Building Accurate Maps using Rao-Blackwellized Particle Filters

Cyrill Stachniss

University of Freiburg, Germany

Thanks and partial slide courtesy of Mike Montemerlo and Dirk Haehnel
Research Lab for Autonomous Intelligent Systems

- Headed by Prof. Dr. Wolfram Burgard
- 1 academic advisor & 1 post-doc
- 14 Ph.D. students

Key Projects
- 1 SFB/TR-8
- 3 European projects
- 1 DFG graduate school
- 1 BMBF project
- 3 projects funded by industry
Fields of Research

- Mobile robots
- State and model estimation
- Adaptive techniques and learning
- Multi-robot coordination
- Decision-theoretic approaches
- Scene understanding
- Manipulation
- Autonomous cars
- Humanoid robots
- Flying vehicles
- ...

Probabilistic Robotics
What is this Talk About?

mapping

localization

integrated approaches

exploration

path planning

SLAM

active localization
A Typical Robot...

proximity sensor

wheels with encoders (provide odometry)
Maps are Important for Robots

- Maps model the environment of the robot
- Localization is impossible without a map ("Where am I?")
- Efficient motion planning requires maps ("How to reach a target location?")
- Reasoning about the state of the world
- ...

Maps are important for efficiently solving standard robotic problems
What is “SLAM”?

- Estimate the pose and the map of a mobile robot at the same time

\[p(x, m \mid z, u) \]

poses map observations & movements

Courtesy of Dirk Haehnel
Mapping using Raw Odometry

- Why is SLAM hard? Chicken-or-egg problem:
 - a map is needed to localize the robot and
 - a pose estimate is needed to build a map

Courtesy of Dirk Haehnel
Particle Filters

Who knows how a particle filter works?
Brief Introduction to Particle Filters

What is a particle filter?

- It is a Bayes filter
- Particle filters are a way to efficiently represent non-Gaussian distribution

Basic principle

- Set of state hypotheses ("particles")
- Informally speaking: "survival-of-the-fittest"
Sample-based Localization (sonar)

\[p(x \mid m, z, u) = \text{where is the robot?} \]
Sample-based Posteriors

- Set of weighted samples

\[S = \left\{ \langle s^{(i)}, w^{(i)} \rangle \mid i = 1, \ldots, N \right\} \]

 - State hypothesis
 - Importance weight

- The samples represent the posterior

\[p(x) = \sum_{i=1}^{N} w^{(i)} \cdot \delta_{s^{(i)}}(x) \]
Posterior Approximation

- Particle sets can be used to approximate functions

- The more particles fall into an interval, the higher the probability of that interval

- We can easily draw samples from a Gaussian but not from general distributions
Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the “differences between g and f”
- $w = f / g$
- f is called target
- g is called proposal
From Sampling to a Particle Filter

- Set of samples describes the posterior
- Updates are based on actions and observations

Three sequential steps:

1. Sampling from the proposal distribution (Bayes filter: prediction step)

2. Compute the particle weight (importance sampling) (Bayes filter: correction step)

3. Resampling
Monte-Carlo Localization (MCL)

- For each **motion** Δ do:
 - **Sampling**: Generate from each sample in a new sample according to the motion model
 \[x(i) \leftarrow x(i) + \Delta' \]

- For each **observation** do:
 - **Weight** the samples with the observation likelihood
 \[w(i) \leftarrow p(z \mid m, x(i)) \]

- **Resampling**
Sample-based Localization (sonar)
SLAM with Particle Filters

- Particle filters have successfully been applied to localization, can we use them to solve the SLAM problem?

