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Abstract

This paper addresses a tightly integrated multi-robot planning, localization and navigation system in stochastic sce-

narios. We present a novel motion planning technique for robot formations in such kinds of environments, which

computes the most likely global path in terms of a defined minimum expected length (EL). EL evaluates the ex-

pected cost of a path considering the probability of finding a non traversable zone and the cost of using an alternative

traversable path. A local real time re-planning technique based on the probabilistic model is also developed for the

formation when the scenario changes. The formation adapts its configuration to the shape of the free room. The

partial views of all the robots are integrated to update the multi-robot localization using a modified EKF based on

the measurement differencing technique which improves estimation consistency. As a result, a lower uncertainty map

of the local navigation area is obtained for re-planning purposes. Experimental results, both in simulation and in

real office-like settings, illustrate the performance of the described approach where a hybrid, centralized-distributed,

architecture with wireless communication capabilities is used.

Keywords: Planning under uncertainty, Stochastic maps, Cooperative formations localization and navigation,

Hybrid architecture

1. Introduction

The interest in the design, development and imple-

mentation of multi-vehicle systems has grown tremen-

dously both in the fields of robotics and control systems

technology due to their enhanced reliability and robust-

ness over single-vehicle systems.

Key applications such as factory automation, surveil-

lance, exploration or rescue missions may benefit from

the use of geometrically constrained multi-robot sys-

tems, known as robot formations where close cooper-

ation and coordination among the, possibly heteroge-

neous, vehicles of the team is mandatory for the suc-

cessful joint mission completion. For instance, the for-

mation can be used to escort a group of people to the exit

of a building in an emergency situation where the robots

in the formation structure delimit a safe area for them
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and are spatially arranged to provide a broader field of

view to the system.

During the execution of the mission, formation con-

trol, either centralized or distributed, keeps the team

members on rigid predefined relative positions whilst

moving towards the goal. A well-known approach to

multi-robot coordination [1] is the leader-following ap-

proach where the robot followers navigate coordinately

as commanded by the robot leader to reach the mission

objectives, whilst maintaining a certain geometric shape

(e.g., equilateral triangle, regular pentagon, etc), previ-

ously imposed to the formation. However, realistic sce-

narios with cluttered and dynamic obstacles prevent the

formation from moving in the predefined shape along

all its trajectory to the goal and thus the shape of the

formation must be temporarily adapted to the environ-

ment.

The adaptability in the formation shape required to

overcome the cluttered zones can be achieved by mod-

eling the links between the robots as virtual spring-

damper systems [2, 3]. Furthermore, this approach of-

fers an important advantage when addressing the for-

mation path planning problem, solved only by the robot
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leader, in contrast to approaches based on virtual struc-

tures [4] where paths must be computed for all team

members and imply additional computational efforts to

adapt their trajectories to unexpected obstacles in the

environment.

In [5], the authors propose a method for planning tra-

jectories for formations of robots under uncertainty us-

ing potential fields and a fast marching algorithm to find

the optimal solution. However, the uncertainty is only

applied on the relative localization of the robots with

respect to the others rather than to the obstacles in the

map.

The localization of a robot formation can be formu-

lated in the general setting of multi-robot localization,

where several approaches have been reported in the

literature using inter-robot measurements (e.g., in ab-

sence of previous knowledge about the navigation area

[6, 7, 8]), landmark observations (e.g., in presence of a

grid-based [9] or feature-based map [10]) or even both

of them [11]. Interestingly, EKF-based distributed ap-

proaches using inter-robot measurements aimed at real-

time performance have been reported [12, 13].

During the world modeling phase, uncertainty de-

rived from noisy sensors is incorporated into the maps

used later for path planning. Thus, the algorithms ap-

plied in deterministic scenarios to compute the best

paths for the robots, such as those collected in [14], are

no longer valid. For path planning, it is common to as-

sume that the state of the robot is well known and that

the actions are deterministic, as opposed to the POMDP

approaches for robot control. This assumption is cru-

cial because motion or localization uncertainty makes

mandatory to minimize the risk of getting lost. There

are mathematically sound suboptimal planning under

motion and localization uncertainty methods such as

[15], using POMDPs, or [16] and [17], planning in the

belief space. These solutions are, thus, finding the paths

that minimizes the uncertainty of the robot localization

at the goal position.

However, assuming that motion and localization are

always reliable, minimizing the position uncertainty is

no longer an issue. Instead, it is incorporated into the

knowledge of the connectivity or traversability of the

environment. This lack of deterministic information im-

plies that only the expectation of the length of a path

can be computed, based on the prior and on the ob-

servations that the robots will perform during the mis-

sion. In [18], the authors propose a graph-based algo-

rithm to compute the expected shortest path, making the

markovian assumption that the connectivity of the sce-

nario may eventually change during the execution of the

mission. Some approaches like [19], make use of the

graphs created during the map-building phase to com-

pute minimum uncertainty paths to the goal. However,

even though the authors extend the graph to cover tra-

jectories not performed during the map-building, these

additional elements added do not consider the presence

of obstacles. Moreover, the new potential trajectories

added, as they are further away from the features in the

map, present higher uncertainty levels than those tra-

jectories used to build the map. Thus, looking for the

minimum uncertainty path will never select one of those

added paths.

In this work we propose a global path planning – lo-

cal replanning scheme that assumes a static scenario for

global path planning but that is able to deal with changes

locally.

From a system architecture view point, the perfor-

mance of robot formations during mission execution

can be described in terms of modularity and scalability

of the underlying probabilistic framework and software

components, thus favoring distributed or decentralized

approaches. However, from the perspective of preci-

sion, reliability and robustness, the close cooperation

among the different vehicles of the robot formation, in a

centralized framework, would result in a jointly coher-

ent understanding of the navigation environment, thus

reducing the uncertainty both during the localization,

e.g., wider and integrated fields of view, and path plan-

ning, e.g., due to alternative paths reachable by robot

followers. Therefore, a hybrid centralized-distributed

approach to trade-off the advantages of both perspec-

tives without compromising the success of the com-

manded mission can be the best choice at hand.

The work presented in this paper develops new tech-

niques for global and local path planning, and extends

previous work reported by the authors in localization of

multi-robot systems in stochastic maps [10] and motion

control for robot formations [20], which are tightly inte-

grated in the whole system to obtain the maximum ben-

efits from their interaction. The main contributions of

the work are: (i) a global path planning that minimizes

the expected length in a stochastic map; (ii) a coop-

erative sensor-based local re-planning in the stochastic

map; (iii) a multi-vehicle consistent localization (robot

pose tracking) in stochastic maps built from the multiple

views of the robots; (iv) a hybrid centralized-distributed

architecture, using real-time wireless communication.

