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Abstract. One of the most challenging aspects of concurrent mapping and localization
(CML) is the problem of data association. Because of uncertainty in the origins of sensor
measurements, it is difficult to determine the correspondence between measured data and
features of the scene or object being observed, while rejecting spurious measurements. This
paper reviews several new approaches to data association and feature modeling for CML that
share the common theme of combining information from multiple uncertain vantage points
while rejecting spurious data. Our results include: (1) feature-based mapping from laser data
using robust segmentation, (2) map-building with sonar data using a novel application of the
Hough transform for perception grouping, and (3) a new stochastic framework for making de-
layed decisions for combination of data from multiple uncertain vantage points. Experimental
results are shown for CML using laser and sonar data from a B21 mobile robot.

1 Introduction

The problem of concurrent mapping and localization (CML) for an autonomous
mobile robot is stated as follows: starting from a initial position, a mobile robot
travels through a sequence of positions and obtains a set of sensor measurements
at each position. The goal is for the mobile robot to process the sensor data to
produce an estimate of its position while concurrently building a map of the en-
vironment. While the problem of CML is deceptively easy to state, it presents many
theoretical challenges. The problem is also of great practical importance; if a ro-
bust, general-purpose solution to CML can be found, then many new applications
of mobile robotics will become possible.

CML, also referred to as SLAM (simultaneous localization and map building),
has been a recurring theme at the series of ISRR Symposia over the years (Brooks,
1984; Chatila, 1985; Moutarlier, Chatila, 1989; Smith, Cheeseman, 1987). For ex-
ample, in his paper for the second ISRR symposium, Brooks (Brooks, 1984) was
among the first to suggest that a probabilistic approach was necessary to develop
robust algorithms for mapping and navigation:

“Mobile robots sense their environment and receive error laden readings.
They try to move a certain distance and direction, only to do so approxi-
mately. Rather than try to engineer these problems away it may be possible,
and may be necessary, to develop map mapping and navigation algorithms
which explicitly represent these uncertainties, but still provide robust infor-
mation (Brooks, 1984).”
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The key technical difficulty in performing CML is coping with uncertainty. Three
distinct forms of uncertainty – data association uncertainty, navigation error, and
sensor noise – work together to present a challenging data interpretation problem.
For example, Figures 1 and 2 show the laser and sonar data, respectively, collected
by a B21 mobile robot during several back-and-forth traverses of a corridor a few
tens of meters long. Figure 3 shows the accumulation of dead-reckoning error during
a longer duration traverse of about 500 meters in the MIT “infinite corridor”.

Fig. 1. Laser data for a short corridor experiment, referenced to the dead-reckoning position
estimate

Fig. 2. Sonar data for a short corridor experiment, referenced to the dead-reckoning position
estimate
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Fig. 3. Accumulation of position error relying only on dead-reckoning for a long distance tra-
verse of the B21 mobile robot. The actual vehicle path went down approximately 40 meters,
to the left approximately 225 meters, and then back to the origin.

Most successful recent implementations of CML have either been performed
with SICK laser scanner data (Gutmann, Konolige, 1999; Thrun, 2001) or in en-
vironments that consist of isolated “point” objects (Castellanos, Tardos, 2000; Dis-
sanayake, Newman, Durrant-Whyte, Clark, Csorba, 2001). However, there are many
important applications of mobile robots where maps need to be built of complex en-
vironments, consisting of composite features, from noisy sensor data. The goal of
our work is to enable autonomous underwater vehicles to navigate autonomously
using sonar. Current methods for data association in feature-based CML are unable
to cope with sonar because of its sparse and ambiguous nature.

Gutmann, Konolige (1999); Thrun (2001) have developed implementations of
CML using laser data that are capable of closing moderately sized loops in real-time.
In their work, the representation consists of “raw” sensor data referenced back to a
complete trajectory of the vehicle. With this representation, they are able to greatly
simplify the data association problem. CML algorithms that use a feature-based
representation must explicitly solve the data association problem for each sensor
measurement. Given a new sensor measurement, does it correspond to a previously
mapped feature, a new feature that should be mapped, or is it spurious and should
be ignored?

