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Multisensor Fusion for Simultaneous Localization and
Map Buildin
V. CONCLUSION P 9
In this paper, we have studied strategies for controlling formations of J. A. Castellanos, J. Neira, and J. D. Tardos
mobile robots using methods from nonlinear control theory and graph

theory. We have focused on decomposing the problem of controlling a . . . o

f tion of nonholonomic mobile robots into: 1) controlling a sing| _Ab_s_tract—Thls paper descrlbe_s how multisensor fl_JS|0n increases bqth
orma . s 9 g ?ehabmty and precision of the environmental observations used for the si-
lead robot and 2) controlling other follower robots in the team. We us@gliitaneous localization and map-building problem for mobile robots. Mul-
the termg — ¢ and! — I control to reflect whether the control lawstisensor fusion is performed at the level of landmarks, which represent sets
are based on tracking the position and orientation of the robot relatRigrelated and possibly correlated sensor observations. The work empha-

to a leader, or the position relative to two leaders, respectively. We apizes the idea of partial redundancy due to the different nature of the infor-
’ ’ ) mation provided by different sensors. Experimentation with a mobile robot

defined the concept of_a transition matrix, which governs the addi_ti%uipped with a multisensor system composed of a 2-D laser rangefinder
and deletion of edges in the control graph and hence the change indhé&a charge coupled device camera is reported.

gommunlcatlorl prOtoco_l'_ Based on this, we pr_es_ented an exhaus“vﬁ\dex Terms—Correlation, landmark, mobile robot, multisensor fusion,
list of all possible transitions that can occur within the robots in th@myltaneous localization and map building.
formation and the corresponding transition matrix column.

There are several importantissues that need to be addressed in future
research in this area, including: 1) how to choose a control graph and I. INTRODUCTION
the desired shape based on the constraints in the environment; 2) Noyg|iaple and accurate sensing of the environment of a mobile robot
to plan changes ify, r, ) depending on sensor constraints; 3) hows 4 important task both in localizing the robot and in building a de-
to allow formations to be split into sub-formations, leading to multiplg;ijeq map of such an environment. One of the fundamental ideas to
lead robots; and 4d) though the transition matrix gives us the informgespjeve this reliability is the use of redundancy, that is, to combine en-
tion neeqled to change formations, itis not clear if there isan optlr_nal Wé¥onmental information obtained by several sensors [1]-[3]. Dealing
for carrying out these changes, rather than the sequential algorithm Rigr redundancy requires both the availability of a systematic descrip-
sented here. Some of these topics are the focus of our present resegfgh-of uncertain geometric information and a consistent multisensor

fusion mechanism [4].
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experiments of Moutarlieet al. [6] and Leonardet al. [7]. Active Landmark F
research work is being developed in different groups worldwide
typically considering point features gathered by ultrasonic senso
[8] or laser rangefinders [9] which are directly input to the SLAM
algorithm. Those approaches present high performance in spai
environments, however, they present low reliability and low robustnes
of data association in dense environments due to the high ambigu
of the observations used. Alternative approaches are reported in 14@—
literature to avoid those limitations: the use of raw sensor data ar '
correlation techniques for data association [10], [11] or the reductio
of sensor data ambiguity by detecting more meaningful features, su
as 2-D segments from laser data [12], [13].

The work reported in this paper represents, to our knowledge, tt
first application of multisensor fusion to SLAM for mobile robots and S
extends the work of [12]. Our main contributions are as follows: e

* Perceptual grouping, based on topologic and/or geometric reflg. 1. LandmarkF = {S\, E1, C, E,, S.} formed by a set of correlated
tions between sensor observations, which provides a semanticédlytures of the local environment of the mobile robot.

upgraded landmark-based representation of the navigation area.

