF integration to avoid map corruption, due to incorrect
data associations, and then enable a recovery procedure. If the
tracking is lost, the relocalisation must find matches between
the current image and the already estimated map in a data-

driven manner without assuming priors about the camera
location with respect to the map.

Our system uses Randomized List Relocalisation (RLR)
proposed in [9]. It is summarised here with the aim of readabil-
ity. RLR casts the image-to-map matching as a classification
problem. A two stage online training is applied for every map
feature. First, at feature initialisation, 400 warped versions of
the texture patch around the feature are GPU-synthesised from
the image where the feature is first observed. The warped
patches are used to train the classifier. The second stage
harvests texture patches during EKF operation that are used
for online training.

The classifier is also exploited for selecting the most dis-
tinctive features at initialisation: only features scoring low in
the classifier with respect to other features already in the map
are eventually initialised.

When the system detects a tracking failure (i.e. there are
no observations in a frame, the camera pose uncertainty has
grown too large, or the predicted camera view does not
contain any mapped features) a few thousand of the strongest
FAST features [35] detected in the current image are fed
to the classifier to find putative image-to-map matches. As
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(a) The system is on track. (b) A large occlusion causes the
tracking loss.

(c) Finally, the system relocalises
and tracking is recovered.

Fig. 2. Relocalisation example for the operation in Fig. 5c.

map features can be similar to each other, multiple feature
correspondence hypotheses are considered. Then RANSAC
is applied to relocalise the camera with respect to the map.
Camera location is hypothesized from three feature corre-
spondences using three-point-pose PnP algorithm proposed in
[34]. Each camera location hypothesis is rated according to
how many other map features can be matched in the image.
The consensus hypothesis is optimised in a “moving camera
observing a fixed map” manner.

IV. EXPERIMENTAL VALIDATION DESCRIPTION

The goal of the experimental validation1 is to prove the
feasibility of using monocular visual SLAM in real surgi-
cal procedures. We have selected ventral hernia repair as a
paradigmatic example because:

1) The scene is almost rigid and textured.
2) The standard procedure already includes accurate dis-

tance measurements that can be used as ground-truth to
assess the visual SLAM geometrical accuracy.

3) The flexibility and robustness of visual SLAM methods
are clearly tested because the surgical procedure has
not been modified at all, except for the addition of
an exploratory endoscope manoeuvre with a trajectory
similar to other endoscope routine motions.

4) The SLAM version, just by making better use of the
images, would simplify the surgical procedure without
a disruptive modification of the workflow.

5) The image sequences exhibit significant inter-patient
variability in texture, illumination, input port placement,
and exploratory trajectory.

1The experiments developed in this work were approved by Comité Ético
de Investigación Clı́nica de Aragón (CEICA) and governed according to the
provisions of the Spanish Law 14/2007 regarding biomedical research.

Fifteen in-vivo human laparoscopic ventral hernia repair
interventions were captured at 384x288@25 fps with an optics
with 30o direction of view (DoV) and 60o FoV angles. The
standard procedure has been extended with the additional
exploratory endoscope manoeuvre. The goal of the exploration
is to gather a sequence detecting parallax for an accurate
visual SLAM. At the end of each operation, a calibration
planar pattern was imaged for camera calibration according
to Zhang’s method [36]. For twelve of the operations, it was
possible to take tape measurements for, at least, one main
axis of the hernia (ground-truth) (Fig. 3b). The reasons for
not taking some of the measurements were the difficulty in
manoeuvrability or surgical time saving due to some patients’
medical conditions.

Additionally, a representative simulation is designed in order
to quantitatively evaluate the accuracy and robustness of the
method. The simulation mocks up the 3D geometry of the
ventral hernia repair procedure where the human torso is
modelled by means of an array of points on an ellipsoidal
cap (Fig. 4f). Typical local non-rigid deformations of hernia
repair emulating external forces, respiration or heartbeats have
been applied over the cap. In the left flank of the cap, a virtual
30o DoV and 60o FoV endoscope and a virtual tool tip have
been inserted. From this setup, a synthetic image sequence is
generated by moving the virtual endoscope around the fulcrum
mimicking the real laparoscope movements. The 3D model
points are projected according to the pinhole + two-radial-
distortion parameter model and adding zero mean Gaussian
noise with 0.5 pixels standard deviation. It has been simulated
not only at the actual endoscope resolution 384 × 288 pixels
but also double 768× 576 and half 192× 144.

A. Classical Hernia Repair Procedure

The hernia defect is measured in-vivo to cover the defect
with a customised-in-size patch. The elliptical patch axes
are those of the defect plus a predefined safety margin. If
possible, a piece of a sterilised tape measure is introduced
inside the abdominal cavity and at least one of the two main
hernia axes is measured (Fig. 3b). When available, we will
use this measurement as ground-truth to validate the SLAM
geometrical accuracy. The 0.5 cm tape measurement resolution
determines the ground-truth accuracy. If the tape measurement
cannot be taken other less accurate indirect methods are used.
We opt not to consider them as ground-truth.