The robot leader centralizes the information and exe-

cutes the global processes, whilst navigation of the fol-

lower robots is distributed and executed by them. Ex-

perimental results, both in simulation and in real office-

like settings, illustrate the performance of each of the

techniques developed and of the whole system.
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The rest of this paper is organized as follows: section

2 presents robot formations from the perspective of the

leader-following approach, where a dynamical model

based on the virtual spring-damper analogy is used; sec-

tion 3 introduces the concepts of traversability maps

and minimum expected length paths in a generic graph-

based framework; in section 4 this concept is applied

to obtain global minimum expected length paths from a

global traversability map derived from a featured-based

stochastic map; section 5 describes pose tracking and

cooperative local path planning and navigation for the

robot formation in dynamic scenarios; section 6 reports

both simulated and real experiments obtained by a robot

formation in the presence of sensing, localization and

mapping uncertainties as described throughout the pa-

per; finally, section 7 elaborates on the conclusions of

the reported work and suggests continuation lines for

the near future.

2. Probabilistic Robot Formations

We consider formations made up of r+1 robots where

the leader R0 is virtually linked to each of the follow-

ers R1, . . . ,Rr. Each link is composed by two spring-

damper systems: one is in charge of maintaining the

distance among the robots and the other controls the

relative angle. These links induce virtual forces on the

robots, producing their movements, as shown in Fig. 1.

Let the location of the formation be represented

by a discrete-time stochastic state vector xR =

[xB
R0
, x

R0

R1
, · · · , x

R0

R j
, · · · , x

R0

Rr
]T formed by the location of

the robot leader R0 with respect to (wrt) a base refer-

ence frame B and the location of each robot follower R j

wrt the robot leader R0. This leader-centric representa-

tion reduces the volume of uncertainty for the state vec-

tor xRk
, in comparison with an absolute representation

wrt the base frame B of each robot location vector and,

therefore, linearization errors due to large uncertainty

values are minimized [21]. Thus, a dynamic model of

the robot formation is given by,

xRk
= f(xRk−1

,FRk−1
) + vk−1 (1)

where, FRk−1
= {F0,F1, . . . ,Fr}, the set of virtual forces

acting on each of the vehicles of the robot forma-

tion, are transformed into linear and rotational veloc-

ity commands for each non-holonomic vehicle using

a differential-drive model [22], and vk−1 represents a

zero-mean white noise sequence with a block-diagonal

covariance matrix Qk−1. Note that each of the virtual

forces F j acting on vehicle R j is not directly the force

Figure 1: Simplified representation of the virtual spring-damper anal-

ogy for formation control in a cluttered environment where only linear

springs are represented. In this example, the robot formation is formed

by a robot leader R0, and three robot followers R1, R2 and R3. Virtual

forces acting on each vehicle drive the robot formation towards the

goal destination whilst adapting the geometric structure to the clut-

tered environment and avoiding obstacles and dynamic objects along

the way.

generated by the link between robots. It is a com-

bination of the link force FL j0
and an obstacle avoid-

ance force FND j
, as proposed by [20]. Additionally, the

leader R0 experiences the attraction force of the next

way-point along its planned trajectory towards the goal

destination.

3. Path Planning in Traversability Maps

Path planning for robot formations can be stated glob-

ally for all the robots of the team. But that approach has

a high computational burden. In this work, we propose

a flexible alternative approach, computationally lighter.

The path planning is achieved by the leader of the for-

mation, and the followers maintain the formation adapt-

ing to the environment by means of a spring-damper

analogy (see more details in [3]). The formation is

maintained while possible, otherwise it adapts its shape

to the scenario structure. In the worst case, the forma-

tion will become a chain, so the path planned by the

leader will also be feasible for the followers.

In this paper, we consider the path planning problem

using a graph model based on the ones proposed in [18]

and [23]. The scenario is modeled as a graph G = (V, E),

named in advance traversability map, where the vertices

V are locations in the scenario and the edges E represent

the connectivity between pairs of vertices. Each edge
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that connects two vertices (u, v) is labeled with L(u, v)

the distance between the vertices and with P(u, v) the

probability for the edge to be traversable. During the

execution of the mission, the actual state of the edges

(traversable or not) is observable and thus, this infor-

mation can be incorporated into the path planning algo-

rithm to obtain the optimal path. This formulation of the

path planning problem fits the Canadian traveller prob-

lem [24], which was first stated by [25] but is still not

solved.

It is worth remarking that the optimal path computed

with prior information may not be traversable during the

execution and an alternative path to the goal may be re-

quired. The desired path is the one that minimizes the

expected distance to reach the goal, including the cases

when the initial path is not traversable and another path

must be used. The idea behind this expected length of

a path is that it may be worth to explore a possibly very

short path to the goal but only if there is an alterna-

tive path good enough in case the original path is not

traversable.

In [18] the authors assume that the graph is not static

and thus the state of the edges might eventually change

during the execution of the mission. This assumption

provides a new strategy that consists in waiting at a ver-

tex until an edge becomes traversable. It also transforms

the problem into a Markov Decission Process that can

be solved with the well known techniques of value and

policy iteration.

In our case, as in [23], we assume a non-markovian

graph where the state of the edges does not change once

it is observed. In fact, the knowledge about the state of

the environment is augmented as the graph is traversed

and the future decisions are conditioned to this knowl-

edge. In [23], the authors propose to expand the state of

the formation (the nearest vertex where is placed) with

the knowledge of the environment. With this approach

they can assume that the expanded graph is markovian

and thus they can prove that a convergent solution can

be found. However, for practical issues, this approach is

not optimal because the expanded graph has a number of

vertices which is exponential in the number of edges in

the original graph. Moreover, to apply the well known

MDP solutions, the whole graph must be expanded.

The length of a path p can be expressed as a linear

combination of the lengths of the edges of the graph,

which can be expressed as a dot product. The coef-

ficients are then the number of times each edge is in-

cluded in the path. Thus, to find the shortest path we

need to find the vector αp that, representing a valid path,

minimizes the dot product with LE , the vector of the

lengths of all the edges in the graph.

L(p) = αT
p · LE (2)

In a deterministic framework, αp is a binary vector

(0 or 1-valued) indicating if an edge is included in the

path or not. In the probabilistic framework considered

in this paper, however, the coefficients are the expected

number of times that each edge will be traversed while

trying to reach the goal vertex using the shortest path.

It is worth noting that in a probabilistic framework the

expected number of times an edge is traversed can be

bigger than 1, even if the initial path has no cycles.

