
Generation of Probabilistic Graphs for Path Planning
from Stochastic Maps

P. Urcola, M. T. Lázaro, J. A. Castellanos and L. Montano ∗
∗{urcola, mtlazaro, jacaste, montano}@unizar.es

Instituto de Investigación en Ingenierı́a de Aragón
Universidad de Zaragoza

Abstract—This paper presents a method to automatically
generate probabilistic graphs for path planning out of stochastic
maps. A sample based technique is used to generate a set of
paths from which a graph structure of the map is built. The
nodes of the graph represent places in the map and the edges
the paths between those places, which are labelled with the cost
of traversing the edge and the probability of being navigable.
We provide results of the proposed method using different types
of stochastic maps such as feature-based maps, occupancy grid
maps and pose graph maps.

I. INTRODUCTION

A graph is a very versatile and compact representation
to keep the structure of a scenario. There are plenty of
robotics applications such as path planning, localisation and
task allocation where robust methods have been developed
based on the prior knowledge of a graph representing the
environment.

For path planning purposes, the problem of finding the
best path between two vertexes has been extensively studied,
developing very efficient algorithms such as [1] and [2]. The
complexity of these algorithms increases with the size and
density of the graphs used, so it is important to have a
representative graph of the environment as simple as possible.

One commonly used representation of the environment
are the occupancy grid maps. There have been approaches to
solve the problem of obtaining graph representations from this
kind of maps. For instance [3] propose a method to obtain
a topological map from an occupancy grid by partitioning
the free space using critical points and obtaining the Voronoi
diagram to compute the connections between the partitions.
Although the initial occupancy grid is labelled with probabil-
istic information, this information is not incorporated into the
topological representation.

In [4] and [5], they apply learning techniques to classify
different regions from the range sensor readings which, in the
first case, are simulated from a given grid map. The use of
this technique is limited to structured indoor scenarios, where
typical elements such as corridors, rooms and doorways can
be identified.

In [6], the authors consider a fuzzy occupancy grid map
as an image and obtain a topological representation of the
open spaces and their connections by applying morphological
operators. In this approach, the probabilistic information in
the original map is transferred to the graph by labelling the

vertexes and the edges of the map with the values of the cells
they represent. However, the method assumes independent
distribution probability of each cell in the grid map which
is not true in general.

Pose graph techniques for SLAM, very popular in the last
years, are able to directly provide a graph representation of
the environment. The main weakness of these graphs is that
the connections between nodes are limited to the trajectories
executed by the sensor during the map building phase. Thus, if
they are used for path planning, the robot is strongly limited to
the trajectories previously traversed. In addition, the resulting
representation of the scenario is not uniform as there are high
density of vertexes in the places that have been revisited several
times meanwhile there are no vertexes in zones not visited. In
[7], the authors propose a technique to address these limitations
by extending the graphs to unvisited zones. However, the
additional vertexes and edges added to the graph are assumed
to be fully navigable, but they neither consider the obstacles
during the graph extension, nor provide an estimation of the
traversability. This assumption is critical for path planning
because it relies on the traversability of the edges or, in case
of probabilistic information, uses the traversability values for
computing the optimal path.

The scenario considered in this paper is a navigation
mission where the robot is given a previous stochastic map
of the environment and the starting and the goal localisation
of the mission in the map. The robot has to plan an optimal
path between these places which will be used for navigation.

We propose a sample based method to obtain probabilistic
graphs out of stochastic maps. The intrinsic uncertainty of the
map is transmitted to the graph generated by labelling the
edges with the probabilities of being traversable. Moreover,
the algorithm has been designed in such a generic way that it
can be applied to a very diverse types of stochastic maps such
as feature-based, occupancy grids and pose graphs with few
requirements.

II. PROBABILISTIC GRAPHS

Graphs are a common well known abstraction to represent
the environment, where the nodes correspond to places in the
space and edges represent the possibility of travelling from
one place to another. In deterministic graphs, the nodes are
labelled with the coordinates in the space of the place they
represent and the edges with the cost of moving from one
node to another.9781-1-4673-9163-4/15/$31.00 c© 2015 IEEE

When considering stochastic maps, the information about
the space is not deterministic. Depending on the map, un-
certainty is associated with different elements. For instance,
feature maps represent the position of the features with a
probability distribution; occupancy grid maps represent the
probability of the presence of obstacles in each cell; pose
graphs assume that there is uncertainty in the poses. In any
case, the stochastic map provides a probability distribution of
the obstacles (non-navigable elements) in the space.

