Building Accurate Maps using Rao-Blackwellized Particle Filters

Cyrill Stachniss

University of Freiburg, Germany

Thanks and partial slide courtesy of Mike Montemerlo and Dirk Haehnel

Research Lab for Autonomous Intelligent Systems

- Headed by Prof. Dr. Wolfram Burgard
- 1 academic advisor & 1 post-doc
- 14 Ph.D. students

Key Projects

- 1 SFB/TR-8
- 3 European projects
- 1 DFG graduate school
- 1 BMBF project
- 3 projects funded by industry

Fields of Research

- Mobile robots
- State and model estimation
- Adaptive techniques and learning
- Multi-robot coordination
- Decision-theoretic approaches
- Scene understanding
- Manipulation
- Autonomous cars
- Humanoid robots
- Flying vehicles

Probabilistic Robotics

What is this Talk About?

A Typical Robot...

Maps are Important for Robots

- Maps model the environment of the robot
- Localization is impossible without a map ("Where am I?")
- Efficient motion planning requires maps ("How to reach a target location?")
- Reasoning about the state of the world

Maps are important for efficiently solving standard robotic problems

What is "SLAM" ?

 Estimate the pose and the map of a mobile robot at the same time

Courtesy of Dirk Haehnel

Mapping using Raw Odometry

- Why is SLAM hard? Chicken-or-egg problem:
 - a map is needed to localize the robot and
 - a pose estimate is needed to build a map

Particle Filters

Who knows how a particle filter works

Explain Particle Filters

Brief Introduction to Particle Filters

What is a particle filter?

- It is a Bayes filter
- Particle filters are a way to efficiently represent non-Gaussian distribution

Basic principle

- Set of state hypotheses ("particles")
- Informally speaking: "survival-of-the-fittest"

Sample-based Localization (sonar)

 $p(x \mid m, z, u)$ = where is the robot?

Sample-based Posteriors

Set of weighted samples

$$S = \left\{ \left\langle s^{(i)}, w^{(i)} \right\rangle \mid i = 1, \dots, N \right\}$$

State hypothesis Importance weight

The samples represent the posterior

$$p(x) = \sum_{i=1}^{N} w^{(i)} \cdot \delta_{s^{(i)}}(x)$$

Posterior Approximation

Particle sets can be used to approximate functions

- The more particles fall into an interval, the higher the probability of that interval
- We can easily draw samples from a Gaussian but not from general distributions

Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f"
- w = f/g
- f is called target
- g is called proposal

From Sampling to a Particle Filter

- Set of samples describes the posterior
- Updates are based on actions and observations

Three sequential steps:

- Sampling from the proposal distribution (Bayes filter: prediction step)
- Compute the particle weight (importance sampling) (Bayes filter: correction step)
- **3.** Resampling

Monte-Carlo Localization (MCL)

- For each **motion** Δ do:
 - Sampling: Generate from each sample in a new sample according to the motion model $x^{(i)} \leftarrow x^{(i)} + \Delta'$
- For each **observation** do:
 - Weight the samples with the observation likelihood

$$w^{(i)} \leftarrow p(z \mid m, x^{(i)})$$

Resampling

Sample-based Localization (sonar)

SLAM with Particle Filters

- Particle filters have successfully been applied to localization, can we use them to solve the SLAM problem?
- Posterior over poses x and maps m

$$p(x \mid m, z, u) \implies p(x, m \mid z, u)$$
(localization) (SLAM)

Observations:

- The map depends on the poses of the robot during data acquisition
- If the poses are known, mapping is easy

Rao-Blackwellization

poses map observations & movements $p(x_{1:t}, m \mid z_{1:t}, u_{0:t-1}) =$ $p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(m \mid x_{1:t}, z_{1:t})$

Factorization first introduced by Murphy in 1999

Factorization first introduced by Murphy in 1999

Rao-Blackwellization

$$p(x_{1:t}, m \mid z_{1:t}, u_{0:t-1}) = p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(m \mid x_{1:t}, z_{1:t})$$
This is localization, use MCL

Use the pose estimate from the MCL and apply mapping with known poses

A Solution to the SLAM Problem

- Problem: Build a map and localize the robot in that map under pose and sensor uncertainty
- Mapping with Rao-Blackwellized particle filters
 - Use a particle filter to represent potential trajectories of the robot
 - Each particle carries its own map
 - Survival of the fittest" based on the likelihood of observations given the map built so far

[Murphy, 99; Montemerlo et al., 03; Haehnel et al., 03; Eliazar and Parr, 03; Grisetti et al., 05]

Example: Particle Filter for Mapping

Map Representations

Typical models are:

- Feature maps
- Grid maps (occupancy or reflection probability maps)

Part 1: FastSLAM

- Operates on landmarks
- Work of Mike Montemerlo et al., 2002/3

Partial slide courtesy of Mike Montemerlo!