Multisensor fusion at the level of landmarks provides redundancy, . o
usually only partial due to the different nature of the sensorQ(,/henPF = 0, we say that the estimation éentered Our approach
about the features used for both localizing the robot and maﬁ%fhe SLAM problem for mobile robots [12] considers a state vector
ping the navigation area. Therefore, reliability and precision afe which represents the estimated Ioce}tlon of the vehl_cle and the map
increased from early stages of the processing. features with respect to a base refereli¢eand a Gaussian perturba-

! ) . W rraWw w . . . .
Data association for SLAM benefits from the landmark-basdéPh vectorp™ ~ N(p™, C™ ) which takes into account estimation

representation due to the low ambiguity of the features involvefl €ffective errors.
Thus, even simple strategies such as nearest-neighbor demon-
strate very reliable and robust. B. Features and Landmarks

The rest of the paper is structured as follows. We present in SecSimilar to other work in this area, we follow a feature-based ap-
tion 1l the landmark-based description of the environment of a mobifgoach to map building. Then, raw sensor data are first processed to
robot based on the probabilistic representation of uncertain geometfitain a set of low-level features such as segments obtained from laser
information. In Section Ill, we present the multisensor fusion schem&;ans or vertical edges obtained from gray-level images. In this work,
where the idea opartial redundancyis emphasized. The problem ofwe go a step further and explore the use of more distinct and mean-
data association is considered by taking into account both individuagful observations composed of several related features.
compatibility between features and also joint compatibility due to the We define alandmark 7 as a set of nearby featurds, i €
presence of correlations between the estimated locations of some fda-.. n} derived from sensor data that verify some topologic and/or
tures. A case study is described in Section IV where experimentatigeometric properties. It should be noted that perceptual grouping is in
with a mobile robot equipped with a 2-D laser rangefinder and a chargeneral a complex problem, and the reliable detection of landmarks
coupled device (CCD) camera is reported. To conclude, Section V carsually require the use of sensor-specific properties. For example,
tains a discussion of the proposed approach and further research diFég- 1 illustrates a landmarl defined by the nearby segments
tions. and E, and other derived features like the corrérfound at the
intersection of the segments and the semiplafieand S found at
their free endpoints. Other examples of more complex landmarks, not
used in this paper, can be doors detected in images or laser scans,
A. Representing Uncertain Geometric Information corridor intersections, etc.

The location of a 2-D uncertain geometric elem&hwith respect From the above example, it can be deduced that the features com-

to a base referencd’, can be represented [14] by a location vectop2>nd @ landmark are not rngred to be. independent. Therefore, gen-
T e . eralizing (1) and (2), an estimated location vector and a perturbation

xwr = (2, y, ¢)° computed as the composition" of an estimated vector can be associated 1o a landmérk
location vectokw  taken as the base for perturbations, and a differ-
ential location vectod Knp pr
1 1

Il. LANDMARK -BASED REPRESENTATION OF THEENVIRONMENT

Xwr = Xwr Hdp. (1) RrF = . pr = S| ~N(BE, Cr). ()

In general, due to the symmetries of the geometric element, some of it Pt

the components @i do not represent an effective location error, thugnhe diagonal elements of the covariance maix consider the loca-

a perturbation vectop is formed by the meaningful components ofijon uncertainty for each feature of the landmFkvhilst the off-diag-

de onal elements represent the cross covariances between the estimations
of the different features of the landmaf When independence be-

dr = BLpr; pr = Brdrp (2) tweenthe estimation of the features holds; is reduced to a block-di-

agonal matrix.

where the row-selection matri® » is named theself-binding matrix The set of landmarks obtained from the information provided by a

of the geometric element. The perturbation vegipris normally dis- sensotF’ when the vehicle is at a particular locatibralong its trajec-

tributedpr ~ A (pr, Cr) withmeanpr and covariance matri€ .  tory is subsequently referred to lasal mapLM} .
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Fig. 3. Improving the estimation @;, by the redundantinformation provided

Fig. 2. A case study: fusion of laser and monocular vision for simultaneous

localization and map building. only partial redundancycan be obtained. This fact is represented by
the row-selection matriB e, r;, , which selects the meaningful com-

IIl. M ULTISENSORFUSION ponents of the relative transformation which must be equal to zero. Due

to orientation terms, (4) is generally nonlinear, therefore, we consider

For ease of explanation, suppose that the mobile robot is equippedirst.order Taylor approximation around the best available centered
with a senso#’, considered as the fundamental sensing device, Wh"é@timation br = 0, pz, = 0) witht

provides the landmark-based local m'EaMf; and a sensoF, con-
sidered as a secondary sensor, which obtains partially redundantinfor- h; = f;(p+, pr,) = Be,r, X, r,