The uncertainty of these maps must be represented into the
graph. This is done by extending the labelling of the edges in
the graph so that the labels are no longer just cost values but
also probability distributions.

III. GRAPH GENERATION

To create a graph useful for path planning purposes, it is
interesting to capture the structure of the scenario with all the
possible interconnections between places so that a full set of
possible paths is available for planning.

The idea behind the technique we propose is to analyse
a set of valid paths across the scenario to extract the places
and the connections among these places. Once the connectivity
of the graph is computed, the labelling process takes place.
Finally, due to the fact that the execution time of the path
planning algorithms increases with the size and complexity of
the graph, a simplification process is proposed to reduce the
number of places and connections.

All the processes are detailed in the following subsections.
Along the explanation, we guide the reader using as example
a segment-based stochastic map of an office-like environment
shown in Fig. 1. Note how blurred segments correspond to
features with higher uncertainty level.

A. Path Generation

First of all, we need a set of possible paths in the scenario.
In a navigation mission, where only an a priori stochastic map,
a starting point and a goal point are provided, we generate the
set of paths from the starting point to the goal by sampling
the map and computing the best path in each sample.

Due to the uncertainty of the map, obstacles of each sample
are not placed in the same position with respect to the start
and the goal points. This fact can block some zones as the
width is not enough for the robot considered for the mission,
leading to different optimal paths from start to goal.

Function GENERATEPATH shows the pseudo-code to gen-
erate one path.

function GENERATEPATH(map, start, goal)
mapSample ← GENERATERANDOMSAMPLE(map)
gridMap ← PROJECTMAP(mapSample)
CSpace ← COMPUTECSPACE(gridMap, robotSize)
return COMPUTESHORTESTPATH(CSpace, start, goal)

end function

We use a grid based A* algorithm to compute the optimal
path between start and goal so the sample of the stochastic map
must be first projected into a grid. This projection consists in
setting to OCCUPIED the cells that represent the space where

there are obstacles in the sample of the map. The configuration
space (CSPACE) is computed from the binary occupancy grid
and the size of the robot. Assuming a circular shape, it
corresponds to a morphological operation of dilation over the
grid. Then, the A* algorithm computes the shortest path using
only not OCCUPIED cells in the c-space. The heuristic function
used is the Manhattan distance assuming no obstacles. The
path is defined as an ordered list of the cells traversed.

The set of paths provides a rich information about the
connectivity of the open space but there are many of them
that represent the same route to the goal except for local
variations. To reduce the number of paths with no loss of
important information, we group the paths into equivalence
classes.

B. Path Clustering

The classification of the paths is done by defining homo-
topic groups. In other words, two paths belong to the same
homotopic group if there is a transformation in the free space
that deforms one into the other.

Instead of verifying the homotopy property for every pair
of paths, we characterise it by defining Dpath (1), a distance
function between two paths, where pk (qk) is the k-th equally
distributed cell along the path p (q).

Dpath(p, q) =
1

m

m∑
k=1

‖pk − qk‖2 , m ≥ 2 (1)

In simple words, the distance between two paths is defined
as the average distance between m pairs of cells equally
distributed along the paths.

With this definition of distance between pairs of paths,
we use an agglomerative hierarchical clustering (see [8] for
details) to merge similar paths into the same cluster. The
distance between two clusters of paths is defined as Dcluster

(2), the maximum distance between any pair of paths, one from
each cluster ci and cj , which corresponds to a complete-link
agglomerative hierarchical clustering algorithm.

Dcluster(ci, cj) = max
∀p∈ci, ∀q∈cj

Dpath(p, q) (2)

The clustering algorithm (CLUSTERPATHS) keeps merging
clusters that are close enough to be considered one until there
are no more clusters to merge. This stop condition may happen
because all the paths have been merged into one cluster or
because the clusters are too far away one to each other to
merge them.

Other clustering methods for trajectories like [9] require all
the trajectories to have the same length, which does not apply
in our case.