[Montemerlo et al., 2002/2003]

Mapping using Landmarks

Knowledge of the robot's true path renders landmark positions conditionally independent

Factored Posterior

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$
Robot path posterior
localization problem)
Conditionally
independent

landmark positions

FastSLAM

- Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]
- Each landmark is represented by a 2x2
 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs

FastSLAM – Action Update

FastSLAM – Sensor Update

FastSLAM - Video

FastSLAM Complexity

Update robot particles based on control u_{t-1} O(N) Constant time per particle

 Incorporate observation z_t into Kalman filters

Resample particle set

N = Number of particles M = Number of map features O(N•log(M))

Log time per particle

O(N•log(M)) Log time per particle

O(N•log(M)) Log time per particle

Data Association Problem

Which observation belongs to which landmark?

- A robust SLAM must consider possible data associations
- Potential data associations depend also on the pose of the robot

Multi-Hypothesis Data Association

 $\overline{}$

 \checkmark

- Data association is done on a per-particle basis
- Robot pose error is factored out of data association decisions

Per-Particle Data Association

Was the observation generated by the red or the blue landmark?

P(observation | red) = 0.3

P(observation|blue) = 0.7

Two options for per-particle data association

- Pick the most probable match
- Pick an random association weighted by the observation likelihoods
- If the probability is too low, generate a new landmark

Results – Victoria Park (Video)

Dataset courtesy of University of Sydney

Results – Victoria Park

 4 km traverse
 < 5 m RMS position error
 100 particles

Blue = GPS **Yellow** = FastSLAM

Dataset courtesy of University of Sydney

Part 2: Grid-based FastSLAM

 Operates on grid maps and typically laser range data

- Eliazar and Parr, 2003
- Grisetti et al., 2005-2007
- several others...

The Graphical Model

Applying a Standard RBPF for Learning Grid Maps Does not Work...

- Standard laser end-point model
- Odometry motion model
- Number of particles varying from 500 to 2.000
- Typical result:

Problems in Practice

- Each (grid) map is rather big
- Each particle maintains its own map
- Therefore, one needs to keep the number of particles small

Solution:

Compute better proposal distributions

Idea:

Improve the pose estimate **before** applying the particle filter

Pose Correction Using Scan Matching

Maximize the likelihood of the i-th pose relative to the (i-1)-th pose

Motion Model for Scan Matching

Mapping using Scan Matching

RBPF-SLAM with Improved Odometry

- Scan-matching provides a locally consistent pose correction
- Pre-correct short odometry sequences using scan-matching and use them as input to the Rao-Blackwellized PF
- Fewer particles are needed, since the error in the input in smaller

[Haehnel et al., 2003]

RBPF-SLAM with Scan-Matching

RBPF-SLAM with Scan-Matching

RBPF-SLAM with Scan-Matching

Graphical Model for Mapping with Improved Odometry

Conclusion (so far...)

- The presented approach is efficient
- It is easy to implement
- Scan matching is used to transform sequences of laser measurements into odometry measurements
- Provides good results for most medium-size datasets

What's Next?

- Further reduce the number of particles
- Improved proposals will lead to more accurate maps
- Use the properties of our sensor when drawing the next generation of particles

Proposal Distribution

- A particle filter uses a proposal distribution to sample the next generation of samples
- Most efficient SLAM methods use Gaussian approximation of the robot's motion model or of the observation likelihood function
- The optimal proposal is [Doucet, 98]:

$$p(x_{t}|x_{t-1}^{(i)}, m^{(i)}, z_{t}, u_{t}) = \frac{p(z_{t}|x_{t}, m^{(i)})p(x_{t}|x_{t-1}^{(i)}, u_{t})}{p(z_{t}|x_{t-1}^{(i)}, m^{(i)})}$$

$$p(z_{t}|x_{t-1}^{(i)}, m^{(i)})$$
normalizer

The Optimal Proposal Distribution

$$p(x_t | x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) = \frac{p(z_t | x_t, m^{(i)}) p(x_t | x_{t-1}^{(i)}, u_t)}{\int p(z_t | x_t, m^{(i)}) p(x_t | x_{t-1}^{(i)}, u_t) dx_t}$$
[Doucet, 98]

For lasers $p(z_t|x_t, m^{(i)})$ is extremely peaked and dominates the product.