This is because at some point, the intended path may be

non-traversable and thus the formation must go back to

find an alternative path. Furthermore, there is a chance

that in a probabilistic graph the goal is not reachable by

any means from the starting vertex because some of the

edges are in fact non-traversable. Given R the probabil-

ity of the goal to be reachable computed from the prior

knowledge of the graph and setting a penalty value λ if

the goal is not reached, the expected length of a path

EL(p) can be expressed as,

EL(p) = RαT
p · LE + (1 − R)λ (3)

The reachability R does not depend on the path p be-

cause the paths do exhaust all the possibilities to reach

the goal if the initial intention is not traversable. Thus,

the probability for any path to reach the goal is the same

given the initial and final vertices and, therefore, the

term (1−R)λ of equation 3 is constant. This fact allows

some simplifications when searching for the best path

p∗ to reach the goal, as shown in (4), such as avoiding

the computation of the reachability R which is as costly

as computing the expected length or setting the penal-

ization value λ to any arbitrary value. Instead, a score

function V(p) is minimized.

p∗ = arg min
p

{EL(p)}

= arg min
p

{RαT
p · LE + (1 − R)λ}

= arg min
p

{RαT
p · LE} = arg min

p

{V(p)}

(4)

Given a path p = (v0, v1, . . . , vn) from the initial ver-

tex to the goal and knowledge about the state of the

graph G, the score V(v0, v1, . . . , vn|G) to minimize by

equation (4) is defined as follows.

V(v0, v1, . . . , vn|G) = P(v0, v1)V1 + (1 − P(v0, v1))V0

V1 = L(v0, v1) + V(v1, . . . , vn|G, P(v0, v1) = 1) (5)

V0 = min
p′
{V(p′|G, P(v0, v1) = 0)}
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V1 represents the expected length of the path given that

the first edge is traversable and then calls recursively to

compute the score of the rest of the path with the knowl-

edge that the first link is traversable (P(v0, v1) = 1). This

line of recursion finishes when the goal is reached since

the score at the goal is 0.

V(vn| · · · ) = 0

V0, instead, represents the expected length of the best

alternative path p′ from v0 to vn given that the first edge

is not traversable (P(v0, v1) = 0). In this case, the re-

cursion finds a dead end when the non traversable edges

block all the paths to the goal making it unreachable.

The score for that situations is V0 = 0 (λ in the general

case).

The implementation of the score V of a path is shown

in Algorithm 1.

Algorithm 1 Score of a path with memoization

def score(path , graph ):

if (path , graph) in memo:

return memo(path , graph)

if size(path) == 1: #at goal

s = 0

else:

u = path [0]

v = path [1]

goal = path[n]

prob = P(u,v)

len = L(u,v)

open = g
⋃

P(u,v) = 1

os = len + score(p[1:], open)

closed = g
⋃

P(u,v) = 0

cs = min_score(u, goal , closed)

s = prob * os + (1-prob) * cs

memo(path , graph) = s

return s

def min_score(start , goal , graph ):

paths = all_paths(start , goal , graph)

if size(paths) == 0:

return λ

return min(score(path , graph)

for path in paths)

This solution implicitly explores, by recursion, the

expanded graph mentioned above. However, there is

no need to explore the whole expanded graph but only

the nodes that are reachable from the initial conditions.

Moreover, by keeping intermediate results (called mem-

oization [26]) and bounds of the length of the final path,

some pruning techniques can be applied to reduce the

number of nodes expanded.

Example.

In Fig. 2a we show a toy example of the expected

length of a path. There are two options to go from vertex

A to vertex C: going directly or through vertex B. De-

pending on the value of the probability P(B,C), the best

path to reach C is different. There exists a traversable

direct path A → C with a length of 30 units. However,

if the edge BC is traversable, then there is a path to C

through B with a length of 18 units. To know the state

(open/closed) of the edge BC the node B must be first

reached. The problem in moving to B first is that, in case

the edge BC is not traversable, the formation has to go

back to A to reach C, moving along the edge AB twice

and thus making this path 32 units, thus longer than us-

ing directly the A→ C path. Then, if the probability of

BC being traversable is high enough (P(B,C) > 0.727),

then it is worth moving first to vertex B because it is

highly probable to find a path to C shorter than the di-

rect path A → C. Otherwise, if the edge BC is likely to

be non-traversable, it is better to go directly to the goal.

The graph in Fig. 2b shows the boundary point in the

probability of being traversable for edge BC where the

minimum expected length path changes. In Appendix A

we present the developed computation of the EL of the

two possible paths of this example.

It is proved that finding the minimum expected length

path is an NP hard problem [23] and that the computa-

tional cost of the score algorithm grows exponentially

with the number of vertices in the graph, as it consid-

ers every possible path and every possible knowledge

of the graph. Also, graphs with high connectivity make

the computation slower as the number of possible paths

to evaluate grows. Then, in the following section, we

propose a method to obtain a traversability map out of

an a priori stochastic map which is simple enough to

compute the expected length in a reasonable time while

keeping the traversability information of the original

map.

4. Global Traversability Map

To define the global traversability map we need a set

of vertices and the corresponding edges among them

with the corresponding length and traversability prob-

ability values. Let a stochastic feature-based represen-

tation (e.g., built by a SLAM algorithm), maybe partial

and incomplete, either of the navigation area or of the

local cooperative perception of the members of the robot

formation, be represented by a set of geometric features

yF = {yF1
, yF2
, ..., yFN

} known wrt a certain reference

frame (not superscripted for simplicity). We obtain a
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Figure 2: Example of expected path length algorithm. The best path

from A to C depends on the probability P(B,C). The boundary point,

where the minimum expected length path changes, is at P(B,C) =

0.727. In this case, we assume λ = 0

probabilistic graph by applying the sample based tech-

nique presented in [27].

Fig. 3 shows an example of the application of this

technique to obtain a traversability map from a feature-

based stochastic map of an office-like environment. We

also depict the collection of optimal paths for each of

the map samples. Note the sharp edges at the bottom left

part of the figure and blurred edges at the top right due to

the greater uncertainty with respect to the base reference

frame providing higher variability in the samples. The

length and probability labels of the edges are detailed in

section 6.1 with the results on global path planning.