B. Hernia Repair SLAM Assisted Procedure

In addition to the standard procedure, at the measurement
stage, an exploratory laparoscope manoeuvre is performed
aimed at translating the endoscope tip while the region of
interest is kept in the Fov (Fig. 3c). The sequence is processed
to estimate a cavity map (cavity 3D model up to a scale factor)
and the endoscope trajectory.

Before the exploratory manoeuvre, additional key points are
manually enforced to be in the map: two predefined points
over a clinch to define the scale, s, and several points (five
or more) scattered over the defect boundary to estimate the
hernia contour and size (Fig. 3a).
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(a) Two points over a clinch define
the scale (magenta). Five or more
points over the hernia defect bound-
ary (yellow).

(b) Tape measurement considered as
ground-truth.

(c) Hand-held exploratory laparoscope motion.

(d) SLAM measurement, Map and el-
lipses projected as augmented reality
over a sequence frame.

(e) Camera trajectory, 3D map
and ellipses in 3D. Top view.

Fig. 3. Measurement processes, 3D map, camera trajectory and the estimated
ellipses for the operation in Fig. 5b.

The hernia defect is modelled as a virtual 3D ellipse in
a three-stage way. In the first stage, an initial guess of the
dominant plane defined by the five or more defect boundary
points is computed by least squares. This guess is covariance-
weighted in the second stage by an information filter extracting
the needed covariances from the probabilistic map of the EKF
monocular SLAM. After that, the points are projected on the
weighted plane where the planar ellipse is fitted. Finally, the
ellipse dimensions are computed from the scale factor s.

Resulting from the exploration, the SLAM algorithm es-
timates the scene 3D map and the endoscope trajectory (Fig.
3e). The defect major and minor axes sizes are estimated from
the ellipse (Fig. 3d). A second concentric ellipse defining the
virtual border of the patch is visualised as an augmented reality
annotation. Live augmented reality is possible due to the real-
time 3D estimation of the endoscope position with respect to
the 3D cavity (Fig. 3d).

V. EXPERIMENTAL RESULTS

This section details both the simulation and the real opera-
tion results. The same parameters, experimentally tuned, have

been applied for all of the experiments: image measurement
error of 0.5 pixels standard deviation; 40% is the acceptance
threshold for normalised correlation score to eventually accept
a map point match in the new image; new features are assigned
an initial 1 inverse depth, with an initial σρ = 1, in order
to have an initial direct depth acceptance region starting in
0.3 and extending to include infinite; regarding linear and
angular accelerations, standard deviations are 2.5 1

s2 and 3 rads2
respectively, as monocular cannot observe the scale, both depth
and linear acceleration have no length units; finally, map
management initialises features in order to have 40 map points
observable in the image.

A. Simulation
We focus on the 384×288 resolution because it corresponds

to the endoscope used in our surgeries. Figs. 4a and 4b display
the estimation error history for the camera translation and
rotation respectively. Both the error and the ±3σ acceptance
region are represented. We can conclude that the EKF provides
a consistent estimation because the estimated value is mostly
within the 3σ interval. Additionally, thanks to the covariance
estimation, we can evaluate how accurate the available esti-
mation is at a given time step. The time evolution shows how
initially the covariance grows due to the exploratory motion
that departs from the initial camera location. As the estimation
evolves, some features are reobserved and then the estimation
error decreases.

Fig. 4c displays the estimation error distributions for the
camera estimation history by means of box-and-whisker dia-
grams. The left and right of the box represent the first and
third quartiles, the line inside the box is the median; the ends
of the whiskers represent the minimum and maximum of all
of the data. The errors are in the interval [0.6, 1.1] mm with
0.82 mm as the median for translation, and [0.27, 0.49] deg
with 0.38 deg as the median for rotation.

The estimated map corresponds to the “rigid envelope”
where none of the points in the cap are deformed. During
the simulation, observations corresponding to non-rigid defor-
mations are successfully marked as spurious by 1PR and are
not considered in the estimation. It is worth noting that if
1PR is disabled, some spurious matches are marked as inliers
and the estimation fails. For each time step and for each map
point, the EKF provides both an estimate for the location and
its covariance. As more images are processed, the covariance
for a given point is reduced if the point is reobserved. Fig. 4f
displays the estimated map with the corresponding ellipsoidal
3σ acceptance regions after processing the whole sequence.
It can be seen that most of the points have a small error
except those at the map boundaries. Points on the boundary are
only detected in a few images providing little parallax, hence
their location error is great. In any case, we have verified that
the estimation error normalised with the estimated covariance
approximately distributes as a χ2 with 3 d.o.f.(see Fig. 4e).
We can conclude that the map estimation is consistent, hence
estimated covariances provide a per point accuracy measure-
ment.