We can safely approximate $p(x_t|x_{t-1}^{(i)}, u_t)$ by a constant:

$$p(x_t|x_{t-1}^{(i)}, u_t)|_{x_t: p(z_t|x_t, m^{(i)}) > \epsilon} = c$$

1.5

Resulting Proposal Distribution

$$p(x_t | x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) \simeq \frac{p(z_t | x_t, m^{(i)})}{\int_{x_t \in \{x | p(z_t | x, m^{(i)}) > \epsilon\}} p(z_t | x_t, m^{(i)}) dx_t}$$

Approximate this equation by a Gaussian:

Resulting Proposal Distribution

$$p(x_t | x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) \simeq \frac{p(z_t | x_t, m^{(i)})}{\int_{x_t \in \{x | p(z_t | x, m^{(i)}) > \epsilon\}} p(z_t | x_t, m^{(i)}) dx_t}$$

Approximate this equation by a Gaussian:

$$p(x_t | x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) \simeq \mathcal{N}(\mu^{(i)}, \Sigma^{(i)})$$

$$\mu^{(i)} = \frac{1}{\eta} \sum_{j=1}^K x_j p(z_t | x_j, m^{(i)})$$

$$\Sigma^{(i)} = \frac{1}{\eta} \sum_{j=1}^K (x_j - \mu^{(i)}) (x_j - \mu^{(i)})^T p(z_t | x_j, m^{(i)})$$

$$\eta \text{ is a normalizer} \qquad \text{Sampled around the scan-match maxima}$$

Computing the Importance Weight

$$w_{t}^{(i)} = w_{t-1}^{(i)} p(z_{t}|x_{t-1}^{(i)}, m^{(i)})$$

$$\simeq w_{t-1}^{(i)} \int p(z_{t}|x_{t}, m^{(i)}) p(x_{t}|x_{t-1}^{(i)}, u_{t}) dx_{t}$$

$$\simeq w_{t-1}^{(i)} c \int_{x_{t} \in \{x|p(z_{t}|x, m^{(i)}) > \epsilon\}} p(z_{t}|x_{t}, m^{(i)}) dx_{t}$$

$$\simeq w_{t-1}^{(i)} c \sum_{j=1}^{K} p(z_{t}|x_{j}, m^{(i)})$$
Sampled points around the maximum of the observation likelihood

Improved Proposal

End of a corridor:

Corridor:

Free space:

Is Resampling Needed?

- If all particles have the save weight, resampling is useless.
- Using an improved proposal reduces the need of resampling.
- Particle depletion problem

Goal: resample only if needed!

Effective Number of Particles

$$n_{eff} = \frac{1}{\sum_{i} \left(w_t^{(i)} \right)^2}$$

- Empirical measure of how well the goal distribution is approximated by samples drawn from the proposal
- We only resample when n_{eff} drops below a given threshold.

See [Doucet, '98; Arulampalam, '01]

Typical Evolution of *neff*

Intel Research Lab

15 particles

- four times faster than real-time P4, 2.8GHz
- 5cm resolution during scan matching
- 1cm resolution in final map

Experiments

Real world datasets

Intel Research Lab

15 particles

 Compared to RBPF-SLAM with Scan-Matching, the particles are propagated closer to the true distribution

Outdoor Campus Map

30 particles

- 250x250m²
- 1.75 km (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map

Outdoor Campus Map - Video

MIT Killian Court

The "infinite-corridor-dataset" at MIT

Killian Court MIT

MIT Killian Court

Dataset courtesy of Mike Bosse and John Leonard

MIT Killian Court

Other Example Datasets

Problems of the Gaussian Proposal

- Gaussians are uni-model distributions
- In case of loop-closures, the likelihood function might be multi-modal

Problems of the Gaussian Proposal

Multi-modal likelihood function can cause filter divergence

Use the Optimal Proposal?