5. Cooperative Replanning

In wide-opened and uncluttered environments once

a global minimum expected length path for the robot

leader is obtained, the robot followers would execute

their paths, from origin v0 to destination vn, thanks to

the links derived from the virtual spring-damper anal-

ogy of the robot formation and its commanded geomet-

rical shape. However, in real settings frequent real-time

replanning is mandatory to avoid unmapped or dynamic

objects in the environment while flexibly and adaptively

Figure 3: Stochastic map of the environment and the probabilistic

graph obtained to compute a global path from the start (vertex 0) and

the goal (vertex 5). The coloured lines are the clustered paths used

during the construction of the graph.

maintaining the formation structure. Therefore, local

safe paths for the robot formation must be computed fre-

quently based on their common understanding of the en-

vironment and a sufficiently precise localization of the

robots.

5.1. Pose Tracking of the Robot Formation

From an EKF-based perspective, a prediction of the

stochastic discrete-time robot formation joint state vec-

tor xRk
and its covariance matrix PRk

can be computed

from the linearization of eq. (1) as,

xRk|k−1
≃ Jk−1xRk−1

+ vk−1

PRk|k−1
≃ Jk−1PRk−1

JT
k−1
+Qk−1

(6)

where the block-diagonal matrix Jk−1 represents the Ja-

cobian matrix of the linearized motion equations of the

robot team, accurate for small rotations of the vehicles

between time steps.

During navigation within the stochastic map, the

robot formation obtains independent sets of observa-

tions from the environment at consecutive time instants,

e.g., Ek−1 and Ek, that are matched against map features,

e.g., Fk−1 and Fk respectively, improving the estimated

localization of the vehicles. Given that both Fk−1 and

Fk are subsets of features of the stochastic map, and

therefore a cross-covariance term PFk−1Fk
links together

the constraints on the robot formation localization at

time instants k − 1 and k, a colored measurement noise

scheme should be considered, otherwise, as reported in

the preliminary results of [10], the white-noise assump-

tion would drive the estimation out of consistency. Fol-

lowing the seminal work of [28] and the current practi-
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cal approaches [29, 30, 31, 32] regarding the extension

of the EKF-algorithm to colored measurement noise set-

tings, the measurement differencing technique, that pro-

vides an efficient and mathematically sound method to

remove the time-correlated portion of the measurement

errors is considered.

At time step k, robust data association provides the

algorithm with a set of jointly consistent pairs (yFk
, yEk

)

of map features and sensor observations related by a lin-

earized measurement equation of the form,

zk ≃ Hkxk +GFk
yFk

(7)

where xT
k
=
(

xT
Rk
, yT
Ek

)

is an augmented state vector com-

prising the joint robot formation state and observations

with Pk = blkdiag(PRk
,PEk

) its joint covariance matrix,

and Hk = (HRk
HEk

) and GFk
are the Jacobian matrices

of the linearized measurement equations with respect to

the state vector xk and the matched features yFk
respec-

tively.
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Figure 4: Consistency ratio (Normalized Estimation Error Squared /

χ2 threshold) comparison between the white-noise implementation of

the EKF Update (blue) and the implementation based on the measure-

ment differencing technique (green). The theoretical upper bound for

the consistency ratio is equal to one. The average result of 10 Monte

Carlo runs is depicted. Notice the localization still shows slightly in-

consistent (i.e., ratio > 1) for a short period around timestep 600 due

to a rotation performed by the formation, a high nonlinear situation.

The nature of the colored measurement noise driving

eq. (7) is modeled by the linear transformation (also

known as shaping or reduced-order filter) relating the

two zero-mean jointly Gaussian random variables yFk−1

and yFk
(i.e., matched map features at time instants k−1

and k respectively) formulated as,

yFk
= ΦCk

yFk−1
+ nk (8)

where,

ΦCk
= PFkFk−1

P−1
Fk−1

(9)

and nk is assumed to be a zero-mean white noise mea-

surement sequence with covariance matrix,

Pnk
= PFk

− PFkFk−1
P−1
Fk−1

PFk−1Fk
(10)

Thus, the measurement differencing technique ob-

tains a whitened measurement equation from the

weighted difference of colored measurement equations

(in the form of eq. 7) at two consecutive time instants,

rk , zk − Λkzk−1 ≃ H∗kxk + wk (11)

where matrix Λk is chosen such that the rk is driven by

the white-noise wk only (Appendix B).

Being the colored noise setting a singular problem

within the framework of Kalman-Bucy theory [33], the

well-known EKF-update equations provide estimates

for the augmented state vector xk and its associated co-

variance matrix Pk using the pseudo-measurement eq.

(11). Fig. 4 illustrates the consistency improvement

provided by the measurement differencing implemen-

tation of the EKF-update step with respect to its white-

noise implementation for a simulated experiment, with

known data association, where a three-robot triangular-

shaped formation is commanded to navigate along a

100m. loop trajectory in a previously mapped environ-

ment. Note that in the non-linear filtering context, the

consistency cannot be guaranteed due to the lineariza-

tion errors, therefore, efforts in the literature are ori-

ented to lessen this problem (e.g., confer [34, 21]) as

is the purpose of the proposed algorithm in this paper.

A deeper study on this consistency issue in the context

of multi-robot EKF localization and how it is also af-

fected by an increasing number of robots can be found

in [35].

5.2. Cooperative Local Planning

The performance (e.g., precision, reliability and ro-

bustness) of the robot formation to complete the com-

manded task profits from the close cooperation among

the different vehicles of the team, emphasizing the im-

portance of a centralized approach (at least at selected

synchronization time steps) to consistently and coher-

ently joint the views of the different vehicles.

Of paramount importance is the availability of this

jointly coherent understanding of the navigation envi-

ronment, with wider and integrated fields of views, to

increase the efficiency and optimality of the on-line re-

planning process. For example, as illustrated in the ex-

perimental section, the best available path towards the

next waypoint may be hidden to the robot leader (due

to its limited sensorial field of view) but visible to one

7



of the followers, thus profiting the performance of robot

formation replanning.

Since the robots in the formation navigate nearby,

a number of redundant observations of the environ-

ment are found within the augmented state vector xT
k
=

(

xT
Rk
, yT
Ek

)

estimated by pose tracking in the previous sec-

tion. Therefore, geometrical constraints arise between

features observed by different robots. Let y
Ri

El
and y

R j

Em
be

two observations of the same map feature from robot Ri

and R j respectively. We can formulate a zero constraint

(i.e., expressing the fact that the distance between both

observations must be zero) as in eq. (12), where ⊕ and

⊖ are the operators that represent the direct and inverse

transformation between reference frames, respectively.

h(x
El

Em
) = ⊖y

Ri

El
⊖ x

R0

Ri
⊕ x

R0

R j
⊕ y

R j

Em
= 0 (12)

These statistically joint consistent matches, from the

Mahalanobis distance perspective, subsequently con-

straint the augmented state vector xk in an EKF-update

step, where the linearization of eq. (12) is used, result-

ing in a reduced, reliable, lower-uncertainty set of inte-

grated sensor observations y′
Ek

, characterizing the com-

mon understanding of the formation environment but

also including all the unmatched observations.