- Posterior over poses \(x \) and maps \(m \)

\[
p(x \mid m, z, u) \quad \Rightarrow \quad p(x, m \mid z, u)
\]

Observations:

- The map depends on the poses of the robot during data acquisition
- If the poses are known, mapping is easy
Rao-Blackwellization

Factorization first introduced by Murphy in 1999

\[p(x_{1:t}, m | z_{1:t}, u_{0:t-1}) = p(x_{1:t} | z_{1:t}, u_{0:t-1}) \cdot p(m | x_{1:t}, z_{1:t}) \]
Rao-Blackwellization

\[p(x_{1:t}, m \mid z_{1:t}, u_{0:t-1}) = \]
\[p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(m \mid x_{1:t}, z_{1:t}) \]

SLAM posterior

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999
Rao-Blackwellization

\[p(x_{1:t}, m \mid z_{1:t}, u_{0:t-1}) = \]

\[p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(m \mid x_{1:t}, z_{1:t}) \]

This is localization, use MCL

Use the pose estimate from the MCL and apply mapping with known poses
A Solution to the SLAM Problem

- **Problem:** Build a map and localize the robot in that map under pose and sensor uncertainty

- **Mapping with Rao-Blackwellized particle filters**
 - Use a particle filter to **represent potential trajectories of the robot**
 - **Each particle** carries its **own map**
 - “Survival of the fittest” based on the likelihood of observations given the map built so far

[Murphy, 99; Montemerlo et al., 03; Haehnel et al., 03; Eliazar and Parr, 03; Grisetti et al., 05]
Example: Particle Filter for Mapping

map of particle 1

map of particle 2

map of particle 3

3 particles
Map Representations

Typical models are:

- Feature maps
- Grid maps (occupancy or reflection probability maps)
Part 1: FastSLAM

- Operates on landmarks
- Work of Mike Montemerlo et al., 2002/3

Partial slide courtesy of Mike Montemerlo!

[Montemerlo et al., 2002/2003]
Knowledge of the robot’s true path renders landmark positions conditionally independent.
Factored Posterior

\[
p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1})
\]
\[
= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})
\]
\[
= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_{i} \mid x_{1:t}, z_{1:t})
\]
FastSLAM

- Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]
- Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs
FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1 Filter

Landmark #2 Filter
FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1 Filter

Landmark #2 Filter
FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1
FastSLAM - Video
FastSLAM Complexity

- Update robot particles based on control u_{t-1} \(O(N)\)
 - Constant time per particle

- Incorporate observation z_t into Kalman filters \(O(N \cdot \log(M))\)
 - Log time per particle

- Resample particle set \(O(N \cdot \log(M))\)
 - Log time per particle

$N =$ Number of particles
$M =$ Number of map features \(O(N \cdot \log(M))\)
 - Log time per particle
Data Association Problem

- Which observation belongs to which landmark?

- A robust SLAM must consider possible data associations

- Potential data associations depend also on the pose of the robot
Multi-Hypothesis Data Association

- Data association is done on a per-particle basis.
- Robot pose error is factored out of data association decisions.
Per-Particle Data Association

Was the observation generated by the red or the blue landmark?

\[
P(\text{observation}|\text{red}) = 0.3 \quad P(\text{observation}|\text{blue}) = 0.7
\]

- Two options for per-particle data association
 - Pick the most probable match
 - Pick a random association weighted by the observation likelihoods
- If the probability is too low, generate a new landmark
Results – Victoria Park (Video)

Dataset courtesy of University of Sydney
Results – Victoria Park

- 4 km traverse
- < 5 m RMS position error
- 100 particles

Blue = GPS
Yellow = FastSLAM

Dataset courtesy of University of Sydney
Part 2: Grid-based FastSLAM

- Operates on grid maps and typically laser range data

- Dirk Haehnel et al., 2003
- Eliazar and Parr, 2003
- Grisetti et al., 2005-2007
- several others...
The Graphical Model
Applying a Standard RBPF for Learning Grid Maps Does not Work...