$$p(x_t | x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) = \frac{p(z_t | x_t, m^{(i)}) p(x_t | x_{t-1}^{(i)}, u_t)}{p(z_t | x_{t-1}^{(i)}, m^{(i)})}$$

- To sample from the optimal proposal requires
 - 1. to point-wise evaluate it,
 - to build a non-parametric representation (here a 3d histogram), and
 - **3.** to sample from this
- To reduce the discretization effects of the histogram one can use a kernel smoother
- This is **possible** but very **inefficient**

The Cost of Sampling

Dataset	N	Execution time		
		optimal	Gausian proposal	
MIT Killian Court	80	155 h	112 min	
Freiburg Bldg. 79	30	84 h	62 min	
Intel Research Lab	30	40 h	29 min	
FHW Museum	30	38 h	27 min	
Belgioioso	30	18 h	13 min	
MIT CSAIL	30	10 h	7 min	

Sampling from the optimal distribution is too expansive for real applications but it can be used for evaluation a proposal approximation.

Gaussian or Non-Gaussian?

- There exists statistical test to check whether or not sample a generated from a Gaussian:
 - Anderson-Darling test
 (based on the cumulative density function)
- How to determine the difference between the Gaussian and the optimal proposal
 - KLD
 - Cramer-von-Misses criterion

Anderson-Darling Test

AD test works for 1d Gaussians, but

$$p(x, y, \theta) = p(x)p(y, \theta \mid x)$$
$$= p(x)p(y \mid x)p(\theta \mid x, y)$$

- 1. Sample the three terms sequentially,
- 2. Apply the AD test 3 times,
- 3. If one fails, considers it as non-Gaussian

Is a Gaussian an Accurate Representation for the Proposal?

Dataset	Gauss	Non-	Multi-
		Gauss	
		1 mode	modal
Intel Research Lab	89.2%	7.2%	3.6%
FHW Museum	84.5%	10.4%	5.1%
Belgioioso	84.0%	10.4%	5.6%
MIT CSAIL	78.1%	15.9%	6.0%
MIT Killian Court	75.1%	19.1%	5.8%
Freiburg Bldg. 79	74.0%	19.4%	6.6%

How to Overcome this Limitation?

Approximate the likelihood in a better way!

Sample from odometry first and the use this as the start point for scan matching

Experimental Evaluation

Final Approach

- It work's with nearly zero overhead
- No large approximation errors (small KLD value)

Conclusion

- Rao-Blackwellized Particle Filters are means to represent a joint posterior about the poses of the robot and the map
- Utilizing accurate sensor observation leads to good proposals and highly efficient filters
- It is similar to scan-matching on a per-particle base with extra noise
- The number of necessary particles and re-sampling steps can seriously be reduced
- Possibility to deal with non-Gaussian observation likelihood functions
- Highly accurate and large scale map

Open Source Implementation

Open source implementation
 "GMapping" available at

www.OpenSLAM.org

- Free for research and noncommercial applications
- Commercial licenses available

GMapping Overview

Running GMapping

Command Line

gfs_simplegui
 -filename <logfile>
 -outfilename <gfsfile>
 -cfg <ini file>
 [additional parameters]

Example:

gfs_simplegui -filename intel.clf -outfilename intel.gfs
-cfg \$GMAPPING_HOME/ini/gfs-LMS-10cm.ini

The ini file specifies parameters for

- Motion model
- Range Finder
- Scan Matcher
- Likelihood
- Particle Filter

More Details

- M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to simultaneous localization and mapping, AAAI02 (The classic FastSLAM paper with landmarks)
- M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges, IJCAI03. (FastSLAM 2.0 – improved proposal for FastSLAM)
- D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements, IROS03 (FastSLAM on grid-maps using scan-matched input)
- A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultaneous localization and mapping without predetermined landmarks, IJCAI03 (A representation to handle big particle sets)

More Details (Own Work)

- Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters, Transactions on Robotics, Volume 23, pages 34-46, 2007 (Informed proposal using laser observation, adaptive resampling)
- Cyrill Stachniss, Grisetti Giorgio, Wolfram Burgard, and Nicholas Roy. Analyzing Gaussian Proposal Distributions for Mapping with Rao-Blackwellized Particle Filters, IROS07 (Gaussian assumption for computing the improved proposal)

What's Next? 3D Mapping

Joint work with ETH Zurich / EPFL

What's Next? 3D Mapping

Joint work with the Stanford AI Lab