A key benefit of the SICK laser scanner is that the data from one position can
be directly correlated with data taken from a nearby position, to compute the offset
in robot position between the two positions. With sonar, the raw data is usually too
noisy and ambiguous for this type of approach to work.

Recent work in feature-based CML has shown the importance of maintaining
spatial correlations to achieve consistent error bounds (Castellanos, Tardos, 2000;
Dissanayake et al., 2001). The representation of spatial correlations results in an
O(n2) growth in computational cost (Moutarlier, Chatila, 1989), motivating tech-
niques to address the map scaling problem through spatial and temporal partitioning
(Davison, 1998; Guivant, Nebot, 2001; Leonard, Feder, 2000). Almost all imple-
mentations of feature-based CML to-date have used fairly simple nearest-neighbor
gating techniques. A more powerful technique that tests the Joint Compatibility of
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multiple sensor measurements, using a branch and bound algorithm, has been de-
veloped (Neira, Tardós, 2001).

In this paper, we present results from several different new implementations of
CML using either sonar or laser data. The results demonstrate feature classification
and mapping from multiple uncertain vantage points. Section 2 presents results from
a real-time implementation of CML with laser data that uses techniques from robust
statistics for line segment extraction. Section 3 presents map-building results with
sonar using a novel application of the Hough transform for perception grouping.
Experimental results for sonar map-building and laser map-building of the same
scene are compared. Section 4 summarizes a new stochastic framework for making
delayed decisions to enable combination of data from multiple uncertain vantage
points. Sonar data processing results are presented. Finally, Section 5 draws some
conclusions and discusses challenges for future research.

2 “Explore and return” using Laser

This section presents results from use a new, generic, real-time implementation of
feature-based CML. Novel characteristics of this implementation include: (1) a hier-
archical representation of uncertain geometric relationships that extends the SPMap
framework (Castellanos, Tardos, 2000), (2) use of robust statistics to perform ex-
traction of line segments from laser data in real-time, and (3) the integration of
CML with a “roadmap” path planning method for autonomous trajectory execution.
These innovations are combined to demonstrate the ability for a mobile robot to au-
tonomously return back to its starting position within a few centimeters of precision,
despite the presence of numerous people walking through the environment.

The sensors used were a SICK laser scanner and wheel encoders mounted on
the B21 vehicle. The floor surface was a combination of sandstone tiles and carpet
mats providing alternatively high and low wheel slippage. The exploration stage was
manually controlled although it should be emphasized that this was done without vi-
sual contact with the vehicle. The output of the system was rendered in 3D and used
as a real-time visualization tool of the robots workspace. This enabled the remote
operator to “visit” previously un-explored areas while simultaneously building an
accurate geometric representation of the environment. This in itself is a useful ap-
plication of CML; nevertheless, future experiments will implement an autonomous
explore function as well as the existing autonomous return.

To illustrate the accuracy of the CML algorithm the starting position of the robot
was marked with four ten-cent coins; the robot then explored its environment and
when commanded used the resulting map to return to its initial position and park
itself on top of the coins with less than 2cm of error. The duration of the experiment
was a little over 20 minutes long with just over 6MB of data processed. The total
distance traveled was well in excess of 100m. Videos of various stages of the exper-
iment can be found in various formats at http://oe.mit.edu/˜pnewman.

Figure 6 shows the environment in which the experiment occurred. The main
entrance hall to the MIT campus was undergoing renovation during which large
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Fig. 4. Re-observing an existing feature Fig. 5. Creating a new feature in the fore-
ground following a rotation

wood-clad pillars had been erected throughout the hallway yielding an interesting,
landmark rich and densely populated area.