Fig. 4d displays box-and-whisker diagrams for the estima-
tion error for all the map points after processing the whole
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(b) 384x288 Camera rotation error (red) and the
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(e) Map point error normalised with respect to the
estimated covariance. It approximately distributes as the
theoretical χ2 with 3 d.o.f.

(f) Estimated map points and their covariances
after processing the whole 384 × 288 sequence.
The laparoscope (grey) is passing though the
ground-truth fulcrum (magenta).

Fig. 4. Estimation error for the simulation results.

sequence. The errors are in the interval [0.15, 0.71] mm with
0.36 mm as the median, the maximum error is 10.44 mm
corresponding to a point on the boundary.

From the 384 × 288 simulation, we can conclude that the
the map estimation is accurate up to 1 mm for most of
the points, in any case, the estimated covariance provides an
assessment for each point accuracy. Regarding the effect of the
camera resolution, the half and double resolution simulations
show that EKF can make the most of the available resolution
because error increases inversely with respect to the resolution
(Figs. 4c and 4d).

B. Laparoscopic Sequences

Our EKF SLAM has been able to successfully compute
the map and the camera trajectory for the fifteen sequences,
see Fig. 5 for a thumbnail of all the surgeries. It has been
able to cope with a variety of illuminations, textures and input
port geometries. If we have to mention a weakness, it is the
inability to perform the measurement in one of the sequences
(Fig. 5o) because of the lack of texture around the defect.

To analyse the cycle time budget, we have selected the
sequence corresponding to Fig. 5c because it is archetypical. It
includes EKF routine operation and relocalisation after track
loss due to occlusion (Fig. 2). Fig. 6a displays the cycle
time budget split in: EKF prediction, putative IC matching,
1PR hypotheses generation and consensus, low innovation

inliers update, high-innovation rescue and update, and map
management (feature creation and removal). IC matching is
time consuming due to image correlation and patch warping.

Fig. 6b displays the cost per frame histogram for all frames
in all sequences (6473 frames). The cycle time mode is around
13 ms, the mean and the median being around 18 ms. Faster
frames (<10 ms) correspond to relocalisation when no features
are detected (since in that case no relocalisation hypotheses
are generated), and with first sequence frames when the map
is small. Times around 38 ms correspond to frames when
the system has just relocalised and the camera location is
still not refined. Thus, we can conclude that robust real time
performance can be achieved.

Typical map sizes are between 50 and 100 points. Up
to 40 map features are measured per frame. Fig. 6c shows
a histogram of the outlier count for all frames in all the
sequences. Although nearly 30% of frames do not contain any
spurious match, only one of the sequences can be successfully
processed if 1PR is disabled. We can thus conclude that
algorithms robust to spurious data are a must for EKF SLAM
even in the case of a low spurious-matches rate. 1PR cost
is linear in number of measurements and state size while
the outliers have a low influence on the computational cost
(<20% of the total budget corresponding to 1PR hypotheses
generation and consensus). Hence, our system can achieve real
time even when ∼25% of frames contain more than 3 outliers.
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In contrast, methods like exhaustive JCBB, with exponential
complexity in the number of outliers, would not perform in
real time.

Regarding the clinical point of view, we have to stress that,
except for one case (Fig. 5o), we were always able to measure
both ellipse axes because the defect visibility is required
during the surgery and we profit from that. In the failing
case, we were able to build the map, however, the clicked
points signaling the defect were not trackable due to the lack
of stable texture in the defect boundary area and the particular
point detection method. A more dedicated work in image
processing (e.g. using contours) is quite likely to overcome
this limitation. In contrast, classical tape measuring procedure
sometimes fails to produce the measurement because of the
limited manoeuvrability resulting from the port placement.

The surgical time consumed by SLAM is mainly due to the
exploration, which takes less than 1 minute irrespective of the
sequence. Since the algorithm runs live (Fig. 6f), no additional
time is needed for the processing, except for selecting the
points over defect boundary and over the clinch to define
the scale. Both are easy to automate with the corresponding
surgical time saving. In contrast, the classical measurement
procedure is rather uncertain (the time length ranges from 2
to 5 minutes). It has to be noted that in three cases where
longer times were anticipated, the surgeons did not even try
to measure. In these cases, other less accurate methods were
used. In any case, SLAM recovers not only two measurements
but a full 3D model and the support for augmented reality.

To validate the SLAM geometrical accuracy, the dimensions
of the hernia defect’s main axes have been estimated from
the 3D recovered model and compared with those of tape
measurement (our ground-truth), accurate up to 0.5cm. No
significant differences can be observed so we can conclude
that SLAM is as accurate as the tape measurement. Figs. 6d-
6e depict measurements in the two axes.