Figure 1 shows the set of random paths obtained between
start and goal classified into different clusters using the method
described above. From these clustered paths, we obtain a set of
candidate vertexes for the graph, using the process explained
in the next subsection.

function CLUSTERPATHS(paths, α)
clusters ← paths
(a, b) ← argmin

ci,cj∈ clusters
Dcluster(ci, cj)

while Dcluster(a, b) < α do
c ← a ∪ b
REMOVE(clusters, (a, b))
INSERT(clusters, c)
(a, b) ← argmin

ci,cj∈ clusters
Dcluster(ci, cj)

end while
return clusters

end function

Figure 1. The different clusters of paths obtained from all the sampled
paths. Different colours represent different clusters. Blurred walls represent
the uncertainty of the stochastic map in the location of the obstacles.

C. Vertex Generation

To obtain vertexes of the graph, we select m points equally
distributed along the paths (GENERATEVERTEXES). From the
path clustering process, we know that the paths in the same
class are close to each other and thus, the vertexes selected
along them will also be close to the others. We use this fact
to cluster together these vertexes that are expected to be close
and to select the centroid of each group as the representative
of the class and candidate to be a vertex in the final graph.

Figure 2 shows the initial set of candidate vertexes of our
example and how they are aggregated into clusters inside the
same path class.

function GENERATEVERTEXES(clusters, m)
vertexes ← ∅
for c ∈ clusters do

p ← REPRESENTATIVE(c)
for k ∈ 0 . . .m do

INSERT(vertexes, pk)
end for

end for
return vertexes

end function

However, different classes of paths share some subpaths,
resulting in vertexes that are too close each other. As these
duplicated vertexes provide no extra information to the graph,
we simplify the vertexes (SIMPLIFYVERTEXES) using the
same hierarchical clustering process used for paths with the

Figure 2. Initial set of vertexes defined along the paths. Vertexes of paths in
the same cluster are also clustered.

corresponding Euclidean norm for vertexes. The REP function
of a cluster of vertexes returns the closest vertex to the centroid
as the representative of the cluster.

function SIMPLIFYVERTEXES(vertexes, β)
clusters ← vertexes
(a, b) ← argmin

u,v∈ clusters
‖REP(u)− REP(v)‖2

while ‖REP(a)− REP(b)‖2 < β do
c ← a ∪ b
REMOVE(clusters, (a, b))
INSERT(clusters, c)
(a, b) ← argmin

u,v∈ clusters
‖REP(u)− REP(v)‖2

end while
return clusters

end function

Figure 3 shows the final set of vertexes for the graph, after
simplifying the vertexes. For instance, vertex 29 is the result of
clustering four initial vertexes that belonged to the red, pink,
green and purple path clusters.

In the next subsection, we will define the connectivity of
the graph by creating the edges connecting the vertexes.

D. Edge Generation

The interconnection of the vertexes using edges defines
the structure and complexity of the graph. We know that two
consecutive vertexes that come from the same path class are
connected. But, for path planning purposes, it is interesting to
have as much interconnections as possible so that there is a
bigger set of paths to select the optimal in each case, even if
they are not in the initial set of paths computed.

So, to increase the inherited connectivity from the paths
sampled, we select as candidate edges all the possible intercon-
nections between vertexes that are closer than a given radius
(GENERATEEDGES).

This first set of edge candidates does not represent the
connectivity of the environment because the distance between
vertexes is measured in the whole space, not only in the free
space. However, this set is an upper bound because in the best
case, where all the space is free, all the edges would have the
estimated distance.

Figure 3. Final set of vertexes after the simplification of the initial clustering.
To simplify the figure we have only plotted a representative path of each class.

function GENERATEEDGES(vertexes, r)
edges ← ∅
for u, v ∈ vertexes do

if ‖u− v‖2 < r then
INSERT(edges, (u,v))

end if
end for
return edges

end function

Computing the real distance between two vertexes along
an edge is considered during the labelling process.

E. Labelling the Graph

As mentioned above, a probabilistic graph that tries to
extract the structure of a stochastic map needs information
about the coordinates in the space of the places represented
by the vertexes as well as the distance and traversability
probability of the edges in the free space.

Thus, vertexes are directly labelled with their location
in the map space. Instead, labelling the edges is not trivial
because the shortest path between two vertexes can be different
depending on the realisation of the stochastic map.