. ! . . . \ ? z it it g,
mationLM£ from the environment of the robot at locatién Fig. 2

depicts the particular case of a laser rangefinder as the primary sensorH; = aaf’ = (0 OHf"i 00... 0)
and monocular vision as the secondary sensor of a multisensor system. PFlpr bE,)
Then, the multisensor fusion algorithm processes, sequentially, the set. of. R r
of landmarks o.M and searches for redundancy using the featuredd; " = ap; =B, r;, qu\w{xmpji, 0}By,
of LMZE . Thus, for each landmark &M? , we have: Jilpr. pe,)
1) Data _association, using a nearest neighbor_ approach and an in'G,; _ of; — _Bp.r 510{0, %50, }BL. (5
novation test based on the Mahalanobis distance [15] decides opE; b7 b5, cr t 7

which features of the local md@M ]’ are compatible with those
of the local maf.M£ . Due to the existence of correlated feawhereJ = andJ.4 are the Jacobians of the composition of location
tures within a given landmark, not only individual compatibilityvectors [16]. Due to uncertainty, (4) only holds approximately, thus, for
but also joint compatibility of the different matchings must be given significance level, featuresF’;, andE; are considered to be
validated. This step benefits from the availability of an accuragpmpatible if
sensor—sensor calibration. N 1
2) Suboptimal estimation based on the EKF integrates the set of ~ D? = h! (HinHf + GZCEZ.G/,{) h; <7, (6)
matchings found by data association to improve the estimation of
LMY by the partially redundantinformation providedb¥; .  with r = rank(h:) degrees of freedom and ., a threshold obtained
As result, the multisensor-based local nal; ** is obtained, from the? probability distribution. Otherwise, the matching is dis-
which is subsequently used as input to the SLAM algorithm [12tarded. Whenever multiple candidates pairings exist for a given feature
E;, a nearest-neighbor strategy is applied.
A. Validation of Individual Compatibility

Let (E;, Fj,) be a candidate pairing between a featfiveof land-  B- Validation of Joint Compatibility
mark€ of LM and a featurd;, of a landmark? of LM which Mutual compatibility of the matchings satisfying (6) must be verified

must be validated. The matching imposes a constraint (Fig. 3) on theire to the possible existence of correlations between the estimation of
relative transformation [14] that can be expressed by means of an ite features of a given landmark. The complete set of constraints, of

plicit measurement equation the form described by (4), can be written as
ti(pr, pe;) =Ber; XEF;, fi(pr. pry)
:BEiFj; (GB}Sszz %BkEiFj; %'BII;JZ pFJ}') f(pfa PS) = =0 (7)
=0. 4 )
fnz (P}‘w PEm)

The nature of the featurelS;, and E; depends on the characteristics 1The column occupied b¥, * in matrix H; corresponds to the position of
of the sensors used. In genet&), andE; are of different nature, thus the featuref";, in the state vector of landmatk.
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which can be linearized around the best available centered estimation
(br = 0, ps = 0) with coefficients given by

h,
h=f(pr, pe) =
th
0o H" 0 0
OP7 |, pe) -
0 0 H,* ... 0
= a@f =diag(G1, ..., Gn). (8)
Pelpy pe)

Finally, joint compatibility of the whole set of candidate matchings is
satisfied, for a significance level, if

b 71 P
D? =nT (HC}'HT + GCgGT) h <y}, )

with » = rank(h) degrees of freedom. Otherwise we search, among
the matches which satisfy individual compatibility, for the largest
subset (i.e., the one with greatest value r9fthat satisfies joint
compatibility. In the case of a tie, the one with a lower valuelof

is chosen.

