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m 3 European projects

m 1 DFG graduate school
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m 3 projects funded by
industry




Fields of Research

Mobile robots
State and model estimation
Adaptive techniques and learning
Multi-robot coordination
Decision-theoretic approaches
Scene understanding
Manipulation
Autonomous cars
Humanoid robots
Flying vehicles

Probabilistic Robotics



What is this Talk About?

SLAM
mapping localization

integrated
approaches
active
localization
exploration

path planning



A Typical Robot...

proximity senor

wheels with encoders
(provide odometry)



Maps are Important for Robots

m Maps model the environment of the robot

m Localization is impossible without a map
("Where am I?")

m Efficient motion planning requires maps
("How to reach a target location?”)

m Reasoning about the state of the world

Maps are important for efficiently
solving standard robotic problems




What is "SLAM"” ?

= Estimate the pose and the map of a mobile
robot at the same time

p(z,m | z,u)

t ¢+ ¢

poses map observations & movements

aed

Courtesy of Dirk Haehnel



Mapping using Raw Odometry

" Why is SLAM hard? Chicken-or-egg problem:
" a map is needed to localize the robot and
" a3 pose estimate is needed to build a map

Courtesy of Dirk Haehnel



Particle Filters

Who knows how a particle filter works

?

Explain Particle Filters|

Skip Explanation




Brief Introduction to Particle Filters

What is a particle filter?
= Jt is a Bayes filter

= Particle filters are a way to efficiently represent
non-Gaussian distribution

Basic principle
= Set of state hypotheses (“particles”)

= Informally speaking: “survival-of-the-fittest”



mple-based Localization (sonar)

Video courtesy of Dieter Fox

= where is the robot?




Sample-based Posteriors

" Set of weighted samples
S = {<s(i),w(i)> |1 = 1,...,N}

|

State hypothesis Importance weight

" The samples represent the posterior

N .
p(z) = Y w5 ;) (x)
1=1



Posterior Approximation

Particle sets can be used to approximate functions

f(x)

samples

f(x)

samples

probability / weight
probability / weight

[ ORI 1 L ATAE VR AL

®" The more particles fall into an interval, the higher
the probability of that interval

" We can easily draw samples from a Gaussian but
not from general distributions



Importance Sampling Principle

We can even use a different distribution g to
generate samples from f

By introducing an importance weight w, we can
account for the “differences between gand f”

w=f/g

proposal(x)
target(x)
samples

f is called target

g is called
proposal

probability / weight
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From Sampling to a Particle Filter

" Set of samples describes the posterior
" Updates are based on actions and observations

Three sequential steps:

1. Sampling from the proposal distribution
(Bayes filter: prediction step)

2. Compute the particle weight (importance sampling)
(Bayes filter: correction step)

3. Resampling



Monte-Carlo Localization (MCL)

= For each motion A do:

= Sampling: Generate from each sample in
a hew sample according to the motion

model MODEN O,

" For each observation do:

= Weight the samples with the observation

likelihood | .
w' — p(z | m,z())

" Resampling



Sample-based Localization (sonar)
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Courtesy of Dieter Fox



SLAM with Particle Filters

" Particle filters have successfully been applied
to localization, can we use them to solve the
SLAM problem?

" Posterior over poses X and maps m
p(z|m,z,u) == p(z,m|z u)
(localization) (SLAM)

Observations:

" The map depends on the poses of the robot
during data acquisition

" If the poses are known, mapping is easy



Rao-Blackwellization
poses map observations & movements

SN,

$1 ty TN \ Zl:tauO:t—l) —
p(ml:t | Zl:tauo:t—l) -p(m | xl:tyzl:t)

Factorization first introduced by Murphy in 1999



Rao-Blackwellization
poses map observations & movements

SN

$1 ty T \ 2% tauO:t—l) —
I p(iUl:t | Zl:taUO:t—l) -p(m | xl:tyzl:t)