So, resembling the process of path generation proposed
above, we sample the stochastic map and, for each sampled
instance, we compute the shortest paths between the two
vertexes of every edge in the graph. A new sampling process
is required for labelling the edges because not all of them
are included in the paths previously sampled. Some of them
are edges connecting vertexes in different paths and clusters
and thus we have no information about the possible paths
connecting them directly. With all the n paths sampled for
an edge, we classify them using the very same technique
described before, in subsection III-B. Then, we select the class
with shortest paths as the one that actually represents the edge.
The length of the edge is the average length of the paths in the
selected class and the probability for that edge to be navigable
is the ratio between the number of paths in the selected class
over the total number of sampled paths. This process is detailed
in function LABELEDGES, where len(p) is the number of cells
in the path p. As example, Fig. 4 shows the resulting classified
paths for an edge.

function LABELEDGES(map, edges, n)
for (u, v) ∈ edges do

paths = ∅
for i ∈ 1, · · · , n do

p ← GENERATEPATH(map, u, v)
INSERT(paths, p)

end for
clusters ← CLUSTERPATHS(paths, α)
c = argmin

cj∈clusters

1
|cj |

∑
p∈cj

len(p)

length(u, v) ← 1
|c|

∑
p∈c

len(p)

probability(u, v) ← |c|
n

end for
return edges

end function

23

25

Figure 4. Labelling process for the edge (23, 25). The number of paths in
the shortest class is used to estimate the probability of the edge.

Figure 5. All the edges obtained after labelling process. In light grey, a
sample of the selected class of paths for each edge is depicted to represent
the connection between two vertexes.

Note that some vertexes that are close to obstacles such
as number 7, 12 and 19 in Fig. 3, due to uncertainty, might
not be in the free space for some samples during the labelling
process. This fact reduces the probability of every edge that
connects these vertexes.

Figure 5 shows all the edges after the labelling process. As
mentioned above, the set of edges can be simplified because
the candidate edges where chosen using all the space, not only

the free space. This leads to overlapping edges in the resulting
graph which can be simplified by removing the redundant
edges (SIMPLIFYEDGES).

An edge (u, v) is said to be redundant if there exists a
vertex w close enough to the shortest path between u and v
and there exists a chain of edges in the graph not using the edge
(u, v) that connects the vertexes u, w and v, w respectively.
A path p is close to a vertex w if ∃i ∈ 1, · · · , len(p) such
that ‖pi − w‖2 < γ, given γ a threshold distance. This is
exemplified in Fig. 6.

function SIMPLIFYEDGES(edges, γ)
for e ∈ edges do

if ISREDUNDANT(e, γ) then
REMOVE(edges, e)

end if
end for
return edges

end function

For instance, in Fig. 5, there are several edges depicted
between vertexes 10 and 11 which actually correspond to edges
from 11 to 16, 19 and 28 which are forced to first pass through
the vertex 10 as it is placed in the shortest path on the free
space between those pairs of vertexes. Thus, edges (11, 16),
(11, 19) and (11, 28) are redundant and can be removed as
they can be built up by joining the edge (10, 11) with (10, 16),
(10, 19) and (10, 28), respectively.

Figure 7 shows the graph after removing all the redundant
edges. Notice how after this process the graph has been en-
riched with new edges like (10, 19) and (6, 20) connecting the
original set of sampled paths which increase the connectivity
of the graph and provides short-cuts between close vertexes.

Further simplification of the graph can take place. For
instance, replacing cliques, sets of vertexes fully connected
with edges in an open zone, i.e. with probability 1, by only
one representative vertex placed in the centroid. For example,
vertexes 1, 3 and 5 in Fig. 7 are close enough and fully
connected in a open area so they could be simplified. Although
this and other simplifications reduce the size of the graph and
thus its complexity, the benefits of this simplification of the
graphs are application dependant and thus out of the scope of
this paper.

IV. THE FULL ALGORITHM

Although we have presented the process to obtain a probab-
ilistic graph representation of a scenario out of a feature-based
stochastic map, the design is open and generic so different
components can be used by only keeping an interface between
them.

Here we present the complete algorithm of the process
(GENERATEGRAPH). The inputs are the stochastic map, the
starting point of the mission and the goal point. The only
requirement for the stochastic map is to be able to be sampled
and projected into a binary occupancy grid. These sampling
and projection of the map are used only during the path
generation and the graph labelling processes. The algorithm
also depends on a set of intuitive parameters which are
summarized below.

a

b

Figure 6. Redundant edge simplification. Dashed blue and red edges are
already represented by the individual black edges. They can be removed if
the distances a and b are lower than γ.