Fig. 6. The experiment scene

Figures 4 and 5 show rendered views of the estimated map during the explo-
ration phase of the experiment. In Figure 4 the robot can be seen to be applying a
line segment observation of an existing feature. In contrast Figure 5 shows an obser-
vation initializing a new feature just after the robot has turned a corner. The dotted
lines parallel to the walls are representations of the uncertainty of lateral uncertainty
in that wall feature. The vehicle was started with an initial uncertainty of 0.35 m
and as shown in Dissanayake et al. (2001) all features will inherit this uncertainty as
a limiting lower bound in their own uncertainty. The 1σ uncertainty of the vehicle
location is shown as a dotted ellipse around the base of the vehicle.
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Fig. 7. A plan view of the CML map at the end of the experiment. The approximate size of
the environment was a 20m by 15m rectangle.

Figure 7 shows an OpenGL view of the estimated map towards the end of the
experiment when the robot is executing its homing algorithm. The circles on the
ground mark the free space markers that were dropped during the exploration phase
of the experiment. The homing command was given when the robot was at the far
corner of the hallway. Using the output of the CML algorithm, the robot set the goal
marker to be the closest way point. When the algorithm deduces that the vehicle is
within an acceptable tolerance ε of the present goal marker it sets the goal way-point
to be the closest marker that has score less than the present goal marker. This then
proceeds until the goal marker is the origin or initial robot position. At this point
the goal seeking tolerance ε is reduced to 1cm. The program spent about thirty
seconds commanding small adjustments to the location and pose of the robot before
declaring that the vehicle had indeed arrived back at its starting location. Figure 8
and 9 show the starting and finishing positions with respect to the coin markers.
As can be seen in these figures the vehicle returned to within an inch of the starting
location. Readers are invited to view videos of this experiment and others including
navigation in a populated museum at http://oe.mit.edu/˜pnewman.

3 Sonar Perceptual Grouping Using the Hough Transform

The data from a standard ring of Polaroid sonar sensors can be notoriously difficult
to interpret. This leads many researchers away from a geometric approach to sonar



Towards Robust Data Association for Concurrent Mapping and Localization 13

Fig. 8. The starting position Fig. 9. The robot position after the comple-
tion of the homing leg of the mission

mapping. However, using a physics-based sensor model, the geometric constraints
provided by an individual sonar return can be formulated (Leonard, Durrant-Whyte,
1992). Each return could originate from various types of features (point, plane, etc.)
or could be spurious. For each type of feature, there is a limited range of locations for
a potential feature that are possible. Given these constraints, the Hough transform
(Ballard, Brown, 1982) can be used as a voting scheme identify point and planar
features. More detail on this technique can be found in Tardós, Neira, Newman,
Leonard (2002). A related technique called triangulation-based fusion has been de-
veloped in Wijk, Christensen (2000) for point objects only. Figure 10 through 12
provide an illustrative result for this approach. The Hough transform is applied to
small batches of sonar data (22 positions each) as a pre-filter to look for potential
new features in the sonar data. These groupings are then fed into an implementa-
tion of CML that uses the SPMap as the state estimation framework (Castellanos,
Tardos, 2000), Joint Compatibility for data association (Neira, Tardós, 2001), and a
new technique called Sequential Map Joining (Tardós et al., 2002). Figure 13 shows
a map of the same environment built from laser data. One can see that sonar map is
almost as good as the laser map.

4 Delayed Stochastic Mapping

Stochastic mapping is a feature-based concurrent mapping and localization algo-
rithm that was first published in Moutarlier, Chatila (1989); Smith, Self, Cheese-
man (1990). The method assumes that there are n features in the environment,
and that they are static. The true state at time k is designated by x[k] =
[xr [k]T x f [k]T ]T , where xr [k] represents the location of the robot, and x f [k]T =
[x f1 [k]T . . . x fn [k]T ]T represent the locations of the environmental features. Let
z[k] designate the sensor measurements obtained at time k, and Z k designate the set
of all measurements obtained from time 0 through time k. The extended Kalman
filter to compute recursively a state estimate x̂[k|k] = [x̂r [k|k]T x̂ f [k]T ]T at each
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Fig. 10. Example of Hough processing to extract point and line features. Sonar returns are
processed in a group of twenty-two positions. A voting scheme is performed to find clusters
of measurements that hypothesize the existence of point and plane features. For this example,
two planes and two points have been found.
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Fig. 11. Hough voting table for point (left) and line (right) features.