Subsequently, a local traversability map ΓR0
in the

reference frame of the robot leader (thus leader-centric)

obtained from the set of integrated observations y′
Ek

is

required to compute a local path. The technique to ob-

tain the traversability map proposed in section 4 cannot

be applied in this case because the local traversability

map presents a very simple topological structure which

is not informative enough to be used by a local path

planner.

Instead, we build the local traversability map out of

this feature-based representation by projecting the fea-

tures into a 2D regular lattice graph where the ver-

tices are placed in the plane with a constant separa-

tion in both dimensions. Each vertex is connected only

with its four immediate neighbors. Thus, the length

of all the edges in the traversability map is constant

L(u, v) = δ, ∀(u, v) ∈ E. The probability, for each

edge of the graph, of being traversable is computed as

the probability that no feature is projected in the space

between the two vertices connected.

P(u, v) , (13)

1 − Prob





N⋃

n=1

y′En
is projected between u and v





Real time constraints refrain from the exact compu-

tation of the probability values given by eq. (13) even

for medium-scale environments. Thus, a sample-based

method similar to the one used for building the global

path is applied. However, instead of computing the best

deterministic path for each sample of the stochastic set

of observations y′
Ek

, we accumulate all the samples into

one graph. Then, for each edge, the probability of be-

ing traversable is defined as the proportion of samples

in which the edge is not traversed by any feature. As

example of this procedure, Fig. 5 shows the projection

of two segments of a stochastic map.

Figure 5: Sample traversability map obtained as the projection of a

stochastic segment-based representation into a grid-based represen-

tation. The marginal probability density functions of two features

(top and right) are shown together with the associated gray-scaled

traversability values. The lighter the cell is, the higher the traversabil-

ity probability between vertices. The marginal probability of finding

an obstacle is also depicted at the top and the right side.

As mentioned in section 3, computing the path of

minimum EL requires a high computational effort that

cannot be achieved at the required frequency for a

traversavility map like the grid obtained with the pro-

jection of the features. Instead, an A* path planning

technique over the grid is applied to find the best path

to the next waypoint. The cost function for the A* algo-

rithm, the weighted length (WL), is computed so that it

computes the very same best path that we would obtain

using the minimum EL algorithm.

Thus, we define WL by weighting the length of the

edges in the path p with the coefficients α̂p, which are

an approximation of the coefficients αp in equation (2).

WL(p) = α̂T
p · LE (14)

α̂(u,v)
p =






1
P(u,v)

if (u, v) ∈ p

0 if (u, v) < p
∀(u, v) ∈ E (15)

As we can see in equation (16), the minimum WL cri-

terion is a valid substitute of the minimum EL method

when the probabilities in the traversability map are ei-

ther close to 0 or to 1. In the local traversability maps,
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which are built from the features currently observed by

the formation, the uncertainties are of the order of the

sensor accuracy. In other words, the state of the edges

is known with a high confidence level. This fact implies

that, in eq. (5), one of the terms P(v0, v1) or 1−P(v0, v1)

will be close to 0, simplifying the computation. If all

the edges are very likely to be traversable, then the ex-

pected length and the weighted length of the path are

close to the total length of the path. On the other hand,

if it is very likely for an edge to be non-traversable

P(v0, v1) ∼ 0, then the EL of a path traversing this edge

is, in fact, the length of an alternative path. In addition

WL will tend to infinity as P(v0, v1) tends to 0, and thus,

an alternative path will be chosen.

p∗ = arg min
p

{EL(p)} = arg min
p

{WL(p)} (16)

if P(u,w)→ 0 or P(u,w)→ 1, ∀(u,w) ∈ E

To illustrate this assertion, Fig. 6 shows the com-

parison of the expected and the weighted lengths in the

example graph presented in Fig. 2a. In this example, all

the probabilities are set to 1.0 except for P(B,C). The

figure shows that for P(B,C) < 0.1, the preferred path is

A → C using both criteria. When P(B,C) > 0.727, the

path A→ B→ C minimizes the EL and the WL. When

the probability is not that close to 0 or 1, then the results

obtained from the two different criteria might disagree.
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Figure 6: Expected length and weighted length for the two possible

paths from vertex A to C in the example graph in Fig. 2a for different

values of P(B,C). Note that when the probability P(B,C) is close to 0

the path A → C presents the minimum expected length and weighted

length. On the other hand, when P(B,C) tends to 1, the path A→ B→

C minimizes the expected and the weighted lengths.

In addition to the local planning, to allow the forma-

tion replanning the global path so as to give more reac-

tivity to the formation, all the waypoints of the global

path not yet visited are considered as potential goals for

the local path planner. The formation selects the way-

point that is closer in terms of WL, allowing some of

the waypoints not to be visited if there is a shortcut in

the global path. As exploration is not desired during the

mission, local path planning is not allowed to search for

paths that traverses unobserved zones. Section 6 shows

simulated and real situations where the formation uses

replanning for shortcutting the global path.
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Navigation
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Follower 3
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Laser Scan

Navigation
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Local

Map

Navigation
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Cooperative
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Fusion

Local
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Global Path

Planning
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Riskmap

Figure 7: Overview of the hybrid centralized-distributed architecture

of the reported integrated system. The schema depicts modules, rela-

tions and data flows, and execution threads (gray-shaded boxes). Data

shared between different robots require the use of a communication

protocol.

5.3. Cooperative Navigation

Fig. 7 depicts the hybrid centralized-distributed ar-

chitecture of our integrated system with indication of

the different modules, data flows and execution threads.

Centralized execution refers to the robot leader thread

whilst distributed execution refers to the robot follow-

ers threads.

Additionally, Algorithm 2 presents the procedures

executed by the robot leader and the robot followers.

The leaderNavigationStrategy and moveLeader func-

tions track the local safe path that minimizes WL (eq.

14) thanks to the control strategy described in section 2.

Furthermore, functions followerNavigationStrategy and

moveFollower compute, distributively, the motion com-

mand for each robot follower in the formation. These

two functions are directly adapted from the strategy se-

lection and the leader and follower strategies defined by

[20]. Three different navigation strategies are defined

depending on the elements surrounding, as shown in

Figure 8 .

