
SLAM Summer School, Stockholm, Aug 2002

Practical Session 3: Data Association and Robot Relocation

The objective of this session is to program in MATLAB the most complex data
association problem in SLAM: the vehicle relocation. It can be stated as follows:

• given a previously built stochastic map of the environment,
• and a set of observations taken from the vehicle sensors,
• without having any a priori vehicle estimation,
• determine the vehicle location.

For this purpose we will use the “Trees in the Park” dataset provided by José Guivant
and Eduardo Nebot, form the University of Sydney (many thanks!). In a previous EKF-
SLAM run, a stochastic map of a part of the park was built, using as features the tree
trunk center points obtained by Sydney’s segmentation algorithm. The mean value and
variance of trunk radiuses and the covisibility of the trees were also computed during
the map building process.

Take a look at the main program relocation. At the beginning, the stochastic map
(without vehicle) is loaded in variable features. For a given step, the laser scan is
segmented to obtain trees, and the result is stored in variable observations. Trunk
center positions observations.z are already represented in Cartesian coordinates
relative to the vehicle reference. The corresponding covariance matrix
observations.R is block-diagonal (why?).

An estimation of the ground-true vehicle location for the first 2000 steps is given in
variable vehicle.ground. This information is used by the main program to
compare with the solution obtained by your relocation algorithm. You must not use it in
your data association algorithm.

Your task is to program the function relocation_GCBB to obtain the correct data
association hypothesis, using the GCBB algorithm. A hypothesis will be represented by
a vector showing the map feature corresponding to each observation, where a zero
represents a non matched observation.

To solve the problem you will also need to program functions estimate_distance,
binary and unary. Some provided functions you may want to use are:

• is_consistent: computes the vehicle location using EKF and verifies
global consistency using Joint Compatibility. A faster but less precise solution
would be to compute robot location by least squares (see code).

• point_rows: gives the row numbers corresponding to a set of points in
features or in observations. See the main program for an example of
usage.

The tools directory contains functions for drawing and for computing vehicle
location, that are used by the main program. You don’t need to use them in your code.

Juan D. Tardós and José Neira, University of Zaragoza, Spain

SLAM Summer School, Stockholm, Aug 2002

You should follow these steps:

1. Preliminary. Try running the relocation program. Figure 1 shows the
stochastic map with the true vehicle location in blue. Figure 2 shows the scan
corresponding to the selected step and the trees found by the segmentation
algorithm. After running the program, the solution obtained is drawn in red in
figure 1: blue points are map features and red points are observations. The
hypothesis found (a silly answer in this case) is shown by joining the matched
trees with a red line.

2. Stochastic distances. We will use the distances between tree trunk centers as

binary constraint. Given a vector with the Cartesian coordinates of two points:
x = [x1, y1, x2, y2]T and its 4x4 covariance matrix P (remember, points in the
map ARE correlated) write down the equations needed to compute the estimated
distance between the two points and its variance, and code them in function
estimate_distance

3. Binary constraints. Program the basic GCBB algorithm using binary

constraints: for a given hypothesis, the distance between any pair of observed
trees must be compatible with the distances between the corresponding trees in
the map. Compatibility must be verified using a chi-squared test. To test your
program use the configuration.small_map option and steps between 1
and 200, otherwise running time may be a little long.

4. Unary constraints. In this problem the trunk radius can be used as a unary

constraint, that can also be coded as a chi-squared test. Add this constraint to
your GCBB algorithm and verify the improvement in computing speed.

5. Locality. To solve the relocation problem inside the whole 145-feature map in

reasonable time you need to implement the locality concept using the map
covisibility matrix: when a map feature has been matched, the search for more
pairings can be restricted to its covisible features. Add this idea to your code and
verify the improvement in computing speed.

6. Optional improvement. To avoid repeating distance computations, you can add

global variables to store the distances between the trees in the map and in the
observations. When a distance is first needed it is computed and stored. If it is
needed later on, it is simply retrieved. Does your program compute all possible
distances? Why?

Juan D. Tardós and José Neira, University of Zaragoza, Spain

	Practical Session 3: Data Association and Robot Relocation