C. Formulation of the Multisensor Fusion Equations

An improved perturbation vect@srie ~ N (Prye, Crie) for
landmarkF is obtained by fusing its previously available information
pr ~ N(pr, Cr) and the partially redundant informatign: ~
N(pe, C¢) provided by landmark€. Using the classical EKF equa-
tions, we have

K=CrH (HCsH' +GC:G")™"
prie =pr + K(-h)
Crie =(I-KH)Cr. (10)

mobile
i robot

Finally, after sequentially processing the set of landmarkEMdEL ,
the algorithm comes up with a landmark-based local me*F‘ (b)

composed of more accurate features. Reliability and robustness of the

features are increased due to the partial redundancy provided by fife 4. Sensor data. (a) Vertical edges (white arrow-headed lines) detected in
secondary sensor a gray-level image. (b) Two-dimensional laser readings and vision edges.

semiplanes derived from occlusions. Finally, a landmark is formed by

each set of consecutive segments and their derived corners and semi-
A supervised exploration of a human-made indoor environmepfanes [Fig. 5(a)].

was conducted by using a mobile robot equipped with a 2-D laser
rangefinder and a CCD camera. Environmental information was redst- Vision-Based Local Maf,MZ
larly obtained from static robot locations. Ground-truth, obtained by @Redundant information about the location of laser corners and

pair of theodolites, was available to validate the results. An OverVieé%miplanes can be obtained by processing the gray-level images taken

of the case study was described in Fig. 2 which is S“bseq“e%v a CCD camera. The camera has been calibrated using the Tsai

detailed. method [17] which includes compensation of the lens distorsion.
F Vertical edges, longer than 150 pixels, are extracted from the image,
A. Laser-Based Local Mafi,M; which might correspond to corners and door frames [Fig. 4(a)]. Each

First, the 2-D laser data [Fig. 4(b)] are processed by a segmentati@ntical edge detected on the gray-level image is represented by a
algorithm [14]. Different uncertain geometric features are obtained: tision edge[Fig. 4(b)], that is, a 2-D line defined by the optical
segments, which are considered as low-level features, and 2) correensterO of the camera and the projection of the middle point of the
and semiplanes which semantically upgrade the representation of tnelistorted vertical edge on an horizontal plane contairihgA
environment. Corners are found at the intersection of two consecutstandard deviation of 0.1 deg is assigned to the angular uncertainty of
segments whilst semiplanes are found at the free endpoints of segmegash vision edge, which corresponds to a detection error of the vertical
and might correspond to door frames or convex obstacles. In the degment on the image of around 4 pixels. Vision edges are considered
tection of semiplanes, robustness has been enhanced by avoiding fassstatistically independent features.

IV. A CASE STuDY: 2-D LASER + MONOCULAR VISION
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Fig. 5.
Location uncertainty is described by the 95% error bounds magniigd

C. Calibration of the Multisensor System

Multisensor fusion requires sensor—sensor calibration to represent
features in a common reference frame. The calibration method con-
sisted of matching observations of a pattern gathered by both sensors.
The calibration pattern [14] was composed of two zones: a white-like
zone and a black-like zone. The border line between those two zones
was easily detected by the CCD camera. Additionally, the angle be-
tween the two pattern planes ensured the detection of two nonparallel
segments by the laser rangefinder. A system obnlinear constraints
obtained from the observations of the pattern frodifferent locations
was solved by applying the Levenberg—Marquadt algorithm.

D. Fusion of Laser and Vision Local MagsM; +*

Data association between sensor observations benefits from an ac-
curate sensor-sensor calibration and allows the use of simple algo-
rithms, such as nearest neighbor. Fusion of laser and vision exploits
the partially redundant information provided by the vision edffes
about the location of corners and semiplafgsdetected by the laser
rangefinder. Individual compatibility between corners and vision edges
on the one hand and semiplanes and vision edges on the other hand is
validated using (5) and (6), with the self-binding matrices

By, =L, By =(0 0 1)

and with the binding matrix of the pairing
Be,rp, =(0 1 0)

which indicates that only partial redundancy is achieved because
monocular vision provides directional but not depth information.

