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Research Lab for Autonomous 
Intelligent Systems

� Headed by Prof. Dr. Wolfram Burgard

� 1 academic advisor & 1 post-doc 

� 14 Ph.D. students

Key Projects

� 1 SFB/TR-8

� 3 European projects

� 1 DFG graduate school 

� 1 BMBF project

� 3 projects funded by 
industry



Fields of Research

� Mobile robots

� State and model estimation

� Adaptive techniques and learning

� Multi-robot coordination

� Decision-theoretic approaches

� Scene understanding

� Manipulation 

� Autonomous cars

� Humanoid robots

� Flying vehicles

� …

Probabilistic Robotics



What is this Talk About?

mapping

path planning

localization
SLAM

active 

localization

exploration

integrated 

approaches



A Typical Robot…

proximity senor

wheels with encoders
(provide odometry)



Maps are Important for Robots

� Maps model the environment of the robot

� Localization is impossible without a map 
(“Where am I?”)

� Efficient motion planning requires maps 
(“How to reach a target location?”)

� Reasoning about the state of the world

� …

Maps are important for efficiently 
solving standard robotic problems



What is “SLAM” ?

� Estimate the pose and the map of a mobile 
robot at the same time

Courtesy of Dirk Haehnel

poses map observations & movements



Mapping using Raw Odometry

� Why is SLAM hard? Chicken-or-egg problem:

� a map is needed to localize the robot and 

� a pose estimate is needed to build a map

Courtesy of Dirk Haehnel



Particle Filters

Who knows how a particle filter works

?
Explain Particle Filters Skip Explanation



Brief Introduction to Particle Filters

What is a particle filter?

� It is a Bayes filter

� Particle filters are a way to efficiently represent 
non-Gaussian distribution

Basic principle

� Set of state hypotheses (“particles”)

� Informally speaking: “survival-of-the-fittest”



Sample-based Localization (sonar)
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� Set of weighted samples

Sample-based Posteriors

� The samples represent the posterior

State hypothesis Importance weight



� Particle sets can be used to approximate functions

Posterior Approximation

� The more particles fall into an interval, the higher 

the probability of that interval

� We can easily draw samples from a Gaussian but 

not from general distributions



� We can even use a different distribution g to 
generate samples from f

� By introducing an importance weight w, we can 
account for the “differences between g and f ”

� w = f / g

� f is called target

� g is called
proposal

Importance Sampling Principle



� Set of samples describes the posterior

� Updates are based on actions and observations

Three sequential steps:

1. Sampling from the proposal distribution 

(Bayes filter: prediction step)

2. Compute the particle weight (importance sampling)

(Bayes filter: correction step)

3. Resampling 

From Sampling to a Particle Filter



� For each motion ∆ do:
� Sampling: Generate from each sample in 
a new sample according to the motion 
model

� For each observation do:

� Weight the samples with the observation 

likelihood

� Resampling

Monte-Carlo Localization (MCL)



Sample-based Localization (sonar)

Courtesy of Dieter Fox



� Particle filters have successfully been applied 

to localization, can we use them to solve the 

SLAM problem?

� Posterior over poses x and maps m

Observations:

� The map depends on the poses of the robot 

during data acquisition

� If the poses are known, mapping is easy

SLAM with Particle Filters

(localization) (SLAM) 



Rao-Blackwellization

Factorization first introduced by Murphy in 1999

poses map observations & movements



Rao-Blackwellization

SLAM posterior

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999

poses map observations & movements



Rao-Blackwellization

This is localization, use MCL

Use the pose estimate 
from the MCL and apply 

mapping with known poses



A Solution to the SLAM Problem

� Problem: Build a map and localize the robot in 
that map under pose and sensor uncertainty

� Mapping with Rao-Blackwellized particle 
filters

� Use a particle filter to represent potential 
trajectories of the robot

� Each particle carries its own map

� “Survival of the fittest” based on the likelihood  
of observations given the map built so far

[Murphy, 99; Montemerlo et al., 03; Haehnel et al., 03; Eliazar and Parr, 03;  Grisetti et al., 05]



Example: Particle Filter for Mapping

map of particle 1 map of particle 2

map of particle 3

3 particles



Typical models are:

� Feature maps

� Grid maps (occupancy or 
reflection probability maps)

Map Representations

Part 1

Part 2



Part 1: FastSLAM

� Operates on landmarks

� Work of Mike Montemerlo et al., 2002/3

Partial slide courtesy of Mike Montemerlo!

[Montemerlo et al., 2002/2003]



Knowledge of the robot’s true path renders 
landmark positions conditionally independent

Mapping using Landmarks

. . .