SLAM posterior I

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999



Rao-Blackwellization

p(wl:t,m | Zl:tauO:t—l) —
P(xlzt ‘ Zl:tauO:t—l) -p(m | xl:tazlit)




A Solution to the SLAM Problem

m Problem: Build a map and localize the robot in
that map under pose and sensor uncertainty

s Mapping with Rao-Blackwellized particle
filters

m Use a particle filter to represent potential
trajectories of the robot

m Each particle carries its own map

m "Survival of the fittest” based on the likelihood
of observations given the map built so far

[Murphy, 99; Montemerlo et al., 03; Haehnel et al., 03; Eliazar and Parr, 03; Grisetti et al., 05]



Example: Particle Filter for Mapping

T e —
1, ™ y |

map of particle 2

b
A -

map of particle 1

map of particle 3 7 ] 1 Al &



Map Representations

Typical models are:
< Feature maps  Parti

m Grid maps (occupancy or
reflection probability maps)




Part 1: FastSLAM

® Operates on landmarks
" Work of Mike Montemerlo et al., 2002/3

Partial slide courtesy of Mike Montemerlo!

[Montemerlo et al., 2002/2003]



Mapping using Landmarks

Landmark 1 — a

observations — e e
robos poses (20 43— o

controls — @ Q Q
Landmark 2 — Q

Knowledge of the robot’s true path renders
landmark positions conditionally independent




Factored Posterior

P(xlztallzm | Zl:tauo:t—l)

= p(z1:¢| 214, u0:t—1) - PU1:m | 14 21:¢)
M

= p(a1¢ | 210, u0e—1) - ] Pl | 21045 21:¢)
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FastSLAM

" Rao-Blackwellized particle filtering based on
landmarks [Montemerlo et al., 2002]

" Each landmark is represented by a 2x2
Extended Kalman Filter (EKF)

" Each particle therefore has to maintain M EKFs

Part'c'e - Landmark 1 J Landmark 2 Landmark M

Pa”'C'e - Landmark 1 | Landmark 2 | Landmark M

Partlcle -

Landmark 1 § Landmark 2 Landmark M



FastSLAM - Action Update

' Landmark #1
@' Qﬁ ) Filter
Particle #1 g
QB J Landmark #2
Filter
Val
Particle #2 (3 Py |

Particle #3




FastSLAM - Sensor Update

Particle #1

Particle #2

Particle #3

/N

\

Landmark #1
Filter

Landmark #2
Filter



FastSLAM - Sensor Update

> @

Particle #1 N Weight = 0.8

Particle #2 (3: T 0 Weight =0.4
>
cHlP="N
: ST R = : _
Particle #3 \\ T-0Q Weight = 0.1
NoN




FastSLAM - Video




FastSLAM Complexity

- Update I"ObOt partides Constant tig’n)e(pl)zlr)particle

based on control u;_;

= Incorporate observation z,  O(N¢log(M))
into Kalman filters -0 time per partcie

m Resample particle set O(Nelog(M))

Log time per particle

N = Number of particles O(Nelog(M))

M = Number of map features Loq b |
0g time per particle



Data Association Problem

m Which observation belongs to which landmark?

X%\Q%x%\

Q\X%

/

/
/

&

m A robust SLAM must consider possible data
associations

m Potential data associations depend also
on the pose of the robot

1
1
1 /
1
|



Multi-Hypothesis Data Association

m Data association is
done on a per-particle s
basis

m Robot pose erroris . -,
factored out of data = f‘{-@
association decisions




Per-Particle Data Association

Cx

Was the observation

s

generated by the red

<
o

[

7

or the blue landmark?

P(observation

red) = 0.3

P(observation|blue) = 0.7

m Two options for per-particle data association
m Pick the most probable match
m Pick an random association weighted by

the observation likelihoods

m If the probability is too low, generate a new

landmark



Results - Victoria Park (Video)

Dataset courtesy of University of Sydney



Results - Victoria Park

B4 km traverse

E< 5mRMS
position error

m 100 particles

Blue = GPS
Yellow = FastSLAM

Dataset courtesy of University of Sydney



Part 2: Grid-based FastSLAM

" Operates on grid maps and typically laser
range data

" Dirk Haehnel et al., 2003

" Eliazar and Parr, 2003

" Grisetti et al., 2005-2007

® several others...