discrete time step k, where x̂r [k|k]T and x̂ f [k]T = [x̂ f1 [k]T . . . x̂ fn [k]T ]Tÿ areÿthe
ÿrobotÿandÿfeatureÿstateÿestimates,ÿrespectively.ÿTheÿstochasticÿmappingÿequationsÿare
ÿnotÿrepeatedÿhere,ÿforÿmoreÿdetail,ÿseeÿFeder,ÿLeonard,ÿSmithÿ(1999);ÿSmithÿetÿal.
ÿ(1990).

Dataÿassociationÿdecisionsÿmustÿbeÿmadeÿforÿeachÿnewÿmeasurementÿtoÿdeter-
ÿmineÿifÿ(1)ÿitÿoriginatesÿfromÿoneÿofÿtheÿfeaturesÿcurrentlyÿinÿtheÿmap,ÿ(2)ÿitÿoriginates
ÿfromÿaÿnewÿfeature,ÿorÿ(3)ÿitÿisÿspurious.ÿInÿgeneral,ÿtheÿdataÿassociationÿproblemÿis
ÿexponentiallyÿcomplexÿ(Bar-Shalom,ÿFortmann,ÿ1988),ÿandÿnoÿgeneralÿsolutionÿthat
ÿcanÿrunÿinÿreal-timeÿhasÿbeenÿpublished.ÿTheÿmotivationÿforÿdelayedÿstochasticÿmap-
ÿpingÿisÿtoÿbeÿableÿtoÿconsiderÿvariousÿhypothesisÿforÿtheÿoriginsÿofÿmeasurementsÿin
ÿaÿcomputationallyÿefficientÿmanner.

Anÿassumptionÿcommonlyÿemployedÿ inÿpreviousÿworkÿ isÿ thatÿ theÿstateÿofÿ the
ÿnewÿfeature, x̂ fn+1 [k] can be computed using the measurement data available from
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Fig. 12. Complete map for the MIT Compton Gallery built from sonar using Hough grouping,
Map Joining, and Joint Compatibility.
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Fig. 13. Complete map for the MIT Compton Gallery built from laser data using Robust
Statistics, Map Joining, and Joint Compatibility.
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a single vehicle position, using a feature initialization function g(·):

x̂ fn+1 [k] = g(x̂[k|k], z j [k]). (1)

To be able to perform feature initialization from multiple vantage points, the rep-
resentation is expanded to add a number of previous vehicle locations to the state
vector. We refer to these states as trajectory states. Each time the vehicle moves, the
previous vehicle location is added to the state vector. We use the notation x̂ti [k] to
refer to the estimate of the state (position) of the robot at time i given all information
up to time k. The complete trajectory of the robot for time step 0 through time step
k − 1 is given by the vector x̂t [k] = [x̂t0 [k]T x̂t1 [k]T x̂t2 [k]T . . . x̂tk−1 [k]]T . The
complete state vector is:

x̂[k|k] =



x̂r [k|k]
x̂t [k]
x̂ f [k]


 =




x̂r [k|k]
x̂t0 [k]
x̂t1 [k]
x̂t2 [k]

...

x̂tk−1 [k]
x̂ f1 [k]
x̂ f2 [k]
x̂ f3 [k]

...

x̂ fn−1 [k]
x̂ fn [k]




. (2)

The associated covariance matrix is:

P[k|k] =



Prr [k|k] Pr t [k|k] Pr f [k|k]
Ptr [k|k] Pt t [k|k] Pt f [k|k]
P f r [k|k] P f t [k|k] P f f [k|k]


 . (3)

New trajectory states are added to the state vector each time step by defining a
new trajectory state x̂tk [k] = x̂r [k|k] and adding this to the state vector:

x̂[k|k] ←




x̂r [k|k]
x̂t0 [k]

...

x̂tk−1[k]
x̂tk [k]
x̂ f [k]




. (4)
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The state covariance is expanded as follows:

P[k|k] ←




Prr Pr t0 . . . Pr tk Pr f

Pt0r Pt0t0 . . . Pt0tk Pt0 f
...