Landmark 1

observations

Robot poses

controls

x1 x2 xt

u1 ut-1

l2

l1

z1

z2

x3

u1

z3

zt

Landmark 2

x0

u0 



Factored Posterior

Robot path posterior
(localization problem) Conditionally 

independent 
landmark positions



FastSLAM

� Rao-Blackwellized particle filtering based on 

landmarks     [Montemerlo et al., 2002]

� Each landmark is represented by a 2x2 

Extended Kalman Filter (EKF)

� Each particle therefore has to maintain M EKFs

Landmark 1 Landmark 2 Landmark M…x, y, θ

Landmark 1 Landmark 2 Landmark M…x, y, θParticle
#1

Landmark 1 Landmark 2 Landmark M…x, y, θParticle
#2

Particle
N

…



FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1
Filter

Landmark #2
Filter



FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1
Filter

Landmark #2
Filter



FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1



FastSLAM  - Video



FastSLAM  Complexity

� Update robot particles 
based on control ut-1

� Incorporate observation zt
into Kalman filters

� Resample particle set

N = Number of particles
M = Number of map features

O(N)
Constant time per particle

O(N•log(M))
Log time per particle

O(N•log(M))

O(N•log(M))
Log time per particle

Log time per particle



Data Association Problem

� A robust SLAM must consider possible data 
associations 

� Potential data associations depend also 
on the pose of the robot 

� Which observation belongs to which landmark?



Multi-Hypothesis Data Association

� Data association is 
done on a per-particle 
basis

� Robot pose error is 
factored out of data 
association decisions



Per-Particle Data Association

Was the observation
generated by the red
or the blue landmark?

P(observation|red) = 0.3 P(observation|blue) = 0.7

� Two options for per-particle data association

� Pick the most probable match

� Pick an random association weighted by 
the observation likelihoods

� If the probability is too low, generate a new 
landmark



Results – Victoria Park (Video)

Dataset courtesy of University of Sydney



Results – Victoria Park

� 4 km traverse

� < 5 m RMS 
position error

� 100 particles

Dataset courtesy of University of Sydney

Blue = GPS
Yellow = FastSLAM



Part 2: Grid-based FastSLAM

� Operates on grid maps and typically laser 

range data

� Dirk Haehnel et al., 2003

� Eliazar and Parr, 2003

� Grisetti et al., 2005-2007

� several others…



The Graphical Model 
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Applying a  Standard RBPF for Learning 
Grid Maps Does not Work…

� Standard laser end-point model

� Odometry motion model

� Number of particles varying from 500 to 2.000

� Typical result:



Problems in Practice

� Each (grid) map is rather big 

� Each particle maintains its own map

� Therefore, one needs to keep the number 
of particles small

� Solution:
Compute better proposal distributions

� Idea:
Improve the pose estimate before 
applying the particle filter



Pose Correction Using Scan Matching

Maximize the likelihood of the i-th pose 
relative to the (i-1)-th pose

robot motioncurrent measurement

map constructed so far



Motion Model for Scan Matching

Raw Odometry
Scan Matching



Mapping using Scan Matching



RBPF-SLAM with Improved 
Odometry

� Scan-matching provides a locally 
consistent pose correction

� Pre-correct short odometry sequences 
using scan-matching and use them as 
input to the Rao-Blackwellized PF

� Fewer particles are needed, since the 
error in the input in smaller

[Haehnel et al., 2003]



RBPF-SLAM with Scan-Matching
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RBPF-SLAM with Scan-Matching

Loop Closure
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RBPF-SLAM with Scan-Matching
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Graphical Model for Mapping with 
Improved Odometry
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Conclusion (so far…)

� The presented approach is efficient

� It is easy to implement 

� Scan matching is used to transform sequences of 
laser measurements into odometry measurements

� Provides good results for most medium-size 
datasets



What’s Next?

� Further reduce the number of particles

� Improved proposals will lead to more 
accurate maps

� Use the properties of our sensor when 
drawing the next generation of particles



� A particle filter uses a proposal distribution 

to sample the next generation of samples

� Most efficient SLAM methods use Gaussian 

approximation of the robot’s motion model 

or of the observation likelihood function

� The optimal proposal is [Doucet, 98]:

Proposal Distribution

observation likelihood motion model

normalizer



The Optimal Proposal Distribution

For lasers is extremely peaked 
and dominates the product.

[Doucet, 98]

We can safely approximate
by a constant:



Resulting Proposal Distribution

Approximate this equation by a Gaussian:

Sampled points around 
the maximum

maximum reported 
by a scan matcher

Gaussian 
approximation

Draw next 
generation of 
samples



Resulting Proposal Distribution

η is a normalizer Sampled around the scan-match maxima

Approximate this equation by a Gaussian:



Computing the Importance Weight

Sampled points around the 
maximum of the observation 
likelihood



Improved Proposal

End of a corridor:

Corridor:

Free space:



Is Resampling Needed?

� If all particles have the save weight, resampling
is useless.

� Using an improved proposal reduces the need of 
resampling.

� Particle depletion problem

Goal: resample only if needed!



Effective Number of Particles

� Empirical measure of how well the 
goal distribution is approximated by 
samples drawn from the proposal

� We only resample when neff drops 
below a given threshold.