- Standard laser end-point model
- Odometry motion model
- Number of particles varying from 500 to 2,000
- Typical result:
Problems in Practice

- Each (grid) map is rather big
- Each particle maintains its own map
- Therefore, one needs to keep the number of particles small

Solution:
Compute better proposal distributions

Idea:
Improve the pose estimate **before** applying the particle filter
Pose Correction Using Scan Matching

Maximize the likelihood of the i-th pose relative to the $(i-1)$-th pose

$$x_t^* = \arg \max_{x_t} p(z_t \mid x_t, m_{t-1}) \cdot p(x_t \mid x_{t-1}^*, u_{t-1})$$

- Current measurement
- Robot motion
- Map constructed so far
Motion Model for Scan Matching

Raw Odometry
Scan Matching
Mapping using Scan Matching
RBPF-SLAM with Improved Odometry

- Scan-matching provides a **locally consistent** pose correction

- Pre-correct short odometry sequences using scan-matching and use them as input to the Rao-Blackwellized PF

- Fewer particles are needed, since the error in the input is smaller

[Haehnel et al., 2003]
RBPF-SLAM with Scan-Matching

Map: Intel Research Lab Seattle
RBPF-SLAM with Scan-Matching

Map: Intel Research Lab Seattle

Loop Closure
RBPF-SLAM with Scan-Matching
Graphical Model for Mapping with Improved Odometry
Conclusion (so far...)

- The presented approach is efficient
- It is easy to implement
- Scan matching is used to transform sequences of laser measurements into odometry measurements
- Provides good results for most medium-size datasets
What’s Next?

- Further reduce the number of particles
- Improved proposals will lead to more accurate maps
- Use the properties of our sensor when drawing the next generation of particles
A particle filter uses a proposal distribution to sample the next generation of samples.

Most efficient SLAM methods use Gaussian approximation of the robot’s motion model or of the observation likelihood function.

The optimal proposal is [Doucet, 98]:

\[
p(x_t|x_{t-1}^{(i)}, m(i), z_t, u_t) = \frac{p(z_t|x_t, m(i))p(x_t|x_{t-1}^{(i)}, u_t)}{p(z_t|x_{t-1}^{(i)}, m(i))}
\]
The Optimal Proposal Distribution

\[p(x_t | x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) = \frac{p(z_t | x_t, m^{(i)}) p(x_t | x_{t-1}^{(i)}, u_t)}{\int p(z_t | x_t, m^{(i)}) p(x_t | x_{t-1}^{(i)}, u_t) d x_t} \]

[Doucet, 98]

For lasers \(p(z_t | x_t, m^{(i)}) \) is extremely peaked and dominates the product.

We can safely approximate \(p(x_t | x_{t-1}^{(i)}, u_t) \) by a constant:

\[p(x_t | x_{t-1}^{(i)}, u_t) \big|_{x_t: p(z_t | x_t, m^{(i)}) > \epsilon} = c \]
Resulting Proposal Distribution

\[
p(x_t | x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) \sim \frac{p(z_t | x_t, m^{(i)})}{\int_{x_t \in \{x | p(z_t | x, m^{(i)}) > \epsilon\}} p(z_t | x_t, m^{(i)}) \, dx_t}
\]

Approximate this equation by a Gaussian:

maximum reported by a scan matcher

Gaussian approximation

Sampled points around the maximum

Draw next generation of samples
Resulting Proposal Distribution

\[p(x_t|x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) \sim \frac{\int_{x_t \in \{x | p(z_t|x, m^{(i)}) > \epsilon\}} p(z_t|x_t, m^{(i)}) \ dx_t}{p(z_t|x_t, m^{(i)})} \]

Approximate this equation by a Gaussian:

\[p(x_t|x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) \sim \mathcal{N}(\mu^{(i)}, \Sigma^{(i)}) \]

\[\mu^{(i)} = \frac{1}{\eta} \sum_{j=1}^{K} x_j p(z_t|x_j, m^{(i)}) \]

\[\Sigma^{(i)} = \frac{1}{\eta} \sum_{j=1}^{K} (x_j - \mu^{(i)})(x_j - \mu^{(i)})^T p(z_t|x_j, m^{(i)}) \]