Figure 7. Simplified graph after removing the redundant edges.

function GENERATEGRAPH(map, start, goal)
paths = ∅
for i ∈ 1, · · · , N do

new path ← GENERATEPATH(map, start, goal)
INSERT(paths, new path)

end for
clusters ← CLUSTERPATHS(paths, α)
initial vertexes = GENERATEVERTEXES(clusters, m)
vertexes = SIMPLIFYVERTEXES(initial vertexes, β)
initial edges = GENERATEEDGES(vertexes, r)
labelled edges = LABELEDGES(map, initial edges, n)
edges = SIMPLIFYEDGES(labelled edges, γ)
return GRAPH(vertexes, edges)

end function

A. Parametrisation of the algorithm

These are the parameters used in the algorithms:

N Number of samples of the stochastic map used to
compute the set of paths

n Number of samples used to label each edge

m Number of vertexes selected in each path

α Minimum distance between two paths in different
classes

β Minimum distance between two vertexes

γ Maximum distance to determine if a path passes
through a vertex

r Maximum distance between two connected vertexes

The first two parameters N and n are the number of
samples used to obtain the paths and to label the edges
respectively. As for other sample-based algorithms, the higher
these values are the better the result resembles the original
probability distribution. The chosen values should trade off

the computational cost which increases with the number of
samples. The KullbackLeibler divergence can be used to de-
termine the compromise between improvement of the sampling
and the computational cost. For instance, Table I shows the
divergence and consistency measurements for different number
of samples for the feature-based stochastic map.

Table I. RESULTS OF THE ANALYSIS OF THE SAMPLE SIZE

Samples 10 100 1000
Median of the KL-divergence (nats) 46.512 34.705 33.648
Percentage of consistent sampling 53.639 98.379 99.862

The values for 100 samples are clearly better than the
ones obtained for 10 samples but the improvement in using
1000 samples is very small. Thus, using 100 samples seems
to be a good compromise between acceptable approximation
and computation costs.

The parameters m and α control the classification of the
paths. The number of clusters increases as m increases and
α decreases. m sets the detail used in the path classification
process. α sets the size of the smallest obstacle in the environ-
ment that causes a deviation in the paths that causes the paths
to be clustered in different classes.

The last three parameters determine the type of graph
that will be produced in terms of number of vertexes and
connectivity between them. The parameters β and r control
the size and connectivity of the graph. Depending on the
application, there is a trade off between the complexity of the
graph and the detail in the representation of the environment.
Increasing β reduces the number of vertexes in the graph while
increasing r the degree of the vertexes is increased.

The parameter γ tunes the simplification of redundant
edges. The bigger it is, the more redundant edges will be
considered.

V. RESULTS

In this section we show the results of applying the tech-
nique presented in this paper to different types of stochastic
maps. In the previous sections, we have shown the results of
the proposed method on a feature-based map, where features
are 2D segments. Now, we provide the graphs obtained from
probabilistic occupancy grid maps and from pose graphs.

In the first experiment, we apply our technique to an
occupancy grid map obtained from [10] which represents the
SFU campus. The original map has no uncertainty, so we
applied a Gaussian filter to add some artificial uncertainty.
Figure 8 shows the paths obtained from the samples after
classification. To obtain a realization of the map we sample
independently every cell with a uniform distribution and using
the value of uncertainty as a threshold to decide if the cell is
free or occupied.

After running our algorithm with the parameters n =
20,m = 100, α = 5, β = 20, γ = 10 and r = 60, the resulting
graph is depicted in Fig. 9.

Note that the graph is more complex than the one ob-
tained in the feature-based map scenario. This is due to the
different parametrisation used and shows that the output of
our algorithm can be adapted to the needs of the scenario.

Figure 8. 1000 paths sampled from the occupancy grid map of SFU and
clustered in 22 classes.

Figure 9. Resulting graph of the SFU scenario with 228 vertexes and 263
edges.

Figure 10. Stochastic map obtained by using a pose graph SLAM technique
with the MIT CSAIL dataset.

It is also clear that our method, due to the fact that the set
of paths are the shortest path between the starting and goal
points on every sample, have left part of the scenario with no
representation on the resulting graph.

In the second experiment, we apply our technique to the
well-known map of the MIT CSAIL building, (raw data was
obtained from the Robotics Data Set Repository (Radish) [11]).
Previously to the navigation mission, we have obtained a pose
graph map of the environment, shown in Fig. 10 where each
graph node contains a robot position and an associated laser
scan acquired at that position.