9



Algorithm 2 Leader and Followers Algorithms

procedure Leader(xR0 ,t0 , xR0 ,t f
,MB

F
)

π← computeGlobalPath(xR0 ,t0 , xR0 ,t f
,MB

F
)

while last waypoint of π not reached do

E ← gatherObservationsFromRobots(R1, ...,Rr)

〈xR, yE〉 ← poseTracking(E)

y′
E
← cooperativePerception(yE)

Γ← buildLocalTraversabilityMap(y′
E
)

sendIn f oToFollowers(xR)

πlocal ← computeLocalPath(Γ, π)

S leader ← leaderNavigationS trategy(xR, πlocal)

moveLeader(S leader)

end while

end procedure

procedure Follower(R0, Ri)

while R0 keeps moving do

Ei ← gatherObservationsFromS ensors(Ri)

sendObservationsToLeader(Ei)

xR ← getLocFromLeader(R0)

S f olloweri
← f ollowerNavigationS trategy(xR,Ei)

moveFollower(S f olloweri
)

end while

end procedure

Figure 8: Navigation strategies for the followers. Follower 1 uses for-

mation control with obstacle avoidance (Nearness Diagram), follower

2 uses only formation control and follower 3 temporarily uses a single

robot path planning strategy to avoid a complex obstacle.

The stability issues of the formation technique based

on spring-damper analogy were addressed more deeply

in previous papers, [20] and [22]. The set of navigation

strategies guarantees that the formation converges to the

stable configuration in open environments. The obsta-

cles temporarily push the formation out of the desired

shape, but the use of the correct strategy in each situa-

tion moves the robots back to their predefined position

when the obstacles are avoided.

In very complex environments with cluttered obsta-

cles, the robots switch to a single robot navigation strat-

egy, relaxing the formation constraints to avoid any

blocking situation. As soon as the complexity of the en-

vironment decreases, the formation constraints are re-

covered and the robots converges back to the desired

configuration.

6. Experimental Results

In this section we report both simulated and real ex-

periments obtained by a formation in the presence of

sensing, localization and mapping uncertainties as de-

scribed along the previous sections. We first illustrate,

from a simulation-based perspective (Player-Stage sim-

ulation environment): (i) the computation of global and

local optimal plans; (ii) the adaptability of the geomet-

ric structure of the robot formation to the dynamics of

the environment; and (iii) the benefits of cooperative

perception in replanning tasks. Then, in a real setting,

we show the performance of the complete integration

scheme in a navigation task commanded to a three-robot

formation in an indoor scenario.

6.1. Global Path Planning

In this section, we will use the stochastic map of the

office-like environment depicted in Fig. 3 to illustrate

the procedure to compute the minimum expected length

global path.

This map was constructed previously to the naviga-

tion execution and has been enriched with a topologi-

cal probabilistic graph, using the technique proposed in

section 4. Table 1 shows the corresponding lengths and

probabilities of the edges in this traversability map.

In Table 2 we show the evaluation of a subset of the

paths from the start (vertex 0) to the goal (vertex 5)

using different methods. The TL column is the total

length of the path assuming that all the edges are al-

ways traversable. The P column shows the probability

for a path to be traversable. The fourth column shows

the weighted distance WL of the path. This is the cost

function used in the cooperative local replanning (see

equation 14). Finally, the last column shows the eval-

uation of the paths according to their expected length

computed using the algorithm in Fig. 1.

The shortest path is the path C (TL), however it is

the path with lowest probability of success (P). On the
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Table 1: Distances (L) and probabilities (P) of the edges in the

traversability graph depicted in Fig. 3.

Edge P L Edge P L

(0, 1) 1.00 3.87 (9, 10) 0.97 3.82

(0, 6) 1.00 4.16 (9, 20) 1.00 6.48

(0, 11) 1.00 6.12 (9, 21) 1.00 4.77

(1, 2) 0.46 4.14 (9, 22) 1.00 7.38

(2, 3) 1.00 3.89 (11, 12) 0.99 3.98

(3, 4) 0.57 4.49 (12, 13) 1.00 13.55

(3, 8) 1.00 4.73 (12, 19) 1.00 5.17

(3, 22) 1.00 2.77 (13, 14) 0.99 4.31

(4, 5) 1.00 3.51 (14, 15) 1.00 4.06

(4, 22) 0.57 4.20 (14, 21) 0.91 6.36

(5, 10) 1.00 2.97 (15, 16) 1.00 4.92

(5, 18) 1.00 9.03 (16, 17) 1.00 4.33

(5, 24) 1.00 12.71 (17, 18) 1.00 4.36

(6, 7) 0.53 4.69 (19, 20) 0.77 3.86

(7, 8) 1.00 6.05 (20, 22) 1.00 6.66

(7, 23) 1.00 6.44 (23, 24) 0.89 3.81

contrary, the path G presents the highest probability of

success but it is longest one. The minimum expected

length path (EL) is the path E and, the path with min-

imum weighted length (WL), which is the approxima-

tion of the EL we use for local planning, is the path C.

This is due to the fact that WL is not considering the real

penalty of finding an alternative path in a graph which is

not very dense and where the uncertainty of traversabil-

ity is very high for some edges. So, the EL approach

represents the adequate cost to be applied in global path

planning.

Concerning computation time, finding the minimum

expected length path for this case took 4 minutes long

on a Intel CoreT M i7-3770 computer, which is reason-

able for an offline global path planning task.

Additionally, we have analyzed the sensitivity of the

minimum EL path to variations in the probabilities of

the edges computed using the method proposed in 4.

We run different monte-carlo simulations with truncated

normal distributions with mean the estimated probabil-

ities shown in Table 1 and with different standard devi-

ations. The use of different probability values changes

the expected length of the paths. However, as shown in

Table 3, with standard deviations up to 0.01 the best path

remains the same as using their initial estimation. With

larger values of σ, some replications result in a different

best path (0, 1, 2, 3, 4, 5), which has an expected length

very close to the optimal (0, 11, 12, 19, 20, 9, 10, 5) as

shown in Table 2. Thus, it is shown that changes in

the estimation of the probabilities do not affect to the

resulting minimum expected length path up to a reason-

able limit.

6.2. Formation Adaptability

Fig. 9 shows a typical office-like indoor environment

where a five-robot formation is commanded to navi-

gate from an initial location (labeled Start) towards a

final destination (labeled Goal). Thanks to the robot

formation integrated control scheme, the robots com-

pliantly maintained the user-defined geometric structure

(pentagon-shape in this case) along the way.

Figure 9: Five-robot formation adaptability to a simulated indoor en-

vironments. From the individual traces of the different vehicles we

observed that they compliantly maintained the user-defined geometric

structure (pentagon-shape in this case) whilst navigating through nar-

row and wide open spaces towards the commanded goal destination.