The Graphical Model
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Applying a Standard RBPF for Learning
Grid Maps Does not Work...

= Standard laser end-point model

= Odometry motion model

= Number of particles varying from 500 to 2.000
= Typical result:




Problems in Practice

Each (grid) map is rather big
Each particle maintains its own map

Therefore, one needs to keep the number
of particles small

Solution:
Compute better proposal distributions

Idea:

Improve the pose estimate before
applying the particle filter



Pose Correction Using Scan Matching

Maximize the likelihood of the i-th pose
relative to the (i-1)-th pose

k k
ry = argagwaXp(zt | fl?t,mt—l) - p(xy \ xt-la“t—l)
current measurement robot motion

map constructed so far



Motion Model for Scan Matching

caa

Raw Odometry
Scan Matching

-caa




Mapping using Scan Matching




RBPF-SLAM with Improved
Odometry

Scan-matching provides a locally
consistent pose correction

Pre-correct short odometry sequences
using scan-matching and use them as
input to the Rao-Blackwellized PF

Fewer particles are needed, since the
error in the input in smaller

[Haehnel et al., 2003]



Map: Intel Research Lab Seattle

RBPF-SLAM with Scan-Matching




Map: Intel Research Lab Seattle

RBPF-SLAM with Scan-Matching

Loop Closure




RBPF-SLAM with Scan-Matching
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Graphical Model for Mapping with
Improved Odometry
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Conclusion (so far...)

m The presented approach is efficient
m It is easy to implement

m Scan matching is used to transform sequences of
laser measurements into odometry measurements

m Provides good results for most medium-size
datasets



What's Next?

m Further reduce the number of particles

m Improved proposals will lead to more
accurate maps

m Use the properties of our sensor when
drawing the next generation of particles



Proposal Distribution

" A particle filter uses a proposal distribution
to sample the next generation of samples

" Most efficient SLAM methods use Gaussian
approximation of the robot’s motion model
or of the observation likelihood function

" The optimal proposal is [Doucet, 98]:

observation likelihood motion model

) p(zt|at, m<i>>p<wt|x§i>l, )

p(xt’xt ]_7 ,Zt,Ut) —

p(Zt|33t 15 m(z))

normalizer




The Optimal Proposal Distribution

(Z) p(ztlxb m(z)>p(xt|$§2_>1, Ut)

p(azﬂxt 15 1T

[Doucet, 98]

,Zt,Ut) — , :
| pkt|ze, m(D)p t|=’13§z_)1>Ut)d$t

For lasers p(z|z:, m?)is extrefely peaked

and domyche producl
) We can safely approximate

ﬂ p(xy a:t(z)l,ut) by a constant:

/@:t ()

T L1 Ut) ‘xtip(zt|ﬂ?t,m(i))>€: .




Resulting Proposal Distribution

p(z¢|zg, m(D)

() () ~
p(x |'CU — 12 m Y] < 9 u ) — .
T b fa:te{:vlp(zt|:1:,m(i>)>e} p(zt|xta m(z))dxt

Approximate this equation by a Gaussian:

maximum reported —
by a scan matcher

Gaussian
approximation

N

Draw next
co0@eo.. generation of

™~ Sampled points around samples
the maximum



Resulting Proposal Distribution

p(ztms, mD)
fxtE{x|p(zt|x,m(i))>e} p(zt|zt, m(i)>d$t

(2)

p(xtlxt 1, TN ( ),Zt,’LLt) =

Approximate this equation by a Gaussian:

p(ivt|$t Lm 2 ug) ~ N (D, =)