� See [Doucet, ’98; Arulampalam, ’01]



Typical Evolution of neff

visiting new 
areas closing the 

first loop

second loop closure

visiting 
known areas



� 15 particles

� four times faster 
than real-time
P4, 2.8GHz

� 5cm resolution 
during scan 
matching

� 1cm resolution in 
final map

Intel Research Lab



Experiments

� Real world datasets



Intel Research Lab

� 15 particles

� Compared to 
RBPF-SLAM with 
Scan-Matching, 
the particles are 
propagated 
closer to the true 
distribution 



Outdoor Campus Map

� 30 particles

� 250x250m2

� 1.75 km 
(odometry)

� 20cm resolution 
during scan 
matching

� 30cm resolution 
in final map



Outdoor Campus Map - Video



MIT Killian Court

�The “infinite-corridor-dataset” at MIT
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MIT Killian Court



Other Example Datasets



Problems of the Gaussian Proposal

� Gaussians are uni-model distributions

� In case of loop-closures, the likelihood 
function might be multi-modal



Problems of the Gaussian Proposal

� Multi-modal likelihood function can cause 
filter divergence



� To sample from the optimal proposal requires

1. to point-wise evaluate it, 

2. to build a non-parametric representation

(here a 3d histogram), and 

3. to sample from this 

� To reduce the discretization effects of the 

histogram one can use a kernel smoother

� This is possible but very inefficient

Use the Optimal Proposal?



Sampling from the optimal distribution is too 
expansive for real applications but it can be 
used for evaluation a proposal approximation.

The Cost of Sampling 



Gaussian or Non-Gaussian?

� There exists statistical test to check whether or 

not sample a generated from a Gaussian:

� Anderson-Darling test 

(based on the cumulative density function)

� How to determine the difference between the 

Gaussian and the optimal proposal

� KLD 

� Cramer-von-Misses criterion



Anderson-Darling Test

AD test works for 1d Gaussians, but

1. Sample the three terms sequentially,

2. Apply the AD test 3 times,

3. If one fails, considers it as non-Gaussian



Is a Gaussian an Accurate 
Representation for the Proposal? 



How to Overcome this Limitation? 

� Approximate the likelihood in a better way!

� Sample from odometry first and the use 
this as the start point for scan matching

odometry

mode 1 mode 2

odometry with uncertainty



Experimental Evaluation

New approach

Gaussian proposal

+

+

+

+

+

+



Final Approach  

� It work’s with nearly
zero overhead

� No large approximation 
errors (small KLD value)



Conclusion

� Rao-Blackwellized Particle Filters are means to 
represent a joint posterior about the poses of the 
robot and the map

� Utilizing accurate sensor observation leads to good 
proposals and highly efficient filters

� It is similar to scan-matching on a per-particle base 
with extra noise

� The number of necessary particles and
re-sampling steps can seriously be reduced

� Possibility to deal with non-Gaussian observation 
likelihood functions

� Highly accurate and large scale map



Open Source Implementation

� Open source implementation
“GMapping” available at

www.OpenSLAM.org

� Free for research and non-
commercial applications

� Commercial licenses available



GMapping Overview

./gfs_simplegui

./gfs2log

raw data

ini file

gfs file

corrected log



Running GMapping

� Command Line
gfs_simplegui

–filename <logfile>
-outfilename <gfsfile>
-cfg <ini file>
[additional parameters]

Example:
gfs_simplegui –filename intel.clf –outfilename intel.g fs

–cfg $GMAPPING_HOME/ini/gfs-LMS-10cm.ini

� The ini file specifies parameters for
� Motion model
� Range Finder
� Scan Matcher
� Likelihood
� Particle Filter



More Details

� M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
factored solution to simultaneous localization and mapping, AAAI02
(The classic FastSLAM paper with landmarks)

� M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0: 
An improved particle filtering algorithm for simultaneous localization 
and mapping that provably converges, IJCAI03.
(FastSLAM 2.0 – improved proposal for FastSLAM)

� D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient 
FastSLAM algorithm for generating maps of large-scale cyclic 
environments from raw laser range measurements, IROS03
(FastSLAM on grid-maps using scan-matched input)

� A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultaneous 
localization and mapping without predetermined landmarks, IJCAI03 
(A representation to handle big particle sets)



More Details (Own Work)

� Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved 
Techniques for Grid Mapping with Rao-Blackwellized Particle Filters, 
Transactions on Robotics, Volume 23, pages 34-46, 2007
(Informed proposal using laser observation, adaptive resampling)

� Cyrill Stachniss, Grisetti Giorgio, Wolfram Burgard, and Nicholas 
Roy. Analyzing Gaussian Proposal Distributions for Mapping with 
Rao-Blackwellized Particle Filters, IROS07
(Gaussian assumption for computing the improved proposal)



What’s Next? 3D Mapping

Joint work with ETH Zurich / EPFL



What’s Next? 3D Mapping

Joint work with the Stanford AI Lab