The system computes the safest global path (in the

traversability map associated to the navigation area) be-

tween the start and the goal locations that is dynami-

cally updated by cooperative replanning thanks to the

different observations of the individual vehicles. Note

that vehicles align to traverse the different doors whilst

they tend towards the commanded geometric shape in

wide-open areas. It is also remarkable that, even with

very narrow zones where robot have to wait for others to

navigate through doors, the formation never gets stuck

thanks to the use of the different navigation strategies.

6.3. Cooperative Replanning

Fig. 10 reports the behavior of the five-robot forma-

tion in an open-door event detected by one of the robot

followers and transmitted to the robot leader thanks

to the cooperative perception strategy reported above.

Initially, the global path planning algorithm drives the

robot formation from the initial location to the final lo-

cation (Figs. 9 and 10a) through the way-point xG1
.

Then, while navigating towards xG1
a shortest path to

the goal destination appears when the labeled door (Fig.
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Table 2: Comparison of different criteria to choose the best global path.

Path TL P WL EL

A: (0, 6, 7, 23, 24, 5) 31.82 0.47 37.45 43.60

B: (0, 6, 7, 8, 3, 4, 5) 27.64 0.30 36.18 44.32

C: (0, 1, 2, 3, 4, 5) 19.90 0.26 29.15 39.23

D: (0, 11, 12, 19, 20, 22, 4, 5) 33.52 0.43 38.88 45.92

E: (0, 11, 12, 19, 20, 9, 10, 5) 32.40 0.74 34.71 38.97

F: (0, 11, 12, 13, 14, 21, 9, 10, 5) 45.87 0.87 47.70 47.17

G: (0, 11, 12, 13, 14, 15, 16, 17, 18, 5) 54.67 0.98 55.75 54.61

Table 3: Sensitivity of the minimum expected length path for different

standard deviations of the probabilities of the edges.

Std. dev. (σ) % unchanged best path

0.01 100%

0.025 99.9%

0.1 70.8%

0.25 53.6%

9) becomes wide open but, unfortunately, this event oc-

curs outside the field of view of the robot leader. Never-

theless, cooperative replanning, thanks to the common

understanding of the navigation area (Fig. 10b) allows

the correction of the previously planned path profiting

the robot formation from the short-cut to the goal.

Note that the replanning to the new waypoint is pos-

sible because the new path traverses observed zones.

A video with the complete execution of this simula-

tion is available 1.

6.4. Localization consistency

Regarding the localization, we have measured the

consistency of the algorithm proposed in section 5.1 in

terms of the NEES which, compared to a chi-square

distribution, provides a statistical test to assess the fil-

ter consistency. Fig. 11 shows the consistency ratio

NEES/χ2
r,1−α

(r = dim(xRk
) degrees of freedom with

significance level α = 0.05). Most of the time, the con-

sistency is under the required threshold. The maximum

near t = 50 is produced by the fact that the formation is

entering in a big room where their range-limited sensors

are not able to find as many features as in other rooms in

the scenario. Furthermore, at certain points during the

execution of this simulation (see trajectory in Fig. 9)

the formation has to reorganize itself to head to the next

subgoal and to adapt its shape to the environment con-

straints, involving high rotations on the robots, which,

1http://webdiis.unizar.es/u/urcola/videos/

5-robots.avi

(a) Leader view

XG1
XG2

(b) Cooperative view

(c) Follower 1 view (d) Follower 2 view

(e) Follower 3 view (f) Follower 4 view

Figure 10: Cooperative replanning towards the goal destination xG2
.

The figure shows the integrated field of view in the reference frame of

the leader (10b) and the different individual perspective of each robot

in the formation. Fig. 10a shows the erroneous path planned from

the perspective of the robot leader in the absence of cooperation with

other team members.

as explained in Sec. 5.1, introduce high non-linear er-

rors in the estimation affecting slightly and for short pe-
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riods the consistency. However, the algorithm is able to

recover from this situation and the estimation remains

consistent during the most part of the simulation.
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Figure 11: Consistency ratio NEES/χ2
r,1−α

obtained in the simulation

using the measurement differencing based EKF implementation. Con-

sistency is achieved when the ratio is ≤ 1.

6.5. Experiments in Real Scenarios

Through the real experiments we want to test the dif-

ferent aspects of the proposed system, such as coop-

erative localization and navigation of the robot forma-

tion and global path planning and cooperative replan-

ning under uncertainty. However, it is not easy to find a

challenging scenario to test all these aspects simultane-

ously. Instead, we make use of two different scenarios

to: (i) test the global path planner given a stochastic

map of a real environment and (ii) test the on-line per-

formance of the proposed system and how the formation

copes with changes in the environment. We have ex-

perimented with a three-robot Pioneer 3-AT formation

equipped with on-wheel encoders and SICK LMS-200

laser rangefinders with a 180-deg field of view. Com-

munication between the vehicles is achieved by a dedi-

cated channel using a real time wireless multi-hop pro-

tocol [36], which includes communication queues to

avoid synchronization failures.

The hybrid centralized-distributed implementation of

the complete system reported computation times of the

order of the laser scan cycle (approx. 4.5 Hz) where a

maximum of 100 samples have been used to compute

the traversability maps during cooperative replanning.

Table 4 shows the divergence and consistency measure-

ments for different number of samples. The values for

100 samples are clearly better than the ones obtained

for 10 samples but the improvement in using 1000 sam-

ples is very small. Thus, using 100 samples seems to be

Table 4: Results of the analysis of the sample size. KL-divergence is

the median of the divergences measured in nats and consistency is the

percentage of consistent sampling

Samples 10 100 1000

KL-divergence 46.51 34.71 33.65

Consistency 53.64 98.38 99.86

a good compromise between acceptable approximation

and computation costs.

In the first experiment we test the global path planner

in the medium-size office-like environment depicted in

Fig. 12. Using the Monte Carlo technique explained

in section 4 we extract the traversability graph from the

stochastic map of the environment whose edges are la-

beled according to Table 5.

Figure 12: Global path planning. The algorithm favors the longer but

more probable path against the shortest path due to the high uncer-

tainty area on the middle of the corridor (detail enlarged on the left of

the figure).

Table 5: Distances (m) and probabilities corresponding to the

traversability graph of the real experiment depicted in Fig. 12.