. 1 K .
N(Z) — = Z L 4 p(Zt|fl3], (Z))
ni=1
. 1 K
=) = ; > @ — 1D (@; — T p(zila, mD)

a \\/

nis a normallzer Sampled around the scan-match maxima



Computing the Importance Weight

wi) = w§ D p(z|zD;, m@)

1/p(Zt|fEt, (i ))p($t|ﬂ?t 1> ut)d

2

)
~.
N’

p(zt|zs, m ) day

/:rzte{wlp(Ztlw m(i))>€}

2

wt 102 (Zt‘fvja (i)>

A\ S;moints around the

maximum of the observation

‘A likelihood




Improved Proposal

End of a corridor: | . |

Corridor: - e —

Free space:




Is Resampling Needed?

m If all particles have the save weight, resampling
is useless.

m Using an improved proposal reduces the need of
resampling.

m Particle depletion problem

— oo o

Goal: resample only if needed!



Effective Number of Particles

_ 1
Neff — > (w§i))2

m Empirical measure of how well the
goal distribution is approximated by
samples drawn from the proposal

m We only resample when n_g drops
below a given threshold.

m See [Doucet, ©98; Arulampalam, '01]



Typical Evolution of n_g

visiting new -
areas

visiting
known areas

second loop closure




Intel Research Lab

= 15 particles

= four times faster
than real-time
P4, 2.8GHz

= 5cm resolution
during scan
matching

= 1cm resolution in
final map




Experiments

m Real world datasets




Intel Research Lab

= 15 particles

= Compared to
RBPF-SLAM with
Scan-Matching,
the particles are
propagated
=] closer to the true
2 distribution




Outdoor Campus Map

30 particles
250x250m?

1.75 km
(odometry)

20cm resolution
during scan
matching

30cm resolution
in final map




Outdoor Campus Map - Video




MIT Killian Court

» The “infinite-corridor-dataset” at MIT
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MIT K|II|an Court




Other Example Datasets




Problems of the Gaussian Proposal

m Gaussians are uni-model distributions

m In case of loop-closures, the likelihood
function might be multi-modal

likelihood
0.02 r .

0.01




Problems of the Gaussian Proposal

m Multi-modal likelihood function can cause
filter divergence




Use the Optimal Proposal?
p(zmt,m<i>>p<xt|x§?1,ut>

p($t|$ ]_7 (.),Zt,U,t) — :
" p(ztat?), m®)

" To sample from the optimal proposal requires

1. to point-wise evaluate it,

2. to build a non-parametric representation
(here a 3d histogram), and

3. to sample from this

" To reduce the discretization effects of the
histogram one can use a kernel smoother

" This is possible but very inefficient



Dataset Execution time
Gausian proposal

MIT Killian Court 155 h 112 min
Freiburg Bldg. 79 84 h 62 mMin
Intel Research Lab 40 h 29 min
FHW Museum 38 h 27 min
Belgioioso 18 h 13 min
MIT CSAIL 10 h 7 min

Sampling from the optimal distribution is too
expansive for real applications but it can be
used for evaluation a proposal approximation.



Gaussian or Non-Gaussian?

" There exists statistical test to check whether or
not sample a generated from a Gaussian:

" Anderson-Darling test
(based on the cumulative density function)

" How to determine the difference between the
Gaussian and the optimal proposal

" KLD

® Cramer-von-Misses criterion



Anderson-Darling Test

AD test works for 1d Gaussians, but

p(x)p(y, 0 | x)
p(z)p(y | z)p(0 | z,y)

T t1

1. Sample the three terms sequentially,
2. Apply the AD test 3 times,
3. If one fails, considers it as non-Gaussian

p(x,y,0)




Is a Gaussian an Accurate
Representation for the Proposal?