VI. CLINICAL ASSESSMENT OF THE METHOD

The method can be easily integrated in the surgical work-
flow because it only needs standard elements operated in a
standard manner. It does not need the insertion of any addi-
tional element but just a standard tool that has to be inserted
in any case. It is able to produce accurate measurement at
shorter surgical time than the other competing methods.

The tape measurement sometimes cannot be used because of
the difficult manoeuvrability. Several needles insertion defin-
ing the defect mayor and minor axes is a common alternative,
it is less accurate and has several additional shortcomings.
It is invasive, there is risk of haemorrhage if a blood vessel
is reached, if there is a previous surgery prior scar tissue can
come in contact with the needle increasing the risk of infection
and inflammation.

It can be easily extended to other surgical procedures such
as thoracoscopy or flexible endoscopy. It can also be relevant
in excisions for intraabdominal measurements of organs such
as liver, adrenal glands, or spleen aiming to determine the size
of the extraction port.

It is worth noting that in addition to the measurements,
visual SLAM can provide support for augmented reality

annotations of intraoperative information during the actual
surgical procedure in real time, for example virtual landmarks
for aligning the prosthetic patch.

VII. CONCLUSIONS

Traditional endoscope surgery displays and disposes of the
image sequence. However, monocular SLAM is able to exploit
the sequence.

We have provided the first human in-vivo experimental val-
idation for the feasibility of using EKF monocular SLAM as a
proper method to deal with medical endoscope sequences. A
scene rigid model is assumed, however, the method has proven
robust with respect to scene local non-rigid deformations such
as respiration or external forces. The validation is based on
synthetic data and on sequences coming from a real surgical
environment over fifteen human in-vivo laparoscopic ventral
hernia repair surgeries.

The method has proved to be fast, non-invasive, and easily
incorporated to the existing surgical workflow by using solely
images gathered from a hand-held standard monocular endo-
scope and standard laparoscopic tools.

Unlike other experimental validations based on phantoms
or animal imagery, we have tested the fifteen human surgeries
that displayed the typical inter-patient variability (different
textures, illumination, input port placement and exploratory
trajectories) (see Fig. 5 and the accompanying video). Despite
the variability, all the sequences have been processed with the
same tuning, therefore we believe that they provide experi-
mental evidence of the method’s usability.

We have tested the performance of the EKF monocular
SLAM + 1PR, in any case, any real-time visual SLAM
method, either monocular or stereo, would perform equally
well on condition that it has a robust-to-spurious policy.

VIII. FUTURE WORK

This method cannot deal with non-rigid nor with textureless
scenes. Besides, offline camera calibration is required.

Regarding the non-rigidity, Agudo et al. [4], [5] have proved
that the combination EKF-FEM (Finite Elements Method) can
deal with deformations in real time. This approach is relevant
for medical images because it can exploit the biomechanical
availability. One of our immediate goals is to adapt these
methods to our system. Concerning calibration, it would
be desirable to solve the complete problem (3D structure
recovery, camera location and camera calibration) during the
exploratory movement. Finally, the lack of texture could be
tackled using a monocular SLAM based on points and edges
and researching the combination with photometric methods.

In the particular case of the hernia measurement, another
minor limitation is that currently the scale and the hernia defect
have to be selected by clicking on the images; an automatic
detection of both would ease the use of the system.

Since our system is based on an EKF implementation, we
can only handle a few hundred points. However, methods
based on keyframe + bundle adjustment such as [3] can render
a map composed of a few thousand points. This signals a clear
way for increasing the map density.



10

(a) H-S (b) HVS (c) HVS (d) H-S (e) HVS

(f) HVS (g) HVS (h) H-S (i) H-S (j) H-S

(k) HVS (l) –S (m) –S (n) –S (o) HV-

Fig. 5. The thumbnails –labelled from (a) to (o)– corresponding to the 15 ventral hernia repair surgeries used to validate the system. The “HVS” code in
the captions stands for the availability of (H) Horizontal tape measurement, (V) Vertical tape measurement and (S) SLAM measurement. The SLAM map
was successfully computed for all of them, while ellipse measurement was not possible in (o) due to the lack of texture around the defect.

Finally, a more ambitious goal is to exploit the camera
location as a backbone for augmented reality providing addi-
tional visual information (multimodal registration images –CT
or MRI– or another kind of annotations) in real time.
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Fig. 6. (a) Cycle time and map size corresponding to operation Fig. 5c. (b) Cycle time and (c) outlier histograms for all frames in all sequences. (d), (e),
(f) Measurement procedure comparison. Both accuracy (d), (e) and surgical time (f) are exhaustively plotted, one bar per operation per method. Missing data
are represented as a missing bar. The labels correspond with those on Fig. 5.
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