Due to correlations between the estimated locations of corners and
semiplanes, joint compatibility must be also validated using (8) and
(9). Fig. 5(b) describes the set of vision edges detected from the
gray-level image which have been matched with features previousgl

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 6, DECEMBER 2001

corner

c2
S3
Fl
i vj
semiplanes
\’\\ s2 J
St
F3
Cl
corner
b
mobile

robot

A —

(c)

(a) Laser-based local map with landmarks represented by dashed lines. (b) Vision edges matched with corners and semiplanes. (c) Lidcaiomap afte

. 6. Evolution of the solution of SLAM using multisensor features.

detected by the laser rangefinder. Fig. 5(c) presents the resultsi)fnavigation in unknown areas. (b) Returning to previously visited areas.
multisensor fusion for the considered local map. Due to the highBashed-lines correspond to a reference model map.
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L3/

Fig. 8. Multisensor observations: landmarks, L., and L;. Observe that
landmarksl, andL. are formed by a segment and a semiplane.

from further processing [Fig. 5(c)]. Therefore, the multisensor fusion
approach increases the reliability and robustness of the local map
features.

E. Simultaneous Localization and Map Building

As described in Fig. 2, at a given time instdnthe location of the
mobile robot along its trajectory and the structure of the environment
are estimated by matching the multisensor-based feaﬁMﬁ*E
and the available features of the environment up to fimé, GMj_;.

The robustness and efficiency of data association is improved for two

reasons. First, the validation of joint compatibility reduces the number

of spurious matches which satisfy the innovation test. Second, the use
of more distinct and meaningful features reduces the computational
complexity by reducing the number of possible candidate features for
each feature of the local map.

Fig. 6 describes the solution to the SLAM problem by considering,
at each point of the robot trajectory, the information provided by the
multisensor system. In the figurg;2¢ position uncertainty regions
have been drawn for the mobile robot and the corners and semiplanes
contained in the map. In the case of segments, only lateral uncertainty
is represented. Initially, the mobile robot explores previously unknown
regions of the environment [Fig. 6(a)], therefore its uncertainty keeps
growing at a rate related to sensor imprecision. When the robot returns
to previously visited regions [Fig. 6(b)], its uncertainty reduces to the
level of uncertainty of the reobserved features. Along the trajectory, a
maximum frontal error of 27 cm, a maximum lateral error of 12 cm,
and a maximum orientation error of 2 deg was obtained.

Consistency of the estimated location of the mobile robot is a cru-
cial aspect of SLAM. In our experimentation, a nondivergent solution
was obtained, that is, the location uncertainty was not optimistically
computed along the robot trajectory. Fig. 7 shows frontal, lateral, and
orientation errors for the estimated location of the mobile robot along
: : its trajectory, together with thi2+ bounds. Compatibility between the
° 1 B a0 4 = € estimated robot trajectory and ground-truth reached 96.2% (i.e., only
3.8% of the estimated errors were outside the computed error bounds)
where the significance level was set to 5%.

Fig. 7. Estimation errors arzb: error bounds for the location of the vehicle.

(a) Frontal. (b) Lateral. (c) Orientation error. E. Robustness of Landmarks

The robustness of the landmark-based approach is demonstrated by
angular resolution of the CCD camera as compared to the 2&D experimentthat simulates the revisiting of a previously mapped area
laser rangefinder, precision of the estimated location of geometfigoper part of Fig. 6(b)], which is one of the most critical data associ-
features increases. Only reliable features are kept after fusion. Thaison issues in the SLAM problem. In the experiment, we used the ob-
semiplanes observed by the laser rangefinder but not confirmed by #ieevations obtained by the multisensor system (Fig. 8) to try to relocate
CCD camera are removed from the representation of the local mapthe robot within the map. To analyze robustness, we generated a set of
Fig. 5(a), the semiplang, was detected and interpreted as a possibEO0 simulated robot locations with a random Gaussian perturbation of
door-frame; however, redundancy about its location was not provided m in position andt10 deg in orientation, around the true robot lo-
by the vision sensor [Fig. 5(b)], thus, the semiplane was removedtion [Fig. 9(a)].
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Fig. 9. Robustness of the landmark-based approach. (a) Simulated robot locations. (b) Segment-based robot locations. (c) Landmark-baatansobot loc
Observe that only the top-right part of the map is shown. The small rectangle represents the real location of the vehicle.
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