Dataset Gauss | Non- Multi-
Gauss
1 mode modal
Intel Research Lab || 89.2% | 7.2%
FHW Museum 84.5% | 10.4%/ 5.
Belgioioso 84.0% | 10.4%|| 5.6%
MIT CSAIL 78.1% | 15.9%\ | 6.0%
MIT Killian Court | 75.1% | 19.1%\ 5.8%
Freiburg Bldg. 79 || 74.0% | 19.4% N6.6%




How to Overcome this Limitation?

m Approximate the likelihood in a better way!

odometry odometry with uncertainty

m Sample from odometry first and the use
this as the start point for scan matching



Experimental Evaluation

MIT Killian Court
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Gaussian proposal
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Final Approach

m It work’s with nearly
zero overhead

m No large approximation
errors (small KLD value)

likelihood
0.02 r

0.01 f




Conclusion

Rao-Blackwellized Particle Filters are means to
represent a joint posterior about the poses of the
robot and the map

Utilizing accurate sensor observation leads to good
proposals and highly efficient filters

It is similar to scan-matching on a per-particle base
with extra noise

The number of necessary particles and
re-sampling steps can seriously be reduced

Possibility to deal with non-Gaussian observation
ikelihood functions

Highly accurate and large scale map



Open Source Implementation

m Open source implementation
“"GMapping” available at

www.OpenSLAM.org

m Free for research and non-
commercial applications

m Commercial licenses available
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GMapping Overview

ini file

* emacs@glaptop.informati

File Edit Options Buffers Tools Help

CR*OBdo BRIV ??
#4 These are probably the most improtant parameted|
i

#4 gfs - number of particles J
particles 30

#4 gfs measurement integration
angularipdate 0.5
linearUpdate 1

44 map resolution
a 0.1

delt
Bt scan matcher
mazrange .0 4 (mazimum valid) fors|
& SICK LMS, 8lm max, SICK PLS 50m
maxUrange 80.0 #  (use up to)
ma 0.05 # scan matcher cell sige)
sma, for the greedy search
regscore .0004 4 minimum score for reqel/
-:=- gfs-LMS-10cm.ini (Fundamental)--125--C0-
I
X gfs_simplegui =0 =
~ Al ¥ !
n 1 i
-t f
1= -
B e —

gfs file

glorg i@ bacio’~ <3~

+/- - zoom | b - show/hide best path | p - showrhide all paths | ¢ - center robot

./ gfs_simplegui

° /. 0 0 iorgioBbacia:™> xw
19, 0} l > i
o——o©0

o—o0—©°

./gfs2log

corrected log

L A




Running GMapping

m Command Line
gfs_simplegui
—filename <logfile>
-outfilename <gfsfile>
-cfg <ini file>
[additional parameters]

Example:
gfs_simplegui —filename intel.clf —outfilename intel.g

—cfg $GMAPPING_HOME/ini/gfs-LMS-10cm.ini

m The ini file specifies parameters for
s Motion model
s Range Finder
s Scan Matcher
m Likelihood
m Particle Filter



More Details

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
factored solution to simultaneous localization and mapping, AAAIO2
(The classic FastSLAM paper with landmarks)

M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges, IJCAIOS.

(FastSLAM 2.0 — improved proposal for FastSLAM)

D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient
FastSLAM algorithm for generating maps of large-scale cyclic
environments from raw laser range measurements, IROS03
(FastSLAM on grid-maps using scan-matched input)

A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultaneous
localization and mapping without predetermined landmarks, 1IJCAIO3
(A representation to handle big particle sets)



More Details (Own Work)

m  Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved
Techniques for Grid Mapping with Rao-Blackwellized Particle Filters,
Transactions on Robotics, Volume 23, pages 34-46, 2007
(Informed proposal using laser observation, adaptive resampling)

m  Cyrill Stachniss, Grisetti Giorgio, Wolfram Burgard, and Nicholas
Roy. Analyzing Gaussian Proposal Distributions for Mapping with
Rao-Blackwellized Particle Filters, IROS07
(Gaussian assumption for computing the improved proposal)



What's Next? 3D Mapping




What's Next? 3D Mapping

Joint work with the Stanford Al Lab