We have sampled the joint covariance matrix of all graph

Figure 11. The set of classified paths obtained from all the sampled maps.
A total of 4 clusters were obtained, represented in different colours.

Figure 12. The probabilistic graph for path planning obtained out of the pose
graph of the MIT CSAIL dataset with 31 nodes and 40 edges.

nodes and projected their corresponding scans into a grid, used
as input data to the A* algorithm to obtain the set of possible
paths between the start and goal positions. Figure 11 shows
the set of paths sampled and clustered.

Finally, Fig. 12 shows the resulting probabilistic graph
for path planning by applying the proposed algorithm with
parameters n = 20,m = 10, α = 20, β = 100, γ = 20 and
r = 200.

We can observe how a possible path connecting the starting
and goal position traversing a non-explored area is considered
(green path of Fig. 11). Although this path has very low
probability (it only appeared in 1 out of 1000 samples), it
is represented in the final graph since it would be a plausible
option when the rest of the paths were non-traversable.

VI. CONCLUSIONS

We have proposed a technique to obtain a graph rep-
resentation of the environment from the information in a
stochastic map. The method is sample-based and it is able

to transmit the probabilistic information in the original map to
the resulting graph by labelling the edges with the expected
distance between neighbour vertexes and the probability of
each edge of being navigable.

Due to its generic nature, the method is able to use any
type of stochastic map that is able to be sampled and projected
into a binary occupancy grid. Moreover, the flexibility in the
parametrisation allows to obtain a great diversity of graphs
with different sizes and connectivity degrees. The technique
has been tested with a feature-based, an occupancy grid map
and a pose graph map.

In its current form, the graph obtained is limited by the
variety of shortest paths obtained from the start to the goal
point in each sample. This limitation could be avoided by
selecting an initial set of points to sample paths between them,
but it is not trivial to select a good set of points to ensure that
the structure of the whole map is captured in the graph. This
will be the main focus of the future works on this topic as
well as the reduction or simplification of the parametrisation
to facilitate the usage.

ACKNOWLEDGEMENTS

This work has been partially funded by Grupo DGA
T04-FSE and MINECO-FEDER project DPI2012-36070. The
authors would like to sincerely thank to our colleague Marta
Salas for her suggestions in path clustering.

REFERENCES

[1] E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959. [Online].
Available: http://dx.doi.org/10.1007/BF01386390

[2] D. Ferguson, M. Likhachev, and A. Stentz, “A guide to heuristic-
based path planning,” in Proceedings of the International Workshop
on Planning under Uncertainty for Autonomous Systems, International
Conference on Automated Planning and Scheduling, 2005, pp. 9–18.

[3] S. Thrun and A. Bücken, “Integrating grid-based and topological maps
for mobile robot navigation,” in Proceedings of the National Conference
on Artificial Intelligence. AAAI, 1996, pp. 944–951.

[4] O. Mozos and W. Burgard, “Supervised learning of topological maps
using semantic information extracted from range data,” in Proceedings
of the International Conference on Intelligent Robots and Systems,
Beijing, China, Oct 2006, pp. 2772–2777.

[5] A. Romeo and L. Montano, “Environment understanding: Robust
feature extraction from range sensor data,” in Proceedings of the
International Conference on Intelligent Robots and System, Beijing,
China, Oct 2006, pp. 3337–3343.

[6] E. Fabrizi and A. Saffiotti, “Extracting topology-based maps from
gridmaps,” in Proceedings of the International conference on Robotics
and Automation. San Francisco, USA: IEEE, April 2000, pp. 2972–
2978.

[7] R. Valencia, M. Morta, J. Andrade-Cetto, and J. M. Porta, “Planning
reliable paths with pose slam,” Transactions On Robotics, vol. 29, no. 4,
August 2013.

[8] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A survey,”
ACM Computing Surveys, vol. 31, no. 3, September 1999.

[9] G. Tanzmeister, D. Wollherr, and M. Buss, “Environment-based traject-
ory clustering to extract principal directions for autonomous vehicles,”
in Proceedings of the International Conference on Itelligent Robots and
Systems, Chicago, USA, September 2014, pp. 667–673.

[10] R. Vaughan, “Stage: Mobile robot simulator,” 2009. [Online]. Available:
https://github.com/rtv/Stage/

[11] A. Howard and N. Roy, “The robotics data set repository (radish),”
2003. [Online]. Available: http://radish.sourceforge.net/