Edge(u, v) P(u, v) L(u, v)

(0, 1) 1.0 33.8

(1, 2) 1.0 9.6

(2, 3) 1.0 29.3

(2, 5) 1.0 15.45

(3, 4) 1.0 39.3

(4, 7) 1.0 29.1

(5, 6) 0.1 3.1

(6, 7) 1.0 20.8

The global path planner have been executed to com-

pute the minimum expected length path from the initial
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location of the robot formation (vertex 0) towards the

final destination (vertex 7). The algorithm selects the

path (0, 1, 2, 3, 4, 7) as the one with minimum expected

length (EL = 141.1 m) in contrast to the shorter but less

probable path (0, 1, 2, 5, 6, 7) with an expected length of

163.075 m. This shorter path passes through an area

with high risk of being non traversable (see partial map

enlarged on the left of the figure) due to the presence of

clutter in the corridor. The probability of this area be-

ing traversable is encoded in Edge(5, 6). The boundary

point for this value is P(5, 6) = 0.346. If it were higher,

the shortest path would have been chosen.

Global replanning. In case the selected path is found

non-traversable, i.e., the box is actually blocking the

corridor, the formation must replan a new global path

to the goal. Using the information computed during the

initial path planning, which is kept thanks to memoiza-

tion, the formation can select the optimal path with the

current state of knowledge (the corridor with the box is

non-traversable).

In the second experiment, we address the problem of

the cooperative localization, perception, navigation and

replanning in a changing environment. As illustrated

in Fig. 13 and Fig. 14, a three-robot triangular-shaped

formation is commanded to navigate from xG1
towards

xG5
. During the map building process, the door labeled

in the figure was closed and this has been reflected in

the a priori stochastic map provided to the formation.

Consequently, the global planner computes a path from

xG1
towards xG5

via the sequence of ordered waypoints

shown in the figure.

During the mission execution, this door, outside of

the robot leader’s field of view, is opened and observed

by the robot followers, therefore the reported coopera-

tive strategy replans the path towards the goal destina-

tion skipping the waypoints xG3
and xG4

. This video 2

shows the complete execution of the mission in which

the real-time capabilities of the reported strategy and

the adaptability of the formation to the new scenario are

demonstrated.

7. Conclusions

This paper has reported an tightly integrated real-time

system for robot formations in the presence of sens-

ing, localization and mapping uncertainties. A expected

length of global paths for the robot leader is minimized,

2http://webdiis.unizar.es/u/urcola/videos/

ada-byron.avi

10 20 30 40

−20

−15

−10

−5

0

5

10

15

x[m]

Start

X
G
5Door

X
G
4

X
G
3

X
G
2

X
G
1

Figure 13: Cooperative replanning scenario. A three-robot triangular-

shaped formation (solid red) is commanded from xG1
towards xG5

via

the sequence of ordered waypoints (solid blue line). During the exe-

cution, a door (labeled) outside of the field of view of the robot leader

is opened and observed by the robot followers (dotted red triangle),

therefore the reported cooperative strategy replans the path towards

the goal destination (dashed blue line) skipping the waypoints xG3

and xG4
.

XG5 XG4

XG3

(a) Planning towards XG3
.

XG5 XG4

XG3

(b) Planning towards XG5
.

(c) Moving along the corridor. (d) Heading to the opened door.

Figure 14: Cooperative replanning. The leader is able to replan a

better path through the opened door thanks to the observations of the

other robots in the formation.

which considers the probability of choosing a way in

which the robots have to come back in the event of find-

ing non traversable zones whilst navigating, leading to

longer paths. The selected way is tracked by the for-

mation thanks to a cooperative sensor-based replanning

technique that dynamically adapts the robot formation

structure to the complexity or changes of the environ-

14



ment whilst avoiding obstacles. Accurate pose tracking

of the robot formation has been achieved by a mathe-

matically sound strategy that paired sensor observations

with map features building consistent maps derived

from a previously known stochastic model of the nav-

igation area. Experimental results, both in simulation

and in realistic medium-size office-like settings, have

illustrated the performance of the described approach

by using a hybrid, centralized-distributed, architecture

with wireless communication capabilities achieving a

4.5 Hz cycle-time for a three-robot triangular-shaped

formation.

As future work, a deeper analysis of the minimum ex-

pected length algorithm would improve its performance,

which grows exponentially with the number of edges in

the graph. Its potential extension to other scenarios in

which the density of obstacles or people can change de-

pending on the time or along the days (i.e., traffic flows,

hospitals, offices...) is also being considered, where the

expected length will depend on that density. Future

work should search for further distributed approaches,

thus reducing the frequency of synchronization among

the vehicles and increasing the modularity of the sys-

tem, but maintaining the accuracy and real-time de-

cision making capabilities of the reported hybrid ap-

proach. Also, occasional interruptions in the communi-

cations between the robot followers and the robot leader

should be considered together with the mathematical

sound treatment of out-of-sequence interactions.

Finally, regarding formation control, it would be in-

teresting as well to let the robots change the role inside

the formation so as to minimize the forced maneuvers

when sudden changes of goals occur.
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Appendix A. Developed example for expected

length computation

In Fig. A.15, we develop the score computation of

the two alternative paths in the toy example shown in

Fig. 2a using Algorithm 1.

Appendix B. Derivation of the pseudo-measurement

equation for pose tracking

To avoid time latency, we rearrange eq. (6) following

[31] as,

xRk−1
≃ J−1

k−1xRk
− J−1

k−1vk−1 (B.1)

Substituting eqs. (7), (8) and (B.1) into eq. (11) we

obtain,

rk ≃ H∗kxk + wk (B.2)

where

H∗k =
(

HRk
− ΛkHRk−1

F−1
k−1

,HEk

)

(B.3)

and the white noise sequence wk, with covariance ma-

trix Pwk
, is given by,

wk = ΛkHRk−1
F−1

k−1vk−1 − ΛkHEk−1
yEk−1

+GFk
nk (B.4)

and,

Λk = GkFCk
GT
Fk−1

(GFk−1
GT
Fk−1

)−1 (B.5)

which cancels out the dependency of rk on yFk−1
(see

[28] for the original derivation).

Then, the EKF update equations provide estimates for

the augmented state vector xk and its associated covari-

ance matrix Pk in the colored noise setting using the fil-

ter gain given by,

Kk , Pxkrk
P−1

rk

= (Pk|k−1H∗T
k
+ Ck)·

(H∗
k
Pk|k−1H∗T

k
+ Pwk

+H∗
k
Ck + CT

k
H∗T

k
)−1

(B.6)

with Pk|k−1 the predicted covariance matrix,

Pk|k−1 = blkdiag
(

Fk−1PRk−1
FT

k−1 +Qk−1,PEk

)

and Ck, the correlation term between vk−1 and wk due

to the constraint imposed by eq. (B.4), completed with

zeros to fit the dimensions of H∗
k
,

Ck = E[vk−1wT
k ] = Qk−1(ΛkHRk−1

F−1
k−1)T
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