\(\eta \) is a normalizer

Sampled around the scan-match maxima
Computing the Importance Weight

\[w_t^{(i)} = w_{t-1}^{(i)} p(z_t|x_{t-1}^{(i)}, m^{(i)}) \]
\[\approx w_{t-1}^{(i)} \int p(z_t|x_t, m^{(i)}) p(x_t|x_{t-1}^{(i)}, u_t) \, dx_t \]
\[\approx w_{t-1}^{(i)} c \int_{\{x|p(z_t|x, m^{(i)}) > \epsilon\}} p(z_t|x_t, m^{(i)}) \, dx_t \]
\[\approx w_{t-1}^{(i)} c \sum_{j=1}^{K} p(z_t|x_j, m^{(i)}) \]

Sampled points around the maximum of the observation likelihood
Improved Proposal

End of a corridor:

Corridor:

Free space:
Is Resampling Needed?

- If all particles have the same weight, resampling is useless.
- Using an improved proposal reduces the need for resampling.
- Particle depletion problem

Goal: resample only if needed!
Effective Number of Particles

\[n_{\text{eff}} = \frac{1}{\sum_i (w_t^{(i)})^2} \]

- Empirical measure of how well the goal distribution is approximated by samples drawn from the proposal.
- We only resample when \(n_{\text{eff}} \) drops below a given threshold.
- See [Doucet, ’98; Arulampalam, ’01]
Typical Evolution of n_{eff}

- visiting new areas
- closing the first loop
- visiting known areas
- second loop closure
15 particles

four times faster than real-time P4, 2.8GHz

5cm resolution during scan matching

1cm resolution in final map
Experiments

- Real world datasets
- **15 particles**
- Compared to RBPF-SLAM with Scan-Matching, the particles are propagated closer to the true distribution.
Outdoor Campus Map

- **30 particles**
- **250x250m²**
- **1.75 km (odometry)**
- **20cm resolution during scan matching**
- **30cm resolution in final map**
Outdoor Campus Map - Video
MIT Killian Court

- The “infinite-corridor-dataset” at MIT
MIT Killian Court
MIT Killian Court
Other Example Datasets
Problems of the Gaussian Proposal

- Gaussians are uni-model distributions
- In case of loop-closures, the likelihood function might be multi-modal
Problems of the Gaussian Proposal

- Multi-modal likelihood function can cause filter divergence
Use the Optimal Proposal?

\[
p(x_t|x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) = \frac{p(z_t|x_t, m^{(i)})p(x_t|x_{t-1}^{(i)}, u_t)}{p(z_t|x_{t-1}^{(i)}, m^{(i)})}
\]

- To sample from the optimal proposal requires
 1. to point-wise evaluate it,
 2. to build a non-parametric representation (here a 3d histogram), and
 3. to sample from this
- To reduce the discretization effects of the histogram one can use a kernel smoother
- This is **possible** but very **inefficient**
The Cost of Sampling

<table>
<thead>
<tr>
<th>Dataset</th>
<th>N</th>
<th>Execution time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>optimal</td>
</tr>
<tr>
<td>MIT Killian Court</td>
<td>80</td>
<td>155 h</td>
</tr>
<tr>
<td>Freiburg Bldg. 79</td>
<td>30</td>
<td>84 h</td>
</tr>
<tr>
<td>Intel Research Lab</td>
<td>30</td>
<td>40 h</td>
</tr>
<tr>
<td>FHW Museum</td>
<td>30</td>
<td>38 h</td>
</tr>
<tr>
<td>Belgioioso</td>
<td>30</td>
<td>18 h</td>
</tr>
<tr>
<td>MIT CSAIL</td>
<td>30</td>
<td>10 h</td>
</tr>
</tbody>
</table>

Sampling from the optimal distribution is too expansive for real applications but it can be used for evaluation a proposal approximation.
Gaussian or Non-Gaussian?