...
. . .

...
...

...

Ptk−1r Ptk−1t0 . . . Ptk−1tk Ptk−1 f

Ptkr Ptk t0 . . . Ptk tk Ptk f

P f r P f t0 . . . P f tk P f f




, (5)

where Ptk ti = Pr ti , Ptk f = Pr f , and Ptk tk = Prr . The growth of the state vector
in this manner increases the computational burden, however it is straightforward to
delete old vehicle trajectory states and associated terms in the covariance, once all
the measurements from a given time step have been either processed or discarded.

This process of adding past states is similar to a fixed-lag Kalman smoother
(Anderson, Moore, 1979). In a fixed-lag smoother, states exceeding a certain age
are automatically removed. In our approach, states are added and removed based
on the data processing requirements of the stochastic mapping process. Unlike the
fixed-lag smoother, states are not necessarily removed in the order in which they are
added.

With the addition of prior vehicle states to the state vector, it now becomes
possible to initialize new features using measurements from multiple time steps.
For example, consider the initialization of a new feature using two measurements,
z[k1] and z[k2], taken at time steps k1 and k2. The state of the new feature can be
computed using a feature initialization function involving data from multiple time
steps:

x̂ fn+1 = g(x̂tk1
[k], x̂tk2

[k], [z[k1]T z[k2]T ]T ). (6)

For example, in two-dimensions if each measurement is a range-only sonar mea-
surement, then the function g(·) represents a solution for the intersection of two
circles. The procedure is the same if the feature initialization function g(·) is a func-
tion of measurements from more than two time steps.

Once a new feature is initialized, the map can be updated using all other pre-
viously obtained measurements that can be associated with the new feature. We
call this procedure a “batch update”. It allows the maximum amount of information
to be extracted from all past measurements. It also provides a means to incremen-
tally build up composite models of more complex objects (Leonard, Rikoski, 2001).
The method has been implemented as part of an integrated framework for real-time
CML, which incorporates delayed state management, perceptual grouping, multi-
ple vantage point initialization, batch updating, and feature fusion. Some illustrative
results for this approach are presented in Figures 14 to 17, which show the results
for processing of data in an MIT corridor. Further details can be found in Leonard,
Rikoski, Newman, Bosse (2002). These experiments used the Hough Transform for
sonar perceptual grouping as described above in Section 3.

This methodology provides a new generic framework for improved feature mod-
eling and classification. The ability to perform a batch update using many previous



18 J. Leonard et al.

Fig. 14. Raw sonar data for corridor experiment, referenced to odometry.

Fig. 15. CML estimated trajectory for corridor scene and estimated map consisting of points
and line segments. Three-sigma error bounds are shown for the location of points.

Fig. 16. Same plot as in Fig. 15 but with three-sigma error bounds for lines added.

Fig. 17. Same plot as in Fig. 15 but with hand-measured model overlaid.
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measurements provides a facility for making delayed data association decisions. If
there is ambiguity about the correspondence between measurements and features,
decisions can be postponed until additional information becomes available. Feature
extraction is also simplified. The initialization of complex features in situations with
high ambiguity can be greatly simplified by considering a batch of data obtained at
multiple time steps. Efficient, non-stochastic perceptual grouping methods such as
the Hough technique described above in Section 3 can be used to screen the data
and make preliminary association decisions that can later be confirmed with delayed
stochastic gating, and then applied via batch updating.

5 Conclusion

This paper has considered the development of improved data association and fea-
ture modeling techniques for CML. Experimental results have been shown for both
Polaroid sonar and SICK laser scanner data from a B21 robot, operating in the cor-
ridors of MIT, using several new data association and feature modeling techniques.
The ultimate goal of our research is to create a robust, consistent, convergent, and
computationally efficient real-time algorithm for CML for large-scale environments.
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