- There exists statistical test to check whether or not sample a generated from a Gaussian:
 - Anderson-Darling test
 (based on the cumulative density function)

- How to determine the difference between the Gaussian and the optimal proposal
 - KLD
 - Cramer-von-Misses criterion
Anderson-Darling Test

AD test works for 1d Gaussians, but

\[p(x, y, \theta) = p(x)p(y, \theta \mid x) = p(x)p(y \mid x)p(\theta \mid x, y) \]

1. Sample the three terms sequentially,
2. Apply the AD test 3 times,
3. If one fails, considers it as non-Gaussian
Is a Gaussian an Accurate Representation for the Proposal?

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Gauss</th>
<th>Non-Gauss 1 mode</th>
<th>Multi-modal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Research Lab</td>
<td>89.2%</td>
<td>7.2%</td>
<td>3.6%</td>
</tr>
<tr>
<td>FHW Museum</td>
<td>84.5%</td>
<td>10.4%</td>
<td>5.1%</td>
</tr>
<tr>
<td>Belgioioso</td>
<td>84.0%</td>
<td>10.4%</td>
<td>5.6%</td>
</tr>
<tr>
<td>MIT CSAIL</td>
<td>78.1%</td>
<td>15.9%</td>
<td>6.0%</td>
</tr>
<tr>
<td>MIT Killian Court</td>
<td>75.1%</td>
<td>19.1%</td>
<td>5.8%</td>
</tr>
<tr>
<td>Freiburg Bldg. 79</td>
<td>74.0%</td>
<td>19.4%</td>
<td>6.6%</td>
</tr>
</tbody>
</table>
How to Overcome this Limitation?

- Approximate the likelihood in a better way!

- Sample from odometry first and use this as the start point for scan matching
Experimental Evaluation

Gaussian proposal

New approach
Final Approach

- It work’s with nearly zero overhead
- No large approximation errors (small KLD value)
Conclusion

- Rao-Blackwellized Particle Filters are means to represent a joint posterior about the poses of the robot and the map
- Utilizing accurate sensor observation leads to good proposals and highly efficient filters
- It is similar to scan-matching on a per-particle base with extra noise
- The number of necessary particles and re-sampling steps can seriously be reduced
- Possibility to deal with non-Gaussian observation likelihood functions
- Highly accurate and large scale map
Open Source Implementation

- Open source implementation “GMapping” available at
 www.OpenSLAM.org

- Free for research and non-commercial applications

- Commercial licenses available
GMapping Overview

ini file

raw data

./gfs_simplegui

gfs file

./gfs2log

corrected log
Running GMapping

- **Command Line**

gfs_simplegui
 -filename <logfile>
 -outfilename <gfsfile>
 -cfg <ini file>
 [additional parameters]

 Example:

gfs_simplegui -filename intel.clf -outfilename intel.gfs
 -cfg $GMAPPING_HOME/ini/gfs-LMS-10cm.ini

- **The ini file specifies parameters for**
 - Motion model
 - Range Finder
 - Scan Matcher
 - Likelihood
 - Particle Filter
More Details

- M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to simultaneous localization and mapping, AAAI02 (The classic FastSLAM paper with landmarks)

- M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges, IJCAI03. (FastSLAM 2.0 – improved proposal for FastSLAM)

- D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements, IROS03 (FastSLAM on grid-maps using scan-matched input)

- A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultaneous localization and mapping without predetermined landmarks, IJCAI03 (A representation to handle big particle sets)
More Details (Own Work)

- Cyrill Stachniss, Giorgio Grisetti, Wolfram Burgard, and Nicholas Roy. Analyzing Gaussian Proposal Distributions for Mapping with Rao-Blackwellized Particle Filters, IROS07 (Gaussian assumption for computing the improved proposal)
What’s Next? 3D Mapping

Joint work with ETH Zurich / EPFL
What’s Next? 3D Mapping

Joint work with the Stanford AI Lab